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Fig. 1. (A): This paper presents PowerGS, a framework that translates a pre-trained, dense 3D Gaussian Splatting (3DGS) model to a power-optimal, foveated
model. PowerGS for the first time jointly optimizes the rendering power and display power, the two main power consumers in power-constrained Extended
Reality devices. (B): Given a quality constraint, PowerGS first estimates the iso-quality curve in the display-vs-rendering power landscape and then identifies
the minimal-power point on the curve, giving a model that minimizes the total power while meeting the perceptual quality requirement. PowerGS integrates
Foveated Rendering by using different models for different quality regions, each of which is optimized independently using the same PowerGS framework.

3DGaussian Splatting (3DGS) combines classic image-based rendering, point-
based graphics, and modern differentiable techniques, and offers an inter-
esting alternative to traditional physically-based rendering. 3DGS-family
models are far from efficient for power-constrained Extended Reality (XR)
devices, which need to operate at a Watt-level. This paper introduces Pow-
erGS, the first framework to jointly minimize the rendering and display
power in 3DGS under a quality constraint. We present a general problem
formulation and show that solving the problem amounts to 1) identifying the
iso-quality curve(s) in the landscape subtended by the display and rendering
power and 2) identifying the power-minimal point on a given curve, which
has a closed-form solution given a proper parameterization of the curves.
PowerGS also readily supports foveated rendering for further power savings.
Extensive experiments and user studies show that PowerGS achieves up to
86% total power reduction compared to state-of-the-art 3DGS models, with
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minimal loss in both subjective and objective quality. Code is available at
https://github.com/horizon-research/PowerGS.
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1 Introduction
Extended Reality (XR), including Virtual Reality (VR) [Meta 2022]
and Augmented Reality (AR) [Meta 2024; Microsoft 2019; XREAL
2023], is seen as the next ubiquitous personal computing platform.
While XR demands high visual quality, its system power is severely
limited by battery capacity. Unfortunately, there is no Moore’s law
for battery — the energy density of battery technology is funda-
mentally limited [Halpern et al. 2016; Leng et al. 2019; Schlachter
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2013]. This increasingly creates a tension between visual quality
and power consumption, the latter of which consists of both the
rendering power and the display power.
Meanwhile, radiance field-based rendering using NeRF [Milden-

hall et al. 2020] or 3D Gaussian Splatting (3DGS) [Kerbl et al. 2023;
Radl et al. 2024; Yu et al. 2024a] is emerging as a promising rendering
paradigm for XR [Gafni et al. 2021; Luo et al. 2024; Saito et al. 2024;
Xu et al. 2023]. This paper investigates how to design power-optimal
3DGS models under quality requirements.

Prior work focuses exclusively on reducing either the rendering
or the display power. On the rendering side, recent effort to prune
3DGS models [Fan et al. 2024; Fang and Wang 2024; Franke et al.
2024; Girish et al. 2024; Lee et al. 2024b; Lin et al. 2025] demonstrates
that pruning points can effectively accelerate 3DGS and, thereby,
reducing the rendering power. Similarly, display power can be mini-
mized by dimming pixels [Shye et al. 2009; Yan et al. 2018] or color
adjustments [Chen et al. 2024; Duinkharjav et al. 2022].
The single-minded optimization of only one power consumer

likely leads to sub-optimal results. For instance, one can train a
model with fewer Gaussian points but the resulting model might use
pixel colors that consume high display power. Similarly, a display-
power optimization, e.g., a post-processing filter that adjust pixels
to using power-efficient colors based on human color discrimina-
tion [Duinkharjav et al. 2022], could have little effect on the render-
ing power, because no rendering work is saved.
This paper proposes PowerGS, a framework that jointly opti-

mizes the display and rendering power for 3DGS-family models. We
give a general problem formulation that minimizes the total power
consumption under a quality constraint. The problem amounts to
1) identifying the iso-quality curve(s) in the landscape subtended
by the display and rendering power and 2) identifying the power-
minimal point on such a curve. The right-most plot in Fig. 1 offers a
visual intuition: each curve is an iso-quality curve for a given quality
constraint, and each dash line is an iso-power line (𝑥 +𝑦 = 𝑃 , where
𝑃 is the total power). The goal is to identify the lowest iso-power
line that just intersects with a desired iso-quality curve.
Obtaining the iso-quality curves in the power landscape is chal-

lenging because of the non-differentiable nature of power consump-
tion w.r.t. model parameters. We approach this using a sample-and-
reconstruct framework. We first sample a set of 3DGS models that
have similar quality via pruning a dense model — by differentially
allocating the quality budget between reducing display vs. rendering
power until a quality requirement is met. We then propose a param-
eterization of the iso-quality curve. This parameterization allows
the curve to be robustly reconstructed from just about 5 samples
of the pruned models and gives rise to a closed-form solution for
finding the power-minimal model.

