Massively Parallel Logic Simulation with GPUs

YUHAO ZHU, Beihang University
BO WANG and YANGDONG DENG, Tsinghua University

In this article, we developed a massively parallel gate-level logical simulator to address the ever-increasing
computing demand for VLSI verification. To the best of the authors’ knowledge, this work is the first one
to leverage the power of modern GPUs to successfully unleash the massive parallelism of a conservative
discrete event-driven algorithm, CMB algorithm. A novel data-parallel strategy is proposed to manipulate
the fine-grain message passing mechanism required by the CMB protocol. To support robust and complete
simulation for real VLSI designs, we establish both a memory paging mechanism and an adaptive issuing
strategy to efficiently utilize the GPU memory with a limited capacity. A set of GPU architecture-specific op-
timizations are performed to further enhance the overall simulation performance. On average, our simulator
outperforms a CPU baseline event-driven simulator by a factor of 47.4X. This work proves that the CMB
algorithm can be efficiently and effectively deployed on modern GPUs without the performance overhead
that had hindered its successful applications on previous parallel architectures.

Categories and Subject Descriptors: B.6.3 [Logic Design]: Design Aids—Simulation; C.1.2 [Processor
Architectures]: Multiple Data Stream Architectures (Multiprocessors)—Parallel processors

General Terms: Verification, Performance

Additional Key Words and Phrases: Gate-level logic simulation, discrete event-driven, CMB algorithm,
GPU

ACM Reference Format:

Zhu, Y., Wang, B., and Deng, Y. 2011. Massively parallel logic simulation with GPUs. ACM Trans. Des.
Autom. of Electron. Syst. 16, 3, Article 29 (June 2011), 20 pages.

DOI = 10.1145/1970353.1970362 http://doi.acm.org/10.1145/1970353.1970362

1. INTRODUCTION

Logic simulation has been the fundamental and indispensible means to verify the cor-
rectness of IC designs. For instance, IC designers use logic simulators to evaluate
different design trade-offs at the RTL design stage and validate if the design imple-
mentation finally delivers the expected behavior before tape-out. The rapid increasing
complexity of mod ern VLSI circuits, however, is continuously posing challenges to the
simulation software. As a result, the gate-level logic simulation has become a time-
consuming process. One example is the recently released NVidia graphics process-
ing units (GPUs), Fermi, which consist of 3 billion transistors; it takes months to

Y. Zhu was with Department of Computer Science, Beihang University, Beijing, China, when he conducted
the work reported in this article. B. Wang was with Institute of Microelectronics, Tsinghua University, Bei-
jing, China, when he conducted the work reported in this article.

Authors’ addresses: Y. Zhu (corresponding author), Department of Electrical and Computer Engineering,
University of Texas at Austin, Austin, TX; email: yuhao.zhu@mail.utexas.edu; B. Wang, Department of
Electrical and Engineering, Stanford University, Palo Alto, CA; Y. Deng, Institute of Microelectronics, Ts-
inghua University, Beijing, China.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2011 ACM 1084-4309/2011/06-ART29 $10.00

DOI 10.1145/1970353.1970362 http://doi.acm.org/10.1145/1970353.1970362

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 29, Publication date: June 2011.

29:2 Y. Zhu et al.

run a gate-level simulation even on clusters designed for parallel simulation [NVIDIA
2009]. In addition, the trend of integrating the whole system with multiprocessors into
a single chip (MPSoC) makes overall system verification even more difficult. In fact,
verification tasks could take over 70% of the total design time in a typical SoC design
and 80% of the NRE cost [Rashinkar et al. 2000]. A large body of research has been
devoted to accelerate the logic simulation process [Fujimoto 2000]. Besides improving
the efficiency of algorithms, parallel computing has long been widely considered as
the essential solution to provide scalable simulation productivity. Unfortunately, logic
simulation has been one of the most difficult problems for parallelization due to the ir-
regularity of problems and the hard constraints of maintaining causal relations [Bailey
et al. 1994]. Today commercial logic simulation tools depend on multicore CPUs and
clusters by mainly exploiting the task-level parallelism. In fact, large simulation farms
could consist of hundreds of workstations, which would be expensive and power hun-
gry. Meanwhile, the communication overhead might finally outweigh the performance
improvement through integration of more machines.

Recently Graphics Processing Units (GPUs) are emerging as a powerful but econom-
ical high-performance computing platform. With hundreds of small cores installed on
the same chip, GPUs could sustain both a computing throughput and a memory band-
width that are one order of magnitude higher than those of CPUs. On applications
that can be properly mapped to the parallel computing resources, modern GPUs can
outperform CPUs by a factor of up to a few hundreds [Blythe 2008].

On the other hand, in the timed simulation of VLSI circuits, the parallelism pro-
vided by the simultaneously happened event might not be sufficient [Bailey et al.
1994]. The asynchronous, distributed time logic simulation mechanism exemplified
by the CMB algorithm [Bryant 1977; Chandy and Misra 1979] would extract more
parallelism by allowing different computing elements to evaluate events according to
their local schedules as long as the correct causal relations can be maintained. CMB-
like approaches had not been successful for VLSI simulation in the past due to the
communication overhead on previous parallel platforms [Soule and Gupta 1991]. With
a large number of computing cores integrated on-chip and a flexible memory system,
current GPUs support much more efficient communication. As a result, it is essential
to investigate the potential of modern GPUs for CMB-styled parallel logic simulation.

In this article, we propose a GPU-based logic simulator based on an asynchronous
event-driven algorithm, the CMB algorithm. We present a fine-grain mapping scheme
to effectively assign simulation activities to the computing elements of GPUs for a
high level of available data-level parallelism. The original CMB algorithm deploys a
priority queue to store events for every gate and such a data structure incurs a sig-
nificant performance penalty due to the divergent branches. We develop a distributed
data structure so that the events can be separately stored into FIFOs attached on pins.
A dynamic GPU memory management is also proposed for efficient utilization of the
relatively limited GPU memory. We also build a CPU/GPU cooperation mechanism to
effectively sustain the computation power of GPUs. By combining the proceeding tech-
niques, we are able to achieve a speedup of 47X on GPUs on average. The contributions
of this article are summarized as follows.

— To the best of the authors knowledge, this work is the first GPU-based implementa-
tion of the CMB algorithm.

— A dynamic memory paging mechanism is developed for GPUs. It allows dynamic al-
location and recycling of GPU memory to guarantee efficient memory usage in spite
of the irregular memory demand inherent in logic simulations. To the best of our
knowledge, this is the first dynamic memory manager for GPU-based applications.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 29, Publication date: June 2011.

Massively Parallel Logic Simulation with GPUs 29:3

In addition, the technique is generic enough to be also deployed in applications
arisen from other domains.

— We redesigned the underlying data structures for CMB to make it suitable for effi-
cient GPU executions. The new distributed data structure allows a higher level of
parallelism to be unleashed.

— We presented a gate reordering mechanism by simultaneously considering input
dependency, logic depth, and gate type. The reordering procedure could significantly
reduce the chance of divergent program execution paths by different threads.

— We proposed a heterogeneous simulation platform by closely coupling CPU and
GPU. Such a platform could effectively take advantage of high-speed memory trans-
fer mechanisms such as asynchronous copy and zero copy. Through carefully orga-
nizing the execution flow, the CPU-GPU data transfer can be completely overlapped
with GPU execution during a typical simulation process.

