
 1

A New Heterogeneous Packet Processing
Architecture and Its Analytical Performance

Model
Yuhao Zhu, Yubei Chen, and Yangdong Deng

Abstract— Today’s IP routers have to simultaneously meet multiple requirements such as programmability, scalability, power,

and price besides the traditional objective of high throughput. Software routers like Click offer the best flexibility but suffer from a

lower level of processing throughput. A few recent works prove the potential of Graphic Processing Units (GPUs) for high-speed

packet processing. However, current GPU architectures cannot guarantee quality-of-service (QoS) of IP routing due to the

batched execution model. In this work, we propose a novel heterogeneous, integrated CPU/GPU microarchitecture, Hermes,

which adaptively maintains a balance between packet latency and overall throughput. A complete set of router applications are

implemented on this architecture. Experimental results show that Hermes achieves a 5X enhancement in throughput, a 81.2%

reduction in average packet latency, and a 72.9% reduction in delay variance, when compared with a GPU accelerated software

router. A byproduct of this research is an analytical model that catpures the throughput and processing latency of Hermes-alike

heterogensous architecture. In this work, the model can be used to quickly estimate IP routing QoS metrics of different Hermes

microarchitectural configurations under various traffic patterns. Simulation results reveal that the analytical model can accurate

predict QoS metrics with an average error rate of less than 10%.

Index Terms—Routers, SIMD processors, Heterogeneous (hybrid) systems.

—————————— ——————————

1 INTRODUCTION

ecent years have seen a strong momentum in new
Internet applications and services such as online vid-
eo, networked gaming, file-sharing, social network

and cloud computing. Many of these have become an
integral part of people’s daily life. As a result, network
traffic over Internet Protocol (IP) is growing at an accele-
rated pace, which in turn poses new challenges and re-
quirements for IP router designs.
 IP routers are the backbone devices of Internet. A rou-
ter connects multiple networks via its I/O ports. The in-
coming data of IP routers process are organized as pack-
ets. Upon arrival from an input port of a router, a packet
is processed and then forwarded to a desired output port.
Typically, the data processing consisting of a series of
operations on the header field of every packet is per-
formed by dedicated hardware and/or procesors, whe-
reas the actual forwarding is usually achieved by a switch
fabric. In this work, we primarily focus on packet
processing part, but leave packet switching for future
work.
 Today’s IP routers are under a unique set of design
specifications due to the exponentially increasing band-
width requirements and the fast-changing network proto-
cols and applications. As a matter of fact, none of current
router solutions could simultaneously meet the often-

conflicting requirements on performance, programmabili-
ty, power and cost [1]. Traditionally, routers depend on
application specific or ―domain-specific‖ ICs to deliver
the highest performance. With the skyrocketing fabrica-
tion cost due to the aggressive scaling of the semiconduc-
tor process, however, it is becoming infeasible to develop
a cost-efficient IC solution targeting a relatively smaller
market. In addition, the related customer base is too small
to attract sufficient software support. The above observa-
tion is exemplified by the fact that Intel recently closed its
network processor product line [2]. On the other hand,
software routers utilize general-purpose processors to
offer the best programmability and flexibility. Such solu-
tions are cost-efficient and supported by powerful soft-
ware development tools. Nevertheless, the major draw-
back of software routers is that they can only deliver a
throughput of 1-3Gbps, which is considerably lower than
the required throughput of 40Gbps - 92Tbps for core net-
working equipments [3].
 In the recent years, Graphics Processing Units (GPUs)
are emerging as a new general-purpose computing plat-
form that offers both high performance and strong pro-
grammability. The massive scale of GPU user community
also guarantees sufficient support for software develop-
ment. It is thus appealing to use GPU to address the
above dilemma of router designs. A few recent works
already demonstrate the potential of GPUs for high per-
formance routing processing [4], [5]. Nevertheless, IP rou-
ters have to meet stringent quality-of-service (QoS) re-
quirements such as packet latency and latency variance,
while so far GPU architectures do not have direct control
on such QoS metrics. In this work, we propose a solution
to the above problem by augmenting a mature GPU ar-

————————————————

 Y. Zhu is with Department of Electrical and Computer Engineering, the
University of Texas at Austin, Austin, TX 78741. E-mail: yu-
hao.zhu@mail.utexas.edu.

 Y. Chen is with the Institute of Microelectronics, Tsinghua University,
Beijing 100084. E-mail: yb08@mails.tsinghua.edu.cn.

 Y.Deng is with the Institute of Microelectronics, Tsinghua University,
Beijing 100084. E-mail: dengyd@tsinghua.edu.cn.

R

2

chitecture and its programming tools. We also present an
analytical performance model of the proposed microarc-
hitecture. The model enables us to quickly estimate the
packet processing performance under a given network
traffic pattern. It also provides insight for designing mas-
sively parallel packet processing engines. In summary,
the major contributions of this paper are as follows:
 We developed an integrated heterogeneous

CPU/GPU microarchitecture, Hermes, for massively
parallel packet processing. The CPU and GPU are
closlely coupled with a simple yet effective interface.
By sharing a common memory hierarchy, the comm-
munication overhead between CPU and GPU is mini-
mized.

 To the best of the authors’ knowledge, this is the first
work to introduce QoS management mechanism to
GPU-like massively parallel architectures.

 We propose a complete analytical performance model
for Hermes and other similar massively parallel archi-
tecture. Our model enables fast throughput and laten-
cy estimations so that designers can efficiently explore
the solution space.

The rest of the paper is structured as follows. Section 2
reviews the background of this work. The details of
hardware and software designs of Hermes are introduced
in Section 3. Section 4 presents a thorough performance
evaluation of Hermes. Section 5 discusses key design con-
siderations and constructs analytical models for Hermes.
Related works are reviewed in Section 6. Section 7 con-
cludes the paper and outlines important future research
directions.

2 BACKGROUND AND MOTIVATIONS

2.1 IP Routing

The essential task of an IP router is to determine the
destination port (i.e., connection to different networks) of
each individual packet in the incoming Internet traffic.
Such a decision is made according to the header
information of each packet. Besides the above forwarding
operation, an IP router also performs a series of actions
for flow control and bookkeeping. A typical processing
flow for a given packet consists of such steps: 1) checking
the IP header (CheckIPHeader) to verify the validity of an
IP packet, 2) classifying the packets (Classifier) to identify
flows and filter data traffic etc., 3) looking up a routing
table (RTL) to determine the outgoing port, which is in
fact the primary task of an IP router, 4) decrementing the
time-to-live value (DecTTL), and 5) fragmenting the
packet (Fragmentation) to small ones in order to fit the
Maximal Transfer Unit of a network [46]. In addition, the
ever-demanding requirements for intrusion detection
have made deep packet inspection (DPI) [7] a regular task
on the critical path of packet processing. Throughout the
paper, we will use the above processing pipeline to
evaluate our system.