We extend PowerGS to support foveated rendering (FR). Without
losing generality, we assume a FR paradigm demonstrated in Lin et al.
[2024, 2025], where the Field-of-View (FoV) is divided into quality
regions, each rendered by a separate 3DGS model. We show that
the PowerGS framework can be applied to FR in a plug-and-play
manner — by optimizing each region/model independently using
the method described above without changing the FR architecture.

We validate our method through both subjective user study and
objective power and quality metrics. We show that with little quality

degradation, PowerGS achieves 63% (Mip-NeRF 360 dataset) and
52% (Synthetic NeRF dataset) total power reduction compared to
Mini-Splatting [Fang and Wang 2024] and 3DGS [Kerbl et al. 2023],
respectively. PowerGS will be open-sourced. To summarize, this
work makes the following key contributions:
• We propose a general formulation for jointly optimizing ren-
dering and display power for radiance-field rendering.
• We propose a sample-and-reconstruction framework to ob-
tain iso-quality functions, using which we can identify the
power-minimal models through a closed-form solution.
• We extend our approach to foveated rendering.
• Through subjective and objective measurements, we show
that 3DGS models generated by PowerGS generally have
similar or higher perceptual quality at the same total power
consumption compared to existing models.

2 Related Work

2.1 Efficient (Neural) Radiance-Field Rendering
Pioneered by Neural Radiance Fields (NeRF) [Mildenhall et al. 2020],
radiance-field rendering combines classic image-based rendering
with modern differentiable rendering techniques and offers a com-
pelling alternative to photorealistic rendering. Recent Point-Based
Radiance-Field Rendering techniques [Kerbl et al. 2023; Radl et al.
2024; Yu et al. 2024a], exemplified by 3D Gaussian Splatting [Kerbl
et al. 2023], accelerates NeRF-family models by replacing implicit
radiance field representations with explicit points-based rendering
primitives [Gross and Pfister 2011]. A huge amount of recent work
on 3DGS models improve the rendering quality and widen its appli-
cability [Dong et al. 2024; Duan et al. 2024; Gao et al. 2024; Huang
et al. 2024; Jiang et al. 2024; Li et al. 2024; Liang et al. 2024; Lyu et al.
2024; Mujkanovic et al. 2024; Peng et al. 2024; Radl et al. 2024; Rao
et al. 2024; Wang et al. 2024a; Yang et al. 2024a; Yu et al. 2024b].

However, deploying 3DGS-family models on power-constrained
XR devices remains challenging. In addition to rethinking the ren-
dering pipeline for efficiency [Duckworth et al. 2024; Kerbl et al.
2024; Moenne-Loccoz et al. 2024; Tong and Hachisuka 2024; Yang
et al. 2024b], many existing methods that accelerate 3DGS models
use point pruning as a key technique [Fan et al. 2024; Fang and
Wang 2024; Girish et al. 2024; Lee et al. 2024b]. Pruning points re-
duces the amount of work a model executes and, thus, reduces the
rendering power. However, existing pruning methods ignore the
display power and do not aim at total power minimization.

2.2 Display Power Optimization
Displays [Koulieris et al. 2019] constitute another important com-
ponent of the XR device power consumption. In an AR device, the
rendering power budget is around 1 W [Philip Berne 2023] and the
display power consumption is around 0.3 W [GooDisplay [n. d.]],
which could be even higher in scenarios where the luminance of
the rendered images has to rival with that of the real scene.

In emissive displays such as Organic Light-Emitting Diode (OLED)
displays that are becoming popular in consumer devices, the dis-
play power consumption is dictated by pixel colors (luminance +
chromaticity). Shye et al. [2009] and Yan et al. [2018] leverage light
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adaptation [Wandell 1995, Chpt. 5] to gradually reducing the lu-
minance (i.e., uniforming reducing the pixel values). Duinkharjav
et al. [2022] uses the eccentricity-dependent nature of human color
discrimination [MacAdam 1942] to design a filtering technique to
adjust pixel chromaticity to save display power without introducing
visual artifacts. Chen et al. [2024] compares a number of different
techniques to reduce display power and their quality implications.
These methods optimize only for the display power. In contrast,

we formulate a joint display-rendering power optimization prob-
lem such that the resulting models have lower total power while
providing a similar perceptual quality (Sec. 6.2).

