rsc20

Everywhere | more
we dre |than hpc.

Accelerating Sparse DNN Models
without Hardware-Support via
Tile-Wise Sparsity

2020/11 ¢ Shanghai

Accelerating Sparse DNN Models without
Hardware-Support via Tile-Wise Sparsity

Cong Guol, Bo Yang Hsueh?, Jingwen Leng?, Yuxian Qiul, Yue Guan?,
Zehuan Wang?, Xiaoying Jia?, Xipeng Li?, Yuhao Zhu3 and Minyi Guo?

1Shanghai Jiao Tong University, Emerging Parallel Computing Center,
REArch (Resilient and Efficient Architecture) group
2NVIDIA, 3University of Rochester

<3

O ROCHESTER
NVIDIA |

Outline

e Background & Motivation
Tile-Wise Sparsity
Efficient GPU Implementation

Evaluation

\" - SLC20

Dense GEMM Accelerator

@ GEMM-based accelerators are dominant owing to their wide applicability.

Cambrian MLU Huawei Ascend Alibaba Hanguang
Convolution Layer // 7 Convolu tlon\ . <B—N—>
1 2. -

m // I $ L _‘ ; | 4—. N——» < K >

- Sl s T :|i| @“\J_—l | IngCol l Cc l
(Actlvatlon)// | L L I T g B |:| - X &

- / I Z(' 1’ L l I—I | - l l

onvolutlon j | ZT]: — W —F—> |

h 1\ “T,f,[;s ot output /' General Matrix multiplication

S ——

Convolution operations that dominate computer vision models are converted to the GEMM.

NLP models are naturally equivalent to the GEMM operation.

DNN Models and Pruning

Explosive Model Size 8.3Bn
Enormous computation Opﬁu r%;\
cost and memory usage. ® i3 Google Al 1.5Bn

26M K2 Opemal 340M

ResNe-50 ELMo GPT-1 BERT-large GPT-2 GPT-2 8B
Pruning

before pruning after pruning

7

\ AN
éi’

» 0.0 ~~
WO AW,

pruning

synapses_") VGG'16

. OO
Fewer parameters and sl 92.5%
- 5 pruning Sparsity
less computation cost 0‘0’0 newrons ™"
\E/
O O

[Song Han, etc. NIPS’15]

@ The DNN models are sparse! Pruning is an effective
and promising approach to reduce the DNN latency.

Sparsity Pattern

Irregular, Random

@, High Accuracy

Low efficiency

Element-Wise (EW)

No constraint (1*1 block)

Software:

MKL, cuSparse
Hardware:
OuterSPACE, [HPCA'18]
SpArch, [HPCA’20]

Balance
ey

Vector-Wise (VW)

Software:
Balanced Sparsity [AAAI'19]

Hardware:

Regular, Structured
Low Accuracy
High efficiency

Block-Wise (BW)

block=(2x2)
Fixed sparsity of each vector n*n block

Software:
Block-sparse [arXiv'17]
8x8,16x16(CUDA) 32x32, 64x64(Tensor)

Bank-Balanced Sparsity [FPGA’19]

Sparse Tensor Core [MICRO’19]

Tesla A100 [GTC'20]

BW is friendly to dense GEMM accelerator.

Sparsity Pattern Efficiency

Element-Wise (EW) Vector-Wise (VW) Block-Wise (BW)

——N=-8— block=(2x2)
. Pruned D Unpruned

Pattern Core Library Speedup Density
Element Wise CUDA cuSparse 0.06x 63%
Vector Wise CUDA cuSparse 0.07x 56%
Block Wise Tensor Block-sparse 0.33x 50%
[Song Han, etc. NIPS’15] [Block-Sparse, arXiv'17]

[Sparse Tensor Core, Micro’19] [Balanced Sparsity, AAAI’19]

GPU: Tesla V100 32GB
Workload: BERT(MNLI)
Software: TensorFlow 1.15(Fine-tune)
cuBlas, cuSparse and Block-sparse (Inference)
Accuracy loss < 1%

2

1. BW achieves the best performance.
2. BW is still 3% slower than the dense model on the tensor core.
3. They are all Inefficient on the existing dense GEMM hardware.

A new sparsity pattern that can match the
existing hardware features while maintaining
the fine granularity, which is critical for
achieving the high model accuracy.