2.2 Current IP Router Solutions

Today’s commercial and academic IP routers can be clas-

sified into three categories: hardware routers, software
routers and programmable network processors (NPs) [6].
The selection of a specific solution depends on complex
tradeoffs among such metrics as performance, program-
mability, power budget, area efficiency, scalability, and
marketing considerations. In particular, router perfor-
mance is measured in terms of quality-of-service (QoS).
We will further discuss the QoS issues of a router in Sec-
tion 4.
 Hardware routers were once the most commonly cho-
sen routing solution. They depend on customized hard-
ware, i.e., ASICs to deliver the highest performance with
the least power/area overhead. On the other hand, hard-
ware routers suffer from the long design turnaround
time, poor scalability, and inferior programmability. Such
limitations gradually made ASIC based solutions out of
the mainstream. The adoption of FPGA based solutions
mitigates some of the problems, but still cannot offer suf-
ficient programmability.
 In contrast, software routers implement all packet
processing applications as programs running on com-
modity multi-core platforms or clusters/server-farms.
Therefore, they offer the highest flexibility because the
programmability makes it straightforward to reflect arbi-
trarily any changes in network configurations and proto-
cols. The advantage of such an approach is even more
significant when considering the scales of market and
customer base. In fact, general-purpose processors are
targeting a much larger market and thus supported with
more mature operating systems and development tools.
Both the openness in hardware architectures and software
tools make software routers desirable for today’s con-
stantly changing network applications and services.
However, it is extremely challenging for pure software
implementations to deliver sufficient computing power
required by high performance networks. Therefore, such
routers are usually used for routing services in relatively
small networks.
 In the middle of the solution spectrum is the network
processors (NPs) based IP routers. NPs are designed to hit
a balance among performance, cost efficiency, and flex-
ibility by integrating many general-purpose processing
engines (PEs) optimized for data level parallelism (DLP)
1or task level parallelism (TLP),2 as well as a set of special-
purpose coprocessors that are either hardwired or confi-
gurable for packet processing [8]. The PEs and the copro-
cessors are coordinated by a task scheduler. However, a
clear downside of network processors is that so far an
effective programming model has not been constructed
due to the limited size of market and customer base [9].
As a result, it takes great efforts to develop efficient appli-
cations that fully unleash the potential computing power
of NPs. Meanwhile, the small volume of NPs also leads to
prohibitive per chip cost. As a matter of fact, the above
two problems already force some top NP vendors to

1 PEs are organized as parallel modules, i.e., one packet is

processed in one PE
2 PEs are organized as pipelined modules, i.e., packet processing

is divided into multiple tasks and one or more stages are responsi-
ble for one task

 3

resort to multi-core based router solutions [10].

2.3 GPU Systems

Recently GPU based general-purpose computing has be-
come an important trend [11]. Under such a computing
paradigm, GPUs are regarded as the coprocessors or acce-
lerators of the CPU to exploit the massive parallelism pre-
sented in computing-intensive applications. In this sub-
section we discuss why this heterogeneous architecture
offers significant potential to be a packet processor from
both hardware and software points of view.

Fig. 1. Architecture of NVidia Fermi GPU

 Figure 1 illustrates the high level organization of a 32-
wide 3 SIMD GPU architecture (i.e., NVIDIA’s Fermi
GPU). It contains 16 shader cores (SC), each equipped
with 32 scalar processors (SP). When running a typical
GPU program, a massive number of threads are grouped
into 32-wide thread warps and are then executed on dif-
ferent shader cores. A warp of threads adopt a single in-
struction multiple data (SIMD) model, since they share
the same instruction fetch/issue unit and follow an iden-
tical instruction schedule. In addition, modern GPUs have
hardware support for intra-warp divergence, and thus it
is not necessary to comply with the restrictions imposed
by traditional SIMD architectures in which threads in a
warp must follow exactly the same control flow. Upon
divergence, branches are taken one after another and re-
converge at a given node of the underlying control flow
graph [12]. From this perspective, the GPU execution
model can be regarded as single program multiple data
(SPMD) or single instruction multiple thread (SIMT) [13]
as defined in NVidia’s terminology.
 The nature of packet-based network processing does
not require communication between two processing ele-
ments for two different packets. Accordingly, processing
procedures can be replicated on scalar processors, which
then behave like processing engines in traditional net-
work processors. Clearly, the execution model of shader
cores is suitable for massively parallel packet processing.
 Modern GPUs generally employ a fine-grained multi-

3 Typical NVidia’s GPUs are 8-wide SIMD machines. However,

in the most recent Fermi architecture, a 32-wide SIMD architecture
has been employed. We adopt this new organization to avoid the
complexity of super-pipelining.

threading [14] mechanism as well as a flexible memory
hierarchy to hide the memory access latency. Both fea-
tures are essential for packet processing applications. The
largest GPU memory resource is the global memory
shared by all the shader cores. Although it takes hun-
dreds of cycles for a complete access, L1 and L2 caches
are installed to reduce the waiting time. Moreover, the
fine-grained multithreading execution mechanism inter-
leaves the operations of different warps. In addition,
when a currently active warp is waiting for a memory
access, it can be suspended and another ready-to-run
warp can be activated. Shader cores on a GPU generally
have its own texture and constant caches, which are ideal
for fast indexing of constant and regular data like routing
tables. Besides, within each shader core, there is a soft-
ware managed shared memory which allow the same
accessing speed as the SP registers as long as no bank
conflict. Although it is designed for the inter-thread
communication within a shader core, the shared memory
can serve as an extension of the abovementioned hard-
ware cache to facilitate the memory accessing perfor-
mance in packet processing applications.
 Finally, GPU programming has been made much easier
than the hard-to-learn programming model of network
processors. The release and wide acceptance of GPU de-
velopment tool-chains including programming models
like CUDA [15] and CTM [16] as well as runtime and de-
bugging systems allow developers to implement their
applications onto GPU platforms in a fashion similar to
that of conventional C/C++ development. In addition,
there is already a large GPU programming community.
Therefore, the GPU software eco-system has a strong po-
tential to meet the ever-growing requirements for rapidly
deploying new network protocols and services.

2.4 Limitations of GPU based Software Routers

Two recent works [4] and [5] already proved the potential
of GPUs for packet processing. By implementing the rou-
ter application as CUDA programs, a GPU based soft-
ware router solution outperforms a CPU baseline router
by a factor of up to 30X. However, two main problems
hinder a wider adoption of heterogeneous CPU/GPU
systems for software routing applications.
 First, the communication mechanism between CPU and
GPU seriously degrades system throughput. In a typical
packet processing scenario, the CPU first transfers pack-
ets to GPU for routing processing after initialization. Af-
ter the routing processing is finished, GPU initiates a data
transmission again to move the data back to CPU. Under
certain circumstances, packets data have to be trans-
ported between CPU and GPU back and forth for mul-
tiple times. However, the CPU-GPU communication is
through a PCI Express (PCIe) bus [18] with a peak band-
width of only 16GB/s. Compared with the over 100GB/s
bandwidth between GPU and its memory, the PCIe bus is
clearly a bottleneck., not to mention that we also need
extrea memroy copies.
 The situation is illustrated in reference (as shown in
Figure 5) [4]. It is reported that the overall throughput of
GPU processing can be more than 30 times higher than

4

that of CPU without counting the CPU-GPU transfer cost.
When considering the data transfer overhead, however,
the speed-up degrades to 5X.
 Second, GPU’s batch processing model hurts the worst-
case delay. In principle, GPUs are designed as throughput
oriented processors that emphasize average thread
throughput. They employ hundreds of execution units
that can execute different threads in parallel to attain a
very high throughput. In order to utilize the execution
resources, GPUs’ programming model requires a suffi-
cient number of threads to be available before they can be
instantiated on GPU for further computation. In the con-
text of packet processing, previous works typically assign
one packet to one GPU thread. Therefore, early-arriving
packets have to be waiting on the CPU side before an
enough number of packets are accumulated. Such a
batched processing fashion may lead to a long latency for
some packets. This negative effect conflicts with the QoS
requirements and is many times intolerable for delay sen-
sitive applications such as online video and teleconferenc-
ing. Here, the key insight we gained from previous works
is that it is essential to deliver a balanced solution for
overall QoS metrics.
 In summary, the above analysis forms the foundation
of this work on enhancing the GPU microarchitecture for
network processing. Here we have to follow two rules of
thumb: 1) the overhead of data transfer must be mini-
mized; and 2) it is essential to hit a balance between sys-
tem throughput and average packet delay.