2.3 Foveated (Radiance-Field) Rendering
Foveated rendering (FR) is a classic technique that leverages the
eccentricity-dependent visual acuity falloff in human vision to re-
duce rendering quality in the visual periphery, significantly improv-
ing rendering speed and/or power consumption [Guenter et al. 2012;
Patney et al. 2016; Sun et al. 2017; Ujjainkar et al. 2024; Wang et al.
2024b; Ye et al. 2022; Zhang et al. 2024]. FR has seen its use in com-
mercial visual displays [Meta 2024] and is supported in common
graphics programming models [Nvidia 2018].

FR techniques have been applied to (neural) radiance-field render-
ing. For instance, FoV-NeRF [Deng et al. 2022], VRS-NeRF [Rolff et al.
2023] and Shi et al. [2024] integrate foveated rendering into NeRF;
Franke et al. [2024]; Lin et al. [2024, 2025] apply FR to accelerate
3DGS. This paper does not propose a new FR method; rather, we
show that our joint power optimization can be easily integrated
into FR (using Lin et al. [2024] as an example) to reduce the power
consumption of FR.

3 Problem Formulation
This section formulates a general problem that integrates quality
relaxation, rendering power, and display power. The next section
develops a practical solution for it.

3.1 Display and Rendering Co-Optimization
Unlike previous works that trade quality solely for rendering or
display power, minimizing the total power requires solving the
following constrained optimization problem1:

argmin
P

[
𝑃D (P) + 𝑃R (P)

]
subject to 𝑄 (P) ≥ 𝑄min, (1)

where P is a 3DGS model to be optimized for; 𝑃D (P), 𝑃R (P), and
𝑄 (P) denote the average display power, rendering power, and qual-
ity when running the model P, respectively, and are expressed as:

1We considered reformulating the optimization problem in Eqn. 1 using the Lagrange
multiplier, where the quality constraint is expressed as an additional term in the
objective function. But still the objective function, especially the rendering power term,
lacks an analytical form, so we could not directly apply the Lagrange method to solve
the optimization problem. Our current formulation makes it explicit that our goal is to
minimize power under the quality constraint.

𝑃R (P) =
1
|T |

∑︁
𝑇 ∈T

𝑃rend (P,𝑇 ), (2a)

𝑃D (P) =
1
|I |

∑︁
𝐼 ∈I

𝑃disp (𝐼 ), (2b)

𝑄 (P) = 1
|I |

∑︁
𝐼 ∈I

𝑄 (𝐼 ), (2c)

where T represents the sampled poses over, e.g., a dataset, while
I represents images rendered from these poses. 𝑃rend (P,𝑇 ) repre-
sents the rendering power when running P on a pose 𝑇 , 𝑃disp (𝐼 )
represents the display power of displaying the image 𝐼 rendered by
P on 𝑇 , and 𝑄 (𝐼 ) represents the perceptual quality of 𝐼 .
While the perceptual quality metrics are firmly established in the

literature (e.g., PSNR, SSIM, HVSQ [Walton et al. 2021]), the rest
of this section will discuss how the display power and rendering
power are modeled.

3.2 Display Power Modeling
For emissive displays (e.g., OLEDs) commonly used in XR devices,
power consumption is determined by the pixel values of the dis-
played image. Actual display measurements show that the display
power 𝑃disp (𝐼 ) for an image 𝐼 can be modeled as a linear combina-
tion of the average R, G, and B channel values expressed in a linear
(sRGB) color space [Chen et al. 2024; Duinkharjav et al. 2022]:

𝑃disp (𝐼 ) = 𝛼𝑅(𝐼 ) + 𝛽𝐺 (𝐼 ) + 𝛾𝐵(𝐼 ) + 𝑠, (3)

where 𝑅(·), 𝐺 (·), and 𝐵(·) denote the average linear sRGB-space
values of the R, G, and B channels across all pixels in the image
𝐼 , respectively. The coefficients 𝛼 , 𝛽 , and 𝛾 represent the power
consumption costs associated with each channel, while 𝑠 accounts
for the static power of peripheral circuitry, which is independent of
the display content. The four coefficients are usually experimentally
fit with measurement data by sampling a set of colors.