Outline

Background & Motivation
e Tile-Wise Sparsity
Efficient GPU Implementation

Evaluation

Algorithm-software Co-designed Tile-Wise Sparsity

| O (e iy R

2l

Blocked GEMM Thread Block Tile Warp Tile Thread Tile Epilogue Epilogue Modify
Tile Functor
Global Memory Shared Memory Register File CUDA/Tensor Cores SMEM CUDA Cores Global Memory
C=AXxB Software: CUTLASS - Tiling GEMM DRAM | Instruction Cache

Register File

@, Tile-Wise Sparsity. An algorithm-software co-designed ====

pruning method that reduces the DNN latency on existing

‘
‘
‘
‘
‘
‘
‘
‘
‘
3
:
‘
‘
‘
‘
‘
‘
*

‘

dense architectures while maintaining high accuracy M— L =
without special hardware support.
|]
| LD/ST
key insight: a tiling-friendly sparsity pattern onmaa v

Cache

Hardware: Tesla V100

Tile-Wise Sparsity

G G+4,G+3,G+2,G-9 < N >
I S
T 8 ! 4 - Pruned| 4] |
GEMM | |
Tiing T | A |
l | By : 1 |
..... N : tile Re-organize ¥l ol v |
A T c | | > Tl | ® |
, ¥
i |
s T RN i | viviv v lyll
...... L Tile Wise <“GPECP<ECF» G-10
GEMM: M, N, K @ The key idea of our tile-wise pattern is to prune
T, = G = Granularity each Buewith the regular row and column pruning.
T, = Tile Length (y)
C = pruned column The tiling based GEMM is widely used in the dense

GEMM accelerators, such as TPU, not only GPU.

B

Pruning algorithm

Importance Score

Gradually Pruning

Global Weight Pruning

Apriori Tuning

More details on the paper...

AL(w) =/ (L(w=w) — L(w=0))?

L(w =0) = L(w;) + alé(v‘:") «wi+ Ry (w=0)
AL~ [P 2

Importance Score
[P. Molchanov, etc. CVPR 2019]

Pre-trained

Fine-Tune

Gradually Pruning
[Song Han, etc. NIPS’15]

—_
o

o
©
T

Sparsity
o
[e0]

©
3

o

o
o

05 1 1 1 |
0 20 40 60

Weight Matrix Index

Uneven distribution of EW

Global Weight Pruning
Apriori Tuning

Outline

Background & Motivation
Tile-Wise Sparsity
e Efficient GPU Implementation

Evaluation

Efficient GPU Implementation

Goal:
Execute TW sparsity on GPU (including CUDA core and Tensor core) efficiently.

Three optimizations leveraging GPU’s programming features:
1. Memory accesses coalesce (via memory layout transpose)
2. Kernel reduction (via fusion)
3. Load imbalance mitigation (via concurrent kernel)

Baseline GEMM Tiling

Re-organize Preprocessed
- v
+ R, +G+C—»
4 [Biie

< K > <+G+C»

|

|

|

' t

| - l» Aire I M [—%[I:|

| 4] v

|

|

R glcy 2 gles 2 e 2 C§-10 v
Run-time

—
4
e
-8—> 5
g
——K-1———>]

Run-time
s —— 7 T F L]
cuttass | L p Mo o H
....... o |O
- | W E S
Blocked GEMM Thread Block Tile Warp Tile Thread Tile Epilogue Epilogue Modify
Tile Functor

Global Memory Shared Memory Register File CUDA/Tensor Cores SMEM CUDA Cores Global Memory
Aloffset,+ offset,[k]] @. Sparsity in the Global
Bloffset;] Density in the Core

Cloffset.+ offset, [n]] Execute Efficiently!

Memory Accesses Coalesce

Optimization 1

+—G+C—>
4 |Biike
< K > <«G+C»
1 t Performance
Column skippin = | A v £ Cate +—— .
PRINg V 1 v degradation
l Memory Memory
Uncoalescing Uncoalescing
. . v
Transpose to eliminate
Memory uncoalescing Transpose
«~T,~>
l Au ‘ Ctile
\ : +——K—R—> « T~
. . 1 2)
Royv-sklppmg | ==k_ Ba Pre-Process | :
Efficiency l mask; mask, T

Efficiency

Kernel Fusion

Optimization 2
IFmaps

o

Traversal
of FOon |
12| an IFmap *

[Ta) 14 |2

10 1112 [15
13|14 |15 18
@ Fused with img2col on CNN = =l
Transpose is free to GPU and TPU & IFmap matrix

mifasifa4if o [11:]43:14:

Lot Q
_g,ﬁ" 5 [[z f1a15] | =
Jaae [z TisaaTe [17] | 5
1517 [18 [14i[15]17 [18] | =
e FCH v =TIl
10 LIS 44 10 LIT:LISiil4] | X
112 14 [15 [L2515 [a2ha] 15 °”°
13 114 |16 [17 13416 17 [13iia: 16 |17 =
14 15 |17 18 T4 15 [(18 1415 171181 ¢

K=CixHrxWyr

Filter matrix

OFmap matrix

Kernel Fusion

Optimization 2

Fused with Transpose on BERT

Based on NVIDIA Faster Transformer.

Transpose fusion

from tensor * weight Q -> query layer

O

to tensor * weight K -> key layer

O

to tensor * weight V -> value layer

S L

Add bias to query/key/value layer

Transpose 4-D tensors query/key/value layer

<P

batched_gemm (query layer, key layer) -> attention scores

O

SoftMax (attention scores + attention mask) -> attention probs

O

batched_gemm (attention probs, value layer) -> attention out

transpose (attention out)

attention out * output kernel -> attention out
]

L

add bias

layer normalization (attention out + from tensor) -> attention out
—

hV4

attention output * intermediate kernel -> intermediate output

5t

add bias
GELU (intermediate output)

—

N

Intermediate output * output kernel -> layer output

JL

add bias

layer normalization (layer output)

Load Imbalance Mitigation

Optimization 3

Condensed Tile

Multi-Stream

4—M— > < K > < M—>
A | Y
B | .
=0 M Agie I - Lz Ciite2 I_ 6 _‘ tiles
&l Biies '
v | C
| | Pruned | tile3
G+CP»| | | WL V1 L 5 —
111 q.Ty.p Q-Ty"
Native Normal GEMM
- |
Naive GEMM1 GEMM2 : GEMM3
1
GEMMI1 | Streaml
Stream GEMM2 | Stream2
GEMM3 Stream3

@. Concurrent kernel execution
Overlap the computation of different tiles by assigning to
different streams, and rely on the underlying scheduler to
maximize the resource utilization.

Outline

Background & Motivation
Tile-Wise Sparsity
Efficient GPU Implementation

e Evaluation

Methodology
Hardware: NVIDIA Tesla V100 32GB GPU DNN models and datasets:
Sparsity pattern: Models Datasets
Pattern Core Library BERT-Base GLUE dataset:
Tile Wise (TW) Tensor-fp16 Tile Sparsity* MNLI, MRPC, SST, CoLA, RTE, QNLI
CUDA-fp32 SQUAD
Block Wise (BW) Tensor-fp16 Block-sparse VGG-16 (CNN) ImageNet
Element Wise (EW) ~ CUDA-fp32 cusparse NMT (LSTM) IWSLT English-Vietnamese dataset
Vector Wise (VW) CUDA-fp32 cuSparse**
*Based on CUTLASS 1.3
kK
V100 can not support sparse tensor core. @ In the rest of this section, we focus on the GEMM
execution time unless explicitly mentioned.

Impact of TW Granularity

Workload:
Pattern Granularity Critical Sparsity*
Dense 128 0%
EW - -
BW 32 ~85%
BW 64 ~85%
TW 64 75%
W 128 40%

* With the sparsity, the pruning method starts
to outperform the dense model latency.

The lower the better.

2

0.85 5
\ —O— Dense
0.80 sk N|TW =~ G=64 < G=128
) > BW 32x32 —)— 64x64
8 075 T™W 23
§ 0.70 | | =~ G=64 <+ G=128| g\ £2F e
BW (8X8) (64x64) o
BW (32X32) z
0651 | BW (64X64) 1
0.60 | | | | | | 0
30 40 50 60 70 80 90 20 40 60 80 100
Sparsity Sparsity
(a) Accuracy. (b) Normalized latency.

At the sparsity of 75%, TW-128 has accuracy loss of about 0.9% and 2.4%
compared to EW and the baseline dense model at 75% sparsity, respectively.
With only 40% sparsity, TW-128 starts to outperform the dense model latency.

BW-64 experiences the most drastic accuracy drop of 4% at 75% sparsity. BW-64
is faster than the dense model only when the sparsity is greater than 85%, which
leads to an accuracy loss as high as 10%.

TW exceeds BW in both of speedup and model accuracy.
G=128 is sufficient to maintain the model accuracy while
providing significant latency reduction for TW.