3 HERMES SYSTEM

3.1 System Overview

Figure 2 presents a high level overview of the Hermes
system. In the Hermes system, we propose two microarc-
hitectural innovations on current GPU microarchitectures
for network processing. The first one is to integrate CPU
and GPU with a shared memory space to minimize the
communication overhead and thus improve the system
throughput. The other is to employ an adaptive warp
(packet) issuing mechanism to achieve better average
packet processing delay. In this section we discuss these
two microarchitectural features as well as the correspond-
ing software extensions.

Fig. 2. Hermes overview

3.2 CPU-GPU Integration Via Shared Memory

As explained in Section 2.4, improving the bandwidth
between CPU and GPU is critical for such heterogeneous
systems to be pratical in use. A shared-memory architec-

ture inherently resolves this problem. Fortunately, with
the rapid-growing integration capacity made available by
the advancement of semiconductor process, it is now feas-
ible to deploy closely-coupled CPU and GPU cores on a
single chip. Pangaea [47] is one of early explorations
along this direction. The Hermes architecture proposed in
this work follows a similar philosophy. Rather than using
separated memory spaces, CPU and shader cores in
Hermes system share the same memory hierarchy so as to
remove the extra memory copies between CPU and GPU.
The GPU still works as a coprocessor of CPU, as we want
to minimize the changes to the current CPU/GPU archi-
tecture and computing paradigm. In other words, our
design philosophy is to develop an enhanced architecture
but keep compatibility with the current GPU program-
ming model.
 Accodingly, in the Hermes microarchitecture, data
communication between CPU and shader cores is
through the shared memory hierarchy rather than a PCIe
bus. The overall execution flow remains to be the same as
a classical heterogeneous CPU/GPU platform, e.g., CU-
DA. The CPU is responsible for creating and initializing
data structures according to packet processing applica-
tions. This process can be regarded as a system configura-
tion stage. When a given number of input packets are
available, the CPU stores packet data into the shared-
memory and then launches a kernel, in which one thread
is associated with one packet. Shader cores in GPU fetch
data from the shared memory and perform the corres-
ponding processing. Finally, the contents of the processed
packets are updated in the shared memory, where they
can be either further processed by CPU or directly for-
warded to the destination ports.
 Another implication of maintaining compatibility with
a current GPU programming model is that Hermes does
not have the race condition problem that is typical in
shared-memory architectures. In fact, the data accessing
by CPU and GPU are independent under the CUDA pro-
gramming model. In other words, the CPU and GPU op-
erations on an individual packet are inherently mutually
exclusive. Nevertheless, it must be noted that the out-of-
order commit of finished packets may introduce consis-
tency problems, which will be further discussed in the
next sub-section.
 An important function of shared-memory is to serve as
a large packet buffer to avoid the canonical buffer sizing
problem ([20], [21], [22]). According to [23], the optimal
size of router buffer should be determined by the ―Band-
width-Delay Product‖ (BDP) as a rule-of-thumb. In a typ-
ical network environment, such a guideline mandates a
1.25GB buffer size [24], which is impractical for tradition-
al router designs. On the other hand, routers using small-
er buffers suffer from a high packet loss rate [25]. Accor-
dingly, the shared-memory space in Hermes is naturally
large enough to hold a sufficient number of incoming
packets (even in case of burst) to guarantee optimal pack-
et availability.
 The shared-memory architecture significantly reduces
the overhead of data communication between CPU and
its coprocessors. However, one remaining question is

 5

how the CPU controls its coprocessors in such an inte-
grated system, especially when dedicated for packet
processing applications. The following section resolves
this question by proposing an adaptive warp issuing me-
chanism.

3.3 Adaptive Warp Issuing

In this work, a key enhancement to current GPU micro-
architectures is a warp issuing mechanism, which orga-
nizes data-parallel tasks and then assigns them onto
shader cores. When a given shader core receives warps,
its warp scheduler 4 will then determine when a warp
should be activated or suspended. In a traditional
CPU/GPU system, all the thread warps are kept in a
warp pool before being issued. In order to maximize the
overall throughput, warps are issued to shader cores by
following a best-effort strategy, which means the number
of warps that can be issued in one round is only con-
strained by the number of available warps as well as
hardware resources such as per core register and shared
memory5 size. However, due to the streaming nature of
packet processing and the requirement for real time
processing (as explained in Section 2.4), it is not afforda-
ble to wait for an enough number of warps. Therefore, we
propose an adaptive warp issuing mechanism that adapts
to the arrival pattern of network packets and maintains a
good balance between overall throughput and worst-case
per-packet delay.
 The key structure that enables adaptive warp issuing is
a simple task FIFO as illustrated in Figure 2. The packets
arrive at a router via NICs and then are DMA’ed to the
shared memory. CPU is keeping track of the number of
arrived packets and notifies the GPU to fetch packets for
processing by putting the number of available packets in
the task FIFO.
 Specifically, CPU creates a new FIFO entry with the
value of the number of packets ready for further
processing as soon as it decides it is appropriate to report
the availability of packets and the task FIFO is not full.
Meanwhile, the GPU is consistently monitoring the FIFO
and making decisions on fetching a proper number of
packets. The minimum granularity, i.e., number of pack-
ets of one round of fetching by GPU should be at least
equal to the number of threads in one warp.
 One essential question is that how frequently the CPU
should update the task FIFO. It directly relates to the
transferring pattern from NIC to shared memory. Again a
tradeoff has to be made. On the one hand, transferring a
packet from NIC to the shared memory involves a per-
formance overhead (excluding DMA data copy) such as
reading and updating the related buffer descriptors. The
corresponding extra bus transactions may be unafforda-
ble [26]. In addition, updating the task FIFO too frequent-
ly also complicates GPU fetching due to the restriction of
finest fetching granularity mentioned before. Therefore, it

4 A warp scheduler chooses data-ready warps to be fetched for
execution in a multiplexing manner.

5 Shared memory here indicates the memory storage installed in
the shader core and shared by scalar processors. It is different from
the “shared memory” in the termoinology “shared memory archi-
tecture”.

is beneficial to minimize system bus transactions and up-
date the task FIFO in a relatively coarser granularity. On
the other hand, too large an interval between two consec-
utive updates increases average packet delay and should
be avoided. Moreover, setting a lower bound on transfer
granularity, in the worst case, would result in a timeout
problem, which would delay the processing of some
packets. If such a timeout really happens, the NIC logic
and corresponding system drivers have to be equipped
with a timeout recovery mechanism. Considering the con-
tradicting concerns, we set the minimum data transfer
granularity to be the size of a warp, i.e., 32 packets. In
addition, if there are not enough packets arriving in a
given interval, these packets should still be fetched and
processed by GPU. A similar approach was taken by [26].
For simplification, the interval is chosen to be double
warp arriving time, although an adaptive estimation
based on the packet arriving rate would potentially be
better. Upon finishing one transaction of data transfer
(from NIC to system memory), the CPU notifies GPU
through updating the FIFO. In our experiments, we found
that such a configuration generally is able to guarantee
timely packet processing.
 Newly created warps are put in a warp pool, waiting
for issuing. A round-robin issuing strategy is employed to
evenly distribute the workload among each shader core.
In attempting to achieve better load balancing, we also
implemented a more precise strategy that tracks the oc-
cupancy of each shader core and then always issues
warps to the least ―hot‖ one. However, given a uniform
packet traffic pattern, the impact delivers negligible per-
formance gain but rather incurs a high hardware over-
head.
 Clearly, it is still important to keep track of the availa-
bility of hardware resource that eventually restricts the
maximum number of concurrently active warps. Upon
reaching that limit, the warp issuing should be paused
until new warp slots are available. However, we find it
possible to explicitly control that upper bound in order to
achieve a better QoS. The details will be discussed in Sec-
tion 5.