3.3 Rendering Power Modeling
Ideally, the rendering power model should be built from measure-
ments on real hardware just like how the display power model
is built. However, today’s mobile computing hardware, such as
Nvidia’s Jetson series [NVIDIA 2018] and the Qualcomm’s XR2+
platform [Qualcomm 2022] (used in Meta Quest Pro), all consume
upwards of 10 to 20 Watts, in our measurements, when running
3DGS models, making them ill-suited for future XR platforms whose
power budgets are usually at the Watt level [Berne 2024; LiKamWa
et al. 2014; McLellan 2019; XREAL 2023]. The high power consump-
tion is primarily due to the general-purpose nature of the computing
hardware (CPUs or GPUs), where a huge amount of power is wasted
on moving data rather than the actual computation [Hameed et al.
2010; Qadeer et al. 2013].

DedicatedApplication-Specific Integrated Chips (ASICs) are known
to address the power inefficiencies in general-purpose processors,
and have been widely used in application domains such as deep
learning [Jouppi et al. 2017], video processing [Ranganathan et al.
2021], and robotics [Murray et al. 2016; Wan et al. 2021]. Recently
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researchers have started exploring ASICs for neural rendering and
3DGS [Feng et al. 2024a; Fu et al. 2023]. Lin et al. [2025] and Lee
et al. [2024a] demonstrate that ASICs can achieve 15×–50× energy
reductions over GPUs. Our power modeling is thus based on ASICs
to target futuristic XR devices.
We develop a power estimation model for 3DGS-based ASICs,

following a widely adopted approach in modeling ASIC power con-
sumption [Sze et al. 2020; Yang et al. 2018, 2017]. Specifically, the
energy consumption of ASICs is divided into three components: the
energy of executing floating-point operations (FLOPs), energy of
retrieving data from on-chip memory (called the Static RAMs, or
SRAMs), and the energy of retrieving data from off-chip memory
(called the Dynamic RAMs, or DRAMs). Each energy component
itself is estimated by the product of the unit energy (i.e., the en-
ergy consumption per FLOP, per Byte from SRAM/DRAM) and the
number of total FLOPs/Bytes retrieved from the memory.
The total rendering power of running a model P at a pose 𝑇 is:

𝑃rend (P,𝑇 ) =
(
𝑒FLOP#FLOP+𝑒SRAM#SRAM+𝑒DRAM#DRAM

)
·FPS (4)

where 𝑒FLOP, 𝑒SRAM, and 𝑒DRAM are the unit energy, which are
hardware dependent but independent of P and 𝑇 ; #FLOP, #SRAM,
and #DRAM represent the total number of FLOPs, SRAM accesses,
and DRAM accesses per frame, which depend on P, 𝑇 , and the
hardware architecture. Scaling the total energy per frame by the
FPS (which we assume to be 60) gives us the average rendering
power (energy per second).
In general, #FLOP, #SRAM, and #DRAM cannot be expressed ana-

lytically with respect to the parameters of the model P because of
the discrete nature of both the software (e.g., model parameters are
defined per point) and hardware execution (which proceeds in steps
of clock cycles). Instead, we obtain the statistics by simulating how
a 3DGS model is actually executed on the hardware. This model is
employed for rendering power estimation, as described in Sec. 6.1.
We omit the hardware and its simulation for simplicity sake, but
refer interested readers to the Supplemental Material A for details.

4 The PowerGS Method
Solving Eqn. 1 is challenging. It lacks a closed-form solution, and
the non-differentiable rendering power model (Eqn. 4), which gener-
ally cannot be analytically related to the model parameters, makes
numerical methods like gradient descent inapplicable.

The key observation is that any 3DGS model eventually casts to a
3D landscape subtended by the rendering power, display power, and
quality of the model. Fig. 1(B) shows a 2D visualization, where the
𝑥-axis and 𝑦-axis represent the display and rendering power, respec-
tively, and the colorscale represents the quality (PSNR here). Our
job is to identify the iso-quality curve in the display-vs-rendering
power plot given a particular quality constraint (𝑄𝑚𝑖𝑛 in Eqn. 1)
and then identify the power-minimal point on the curve.