Accuracy
0.85 0.9
Workload: e
0.85
. 0.8
Pattern Granularity %‘ L EW g 0.8
EW - 5 - TW TW 3 Te-gW
0 8 075 ~=-TW
o ——VW g
BW 32 *32 < 075 < —o—\/W
e R " |BeRT
W 6 0 - . BERT- SQUAD
20 40 60 80 100 20 40 60 80 100
Sparsity (%) Sparsity (%)
EW the best. 7
BW the worst. 0.92
26 0.9
The accuracy of TW and VW are § - ﬂm —e
similar when the sparsity is below @ 25 Lo 5
70%. With”high spafrsity (>h70%), m o I\T/\\//Vv g 0% I-EVV\\,/
TW generally outperforms the VW 0.84 — =4=\W
B y OtP ~-BW NMT —-BW VGG
with the exception of NMT. 23 0.82
20 40 60 80 100 20 40 60 80 100

Sparsity (%) Sparsity (%)

Sparsity Pattern
BERT-base Layer-0 W,
b |
1 I_
| |
LE I : LT | :
(a) EW (b) viw (c) BW (d) TW

@, Irregularity: EW > TW > VW, BW

Latency Speedup

Latency Speedup

Speedup on GEMM

25

20

15

101

05

TW‘
Dense
{
BW

0.0
81.0

82.

0 83.0 84.0

Accuracy (%)

(@)

3.5

O\

3.0
2.5
2.0
1.5
1.0
0.5

o
EW
=
1 I L I 1 l

Dense

0.0
81.0

82

.0 83.0 84.0

Accuracy (%)

Latency Speedup

TW vs BW on tensor core.

Latency Speedup

14
12 O\Ti/v\o :
1.0 o
Dense
0.8
06
04
BW
02 %g A ; VGG
| 1 1 | 1
88.8 89.2 89.6 90.0
Accuracy (%)

20F

1.0

TW
15+
@ Dense
VW
0.5
EW

MYTA

0.0 | 1 1 |
885 89.0 895 90.0 905

Accuracy (%)

Latency Speedup

Latency Speedup

25
20 W
15
1.0 @ Dense
BW
05k A\N
| 1 | 1 1 1 1
25.2 25.6 26.0 26.4

BLEU

3.5

N

3.0
25
2.0
1.5
1.0
0.5

Dense

EW
)
VW
<>x-<>\<>
| 1 | 1 1

1 1

25.2 25.6 26.0 26.4
BLEU

(b) TW vs ViW and EW on CUDA core.

@ BERT accuracy loss < 3%
VGG accuracy loss < 1%
NMT BLEU loss < 1

Tensor cores: TW 1.95% speedup
CUDA cores: TW 2.86% speedup

TW achieves the meaningful latency
reduction on both tensor cores and CUDA
cores owing to its compatibility with
dense GEMM, while all other sparsity
patterns cause the actual slowdown.

End-to-end Latency and Impact of Optimizations

Transpose Transpose Transpose
GEMM 32.38 37.6 14.29 14291 | .9 26x than D d2.63x th T
(71%) : : (51%) GEMM: 2.26x than Dense and 2.63x than w/o Transpose
non-GEMM 12.99 12.99 12.99 13.93 |—> Fusion Transpose: 2% overhead
Transpose 0 0 5.18 0 > Without Fusion Transpose: ~10% overhead
Total 45.37 50.59 32.46 28.22
Speedup 1 0.9 1.4 161 |~ End-to-end: 1.61x speedup

BERT-Base model with 75% sparsity on tensor core

,@, Without transpose: Performance degradation.
With explicit transpose: 10% overhead. -- Optimization 1
With fusion transpose: 2% overhead. -- Optimization 2
End-to-end speedup: 1.61x.

Conclusion

@, TW achieves the meaningful speedup on both tensor cores (1.95%) and CUDA cores(2.86%)
with a high model accuracy, while all other sparsity patterns cause the actual slowdown.

The tiling GEMM algorithm is widely used in the dense GEMM-based accelerators. In other words,
supporting TW on other platforms like TPU is feasible.

@, Proposed a new DNN model sparsity design insight based on the Tile-Wise algorithm-software
optimization.

Tile Sparsity is open source!

‘ ’ https://github.com/clevercool/TileSparsity

https://github.com/clevercool/TileSparsity

Thanks !

Questions?