3.3.1 In-Order Warp Commit
Owing to the fine-grained multithreading execution
model, thread warps running on one shader core may
finish in an arbitrary order, not to mention warps running
on different shader cores. As a result, sequentially arrived
packets could complete processing with any order. Some
protocols such as TCP do not enforce the order of packets
processing and committing since TCP header includes
extra areas to enable retransmission of lost packets and
reassembly of out-of-order packets into the correct se-
quence. However, others like UDP do require in-order
processing of packets [27]. Therefore, if GPU commits
packets to CPU (by writing the data back to the shared
memory) in their finishing order, CPU and GPU may
have an inconsistent view of packets status. To maintain
the so called ―packet consistency‖ over all protocols, it is
mandatory to keep the packet commitment order the
same as the arriving order. In network processors, a com-
plicated task scheduler is responsible for this purpose

6

[28], but our solution only requires a simple Delay Com-
mit Queue (DCQ).
 The key idea is to allow out-of-order warps execution
but still enforce in-order commit. This resembles the
Reorder Buffer (ROB) [29] in a processor with hardware-
enabled speculation.

As illustrated in Figure 3, the DCQ holds the IDs of
those warps that have been finished but not committed
yet. Every time a warp is issued onto one shader core, the
status of DCQ is checked. If it is not full, a new entry is
allocated. This one-on-one mapping between warp ID to
its DCQ entry ID is recorded in a lookup table (LUT).
Upon finishing, the corresponding DCQ entry is updated
by indexing the LUT with the finished warp’s unique id.
Only could a warp be committed when all warps arrived
earlier have been finished. The checking of warp status
involves a traversal from the DCQ to the entry for the
current warp. Since the number of warps is relatively
small, the traversal can be implemented efficiently in
hardware. Once a warp commits, its entry in DCQ is rec-
laimed.

Fig. 3. Implementation of Delay Commit Queue (DCQ) with a Lookup

Table (LUT)

Note that in this paper we always assume no depen-
dency existing between any two packets, and therefore
we can execute and commit them in the batch mode.
Some previous work [48] explored a more general case
where inter-packet dependencies do exist, which compli-
cates the ordering issue. However, such dependencies
make GPU implementations inherently unsuitable, and
thus are beyond the scope of this paper.

3.3.2 Hardware Implementation and Cost Estimation
As compared with original GPU hardware, Hermes re-
quires three additional memory components, the task
FIFO, Delay Commit Queue, and DCQ-Warp LUT storing
the mapping of warp index to DCQ entry.
 Both task FIFO and Delay Commit Queue need to be
assigned with a finite size, but there is no theoretical up-
per-bound that could always avoid overflow. We tested
throughout all our benchmark applications, and found
that a size of 1K entries for both task FIFO and DCQ suf-
fice for typical packet traces. In fact, the circuit structure
of task FIFO and DCQ are relative simply, enabling a
much bigger implementation to minimize the chance of
stall. Since task FIFO stores the number of available pack-
ets, its entries can be set with a size of one integer, i.e. 32

bits. Similarly, DCQ records the warp index and thus the
size of its entries must be smaller than the total number of
maximally allowed concurrent warp (MCW) over all
shader cores. In our work, the number of MCW in a shad-
er core is no larger than 32. Assuming 8 shader cores in-
stalled on GPU, the DCQ’s entry size can be set as 8 bits.
For the DCQ-Warp LUT in a shader core, the number of
its entries can be safely chosen as equal to the number of
MCWs. Therefore, one LUT should have 32 entries, with
each entry having a warp index portion of 5 bits and a
DCQ index portion of 10 bits (to indentify a unique entry
in DCQ). To ease the alignment issues, we use 16 bits for
each entry. Altogether, for a GPU with 8 shader cores, we
will need 5.5KB of extra storage that should be imple-
mented in SRAM.

We use CACTI 4.0 [30] to estimate the area cost of these
three hardware add-ons. According to its SRAM model,
task FIFO and DCQ cost 0.053mm2 and 0.013mm2 respec-
tively, while 8 DCQ-Warp LUTs take 0.006mm2 in total.
As compared to the total area of one GPU chip, the hard-
ware overhead is next to negligible.

3.4 API Modifications

Hermes programming model is based on CUDA [15]. It
introduces a few minor modifications on the host side
API. A new built-in variable is also required for GPU ker-
nels. Currently implemented as a library on top of CUDA,
in the future it can be integrated into CUDA native lan-
guage and runtime system.
 With the CPU and GPU sharing the same memory sto-
rage, the explicit memory copy is not necessary. There-
fore, we do not need the memory copy APIs any more.
Instead, we add two new memory management APIs,
RMalloc(void **, size_t) and RFree(void *), for allocating
and freeing memory storages.
 Hermes does not need the concept of of Cooperative
Thread Array (CTA) but directly organize and schedule
threads in warps. In traditional CUDA programming pra-
radigm, threads are typically grouped into CTAs (with
each usually contains many warps) on the CPU side be-
fore transferred to GPU. The concept of CTA is proposed
and designed in favor of batch processing and provides a
way for inter-thread sharing. However, adaptive warp
issuing mechanism breaks such batching processing
mode by enabling a finer-grained communication, typi-
cally in warps, between CPU and GPU, effectively aban-
doning the concept of CTA, not to mention that we al-
ways assume no dependency and sharing among packets.
 An implication of the above decision is that we are now
not able to computer a unique index for every thread
(packet) as in common CUDA practices, i.e., unique_id =

blockIdx * blockDim + threadIdx. Instead, we define a new
built-in variable packetIdx, which is the only necessary
information needed to program GPU kernels.

4 EXPERIMENTAL EVALUATIONS

4.1 Methodology

In this work, we use GPGPU-Sim [31], which is a cycle-
accurate GPU microarchitecture simulator that supports

 7

CUDA programs, to evaluate our modifications. The GPU
microarchitectural configurations used in this work are
presented in Table 1.
 It is worth noting that, in the current implementation of
GPGPU-Sim, the host side CUDA codes run on a normal
CPU (host in CUDA terminology), while the kernel codes
are parsed and executed on the simulator. In other words,
GPGPU-Sim can only evaluate the performance evalua-
tions of GPU computations. To avoid the complexity and
performance overhead of integrating a CPU simulator
with GPGPU-Sim, we evaluated the performance advan-
tage of the shared-memory architecture in terms of the
overhead of PCIe transfers, which clearly dominate in the
total overhead of the traditional data communication be-
tween CPU and GPU.

To evaluate our proposed architecture, we imple-
mented a complete CUDA-enabled software router,
which covers all the tasks as declared in Section 2. For
DPI, we employed a bloom filter based algorithm [32]
that is amenable for GPU implementation. The string rule
sets were taken from Snort [33], while the replay traces of
network traffic were extracted by Tcpreplay [34]. In the
case of routing table lookup, packet traces are retrieved
from RIS [35]. Packet classification implements the basic
linear search algorithm and uses ClassBench [36] as the
benchmark. The other three applications (checking IP
Header, decrementing TTL, and IF fragmentation) are
adapted from RouterBench [37], and tested under WIDE
traffic traces [38].