The remainder of this article is organized as follows. Section 2 introduces the back-
ground and motivation for this research. Section 3 presents the basic processing flow
of our GPU-based logic simulator. Various optimization techniques that are essential
for simulation throughput are outlined in Section 4. Section 5 presents the experimen-
tal results and detailed analysis. Related works are reviewed in Section 6. In Section
7, we conclude the work and propose future research directions.

2. BACKGROUND AND MOTIVATIONS

In this section, we first briefly present the algorithmic framework of parallel, asyn-
chronous event-driven simulation with a focus on the CMB algorithm. A more com-
plete picture of (circuit) simulation will be further discussed in Section 6. In this work,
the parallel simulator is implemented on NVidia GPUs. So we will also introduce the
corresponding GPU architecture and programming model [GTX 280 2011; Lindholm
et al. 2008].

2.1 EVENT-DRIVEN SIMULATION ALGORITHM

Today the event-driven simulation algorithm is the workhorse of virtually all real-
world simulation engines [Fujimoto 2000]. The event-driven simulation algorithm is
built on the basis of the event, which is composed of both a value and a timestamp.
An event indicates that the simulation state would have a transition on value at the
time of timestamp. Another important notion is the physical time. Different from
the simulation time, the physical time is the time passed in the physical system that
is being simulated. The logic simulation of VLSI circuits can be naturally performed
by an event-driven simulator. Generally, a logic simulator would use a global event
queue to store all pending logic transitions. The event queue can be implemented as a
priority queue so that the events are automatically chronologically ordered as they are
inserted into the queue. At every simulation cycle, a logic simulator fetches the first
event in the queue and performs evaluation according to the type of gate at which the
event happens. The evaluation may create new events, which are again inserted into
the event queue. The process is repeated until no events are available any more.

The event-driven logic simulation is a very efficient sequential algorithm. How-
ever, the parallelization of the event-driven logic simulation algorithm turns out to be
challenging [Bailey et al. 1994]. In fact, it could not extract sufficient parallelism by
simply evaluating events that happen at the same timestamp [Bailey et al. 1994]. The
concept of distributed time, event-driven simulation, was developed by Chandy Misra,
and [Bryant 1977] and designated as the CMB algorithm. Such an approach is based
on the concept of Logic Processes (LPs). In a parallel simulation process, different
modules of a simulated system are abstracted as logic processes. A LP maintains its

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 29, Publication date: June 2011.

29:4 Y. Zhu et al.

a=1@9ns

NAND

e
b 1 o
¢ N)C [e=1until 10ns
g
NAND
d }
d=1@7ns

Fig. 1. The basic concept of the CMB simulation algorithm.

local simulation time and could have several inputs and an output. At each simulation
step, an LP may receive several new events from its inputs and generate an event at
its output. The key idea of the CMB algorithm is that different LPs could indepen-
dently push forward their evaluation as long as the causal relations are not violated.
Figure 1 is an illustration of the CMB algorithm. In the 3-gate circuit, the gate e has
a pending event at 10ns and this fact is known to gates f and g. Meanwhile, input pin
a has an awaiting event at 9ns, while input pin d has one at 7ns. Obviously, since e
would not change until 10ns, the states of f and g would be completely determined by
a and d before 10ns. In addition, gates f and g can be evaluated because a and d are
independent. In other words, the safe evaluation time, T}, of gates f and g is 10ns.
After evaluating the events of a and d, the local time of gates f and g would be 9ns and
Tns, respectively.

The CMB simulation could run into a deadlock due to the distributed time mech-
anism [Chandy et al. 1979]. The most commonly used approach to prevent deadlock
is through the usage of null events [Bryant 1977]. When an LP, A, will not generate
new events (i.e., logic value remains the same) after an evaluation, it will instead send
a null event with timestamp 7,;. When another LP, B, receives the null event, its
simulation time can then proceed to T},;. It can be formally proved that the CMB
algorithm can correctly proceed until completion with the help null messages [Chandy
and Misra 1979].

2.2 PARALLEL PROCESSING ON GPU

Although originally designed for graphic-specific algorithms, Graphic Processing Units
(GPUs) are now increasingly used for general-purpose computing applications as a
massively parallel accelerator [Blythe 2008]. Both NVidia and AMD, the largest two
independent GPU manufacturers, have released programming models and software
tools for general-purpose GPU program development. As a result, now programmers
could use a general-purpose API to map their domain-specific applications onto the
many cores installed on GPU chips. The complete tool chain greatly facilitates the
rapid increase of usage of GPUs as a mainstream computing solution. In this article,
our work is based on NVidias GPU and its programming environment CUDA [CUDA
2.3 2011].

Figure 2 illustrates the microarchitecture of GTX280, which is one of the off-the-
shelf Tesla architecture processors. GTX280 consists of 30 Streaming Multiprocessors
(SMs). Each SM contains 8 Scalar Processors (SPs). A SP is a simple scalar multiply-
add unit, and the 8 SPs in one SM share a common multithreading instruction schedul-
ing unit which would fetch and issue instructions to be executed across the SM. From
such a point of view, the GTX280 can be regarded as a Single Program Multiple Data
(SPMD), or Single Instruction Multiple Thread (SIMT) processor.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 29, Publication date: June 2011.

Massively Parallel Logic Simulation with GPUs 29:5

. Streaming Processor (SP) I:‘ Special Function Unit (SFU)

- Double Precision FPU

Fig. 2. NVidia GPU architecture.

During GPU execution, a large number of threads are organized as 32thread groups,
or warps. Each SM in GTX280 could concurrently manipulate up to 24 active warps
(i.e., 768 threads). Within every instruction cycle, one instruction is fetched for a warp
within which all threads have had their data ready. So ideally, threads in a warp
should follow the same flow of instructions. Such an ideal situation, of course, is hard
to maintain for real-world applications. Therefore, CUDA allows that threads in one
warp take different paths of program execution. If this does happen, the execution of
divergent branches in that warp has to be serialized. In other words, each branch is
taken one after another by corresponding threads, and finally threads reconverge at
the end of the divergence. Such a performance overhead indicates that complex branch
structures should be maximally avoided.

Modern GPUs are always equipped with a flexible memory hierarchy consisting
of various types of memory circuits with different accessing latencies and read/write
modes. Each SM has a 64K-Byte on-chip shared memory shared by its internal SPs.
From the perspective of software, blocks of threads assigned to one SM would exchange
data through the shared memory. When a group of accessing requests contains no bank
conflict, the shared memory provides peak performance as fast as the registers inside
an SP. Besides, through an interconnection network, SMs can access the off-chip global
DRAM, with a 1G-Byte capacity on GTX280. However, it takes up to 400~600 cycles of
accessing latency and there is no cache support. Thus it is strongly recommended that
the global memory accessing should be coalesced. A coalesced access means that the
memory requests distributed in a given range can be combined into a single memory
operation and processed in one memory latency. Meanwhile, there are two off-chip
memory spaces, namely constant memory and texture memory, which are backed up
by on-chip caches for improved irregular accessing. Both memory spaces are read-only,
with the former intended for data declared at compiled time and the latter designed
for data determined at runtime.

3. GPU BASED LOGICAL SIMULATOR

This section explains the details of our GPU-based massively parallel simulator. First
the basic simulation flow is presented. Next we show how to sustain a high-level

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 29, Publication date: June 2011.

