
Accelerating Sparse DNN Models
without Hardware-Support via
Tile-Wise Sparsity

2020/11 • Shanghai

Cong Guo1, Bo Yang Hsueh2, Jingwen Leng1, Yuxian Qiu1, Yue Guan1,
Zehuan Wang2, Xiaoying Jia2, Xipeng Li2, Yuhao Zhu3 and Minyi Guo1

1Shanghai Jiao Tong University, Emerging Parallel Computing Center,
REArch (Resilient and Efficient Architecture) group

2NVIDIA, 3University of Rochester

Accelerating Sparse DNN Models without
Hardware-Support via Tile-Wise Sparsity

l Background & Motivation

Tile-Wise Sparsity

Efficient GPU Implementation

Evaluation

Outline

Dense GEMM Accelerator

Img2col

GEMM-based accelerators are dominant owing to their wide applicability.

General Matrix multiplication

Convolution operations that dominate computer vision models are converted to the GEMM.
NLP models are naturally equivalent to the GEMM operation.

Nvidia GPU Tensor Core Google TPU Cambrian MLU Huawei Ascend Alibaba Hanguang

DNN Models and Pruning

[Song Han, etc. NIPS’15]

VGG-16
92.5%

Sparsity

The DNN models are sparse! Pruning is an effective
and promising approach to reduce the DNN latency.

Fewer parameters and
less computation cost

Explosive Model Size

Enormous computation
cost and memory usage.

Pruning

26M 340M
1.5Bn

8.3Bn

ResNe-50 ELMo GPT-1 BERT-large GPT-2 GPT-2 8B

Sparsity Pattern

No constraint (1*1 block)

Software:
MKL, cuSparse
Hardware:
OuterSPACE, [HPCA’18]
SpArch, [HPCA’20]

n*n block

Software:
Block-sparse [arXiv’17]
8x8,16x16(CUDA) 32x32, 64x64(Tensor)

BW is friendly to dense GEMM accelerator.

Fixed sparsity of each vector

Software:
Balanced Sparsity [AAAI’19]
Hardware:
Bank-Balanced Sparsity [FPGA’19]
Sparse Tensor Core [MICRO’19]
Tesla A100 [GTC’20]

Regular, Structured
Low Accuracy
High efficiency

Irregular, Random
High Accuracy
Low efficiency

Balance

Sparsity Pattern Efficiency

[Song Han, etc. NIPS’15] [Block-Sparse, arXiv’17]

[Balanced Sparsity, AAAI’19][Sparse Tensor Core, Micro’19]

Pattern Core Library Speedup Density

Element Wise CUDA cuSparse 0.06x 63%

Vector Wise CUDA cuSparse 0.07x 56%

Block Wise Tensor Block-sparse 0.33x 50%

GPU: Tesla V100 32GB
Workload: BERT(MNLI)
Software: TensorFlow 1.15(Fine-tune)

cuBlas, cuSparse and Block-sparse (Inference)
Accuracy loss < 1%

1. BW achieves the best performance.
2. BW is still 3× slower than the dense model on the tensor core.
3. They are all Inefficient on the existing dense GEMM hardware.

A new sparsity pattern that can match the
existing hardware features while maintaining
the fine granularity, which is critical for
achieving the high model accuracy.

Background & Motivation

l Tile-Wise Sparsity

Efficient GPU Implementation

Evaluation

Outline

Algorithm-software Co-designed Tile-Wise Sparsity

Tile-Wise Sparsity. An algorithm-software co-designed
pruning method that reduces the DNN latency on existing
dense architectures while maintaining high accuracy
without special hardware support.

key insight: a tiling-friendly sparsity pattern

Instruction Cache

Warp Scheduler

Register File

Dispatch Unit

LD/ST

Interconnect Network

Cache

Core SFU

Dispatch Port

Result Queue

Operand Collector

FP INT

DRAM

DRAM

SM

CUDA core

GPU (SIMD)
Software: CUTLASS – Tiling GEMM

Hardware: Tesla V100

C = A × B

Tile-Wise Sparsity

GEMM: M, N, K
Tx = G = Granularity
Ty = Tile Length (y)
C = pruned column

The key idea of our tile-wise pattern is to prune
each Btilewith the regular row and column pruning.

The tiling based GEMM is widely used in the dense
GEMM accelerators, such as TPU, not only GPU.

Re-organize

G + 4, G + 3, G + 2, G − 9

Pruning algorithm

Fine-Tune

Pre-trained

Pruning

Gradually Pruning

More details on the paper…

Importance Score

Global Weight Pruning

Apriori Tuning

Gradually Pruning

Uneven distribution of EW

Global Weight Pruning
Apriori Tuning

Importance Score
[P. Molchanov , etc. CVPR 2019]

[Song Han, etc. NIPS’15]

Background & Motivation

Tile-Wise Sparsity

l Efficient GPU Implementation

Evaluation

Outline

Efficient GPU Implementation

Goal:
Execute TW sparsity on GPU (including CUDA core and Tensor core) efficiently.

Three optimizations leveraging GPU’s programming features:
1. Memory accesses coalesce (via memory layout transpose)
2. Kernel reduction (via fusion)
3. Load imbalance mitigation (via concurrent kernel)

Baseline GEMM Tiling

Sparsity in the Global
Density in the Core
Execute Efficiently!