TABLE 1
ARCHITECTURAL PARAMETERS

Hardware Structure Configuration

Shader cores 8

SIMD width 32

Warp size 32

Shader core frequency 1000MHz

Registers per shader core 16768

Shared memory size per shader core 16KByte

Maximally allowed concurrent warps per core User defined

 Since Hermes is targeting the IP routing applications,
Quality-of-Service (QoS) is of key importance when eva-
luating system performance. QoS can be generally meas-
ured in terms of the following four major metrics,
throughput, delay, delay variance, and availability [39],
[40]. Because we always perform loss-free tests, we omit
the availability metric and only report results of the other
three.

Throughput is defined as the total number of bits that
can be processed and transferred during a given time pe-
riod. Delay for a given packet is the interval between the
time it enters the router and the time it is ready for fur-
ther forwarding. The delay metric consists of two compo-
nents, queuing delay and serving delay. When the packet
arriving rate (line-card rate) exceeds the processing
throughput of the system, the succeeding packets have to
wait before shader cores are available. The waiting time is
the queuing delay. The service delay is the time for a
packet to receive complete processing by a shader core.

Fig. 4. QoS metrics (a) throughput under burst traffic, (b) delay under burst traffic, (c) delay variance under burst traffic, (d) delay ratio,
(e) throughput under sparse traffic, and (f) throughput scaling with # shader cores.

8

Note that the time spent in the DCQ is also included in
the serving delay. The delay disparity of different packets
is defined as delay variance. We use the interquartile
range to measure it.

4.2 Results

According to our profiling, DPI, packet classification and
routing table lookup together consume nearly 90% of to-
tal processing time. The remaining three applications,
CheckIPHeader, DecTTL, and Fragmentation, are much
less demanding. In addition, the latter three applications
have almost identical behavior processing patterns.
Therefore, we use DecTTL as a representative to explain
the results of the latter 3 applications.
 Figure 4 shows the three QoS metrics of the four
benchmark applications. The number of Maximally-
allowed Concurrent Warps (MCW) and the line-card rate
are tuned to get different QoS outcomes. We also present
the influence of delay commit queue and the number of
shader cores. It is worth noting that due to the limitation
of available registers, #MCW cannot be set to 32 for the
packet classification application.
 A burst traffic that requires packet to be buffered before
serviced is used in Figure 4(a) to 4(d). A sparse traffic is
applied in 4(e). Both bust and sparse traffics are used in
4(f). Each application has their own line-card rates pro-
vided by traffic traces, as showed in the leftmost column
of four column-sets in 4(a), 4(e) and 4(f).
 Figure 4(a) compares a traditional CPU/GPU system
against different configurations of Hermes. Note that the
overall processing time of CPU/GPU system consists of
three components, packet-waiting overhead (the time it
takes before enough packets are available for processing),
PCIe transfer time, and GPU computation time. Hermes
removes the PCIe transfer overhead and amortizes the
packet-waiting time among computation. Therefore, the
average throughput of Hermes can still outperform
CPU/GPU by a factor of 5 in the best case, although the
adaptive issuing mechanism somehow violates the
throughput-oriented design philosophy of GPU. In Sec-
tion 5.2, we develop a model to estimate the maximal
throughput of Hermes.
 Hermes can deliver network packets with a much
smaller delay than a traditional CPU/GPU system as
showed in 4(b). On the CPU/GPU system, packet delay is
composed of waiting delay on the CPU side as well as
processing delay on the GPU side. For RTL and DecTTL,
due to their relatively simple processing in GPU, the wait-
ing overhead at CPU side contributes to a non-negligible
part of total delay. Therefore, delay improvement is more
significant for these two applications, since Hermes could
overlap CPU side waiting overhead with GPU
processing. Comparing different configurations of
Hermes, Hermes-4 (i.e., #MCW equals 4) always per-
forms the worst. Classifier and RTL do not present signif-
icant difference for other three configurations. For DPI
and DecTTL, Hermes-32 performs slightly worse than
other two configurations. On average, the best case of
Hermes can reduce packet delay by 81.2%. We further
discuss the delay in Section 5.3.

 As showed in 4(c), Hermes also outperforms
CPU/GPU system in delay variance by 72.9% on average.
Interestingly, the delay variance displays a similar trend
as the delay itself. This indicates that the tendency of
packet processing is consistent over all delay values.
 Although the using of DCQ will not affect the overall
throughput, however, Figure 4(d) shows its impact on
packet delay by normalizing to the corresponding cases
without DCQ. The DCQ always results in longer packet
delay, especially for DPI and DecTTL. It is because those
packets taking divergent branches consume much longer
time than those following convergent branches in these 2
applications. The longer processing time mandates later-
arrived packets buffered in DCQ, deteriorating average
delay.
 We also perform a sparse traffic test where the arriving
rate of packets is lower than the computing rate (as de-
fined in the next Section) of Hermes shader cores. As illu-
strated in Figure 4(e), now packets can be issued without
being queued. Therefore, they can be finished almost at
the arriving rate, only penalized by the transfer overhead.
Even under such a situation, a CPU/GPU system is still
unable to deliver the packets at their arriving rate.
 Finally, 4(f) demonstrates the scalability of the Hermes
system. With the increasing of the number of shader cores
from 8 to 17 to 28 by changing the mesh configuration in
GPGPU-Sim from 4x4 to 5x5 to 6x6, the overall perfor-
mance scales rather satisfactory. Note that in DecTTL, the
scaling factor does not completely follow the increasing
number of shader cores. It is because the arriving packet
rate is too sparse for a Hermes with 28 shader cores and
thus the computing resources are not fully utilized, as
justified by the fact that in DecTTL the throughput of
Hermes-28 is approximately equal to the line-card rate.

5 ANALYTICAL QOS MODELING FOR HERMES

5.1 Discussions

The Hermes architecture is flexible and scalable in the
sense that its high-level microarchitectural parameters
such as the number of shader cores and the number of
maximally allowed concurrent warps can be determined
according to the incoming Internet traffic. Such customi-
zability is especially useful when the network traffic fol-
lows certain fixed patterns (Poisson distribution for in-
coming phone calls is a well-known example). The flex-
ibility and scalability of Hermes suggests that it can be
instantized with a specific configuration to meet the re-
quirements of a particular networking environment. We
hereby present a high-fidelity analytical model for fast
microarchitectural explorations to identify an ideal confi-
guration. Note that our model captures the generic pat-
terns of data parallel streaming applications, although it
is developed from packet processing applications. Accor-
dingly, the models can also be applied to other applica-
tion domains to provide key design insight.
 In the remaining of this section, we first identify the
raw computing capacity of GPU by introducing the con-
cept of computing rate. We then construct an analytical
model for the maximal system throughput as well as av-

 9

erage packet delay in a Hermes system.

5.2 Computing Rate and Throughput Model

The concept of computing rate for a shader core is intro-
duced to measure the potential performance for an appli-
cation. Before looking into the details, we first define
computing rate (CR) as in (1).

Fig. 5. Computing rates of benchmark applications

Assuming all the shader cores in the GPU are identical,
the computing rate for a shader core as a function of
MCW is defined as the average time interval between two
finished warps running on the same shader given all
#MCW warps are active. It is equivalently the average
processing time for one warp as calculated by (1). Ob-
viously, smaller computing rate indicates more powerful
computing capacity.
 Through profiling, we derived the computing rate val-

ues for our benchmarking application in Figure 5. Clearly,
as maximally allowed number of concurrent warps be-
comes larger, hardware resources can be more efficiently
used, thus the computing rate becomes higher. Owing to
the relatively less-demanding computations in DecTTL,
its computing rate curve remains almost constant.