29:6 Y. Zhu et al.

parallelism through carefully manipulating the communication of messages. In the
last subsection, we propose novel techniques for dynamic GPU memory management
and adaptive issuing of input patterns according to the memory page’s utilization ratio.

3.1 THE GENERAL FRAMEWORK

During the process of parallel simulation, the input circuit is converted into an internal
representation in which every gate is mapped to a Logic Process (LP). During simu-
lation, an LP receives events from their inputs, performs logic evaluations, and then
creates and sends events to outputs. In such a manner, the simulation process pro-
ceeds like waves travel forward. In order to handle both internal and I/O signals of a
circuit in a uniform manner, every PI (Primary Input) is treated as a virtual gate. The
simulation flow is organized as three consecutively executed primitives, extract, fetch,
and evaluate. First, virtual gates extract pending input patterns and insert them into
their corresponding event queues. Logically these stimuli are equivalent to the out-
puts of virtual gates. Next, all gates (including virtual gates) send the output events
to the queues of the pins at the succeeding level. This phase can also be regarded as a
fetch primitive from the viewpoint of an input pin. In real designs, we use fetch rather
than send to extract more parallelism, because the number of pins is much larger than
that of gates. Finally, in compliance with timing orderings, the real gates (i.e., all gates
excluding virtual gates) evaluate the inputs to generate new events and add them into
the event queues of the corresponding output pins.

Although the previous three primitives exhibit sufficient parallelism that is suit-
able for GPU implementation, two problems remain to be resolved. First, the work-
load has to be efficiently distributed to the hundred of cores installed on a graphic
processor such that the fine-grained data-level parallelism can be effectively exposed.
Second, an efficient memory management mechanism is essential, because GPUs are
only backed up by a limited capacity of memory storage. To address the first problem,
every pin (gate) is assigned to a single thread in the fetch (evaluate) kernel. In the eval-
uate kernel, each thread actually serves as an LP. For the second problem, a dynamic
memory management mechanism is indispensable to best utilize the memory resource.
Because current CUDA releases only offer preliminary support for flexible memory
management, we designed an efficient paging mechanism for memory allocation and
recycling. To further cushion the pressure on the memory usage, the issuing rate of
input stimuli can be determined in an adaptive manner by considering the memory
usage. The overall GPU-based simulation flow is outlined in Figure 3. The “for each”
structure indicates that the following operation would be executed in parallel.

In Figure 4, the fine-grained mapping mechanism is illustrated with a simple exam-
ple circuit consisting of three 2-input NAND gates, g0, g1, and g2. The four primary
inputs are a, b, ¢, and d. The input pins for a given gate gi are labeled as gi0 and gi1,
where i = 0, 1, or 2. In the extract primitive, the primary inputs are concurrently han-
dled by multiple threads labeled as 0 to ¢4. In the fetch primitive, each thread handles
a different input pin. And finally in the evaluate primitive, one thread is assigned to
every gate.

3.2 DATA STRUCTURES FOR FINE-GRAINED MESSAGE PASSING

The CMB algorithm is an event-driven algorithm and thus intrinsically suitable for a
message passing model, such as MPI [MPI 2011]. However, modern GPUs are based
on a shared memory architecture where several multiprocessors uniformly access the
same global memory. Therefore, we emulate a message passing mechanism in our
simulator through manipulating three arrays, namely output_pin, event_queue, and
gate_status. The output_pin array reserves an entry for the output pin of every gate

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 29, Publication date: June 2011.

Massively Parallel Logic Simulation with GPUs 29:7

while completion requirements not meet do

for each PI do
if memory to allocate is enough
extract the stimuli to the PI output pins
else
issue null message the PI output pins
end for each

for each input pin do
fetch messages from output pins
end for each

allocate memory if needed

for each gate do
insert new events from its input pins to the event FIFOs
evaluate the earliest message in its event FIFOs
write evaluation result to the output pin

end for each

release memory if possible

end while
Fig. 3. GPU-based logic simulation flow.

t0 t1 t2 t3

N

a b ¢ d al
g0 910| |g11 900|

1
b
| go01

4
s
z
S
O

() extract primitive (b) fetch primitive (c) evaluate primitive

Fig. 4. Fine-grain mapping of workload.

and stores events generated during gate evaluation. Note that the events for virtual
gates are extracted from the input stimuli in the extract primitive rather than from
evaluation. The event_queue array stores the events to be evaluated by a gate. The
gate_status array records related information for each gate. Such information includes
the input logic values and the safe evaluation time 7},;,, which is defined in Section 2.1.

Figure 5(a) is a sample circuit whose corresponding data structures are illustrated
in Figure 5(b). At the beginning of simulation, the virtual gates, that is primary inputs,
extract stimuli into the corresponding portion of output_pin. Then all events stored

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 29, Publication date: June 2011.

29:8 Y. Zhu et al.

in[0
PIO) pin[]gate[o\] output[0] pin[6] pin[8]
P|[1]| >_pin[1]

pin[7]|9atel3] PO[0]
pind] _\ IJ" output[3]
PII[> - pin[9]
pin[2] pin[s] jo2tel2)) il L D>Pol

0 N —
P gl /oot pin{10] ;

(a) sample circuit

X

output_pin input_pin_FIFOs gate_status
PI[0] pin[0] gate[0]
PI[1] pin[1] / gate[1]
PI[2] pin[2] 7 gate[2]
PI[3] & pin[3] gate[3]
PI[4] pin[4] PO[0]
output[0] pin[5] PO[1]
output[1] >< pin[6] PO[2]
output[2] pin[7]
output[3] pin[8]
\ pin[9]
pin[10]

(b) corresponding message passing data structures

Fig. 5. Sample circuit and its data structures.

in output_pin are written into event_queue to emulate one round of message passing.
Finally, the event with the earliest timestamp 7', is chosen from its event_queue. As
formulated in the original CMB algorithm, if T, is smaller than 7',;,, that event could
be safely fetched for evaluation.

To maintain the ordering of the events passed to a gate, the event_queue mentioned
before has to be a priority queue. However, it is extremely challenging to find an
efficient GPU implementation for managing a heap-based priority queue due to the
large number of branches incurred by heap operations. To avoid this bottleneck,
we decompose the event_queue of a gate into several FIFOs, with one FIFO for an
input pin. Such FIFOs are designated as input_pin FIFOs. The advantages of such
an approach are trifold. First, by decomposing the gate-wise priority queue into a
group of lightweight distributed FIFOs, the insertion operation for a priority queue
is much simpler. In fact, those events arriving at a given input pin are naturally
chronological and thus newly arrived events can be safely appended at the end of
the FIFO. Otherwise, the insertion operation of a priority queue would incur serious
performance overhead because different queues would have different structures,
which would inevitably lead to diverse program execution paths varying. Meanwhile,
the distributed FIFO mechanism enhances the potential parallelism because the
insertion operations for different FIFOs are independent. Otherwise, a centralized,
gate-wise storage would result in resource contention and restrict the maximum
parallelism to be the number of gates. Additionally, if a newly arrived event has the
same event as the latest one in the FIFO, it will be discarded and only the last-come

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 29, Publication date: June 2011.