We approach this problem through a sample-and-reconstruct ap-
proach, where we first sample a few models that have the same/sim-
ilar quality (Sec. 4.1) and then reconstruct the iso-quality curve
from the samples (Sec. 4.2). Given the iso-quality curve (Sec. 4.3),
the generally intractable problem in Eqn. 1 is then cast to a simple
convex optimization with a closed-form solution (Sec. 4.4).
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Fig. 2. PowerGS turns a pre-trained, dense 3DGS model into a power-
optimal model given a quality constraint𝑄𝑚𝑖𝑛 . An iso-qualiry curve closer
to the top-right corner has a higher quality (i.e.,𝑄 ′′

𝑚𝑖𝑛
> 𝑄 ′

𝑚𝑖𝑛
> 𝑄𝑚𝑖𝑛).

Given a 𝜌 , PowerGS iteratively identifies a 𝜆 that, together with 𝜌 , results
in a pruned model 𝑃 [𝜌, 𝜆] that lands on a given iso-quality curve. The iso-
quality curves are parameterized to be convex, and identifying the power-
minimal power on a given iso-quality curve has a closed-form solution.

4.1 Sampling Iso-Quality Models
The first step is to sample models that have a similar quality but
differ in power. Searching the entire model parameter space is clearly
intractable, because a model involves millions of points, each with
many attributes. We observe that the main factor that affects the
visual quality and rendering power is the number of points in a
model [Fan et al. 2024; Fang and Wang 2024; Girish et al. 2024; Lee
et al. 2024b; Lin et al. 2024, 2025]. So we start from a pre-trained
dense model and prune the points, modulated by the pruning ratio
𝜌 : a higher 𝜌 reduces the rendering quality/power, and vice versa.

To modulate the display power, we weight the visual quality and
display power in a loss function:

−𝑄 (P) + 𝜆𝑃D (P) . (5)

The parameter 𝜆 controls the weight of display power. Increas-
ing 𝜆 shifts pixels toward more power-efficient colors, reducing
the display power. However, this color shift also affects rendering
quality 𝑄 (P), which, when operating under a fixed quality bud-
get, translates to less aggressive rendering power reduction. This
is why the loss in Eqn. 5 allows us identify iso-quality models that
vary in display-vs-rendering power consumptions. We quantify the
trade-off between quality and display power as 𝜆 varies in Sec. 6.7.

Fig. 2 shows how the loss is used. For a sampled 𝜌 , we first prune
𝜌 proportion of points and then fine-tune of the remaining points
using Eqn. 5, during which we monitor the quality 𝑄 (P) every
certain number of iterations. The idea is that if the quality is higher
than 𝑄𝑚𝑖𝑛 , we increase 𝜆 to trade the surplus quality for lowering
the display power. We adjust 𝜆 as follows:

𝜆 ←
{
𝜆 · 𝑆, if 𝑄 (P) ≥ 𝑄min,

𝜆/𝑆, if 𝑄 (P) < 𝑄min,
(6)
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where 𝑆 > 1 controls the adjustment scale (we use 𝑆 = 2). In practice,
𝑆 is gradually reduced to 1 using cosine annealing, which decreases
the fluctuations of 𝜆 and helps convergence. The whole process
terminates when the model quality is just 𝜖-higher that𝑄𝑚𝑖𝑛 (or the
maximum fine-tuning iteration has been reached). Each resulting,
pruned model lands on the corresponding iso-quality curve with a
display power (𝑥-axis) and rendering power consumption (𝑦-axis).

4.2 Parameterizing and Reconstructing Iso-Quality Curve
Given a 𝜌 we can now quickly arrive at a 𝜆 that, together with 𝜌 ,
gives us a model that lands on the iso-quality curve. We param-
eterize the iso-quality curve and approximately reconstruct it by
analytically fitting to the samples.We represent the iso-quality curve
in the display-vs-rendering power graph as a parametric equation:

𝑃𝑟 = R(𝜌) (7)
𝑃𝑑 = D(𝜌), (8)

where 𝑃𝑟 and 𝑃𝑑 represent the rendering power (𝑦-axis in Fig. 2) and
display power (𝑥-axis in Fig. 2), respectively; they are parameterized
by the pruning ratio 𝜌 through the function R(·) and D(·), respec-
tively, both of which are specific to a particular quality constraint.
Intuitively, as the pruning ratio increases the rendering power

would reduce but the display power would have to increase to
make up for the quality loss. In practice, we find that the reduc-
tion of rendering power (increase of the display power) as 𝜌 re-
duces follows the inverse Michaelis–Menten kinetics [Michaelis
and Menten 1913], which is commonly used in biological sciences
to describe the incremental saturation observed when a stimulus
property changes [Baylor et al. 1974; Dugdale 1967; Schneeweis and
Schnapf 1995]. Specifically:

D(𝜌) = 1 − 𝑉𝑑 (1 − 𝜌)
𝐾𝑑 + (1 − 𝜌)

, R(𝜌) = 1 − 𝑉𝑟 𝜌

𝐾𝑟 + 𝜌
, (9)

where 𝑉𝑑 , 𝐾𝑑 , 𝑉𝑟 , and 𝐾𝑟 are free parameters fit to data. Given that
both models are parameterized by only two free parameters, we can
afford to sample only about 5 𝜌s to derive an iso-quality curve.

4.3 Model Results and Discussion
Fig. 3a shows the accuracy of our parameterization and regression
using three traces from the Mip-Nerf360 [Barron et al. 2022] and
the Synthetic NeRF dataset [Mildenhall et al. 2020]. The markers
represent the measured data under different values of 𝜌 and the
solid and dashed lines represent the regressed display and rendering
power function, respectively. The mean relative errors (MRE) of the
two regressions are 0.003 and 0.008, respectively, indicating high
regression accuracy.
Empirically, display power rises with pruning ratio 𝜌 . This is

because we are operating under a fixed quality budget, which can
be allocated between rendering and display power reduction. If
more of this budget is used for reducing rendering power (pruning),
less remains for display power reduction, increasing display power.

Interestingly, the rendering power function is almost linear with
respect to 𝜌 . This is because we use the efficiency-aware pruning
proposed in Lin et al. [2025] (which is shown to better reduce the

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Pruning Ratio ( )

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
ow

er

Disp. R2 = 0.996, MRE = 0.003
Rend. R2 = 0.996, MRE = 0.008

Measured Display Power

Measured Rendering Power

Display Power Model

Render Power Model

(a) We regress the parameterized display power model and rendering power
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Fig. 3. Accuracy of the rendering and display power models (top) and the
iso-quality curves (bottom). bicycle (blue), flower (orange), and hotdog
(green) scenes are used here. The low coefficients of determination (𝑅2) and
the mean relative errors (MRE) show the accuracy of our models. Power
numbers and pruning ratios are normalized to the [0, 1] range on a per-scene
basis for both visualization and regression stability (see Supplementary
Material B.1). Each 𝜌 has an associated 𝜆 (see Fig. 2) but not shown.

rendering cost compared to prior methods [Fan et al. 2024; Fang
and Wang 2024]), which prioritizes pruning points that intersect
with more tiles (thus consume more power), so the rendering power
is roughly proportional to pruning ratio.
Given the parameterized display and rendering power models,

the total power model is just the sum of the two. Fig. 3b shows
that the resulting total power model (continuous curves) predicts
the measured data (markers) well. Recall that each total power
function represent an iso-quality curve, so all the points on each
curve share the same quality. The non-monotonic nature of the iso-
quality curves suggests that there exists an optimal 𝜌 that minimizes
the total power, confirming the need for joint rendering and display
power optimzations.
Why not a ML Proxy Model? We also experimented with

an alternative method that trains a machine-learning–based proxy
model that learns to map 3DGS parameters to power. Our results
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show that its accuracy fall flat (next to 0) given the same training
time as our method (about 2.5 hrs; see Sec. 6.1). The proxy model
is fundamentally inefficient to learn because the rendering power
is dictated by the number of Gaussian points, much less by exactly
whichGaussians are used and their parameters. Our method, instead,
parameterizes the rendering power directly as a function of the
pruning ratio, requiring only about 5 samples and giving rise to a
closed-form solution (without SGD), as we will show next.

4.4 Deriving Power-Minimal Model
The general problem in Eqn. 1 is now reduced to the following:

argmin
𝜌
D(𝜌) + R(𝜌), (10)

which gives us a 𝜌 , using which we prune the dense model (Sec. 4.1)
to obtain a concrete, power-minimal model.
A nice property of the Michaelis–Menten parameterization is

that both D(𝜌) and R(𝜌) are convex, so D(𝜌) + R(𝜌) is convex,
too. In fact, Eqn. 10 has a closed-form solution; see Supplementary
Material B for details. Finding the solution amounts to identifying
the lowest point in Fig. 3b or, equivalently, shifting the iso-power
line in Fig. 2 until it is tangential to the iso-quality curve.