Clearly, when the packet arriving rate, i.e., the line-card
rate exceeds the computing rate, more and more packets
would be buffered (queued) before they can be served. In
this case, the system throughput would no longer scale
with the line-card rate. Accordingly, we can compute the
system maximal throughput, which is achieved when the
line-card rate equals computing rate. The results are listed
in Table 2. We set the number of shader core (#SC) to be
8. Clearly, throughput reported here would scale with
#SC as showed in Section 4.2.

TABLE 2
MAXIMAL THROUGHPUT (GBPS) FOR HERMES

#MCW Packet classifica-

tion

DPI Routing table

lookup

Dec

TTL

4 38.7 40.87 77.4 250.4

8 48.4 52.71 99.6 258.2

12 48.4 55.59 100.0 240.6

16 48.5 55.24 100.1 254.2

32 NA 56.95 121.3 248.7

warpsprocessedtotal

cycleprocessedtotalcoresshader

MCW
CR

#

##

#

×
 (1)

MCW

i

iMCW CRMCWCCRMCWm

DelayServiceDelayQueuingmD

MCWm

#

1=

×#+]-×#×)1-[(=

+=

∑
#×)1-(

 (2)

2

)-#(×#×)1-(
+#×#=

×
1

-
2

#×#×)1-(
+#×#=×

1
= ∑ ∑

1-

0=

#×

1=1=

∑

CMCWCRMCWm

MCWCRMCW

m

MCWCRMCWm

MCWCRMCW
m

D

m

u

MCWu

i

m

i

ii CD

 (3)

C
MCWs

CRxMCWD
#

× (4)

∫
2

1

2

1

)(

)(×#×
)(

∫
t

t

t

t

tC

dt

tCMCW
tC

dt

D (5)

1
1

#
)(

-×∫ s
t

r
t

rt

s
t MCW

CR
tC

dt
 (6)

0

500

1000

1500

2000

2500

3000

3500

4000

4 8 12 16 32
#MCW

C
yc

le

Packet Classification

DPI
Routing Table Lookup

Dec TTL

10

rt

s
t tC

dt

MCW
m

1)(#

1
 (7)

∑ ∑
1-

0=

#×

1=

××#),1(
1

+=

m

u

MCWu

i

iMCW C
m

CRMCWrtstD

(8)

∫
2

2

)(

)(×#×
)(

∫
),(2 s

r

s

r

tC

dt

tCMCW
tC

dt

sr ttD (9)

5.3 Delay Model

As compared to the overall throughput, real-time net-
work applications are more sensitive to packet delay.
Therefore, architectural design decisions should be care-
fully made to avoid deteriorating the average delay. Here
we take a first step to discover its dependency with the

number of maximally allowed concurrent warps.
 Comparing Figures 4(b) and 4(e), it can be seen that the
delay with DCQ is still much better than that of a tradi-
tional CPU/GPU architecture even in the worst case. We
thus construct our model without considering DCQ for
simplicity. In fact, the overall trend would not change
even when taking DCQ into account, as justified by simp-
ly multiplying the corresponding columns in 4(b) and
4(e).
 We define an integer series C, which describes the time
interval between two consecutively arrived packet warps.
C can thus be regarded as the average interval between

two arrivals. Statistically, CR#MCW = C is the threshold
condition that does not require packet buffering, i.e.,

sparse traffic (as opposed to burst traffic). We first discuss
these two traffics separately, and then establish a com-
bined model for a mixed traffic.

5.3.1 Burst Traffic Model
Given a bursty traffic, the delay for one warp consists of
queuing delay and service delay. The service delay roughly

equals #MCW × CR#MCW since now all #MCW warps in a
shader core are active. The queuing delay can be computed
by subtracting the time when a packet arrives from the
time it is serviced (both measured in cycles). We organize
arriving packet warps into groups with a size of #MCW.
Due to the bursty nature, the delay of the first warp in a
group can be regarded as an approximation of the average
delay for all warps in this group. Without loss of generali-
ty, in the mth group every warp has the average delay de-
scribed by (2). Thus, we can calculate the average delay for
all m groups of warp as (3).

Figure 6 presents the measured and estimated time for
the four benchmark applications. We use a long traffic
trace to reduce errors. The results show the average geome-

 (a) DPI

30000

35000

40000

45000

50000

55000

60000

4 8 12 16 32

Measured

Estimated

 (b) Classifier

10000

30000

50000

70000

90000

110000

130000

4 8 12 16

Measured

Estimated

 (c) Routing table lookup

0

10000

20000

30000

40000

50000

60000

4 8 12 16 32

Measures
Estimated

 (d) DecTTL

9000

10000

11000

12000

13000

14000

15000

4 8 12 16 32

Measured

Estimated

Fig. 6. Effect of Burst Model

 11

tric mean of error is 7.8%.

5.3.2 Sparse Traffic Model
In this case, we have C > CR#MCW. Therefore, according to
the curves in Figure 5, we can find a specific #MCWs, such
that CR#MCWs = C . Statistically, this #MCWs is the average
number of active warps in the shader under current traffic.
In other words, we claim that given a particular uniform
sparse traffic and #MCW setting, there are only #MCWs
warps active on average and every CR#MCWs cycle would
one warp be finished. As a result, under such a uniform
sparse traffic, the average delay can be described as (4). In
Figure 7, we check the accuracy of above model by replay-
ing the traffic in Figure 4(e). On average, the error rate is
9.1%.

Figure 7. Effect of Sparse Model

More generally, if the sparse traffic is non-uniform, we
cannot use C for approximation. Instead, C has to be
treated as a function of time, i.e., C(t). Therefore, we have
to integrate (1) from t1 to t2. In this case, the average delay
should be (5).

5.3.3 A Unified Model
In the last two sub-sections, we developed delay models
for bursty traffic and sparse traffic, respectively. The above
two patterns can be considered as two extreme cases of
network traffic. For an arbitrary traffic pattern represented
as the distribution of the line-card rate over a given time, a
generic model is desired for estimation.

Here we need to define (1) the accumulation starting
point as the time when packets start to accumulate in the
buffer, and (2) the accumulation resolve point as the time
when all the packets in the buffer are right issued (i.e., ac-
cumulation in the buffer is resolved). It is obvious that be-
tween two accumulation starting points Ts1 and Ts2, there is
one and only one accumulation resolve point Tr. The rela-
tionship should satisfy (6).
 Intuitively, between Ts1 and Tr, the traffic can be re-
garded as bursty, while the traffic is sparse between Tr and
Ts2. For the burst traffic in this case, we still divide incom-
ing packets into groups of #MCW. The number of group
follows (7). Therefore, we can use (3) to calculate the aver-
age delay between Ts1 and Tr as in (8), and (6) to calculate
average delay between Tr and Ts2 in (9).