Massively Parallel Logic Simulation with GPUs 29:9

typedef struct({
unsigned int size;
unsigned int *page_queue;
unsigned int head_page;
unsigned int head_offset;
unsigned int tail_page;
unsigned int tail_offset;

}FIFO_T;

Fig. 6. FIFO data structure.

event timestamp is updated. This mechanism greatly reduces the number of active
events in the simulation and is proved essential in the experiments.

3.3 MEMORY PAGING MECHANISM

The limited GPU memory would pose an obstacle for the simulation of large-scale
circuits. First of all, industry-strength, large-scale circuits would require consider-
able space to store necessary information. In addition, a significant number of events
would be created and sent in the simulation process. Such events also need to be
buffered in memory before they are processed. Current GPUs do not support dynamic
memory management features such as malloc()/free() in C language and new()/delete()
in C++. Accordingly, a straightforward implementation would allocate a fixed size for
the FIFO, that is, input_pin _FIFO, for each input. However, there is no easy way to
optimally determine the FIFO size before runtime. A smaller FIFO size would lead to
frequent FIFO overflow, while a larger size suffers low utilization of memory storage.
To overcome this problem, we introduce a memory paging mechanism to efficiently
manage the GPU memory.

The feasibility and advantage of such a dynamic memory management mechanism
is justified by two basic observations in the CMB-based simulation experiments. First,
we found that the numbers of events received at different pins would fluctuate dra-
matically. A relatively small number of pins are very hot in the sense that they receive
many more events than those cold ones by orders of magnitude. This fact certainly
suggests that a similar nonuniform pattern should be applied to the allocation of FIFO
size on each input pin to avoid both starvations and overflow. The second key observa-
tion is that, in a different period, the occupation of a FIFO varies noticeably. Thus, the
management should be able to recycle the memory storages.

Based on these observations, we designed a paging mechanism for dynamic man-
agement. A large bulk of memory MEM_SPACE with MEM _SIZE bytes is allocated
on GPU before the simulation. It is uniformly divided into small memory pages with
a constant size of PAGE_SIZE, each of which can hold up to EVENT_NUM events. A
page is the minimum unit of memory management and each page is uniquely indexed
in a continuous manner. This memory space is reserved for the input_pin_FIFO arrays
of all the inputs pins. Initially, a specific number of pages, INIT_PAGE_NUM, are al-
located to every FIFO of input pins. Indexes of all remaining pages are inserted into
a global FIFO called available_pages, which is used to record the index of available
pages. As the simulation process moves on, preallocated pages are gradually con-
sumed. As a result, free pages are needed to store newly created events, while pages
storing processed events can be recycled. In our simulator, we deal with the requests
for allocating new pages and releasing useless pages after every execution of fetch and
evaluate primitives, respectively.

The FIFO structure for a pin is defined as Figure 6. The page_queue stores the
indexes of pages that have been allocated to that pin. The events are extracted and
stored in MEM _SPACE according to the FIFO pointers. As illustrated in Figure 7, the

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 29, Publication date: June 2011.

29:10 Y. Zhu et al.

available_pages
[14]18]16]15]17]21] ..]

page_to_allocate] 0 [5 [6 [4 [8 [J13]11]
T ___________allocate page

page_to_release| - | - |

| -

! A 4 ./V/ \ 4]
pagequeue] [3[20[1 J-7[12] [[>le——"-

main memory T T Te—— ~.

0 1 2 3 4, 51 6 7 8 9 10 | Tt 12*' 13 14 15

16 17 18 19 “20"" 21 22 23 24 25 26 27 28 29 30 31

Fig. 7. Illustration of a sample memory layout.

locations of first and last events in the FIFO are pointed by page_queue/head _page]
* PAGE_SIZE + head_offset and page_queue[tail page] * PAGE_SIZE + tail_offset,
respectively.

A few additional data structures are needed to guarantee the correct working of
the paging mechanism. Two index arrays, page_to_allocate and page to_release, are
employed to support page release and allocation. Every pin has an entry in both
arrays. Elements in page_to_allocate denote the page indexes that are to be allocated
to corresponding pins, while elements in page_to_release hold the page indexes of those
pins that can be released. When a pin i runs out of pages, the GPU kernel fetches the
i-th value in page_to_allocate and inserts it into pin is page_queue. Similarly, when
events on a page of pin i are all processed, the GPU kernel writes the index of that
page to the i-th entry of page_to_release, and pops that page index from page_queue.
Because all event information is stored in MEM_SPACE, no explicit copy has to
be performed for release and allocation. The only overhead is introduced when the
control flow returns to the CPU side. At that time, the host thread would recycle
the pages in page_to_release by inserting them into available pages, and designate
pages to be instantly allocable by writing indexes of those pages into related entries
in page_to_allocate. The update of these two arrays to the available pages is done
sequentially on the host CPU. Further improvement of this step will be discussed in
Section 5.

Finally, in the experiments, we found that under proper conditions, events can be
created at a much higher rate than that of evaluation. Under such a circumstance, all
pages in MEM_SPACE may be occupied by events that have not been evaluated. This
would prevent the new input stimuli to be issued due to the lack of memory space. To
attack this problem, we propose an adaptive strategy to control the issuing speed of
input stimuli.

Before issuing stimuli, one host-side thread is responsible for checking the num-
ber of allocable pages residing in available_page. If the number is under a predefined
threshold, the issue of stimuli is paused. Instead, null events are issued with the
same timestamp as the last valid event. These null events will not be inserted into pin
FIFOs but can push forward the simulation process. Those events ready to be eval-
uated will be processed simultaneously and some pages may be released. When the
number of obtainable pages in available page is once again above the threshold, nor-
mal issue would continue. In this work, we choose a relatively conservative threshold

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 29, Publication date: June 2011.

Massively Parallel Logic Simulation with GPUs 29:11

value no smaller than the number of pins, since it is possible that all pins require a
page in the next simulation iteration.

4. GPU-ORIENTED PERFORMANCE OPTIMIZATION

The techniques presented in Section 4 provide a basic flow for a massively parallel logic
simulator. However, performance tuning and optimization are essential to successfully
unleash the computing power of GPUs. For GPUs, major hurdles for computing perfor-
mance include divergent program execution paths, communication overhead between
CPU and GPU, as well as uncoalesced memory access. In this section, we discuss a set
of optimizations to improve the simulation throughput.

4.1 GATE REORDERING

The efficient execution of a GPU program requires the data to be organized with good
locality and predictability. When the threads are organized into warps, ideally these
threads should take the same actions. However, gates in an input circuit are generally
arbitrarily ordered and the ordering is used to assign gates to threads. As a result,
generally threads in a warp would follow different instruction paths when performing
the table lookup for gate delay and logic output value as well as the calculation of T',.

To reduce the divergent paths, we proposed a gate reordering heuristic according to
circuit information. The ordering process can be performed prior to simulation. Gates
are sorted and then ordered with regard to gate types and number of fan-ins. When
the gates are sequentially assigned to threads, threads in a warp are very likely to
follow the same execution path in the evaluate primitive. Our experiments show that
this heuristic could enable an additional speedup up to 1.5X on some designs.

4.2 MINIMIZING DIVERGENT EXECUTION PATHS

Although hardware techniques like dynamic warp formation [Wilson et al. 2007] have
been proposed to minimize the overhead of intrawarp divergent branches, current off-
the-shelf GPUs are still sensitive to flow control instructions such as if, switch and
while. These instructions would potentially lead to a serialization of parallel threads.
As stated in Section 3.2, the design of the fundamental data structure already miti-
gates the divergent path problem by replacing the gate-wise priority queue with mul-
tiple distributed pin-wise FIFOs so as to avoid the insertion of priority queues.