CUTLASS

Run-time

Preprocessed

Run-time

Re-organize

A[offsetA+ offsetk[k]]
B[offsetB]
C[offsetC+ offsetn[n]]

Memory Accesses Coalesce

Transpose to eliminate
Memory uncoalescing

Column skipping

Row skipping
Efficiency

Performance
degradation

Efficiency

Optimization 1

Kernel Fusion

Fused with img2col on CNN
Transpose is free to GPU and TPU

Optimization 2

Kernel Fusion

!

"

#

$

%

Fused with Transpose on BERT
Based on NVIDIA Faster Transformer.

Transpose fusion

Optimization 2

Load Imbalance MiHgaHon

MulV-Stream

Condensed Tile

Concurrent kernel execuVon
Overlap the computaVon of different Vles by assigning to
different streams, and rely on the underlying scheduler to
maximize the resource uVlizaVon.

Vles

Optimization 3

Background & Motivation

Tile-Wise Sparsity

Efficient GPU Implementation

l Evaluation

Outline

Methodology

Pa-ern Core Library

Tile Wise (TW) Tensor-fp16
CUDA-fp32

Tile Sparsity*

Block Wise (BW) Tensor-fp16 Block-sparse

Element Wise (EW) CUDA-fp32 cuSparse

Vector Wise (VW) CUDA-fp32 cuSparse**

Hardware: NVIDIA Tesla V100 32GB GPU

Sparsity pacern:

*Based on CUTLASS 1.3
**V100 can not support sparse tensor core.

DNN models and datasets:

Models Datasets

BERT-Base GLUE dataset:
MNLI, MRPC, SST, CoLA, RTE, QNLI

SQuAD

VGG-16 (CNN) ImageNet

NMT (LSTM) IWSLT English-Vietnamese dataset

In the rest of this section, we focus on the GEMM
execution time unless explicitly mentioned.

Impact of TW Granularity

Workload:

Pattern Granularity Critical Sparsity*

Dense 128 0%

EW - -

BW 32 ~85%

BW 64 ~85%

TW 64 75%

TW 128 40%

* With the sparsity, the pruning method starts
to outperform the dense model latency.
The lower the better.

At the sparsity of 75%, TW-128 has accuracy loss of about 0.9% and 2.4%
compared to EW and the baseline dense model at 75% sparsity, respecdvely.
With only 40% sparsity, TW-128 starts to outperform the dense model latency.

BW-64 experiences the most drasdc accuracy drop of 4% at 75% sparsity. BW-64
is faster than the dense model only when the sparsity is greater than 85%, which
leads to an accuracy loss as high as 10%.

TW exceeds BW in both of speedup and model accuracy.
G=128 is sufficient to maintain the model accuracy while
providing significant latency reduchon for TW.

Accuracy

EW

TW

VW

0.7

0.75

0.8

0.85

20 40 60 80 100

Ac
cu

ra
cy

Sparsity (%)

BERT- MNLI

EW
TW
VW
BW

0.65

0.7

0.75

0.8

0.85

0.9

20 40 60 80 100

Ac
cu

ra
cy

Sparsity (%)

BERT- SQuAD

EW
TW
VW
BW

23

24

25

26

27

20 40 60 80 100

BL
EU

Sparsity (%)

NMT

EW
TW
VW
BW

0.82

0.84

0.86

0.88

0.9

0.92

20 40 60 80 100

Ac
cu

ra
cy

Sparsity (%)

VGG

EW
TW
VW
BW

Workload:

Pa-ern Granularity

EW -

BW 32 * 32

TW 128

VW 16

EW the best.
BW the worst.

The accuracy of TW and VW are
similar when the sparsity is below
70%. With high sparsity (> 70%),
TW generally outperforms the VW
with the exception of NMT.

Sparsity Pattern

BERT-base Layer-0 WQ

Irregularity: EW > TW > VW, BW

Speedup on GEMM

BERT accuracy loss < 3%
VGG accuracy loss < 1%
NMT BLEU loss < 1

Tensor cores: TW 1.95× speedup
CUDA cores: TW 2.86× speedup

TW achieves the meaningful latency
reduction on both tensor cores and CUDA
cores owing to its compatibility with
dense GEMM, while all other sparsity
patterns cause the actual slowdown.

End-to-end Latency and Impact of Optimizations

Without transpose: Performance degradation.
With explicit transpose: 10% overhead. -- Optimization 1
With fusion transpose: 2% overhead. -- Optimization 2
End-to-end speedup: 1.61x.

Fusion Transpose: 2% overhead

End-to-end: 1.61x speedup

GEMM: 2.26x than Dense and 2.63x than w/o Transpose

Time (ms) Dense W/o
Transpose

Explicit
Transpose

Fused
Transpose

GEMM 32.38
(71%) 37.6 14.29 14.29

(51%)

non-GEMM 12.99 12.99 12.99 13.93

Transpose 0 0 5.18 0

Total 45.37 50.59 32.46 28.22

Speedup 1 0.9 1.4 1.61

BERT-Base model with 75% sparsity on tensor core

Without Fusion Transpose: ~10% overhead

Conclusion

TW achieves the meaningful speedup on both tensor cores (1.95×) and CUDA cores(2.86×)
with a high model accuracy, while all other sparsity patterns cause the actual slowdown.

The tiling GEMM algorithm is widely used in the dense GEMM-based accelerators. In other words,
supporting TW on other platforms like TPU is feasible.

https://github.com/clevercool/TileSparsity

Tile Sparsity is open source!

Proposed a new DNN model sparsity design insight based on the Tile-Wise algorithm-sooware
ophmizahon.

https://github.com/clevercool/TileSparsity

Questions?

Thanks !