6 RELATED WORK

There have been a couple of works focusing on leveraging
GPU computing power for network packet processing.
The work proposed in [17] explored the potential of GPUs
to perform signature matching. The authors also identi-
fied key performance-hindering factors such as memory

bottleneck and architectural restrictions, which are com-
patible with our modifications in this work. Mu et al. [4]
performed the first work to implement GPU accelerated
routing tasks such as routing table lookup and pattern
match. Han et al. [5] implemented a complete GPU-based
software router in. Both works demonstrate that GPU can
accelerate packet processing by one order of magnitude.
All the above works rely on the existing CPU and GPU
model, while our work identified performance bottle-
necks and developed architectural enhancements and
corresponding API modifications.
 Some recent IP router (packet processing) solutions are
orthogonal to ours. RouterBricks [42] is a scalable soft-
ware router based on a set of state-of-the-art, general-
purpose servers running Click [43]. Although yielding
high performance, the RB4 prototype is less cost-efficient
than off-the-shelf GPU cards as the performance require-
ments scale. PLUG [44] is a complete solution including
the tile-based architecture, programming model and run-
time system to facilitate deployment of lookup modules
in new network protocols. However, our solution relies
on mature hardware and software architectures with mi-
nor extensions.
 There also exist some analytical models for GPU in the
literature. As compared architecture models such as [49],
our model is a QoS model rather than an architectural
model. Particularly, our model takes into account the
adaptive warp issuing mechanism and correlates it with
the QoS metrics. In addition, when coupled with power
models such as [50], our model can also be used in low
energy design for Hermes-like architectures.
 Heterogeneous integrated architecture is gaining adop-
tion in both academia and industry. Our work reported in
this paper is inspired by Pangaea [47], which tightly
couples an IA32 CPU with an Intel GMA GPU (without
graphic legacies) on a chip multiprocessor. Our design
differs from theirs by treating architectural level modifi-
cations as add-ons to mature hardware, while Pangaea
requires more microarchitectural alterations. Both AMD
and Intel recently announced their integration solutions.
Intel’s Clarkdale Core i3 and i5 combine CPU and GPU
dies in one package. AMD’s Fusion [19] builds such a
hybrid architecture on a single piece of silicon, and the
products will be shipped in this year. The above solutions
can be directly employed as the underlying architecture
for Hermes.

7 CONCLUSION AND FUTURE WORK

Recent works proved the potential of GPUs for high
speed packet processing. However, the lack of guarantee
on QoS as well as the communication overhead between
CPU and GPU turn out to be the major hurdles that hind-
er the deployment of GPUs in main-stream software rou-
ter solutions. To overcome these limitations, we devel-
oped a novel closely-coupled CPU/GPU microarchitec-
ture with a flexible scheduling mechanism that could
adaptively maintain a balance between packet delay and
overall throughput. A complete set of router applications
has been implemented on this architecture. Experimental

0

2000

4000

6000

8000

10000

DPI Classifier RTL DecTTL

Measured

Estimated

12

results prove that the new GPU architecture meet strin-
gent delay requirements, while at the same time maintain
a high processing throughput. In addition, we also devel-
oped analytical models for both system throughput and
packet delay. With such models, we are able to quickly
identify an optimized Hermes configuration for QoS re-
quirements in a particular network environment.
Through minimal augmentation on the current GPU mi-
croarchitecture, this work opens a new path toward
building high quality packet processing engines for fu-
ture software routers. In addition, this work provides a
case study on customizing/extending GPU microarchitec-
ture for a specific application domain.
 In the future, we will continue our work in several di-
rections. First, with Hermes serving as the packet
processing engine, now the DMA transfer from NIC to
main memory will become a bottleneck that limits the
overall throughput. Hence, we are going to explore the
possibility of a better communication mechanism be-
tween NIC and Hermes. Second, GPU memory system
scheduling and instruction fetch are key to extract data
level parallelism [41]. It is thus imperative to investigate
the effectiveness of different memory scheduling and in-
struction fetching heuristics under the context of adaptive
warp issuing mechanism. Third, we are also evaluating
different CPU/GPU integration mechanisms other than
shared-memory. For example, memory storages of CPU
and GPU can still be integrated on one chip but with dif-
ferent address space, rather than a uniform one. It is
claimed to be faster for CPU-GPU data transferring [19].
Finally, the Hermes architecture will greatly benefit
through exploiting 3-D integration features [45]. Besides
allowing a much high memory bandwidth, 3-D IC tech-
nology also enables more aggressive solutions such as
seamlessly integrating accelerators like PLUG [44] with a
Hermes processing engine.

REFERENCES

[1] F. Baker, ―Requirements for IP Version 4 Routers,‖ Internet RFC 1812,

1995.

[2] R. Merritt, ―Intel shifts network chip to startup,‖ EE Times,

http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=2

02804472. 2007

[3] W. Eatherton, ―The push of network processing to the top of pyramid,‖

Keynote Speech at ANCS, 2005.

[4] S. Mu, X. Zhang, N. Zhang, J. Lu, Y. Deng, and S. Zhang, ―IP Routing

Processing with Graphic Processors,‖ Proc. of DATE, 2010.

[5] S. Han, K. Jang, K.S. Park, and S. Moon. ―PacketShader: a GPU-

Accelerated Software Router,‖ Proc. of SIGCOMM, 2010.

[6] H. J. Chao, and B. Liu, ―High Performance Switches and Routers,‖

Wiley-Interscience. 2007.

[7] G. Varghese. ―Network Algorithmics,‖ Elsevier/Morgan Kaufmann.

2005.

[8] M. Peyravian, and J. Calvignac. ―Fundamental architectural considera-

tions for network processors,‖ International Journal of Computer and Tele-

communications Networking, 41(5), 2003.

[9] C. Kulkarni, M. Gries, C. Sauer, and K. Keutzer, ―Programming chal-

lenges in network processor deployment,‖ Proc. of CASES, 2003.

[10] Intel, ―Packet Processing with Intel® Multi-Core Processors,‖ Inter

Whitepaper, 2008.

[11] D. Blythe. ―Rise of the Graphics Processor,‖ Proc. of IEEE, 96(5) 761– 778,

2008.

[12] W. Wilson, L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, ―Dynamic

Warp Formation and Scheduling for Efficient GPU Control Flow,‖ Proc.

of MICRO, 2007.

[13] E. Lindholm, J. Nickolls, S.Oberman and J. Montrym. ―NVIDIA Tesla:

A Unified Graphics and Computing Architecture,‖ IEEE Micro, 28(2):

39–55, 2008.

[14] M. R. Thistle, and B. J. Smith. ―A processor architecture for Horizon,‖

Proc. of SC, 1988.

[15] NVidia, ―CUDA Programming Guide 2.3,‖ 2009.

[16] J. Hensley. ―AMD CTM overview,‖ International Conference on Computer

Graphics and Interactive Techniques, 2007.

[17] R. Smith, N. Goyal, J. Ormont, K. Sankaralingam, and C. Estan, “Eva-

luating GPUs for Network Packet Signature Matching,‖ Proc. of IS-

PASS, 2009.

[18] PCI SIG, ―PCI Express Base 2.0 specification,‖ 2008.

[19] Nathan Brookwood, ―AMD Fusion Family of APUs: Enabling a Supe-

rior, Immersive PC Experience,‖ AMD Fusion Whitepaper, 2010.

[20] D. Wischik, and N. McKeown, ―Buffer Sizes for Core Routers,‖ ACM

SIGCOMM Comp. Communications Review, 35(3), 2005.

[21] G. Raina, D. Towsley, and D. Wischik. ―Control Theory for Buffer Siz-

ing,‖ ACM SIGCOMM Comp Communications Review, 35(3), 2005.

[22] M. Enachescu, Y. Ganjali, A. Goel, and N. McKeown. ―Routers with

Very Small Buffers,‖ ACM SIGCOMM Computer Communications Re-

view, 35(3), 2005.

[23] C. Villamizar, and C. Song. ―High Performance TCP in ANSNet,‖ ACM

SIGCOMM Comp. Communications Review, 24(5), 1994.

[24] A. Vishwanath, V. Sivaraman, and M. Thottan. ―Perspectives on Router

Buffer Sizing: Recent Results and Open Problems,‖ ACM SIGCOMM

Comp. Communications Review, 39(2), 2009.