4.3 HIDING HOST-DEVICE INTERACTION OVERHEAD

The only interaction between host and device threads during simulation is introduced
by the paging mechanism. To dynamically allocate and recycle GPU memory, it re-
quires explicit copy of data (page_to_allocate and page_to_release) and the correspond-
ing sequential processing during every iteration. The resultant overhead is twofold.
First, data transfer between GPU and CPU is through a PCI Express [PCIe 2011]
interface, which usually cannot meet the consumption speed of the GPU hardware.
The second overhead is due to the sequential processing on the CPU. In fact, Amdahls
law [Amdahl 1967] suggests that the sequential part of a program could severely drag
down the performance of a parallel program. In fact, the CPU processing might over-
weigh the performance gain offered by the massively parallel execution on the GPU.
Figure 10 illustrates how seriously the host-device interaction can affect the overall
performance by dividing the whole simulation time into three parts, GPU processing,
CPU processing, and data transfer. It can be seen that the latter two consume a far
larger percentage of total execution time.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 29, Publication date: June 2011.

29:12 Y. Zhu et al.

GPU execution update PI update pin evaluate gate
CPU execution update update
page_to_release page_to_allocate
|
zero copy é
%

[«— access page_to_allocate —»{ ﬁ— access page_to_release —ﬂ

Fig. 8. Illustration of ideal overlap.

Certainly the ideal situation would be to overlap the three parts as illustrated in
Figure 8. Such an overlapping is indeed possible through a careful organization of the
primitives. A key observation is that the fetch primitive that inserts events into event
FIFOs only needs to execute the memory allocation operations when the allocated
pages for that FIFO are full. In contrast, the evaluate primitive that evaluates events
from FIFOs just requires the memory release operations, because some allocated pages
may have be completely processed. Therefore, the CPU processing of page_to_allocate
and the evaluate kernel can be overlapped. The same goes with the processing of
page to_release and the receive kernel. This can be straightforwardly realized with
the asynchronous execution feature provided in CUDA. We create two streams and
assign fetch /release within one stream, and evaluate/allocate in another. In this way,
the receive primitive is executed on GPUs while the release operation runs on the
CPU host simultaneously. The evaluate primitive and allocation operation work in
the same way. Because the amount of data transferred is relatively small, we take
advantage of a new feature called zero copy [CUDA 2.3 2011] released in CUDA 2.2 and
later version. With zero copy technique, data transfer is invoked within GPU kernels,
rather than on the host size. Zero copy has the advantage of avoiding superfluous
copies since only the request data will be transferred. Another advantage is that it
also schedules those kernel-originated data transfers implicitly along with the kernel
execution, without the need for explicit programmer interventions.

To further overlap CPU computation time with GPU processing time, we propose a
group flag strategy. Every 32 (i.e., the warp size in CUDA) pins are aggregated into a
group. Every group has two flags, one for release and one for allocation. During GPU
processing, if any pin in the group requires a new page or releases a useless page,
corresponding flags are marked. Therefore, the CPU thread only needs to check those
groups of threads whose flags are marked and skip those unmarked ones. This strategy
functions like a skip-list and proves to be important for a high level of efficiency.

4.4 ENHANCING MEMORY ACCESS EFFICIENCY

As suggested in CUDA Best Practice Guide [CUDA 2.3 2011], one of the top concerns
for CUDA programming is how to guarantee the efficiency of memory access. Accord-
ingly, we perform extensive optimizations on the memory usage. For instance, a FIFO
has a set of descriptive data organized as a structure with multiple members such
as head pointer, tail pointer, size value, and offset value. To avoid the structure ac-
cesses that are hard to coalesce, we actually use a Structure Of Array (SOA) to store
the data. In addition, we minimize the access to long-latency global memory by stor-
ing read-only data in constant and texture memories, which are both supported by
on-chip cache. The circuit-topology-related data which are determined before simula-
tion are loaded into texture memory. Static circuit data structures like the truth table
are located in constant memory by declaring them as __constant__. With these storage
patterns, the penalty of irregular memory accessing is significantly reduced.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 29, Publication date: June 2011.

Massively Parallel Logic Simulation with GPUs 29:13

Table I. Characteristics of Simulation Benchmark

Design | #Gates #Pins Description

AES 14511 35184 AES encryption core

DES 61203 | 138419 DES3 ENCRYPTION CORE
M1 17700 42139 3-stage pipelined ARM core
SHA1 6212 13913 Secure Hashing algorithm core
R2000 10451 27927 MIPS 2000 CPU core
JPEG 117701 | 299663 JPEG image encoder

B18 78051 | 158127 | 2 Viper processors and 6 80386 processors
NOC 71333 | 181793 Network-on-Chip simulator
LDPC 75035 | 148022 LDPC ENCODER

K68 11683 34341 RISC PROCESSOR

Table II. Distribution of Number of Events Received by Pins

#events AES DES M1 SHA1 | R2000 NOC K68 B18

0~99 34444 | 138317 | 39708 | 13591 | 26106 | 157202 | 32669 | 158086
100 ~ 9999 737 102 2431 321 1764 24591 1672 40
>=10000 3 0 0 1 3 0 0 1

5. RESULTS AND ANALYSIS
5.1 EXPERIMENTAL FRAMEWORK

We choose ten open-source IC designs from OpenCores.org [OpenCores 2011] and
ITC99 Benchmarks (2nd release) [ITC99 2011] to test our GPU-based simulator. Crit-
ical parameters of these circuits are listed in Table I. Among these designs, b18 was
released as a gate-level netlist. The other nine designs were downloaded as RTL-level
Verilog code and then synthesized with Synopsys Design Compiler using a 0.13 um
TSMC standard cell library. Similar to the common industry practices, we use two
sets of simulation stimuli, deterministic test patterns released with the design test-
bench and randomly generated patterns. Usually the deterministic patterns can be
used to validate if a circuit delivers the expected behavior, while the random patterns
are used to cover possible design corners. For randomly generated stimuli, we set the
maximum simulation time as 250,000 cycles. Every five cycles the random generator
would create a new true or false value so that valid stimuli actually occupy 50,000
cycles.

To evaluate the performance of our GPU simulator, we also hand-coded a baseline
CPU simulator as a reference. The baseline simulator uses a classical event-driven
algorithm instead of the CMB algorithm, because the CMB algorithm is intrinsically
slower on sequential machines due to the extra work of message passing and local
time maintaining [Soule and Gupta 1991]. Our baseline simulator is up to 2X faster
than the Synopsys VCS simulator, because such commercial simulators have to handle
complex verification computations that incur performance overhead.

5.2 JUSTIFICATION OF THE OPTIMIZATION TECHNIQUES

We mentioned in Section 4.3 that there exist significant variations in the events
received by each pin. This fluctuation can be several orders of magnitude across one
specific design. Detailed statistics for a group of benchmark circuits are listed in
Table II. In Table II, pins are grouped into three categories with regard to the peak
number of events that they could receive during a complete run of simulation. The data
are collected after 50,000 simulation cycles using randomly generated input stimuli.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 29, Publication date: June 2011.

29:14 Y. Zhu et al.