[25] A. Dhamdhere, and C. Dovrolis. ―Open Issues in Router Buffer Sizing,‖

ACM SIGCOMM Comp. Communications Review, 36(1), 2006.

[26] N. Egi, M. Dobrescu, J. Du, K. Argyraki, B. C. Chun, K. Fall, G. Iannac-

cone, A. Knies, M. Manesh, L. Mathy, and S. Ratnasamy, ―Understand-

ing the Packet Processing Capability of Multi-Core Servers,‖ Intel Tech-

nical Report, 2009.

[27] J. Postel, ―User Datagram Protocol‖, Internet RFC768, 1980.

[28] T. Wolf, and M. A. Franklin, ―Locality Aware Predictive Scheduling of

Network Processors‖, Proc. of ISPASS, 2001.

[29] J. E. Smith, and A. R. Pleszkun. ―Implementation of Precise Interrupts in

Pipelined Processors,‖ Proc. of ISCA, 1985.

[30] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. ―CACTI

5.1. Technical Report,‖ HPL-2008-20, 2008.

[31] A. Bakhoda, G. L. Yuan, W. L. Fung, H. Wong, and T. M. Aamodt,

―Analyzing CUDA Workloads Using a Detailed GPU Simulator,‖ Proc.

of ISPASS, 2009.

[32] B. Bloom. ―Space/Time Trade-offs in Hash Coding With Allowable

Errors,‖ Communication of the ACM, vol. 13, pp. 422-426, 1970.

[33] The Snort Project, Snort users manual 2.8.0.,

http://www.snort.org/docs/snort/manual/2.8.0/snort manual.pdf.

[34] Tcpreplay, http://tcpreplay.synfin.net/trac.

[35] Routing Information Service (RIS),

http://www.ripe.net/projects/ris/rawdata.html.

[36] ClassBench: A Packet Classification Benchmark,

http://www.arl.wustl.edu/classbench/index.htm.

[37] Y. Luo, L. Bhuyan, and X. Chen, ―Shared Memory Multiprocessor

Architectures for Softwre IP Routers,‖ IEEE Trans. Parallel and Distri-

buted Systems, vol.14, no. 12, 2003.

[38] MAWI Working Group Traffic Archive,

http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=202804472
http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=202804472
http://portal.acm.org/author_page.cfm?id=81100566224&coll=GUIDE&dl=GUIDE&trk=0&CFID=90289321&CFTOKEN=66534460
http://www.snort.org/docs/snort/manual/2.8.0/snort%20manual.pdf
http://tcpreplay.synfin.net/trac/
http://www.ripe.net/projects/ris/rawdata.html
http://www.arl.wustl.edu/classbench/index.htm

 13

http://mawi.wide.ad.jp/mawi.

[39] H. J. Lee, M. S. Kim, W. K. Hong, and G. H. Lee, ―QoS Parameters to

Network Performance Metrics Mapping for SLA Monitoring,‖ KNOM

Review, vol. 5, no. 2, 2002.

[40] G. Armitage, Quality of Service in IP Networks, Sams Publisher, 2000.

[41] N. B. Lakshminarayana, and H. Kim, "Effect of Instruction Fetch and

Memory Scheduling on GPU Performance," Workshop on Language,

Compiler, and Architecture Support for GPGPU, in conjunction with

HPCA/PPoPP, 2010.

[42] M. Dobrescu, N. Egi, J. Du, K. Argyraki, B. C. Chun, K. Fall, G. Iannac-

cone, A. Knies, M. Manesh, and S. Ratnasamy, ―RouteBricks: Exploiting

Parallelism To Scale Software Routers,‖ Proc. of SOSP, 2009.

[43] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, ―The

Click Modular Router,‖ ACM Trans.Computer Systems. 18(3), 2000.

[44] L. De Carli, Y. Pan, A. Kumar, C. Estan, and K. Sankaralingam. ―PLUG:

Flexible Lookup Modules for Rapid Deployment of New Protocols in

High-speed Routers,‖ Proc. of SIGCOMM, 2009.

[45] V. F. Pavlidis, and E. G. Friedman. ―Three-Dimensional Integrated

Circuit Design,‖ Morgan Kaufmann Publisher. 2009.

[46] J. McCann, S. Deering, J. Mogul, ―Path MTU Discovery,‖ Internet RFC

1191, 1996.

[47] H. Wong, A. Bracy, E. Schuchman, T. M. Aamodt, J. D. Collins, P. H.

Wang, G. Chinya, A. K. Groen, H. Jiang, and H. Wang, ―Pangaea: A

Tightly-Coupled IA32 Heterogeneous Chip Multiprocessor,‖ Proc. of

PACT, 2008.

[48] S. Melvin, and Y. Patt, "Handling of Packet Dependencies: A Critical

Issue for Highly Parallel Network Processors," Proc. of CASES, 2002.

[49] S. Hong, and H. Kim, "An Analytical Model for a GPU Architecture

with Memory-level and Thread-level Parallelism Awareness," Proc. of

ISCA, 2009.

[50] S. Hong, and H. Kim, "An Integrated GPU Power and Performance

Model," Proc. of ISCA, 2010.

Yuhao Zhu received the B.E. degree in computer science and engi-
neering from Beihang University, Beijing, China. He is pursing the
Ph.D. degree in electrical and computer engineering at the University
of Texas at Austin. His current research interests include processor
microarchitecture, computer system, and large-scale datacenter
design.

Yubei Chen biography appears here. Degrees achieved followed by
current employment are listed, plus any major academic achieve-
ments.

Yangdong Deng received his Ph.D. degree in Electrical and Com-
puter Engineering from Carnegie Mellon University, Pittsburgh, PA, in
2006. He received his MS and BE degrees in Electronic Department
from Tsinghua University, Beijing, in 1998 and 1995, respectively. He
was with Incentia design Systems in 2004 as a senior software engi-
neer (before finishing his Ph.D. dissertation). From 2006 to 2008, he
was with Magma Design Automation as a consulting technical staff.
Since 2008, he has been with Institute of Microelectronics, Tsinghua
University, as an associate professor. He serves on the Technical
Program Committees of many conferences. He is the founding co-
chair of the First International Workshop on Frontier of GPU Compu-
ting and the co-chair of the second International Workshop on Fron-
tier of GPU Computing. His research interests include electronics
design automation, parallel programming, and GPU microarchitec-
ture. His research is supported by the EDA Key Project of China
Ministry of Science and Technology, Tsinghua-Intel Center of Ad-
vanced Mobile Computing Technology, China National Science
Foundation, Intel University Programs, Tsinghua CUDA Center of
Excellency, NVidia Professor Partnership Awards, and others. He is
the author or co-author of 4 books and around 40 papers. He re-
ceived an award from Magma Design Automation for his technical
contributions in 2006. He is the chief invited expert of China National
Excellent Class Center for GPU based parallel computing. He is a
member of the IEEE and the IEEE Computer Society.

http://mawi.wide.ad.jp/mawi/
http://comparch.gatech.edu/hparch/gputhread.pdf
http://comparch.gatech.edu/hparch/gputhread.pdf
http://www.ece.ubc.ca/~aamodt/papers/pact08_pangaea.pdf
http://www.ece.ubc.ca/~aamodt/papers/pact08_pangaea.pdf
http://www.eecg.toronto.edu/pact/
http://comparch.gatech.edu/hparch/hong_isca09.pdf
http://comparch.gatech.edu/hparch/hong_isca09.pdf
http://comparch.gatech.edu/hparch/hong_isca10.pdf
http://comparch.gatech.edu/hparch/hong_isca10.pdf