Table Ill. Memory Page Recycling

Design Allocated pages | Released pages | Recycled ratio
AES 145085 51793 35.69%
DES 429312 93312 21.74%
R2000 27336 1938 7.09%
JPEG 1045482 46292 4.43%
SHA1 (R) 245596 14355 5.84%
M1 (R) 1868242 40075 2.15%
B18 (R) 45742 21935 47.95%
NOC (R) 2072609 167061 8.06%
K68 (R) 1430792 128857 9.00%

900000 9000000

800000 - B Released 8000000 - B Released e

700000 - O Allocated 7000000 - O Allocated

600000 - 6000000 -

500000 - 5000000 -

400000 - 4000000 -
300000 - 3000000 -
200000 - 2000000 -
100000 - H 1000000 - |_|
0 T T 0 T T
64 32 16

64 (2.2%) 32(2.1%) 16 (2.1%)
(35.7%) (36.9%) (37.5%)
(a) AES with released stimuli (b) M1 with random stimuli

Fig. 9. Page recycling with different PAGE_SIZE.

It can be seen from the table that the activity intensities of different pins are under
dramatic deviation, which implies that the dynamic paging mechanism is imperative.

We also conducted experiments to quantitatively analyze the efficiency of GPU
memory paging. The page recycling algorithm is detailed in Section 4.3. Here we
choose four circuits to apply deterministic input pattern and five circuits (marked with
a letter “R”) to exert randomly generated stimuli. Table III quantifies the numbers of
pages released and allocated when simulating each circuit. The 4th column is the ratio
of released pages to allocated pages.

The data in Table III are collected by configuring that PAGE_SIZE as 32 bytes.
For a give design, the circuit topology and stimuli pattern would largely determine the
progress of the simulation and the consumption of memory. Accordingly, we observe an
obvious variation in the page-recycle frequency. On average, about 14.2% pages could
be recycled. While the PAGE_SIZE decreases, the number of recycled pages would
increase as illustrated in Figure 9, where the x-axis is page size (i.e., PAGE_SIZE)
and y-axis represents the number of pages. The number beside the page size is the
ratio of the number of recycled pages to the number of total allocated pages. There
is no noteworthy difference in the relative ratio with varying page size, because both
released and reallocated pages vary in a similar trend. However, a small page size
means that more pages are needed. A larger number of pages in turn results in more
frequent page recycling and would potentially drag down the overall performance. On
the other hand, a large page size enlarges the granularity of the page recycling process
and thus lowers the flexibility of memory management. The extreme situation would

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 29, Publication date: June 2011.

Massively Parallel Logic Simulation with GPUs 29:15

100%

80% - O Memcpy
BEGPU
60% @cru

40% -
o =
0% -

AES DES SHA1 M1 R2000

Fig. 10. Detailed timing analysis.

be so large a PAGE_SIZE that every pin can only have one page. Considering the
contradicting impacts, a PAGE_SIZE of 64 offers a balanced solution empirically.

Finally, we justify the overlap of CPU processing, GPU processing, and memory
copy. The distributions of CPU time consumed by these three components are illus-
trated in Figure 10. The most significant observation is that memory copy accounts
for most of the whole simulation time. This necessitates the use of zero copy to reduce
redundant data copy and overlap computation with communication. Besides, CPU
processing plays a nontrivial role in all designs. In DES, CPU time even outweighs the
GPU part. Therefore, we need to not only overlap CPU processing with GPU compu-
tation, but also employ the group flag mechanism to further reduce the overhead on
CPU in achieving an optimal performance.

5.3 PERFORMANCE EVALUATION

In this section, we compare the performance of our GPU simulator against the CPU
simulator described in Section 6.1. The CPU baseline simulator is compiled by gcc
4.2.4 with O3 optimization. The GPU-based simulator reported in this article is
realized in CUDA 2.2 version. The experiments were conducted on a 2.66 GHz Intel
Core2 Duo server with an NVidia GTX 280 graphics card. We present results on both
deterministic and random stimulus. Table IV reports results of all ten designs under
randomly generated input patterns. Some designs (K68 and b18) have no testbench
released, and the other two designs (LDPC and NOC) are inherently tested by random
patterns. Table V only reports six designs simulated under the released deterministic
stimuli. Thanks to the highly parallel GPU architecture described in Section 2.2, the
GPU simulator attains an average speed of 47.4X on average for random patterns, and
up to 59X speedup for four designs with deterministic patterns. Meanwhile, there do
exist two designs on which the GPU simulator is slower under deterministic patterns.
The reasons that the speedup varies dramatically among different circuits and input
patterns will be explained in the next section.

5.4 SPEEDUP DISCUSSION

it is worth noting that the GPU-based simulator is slightly slower than its CPU coun-
terpart for m1 and it is worth noting that the GPU-based simulator is slightly slower
than its CPU counterpart for M1 and SHA1 when applying the deterministic stim-
uli released to the designs. However, when applying random patterns, a significant
speedup can be observed. In fact, for all six designs listed in Table V, the speedup
on random stimuli is much more significant. The reasons are twofold. First, we find
that the deterministic stimuli are applied in a rather sparse manner. For example,
with the deterministic stimuli of M1, input values only receive new values in 176,500
cycles (total 99,998,019 cycles simulated). In other words, the primary inputs receive

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 29, Publication date: June 2011.

29:16 Y. Zhu et al.

Table IV. Simulation Results With Randomly Generated Stimuli

Design Baseline GPU based Speedup
simulator (S) | simulator (S) | (Column 2/Column 3)
AES 676.96 9.45 71.64
DES 881.68 16.38 53.83
M1 88.85 8.57 10.37
SHA1 51.48 5.57 9.24
R2000 223.93 8.33 26.89
JPEG 10030.64 37.11 270.29
LDPC 51.91 10.41 4.99
K68 54.46 6.74 8.08
NOC 43.32 9.71 4.46
B18 299.92 21.70 13.82

Table V. Simulation Results with Officially Released Stimuli

Design Baseline GPU based Simulated cycles Speedup
simulator (S) simulator (S) (Column 2/Column 3)
AES 90.50 5.01 42,935,000 18.06
DES 17.38 8.06 307,300,000 2.16
M1 13.56 22.11 99,998,019 0.61
SHA1 0.33 0.42 2,275,000 0.79
R2000 4.594 0.937 5,570,000 4.90
JPEG 2121.71 35.71 2,613,200 59.42

new patterns in about every 500 cycles. On the other hand, new assignments are ap-
plied very frequently in the random patterns (every 5 cycles for the results reported
in Table IV). The simulator is thus kept much busier by the random stimuli. Second,
when the deterministic input patterns are applied, one pin would receive the same
value consecutively. Again taking circuit M1 as an example, a great portion of pins re-
peatedly receive the same true or false value throughout the simulation. As described
before, events with the same value as the previous one will not be added into FIFO. So
the total number of events that are to be evaluated is actually even more sparse. With
randomly generated stimuli, however, pins would randomly receive a new assignment.
As a result, the number of events would be significantly higher. Considering the pre-
ceding the two factors as well as the parallelization overhead, it is not strange that the
GPU simulator would be sometimes slower on deterministic patterns, but still could
achieve a dramatic speedup on random patterns. In other words, the lack of activities
in the deterministic input stimulus for M1 and SHA1 is the major reason for the in-
sufficient acceleration. In fact, when using a GPU simulator, IC designers could use
high-activity testbenches to extract sufficient parallelism for an even higher through-
put, as exemplified in Figure 11. On the benchmark circuits AES, SHA1, and M1, we
created three sets of random test patterns by gradually reducing the gap between two
patterns from 50 cycles to 5 cycles. We normalize the relative speedup to the 50-cycle
one and show them in Figure 11. Clearly, when the input patterns have a higher level
of activity, the GPU will perform better with a larger acceleration ratio.

6. RELATED WORKS

The IC design process involves different simulation tools. For digital circuits, discrete
algorithms are used because the output voltage can be abstracted to always take a few

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 29, Publication date: June 2011.

Massively Parallel Logic Simulation with GPUs 29:17

3

0 5-cycle gap
25 B 25-cycle gap
0O 50-cycle gap

2 r

15

1t

05

0 . .
AES SHA1 M1
Fig. 11. Speedup of GPU simulator over CPU baseline with varying input activity intensities.

fixed values defined in a discrete space. On the other hand, the simulation of analog
circuits depends on numerical methods developed based on continuous models (the
continuous nature would preclude the concept of event). In this work, we only focus on
digital circuit simulation.

There are two major approaches to perform simulations: oblivious and event-driven
[Fujimoto 2000]. The oblivious simulator evaluates all gates at every clock cycle, while
the event-driven one only evaluates those whose inputs have changed. Though oblivi-
ous simulation is simple, it is not adopted in practice. Due to the fact that only a small
fraction of gates are active, that is, the inputs of them change, every clock cycle in a
large design, event-driven approaches, and these are the most appropriate and prac-
tical methods. In fact, most current commercial simulators are based on event-driven
approaches.

Considering the enormous time required for the simulation of large VLSI circuits,
much emphasis has been paid to accelerate logic simulation by leveraging parallel
and distributed computer architectures. Modern parallel logic simulators are typically
based on event-driven simulation algorithms which can be divided into two basic cate-
gories: synchronous algorithms and asynchronous algorithms. In a synchronous simu-
lator, multiple LPs progress in a step-locked manner as coordinated by a global clock.
The events are stored in a global data structure for shared access. Such synchronous
algorithms can be implemented in SIMD architectures (e.g., Bataineh et al. [1992]) in
a straightforward manner. To extract a higher level of parallelism, an asynchronous
simulator like the one implemented in this work assigns every LP with a local clock.
The basic flow of asynchronous simulation protocol was first proposed by Chandy and
Misra [1979] and Bryant [1977], as detailed in Section 2.1. The overall asynchronous
flow is amenable to parallel implementations because the synchronization overhead
can be avoided. However, it poses challenges for an SIMD implementation since LPs
tend to follow different execution paths. In addition, the communication cost of pass-
ing messages could be too expensive for CPUs located on different chips. To the best
knowledge of the authors, this work is the first one to successfully resolve the previ-
ous problems on a shared memory chip multiprocessor (CMP). It should be noted that
there are many variants (e.g., Lubachevsky [1988] and Nicol [1991]) of CMB, but the
fundamental ideas are the same. Our technology is generic and can be applied to all
variants in this category.

Asynchronous simulation algorithms can be classified into two categories, conser-
vative and optimistic. The conservative approach exemplified by the CMB algorithm
guarantees that no event with a timestamp smaller than the evaluated ones would
be received in succeeding simulation steps. This protocol enforces the causal relation

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 29, Publication date: June 2011.

29:18 Y. Zhu et al.

of the simulation. On the other hand, the optimistic approach [Jefferson and Sowizal
1985; Jefferson 1985; Reiher et al. 1990] allows processing events whose timestamps
may be larger than those of later events. When a prior evaluation turns out to be in-
correct after related events have been processed, a rollback mechanism or a reverse
computation will be initialized to restore the results before the incorrect evaluation.
In this work, we adopt the conservative approach to avoid the complex flow control
inherent in the optimistic approach because such a divergent control flow would drag
down the efficiency of GPU execution.

Also as mentioned in Section 2.2, the very mechanism of the CMB algorithm could
lead to deadlock [Chandy et al. 1979]. Besides the technique of null message [Bryant
1977] that we employ in this work, various other solutions such as probe message
[Holmes 1978; Peacock et al. 1979] and virtual time [Jefferson 1985] have also been
introduced to prevent or recover from deadlock. We use the null message approach as
originally proposed by the CMB algorithm because it is most amenable to the SIMD
processing style of GPUs.

The emergence of GPU makes it possible to perform massively parallel logic
simulation because it provides a large number of scalar processors with fast inter-
processor communication. The work proposed in Gulati and Khatri [2008] uses GPU
to accelerate fault simulation by simulating multiple input patterns in parallel. A
GPU-based simulator, GCS, was presented in Chatterjee et al. [2009a]to carry out
high-performance gate-level logical simulation. It is based on an oblivious algorithm
in which every gate is evaluated at every clock cycle. The authors of Chatterjee
et al. [2009b] proposed a GPU-based logic simulator by synchronously evaluating
multiple events happening simultaneously. Different from the preceding works, our
GPU-based CMB simulator is asynchronous and does not require maintaining a global
clock across all gates in a circuit.

Outside the logic simulation domain, there are several related works also using
GPUs for a specific application (e.g., Xu and Bagrodia [2007], Park and Fishwick
[2008], Rybacki et al. [2009]), or a general framework (e.g., Perumalla [2006a, 2006b],
Park and Fishwick [2009]). One early work reported in Xu and Bagrodia [2007] focuses
on a high-fidelity network modeling and adopts a synchronous event-driven algorithm.
In Park and Fishwick [2008], a discrete-event simulation framework is proposed. Also
based on a synchronous event-driven algorithm, that paper developed a distributed
FEL (Future Event List) structure to avoid the time-consuming global sorting. We
build a different approach to solve the similar problem in this article. Basically, the
priority queue of a gate is distributed to the gate inputs such that the sorting is no
longer necessary. The mechanism is enhanced with a dynamic memory management
mechanism to overcome the obstacle of a limited GPU memory capacity.

7. CONCLUSION AND FUTURE WORKS

This article proposes the first CMB-based logic simulation algorithm on modern GPUs.
The CMB algorithm is efficiently and effectively mapped to GPUs in a fine-grain man-
ner. To guarantee a high level of parallelism in the simulation, we redesigned the
fundamental data structures of the CMB algorithm to overcome the previous obstacle
that hinders an efficient implementation on previous shared memory architectures.
A gate reordering heuristic is introduced to improve the data locality and reduce the
execution divergence on GPUs. A dynamic GPU memory paging mechanism and an
adaptive issuing mechanism are introduced to support the robust simulation of large-
scale circuits. We also develop a complete set of optimization techniques to maximize
the effective memory bandwidth. Our GPU simulator is tested on a group of real VLSI
designs with both deterministic and random stimuli. The experimental results show

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 29, Publication date: June 2011.

Massively Parallel Logic Simulation with GPUs 29:19

that a speedup of 47.4X could be achieved against a CPU baseline simulator using a
classical event-driven algorithm.

In the future, we plan to extend this work in several directions. First, the simula-
tor will be enhanced to support RTL. Complex processes would need to be mapped to
computing resources under such a context. A process decomposition mechanism would
be necessary. Second, we will generalize our simulator to perform simulation in other
application domains such network and transportation simulations. Another interest-
ing topic is to explore the possibility of parallelizing SystemC’s simulation kernel with
our techniques. The current SystemC simulation model defined by IEEE [IEEE Sys-
tem 2011] follows a sequential event-driven approach. A previous work on GPU-based
SystemC simulation [Nanjundappa et al. 2010] takes a straightforward parallelization
strategy rather similar to Chatterjee et al. [2009b]. In our future work, we will be in-
vestigating the potential of using the CMB protocol to rewrite the SystemC simulation
engine.

REFERENCES

AMDAHL, G. M. 1967. Validity of the single-processor approach to achieving large-scale computing ca-
pabilities. In Proceedings of the American Federation of Information Processing Societies Conference
(AFIPS’67). ACM, New York, 483-485.

BAILEY, M. L., BRINER JR., J. V., AND CHAMBERLAIN, R. D. 1994. Parallel logic simulation of vlsi systems.
ACM Comput. Surv. 26, 3, 255-294.

BATAINEH, A., OZGUNER, F., AND SZAUTER, I. 1992. Parallel logic and fault simu- lation algorithms
for shared memory vector machines. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design (ICCAD’92). IEEE, Los Alamitos, CA, 369-372.

BLYTHE, D. 2008. Rise of the graphics processor. Proc. IEEE 96, 5, 761-778.

BRYANT, R. E. 1977. Simulation of packet communications architecture computer system. Tech. rep. MIT-
LCS-TR-188, MIT.

CHANDY, K. M. AND MISRA, J. 1979. Distributed simulation: A case study in design and verification of
distributed programs. IEEE Trans. Softw. Engin. SE-5, 5, 440-452.

CHANDY, K. M., MISRA, J., AND HOLMES, V. 1979. Distributed simulation of networks. Comput. Netw. 3,
105-113.

CHATTERJEE, D., DEORIO, A., AND BERTACCO, V. 2009a. High-Performance gate- level simulation with
GP-GPUs. In Proceedings of the Conference on Design, Automation, and Test in Europe (DATE’09).
1332-1339.

CHATTERJEE, D., DEORIO, A., AND BERTACCO, V. 2009b. Event-Driven gate-level simulation with GP-
GPUs. In Proceedings of the 46th IEEE/ACM International Conference on Design Automation (DAC’09),
ACM, New York, 557-562.

CUDA 2.3.2011. NVidia, CUDA programming guide 2.3.
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/
NVIDIA_CUDA_Programming_Guide_2.3.pdf

FuJimoTo, R. M. 2000. Parallel and Distributed Simulation Systems. Wiley-Interscience.

GTX 280. 2011. GeForce GTX280. http:/www.nvidia.com/object/geforcefamily.html.

GULATI, K. AND KHATRI, S. 2008. Towards acceleration of fault simulation using graphics processing units.
In Proceedings of the 45th IEEE/ACM International Conference on Design Automation (DAC’08). ACM,
New York, 822-827.

HOLMES, V. 1978. Parallel algorithms on multiple processor architectures. Doctoral disserta- tion, Univer-
sity of Texas at Austin, Austin, TX.

IEEE SYSTEM C. 2011. IEEE Std. 1666-2005, Standard for SystemC.
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10761.

ITC99. 2011. ITC99 benchmarks. http://www.cad.polito.it/tools/itc99.html.

JEFFERSON, D. R. 1985. Virtual time. ACM Trans. Program. Lang. Syst. 7, 3, 404—425.

JEFFERSON, D. AND SOWIZAL, H. 1985. Fast concurrent simulation using the time warp mechanism.
Distrib. Syst. 19, 3, 183-191.

LINDHOLM, E., NICKOLLS, J., OBERMAN, S., AND MONTRYM, J. 2008. NVIDIA Tesla: A unified graphics
and computing architecture. IEEE Micro 28, 2, 39-55.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 29, Publication date: June 2011.

29:20 Y. Zhu et al.

LUBACHEVSKY, B. D. 1988. Bounded lag distributed discrete event simulation. In Proceedings of the SCS
Multiconference on Distributed Simulation. 183—-191.

MPI. 2011. MPI. http://www.mpi-forum.org/docs/.

NANJUNDAPPA, M., PATEL, H., JOSE, B. A., AND SHUKLA, S. 2010. SCGPSim: A fast systemc simulator
on gpus. In Proceedings of the 15th Asia and South Pacific Design Automation Conference (ASPDAC’10).
IEEE, 145-154.

NicoL, D. M. 1991. Performance bounds on parallel self-initiating discrete event simulations. ACM Trans.
Model. Comput. Simul. 1, 1, 24-50.

NVIDIA. 2009. NVidia white paper: NVIDIAs next generation cudatm compute architecture: Fermi.
http://www.nvidia.com/content/PDF/fermi_white_papers/

NVIDIA Fermi_Compute_Architecture_Whitepaper.pdf

OPENCORES. 2011. OpenCores, http:/www.opencores.org/.

PARK, H. AND FISHWICK, P. A. 2008. A fast hybrid time-synchronous/event approach to parallel discrete
event simulation of queuing networks. In Proceedings of the 40th Conference on Winter Simulation
(WSC’08). 795-803.

PARK, H. AND FISHWICK, P. A. 2009. A GPU-based application framework supporting fast discrete-event
simulation. SIMUL. 86, 10, 613-628.

PEACOCK, J. K., WONG, J. W., AND MANNING, E. G. 1979. Distributed simulation using a network of
processors. Comput. Netw. 3, 1, 44-56.

PERUMALLA, K. S. 2006a. Parallel and distributed simulation: Traditional techniques and recent advances.
In Proceedings of the 38th Conference on Winter Simulation (WSC’06). 84-95.

PERUMALLA, K. S. 2006b. Discrete-Event execution alternatives on general purpose graphical processing
units (gpgpus). In Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simula-
tion. 74-81.

RASHINKAR, P., PATERSON, P., AND SINGH, L. 2000. System-on-a-Chip Verification: Methodology and Tech-
niques 1st Ed. Springer.

REIHER, P. L., FusimoTo, R. M., BELLENOT, S., AND JEFFERSON, D. 1990. Cancellation strategies in
optimistic execution systems. Proc. SCS Muitlconf. Distrib. Simul. 22, 1, 112-121.

RYBACKI, S., HIMMELSPACH, J., AND UHRMACHER, A. M. 2009. Experiments with single core, multi-core,
and gpu based computation of cellular automata. In Proceedings of the 1st International Conference on
Advances in System Simulation (SIMUL09). IEEE, Los Alaminos, CA, 62-67.

SOULE, L. AND GUPTA, A. 1991. An evaluation of the Chandy-Misra-Bryant algorithm for digital logic
simulation. ACM Trans. Model. Comput. Simul. 1, 4, 308-347.

WILSON, W., FUNG, L., SHAM, I., YUAN, G., AND AAMODT, T. 2007. Dynamic warp formation and schedul-
ing for efficient gpu control flow. In Proceedings of the 40th IEEE/ACM International Symposium on
Microarchitecture (MICRO’07). IEEE, Los Alaminos, CA, 407-418.

XU, Z. AND BAGRODIA, R. 2007. GPU-Accelerated evaluation platform for high fidelity network modeling.
In Proceedings of the 21st International Workshop on Principles of Advanced and Distributed Simulation
(PADS’07). IEEE, Los Alaminos, CA, 131-140.

Received January 2010; revised January 2011; accepted March 2011

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 29, Publication date: June 2011.