5 Supporting Foveated Rendering (FR)
Our power optimization can be integrated into FR in a plug-and-
play manner. We assume RTGS, an FR algorithm for 3DGS [Lin et al.
2024, 2025], as the FR baseline. We claim no novelty of the basic
FR method. Our contribution is to show PowerGS can be trivially
extended to jointly optimize display and rendering power in FR. We
focus on the main idea here; see Supplementary Material C for more
implementation details.

RTGS represents the multi-model FR paradigm commonly applied
to radiance-field rendering [Deng et al. 2022; Franke et al. 2024],
where 1) the Field-of-View (FoV) is divided into multiple quality
regions (each covering a range of eccentricities) and 2) each quality
region is rendered by a separate 3DGS model. In particular, the
model in each region is pruned from a dense model: low-quality
regions are more heavily pruned and vice versa.
The nature of “one model per quality region” lends itself to our

power optimization. The idea is to apply the PowerGS method to
each model/quality region independently. Specifically, we start with
a dense model and prune it using the method described in Sec. 4 to
obtain the model for region 1 (𝑅1), which is then used as the starting
point for pruning to obtain the model for region 2 (𝑅2). This process
is repeated for subsequent, progressively lower-quality regions.
The quality constraint used during pruning (𝑄𝑚𝑖𝑛 in Eqn. 1)

must be eccentricity dependent. As with RTGS, we use a ventral
metamerism-inspired [Freeman and Simoncelli 2011], eccentricity-
dependent quality metric, termed Human Vision System Quality
(HVSQ) metric [Walton et al. 2021, 2022] (see Supplementary Mate-
rial C.3 for details of HVSQ). When pruning models for each region,
we align the HVSQ loss across all the quality regions, ensuring
uniform perceptual quality in the FoV.

6 Evaluation

6.1 Experiment Setup
Power Estimation. For the display power model (Eqn. 3), we use
parameters obtained from a real OLED measurement used in prior
work [Chen et al. 2024; Duinkharjav et al. 2022].

The unit energy numbers used in the rendering power model
(Eqn. 4) are based on real hardware measurements reported in prior
work [Ahn et al. 2024; Tortorella et al. 2022]. Briefly, the energy per
FLOP is 0.53 𝑝 𝐽 , SRAM access consumes 0.24 𝑝 𝐽 per byte, and DRAM
access is 10.88 𝑝𝐽 per byte. We implement a hardware simulator to
get the operation counts. The hardware ismodeled after GSCore [Lee
et al. 2024a], a recent 3DGS hardware accelerator. See Supplemental
Material A for the hardware modeling details.

Dataset. We evaluate our method on two datasets: a real-world
dataset Mip-NeRF360 [Barron et al. 2022] and the Synthetic NeRF
dataset [Mildenhall et al. 2020]. The total (display + rendering)
power ratio between the two datasets is approximately 3.5:1. We use
Mini-Splatting-D [Fang and Wang 2024] as the pre-trained dense
model for Mip-NeRF360 dataset and we use 3DGS [Kerbl et al. 2023]
as a dense model for the Synthetic NeRF dataset, as they achieve the
highest quality in the respective datasets. Supplemental Material
D contains additional results on Tanks&Temples [Knapitsch et al.
2017] and Deep Blending [Hedman et al. 2018], two widely used
datasets in neural rendering.
Variants and Overhead. Our variants include: PowerGS-H,

PowerGS-M, and PowerGS-L, with decreasing quality and total
power consumption. The 𝑅1 PSNR and SSIM requirements for these
variants are set to be 99%, 98%, and 97%, respectively, of the dense
model. For levels beyond 1, the eccentricity-dependent HVSQ met-
ric [Walton et al. 2021, 2022] is set to match that of level 1 in pruning
the models. See Supplemental Material C for more training details.

Power optimization is done once for each model with a one-time,
offline cost of about 2.5 hours on an RTX-4090 machine without
additional run-time and power overhead. This does mean that the
power model/iso-quality curves are scene specific, but this is inher-
ent to/consistent with any radiance-field rendering method, where
a model is learned specifically for a scene.

Baselines. We compare against following baselines:
• Dense 3DGSs: 3DGS [Kerbl et al. 2023], the first 3DGS model,
and Mini-Splatting-D [Fang and Wang 2024], a recent im-
provement upon 3DGS. They optimize solely for quality, re-
sulting in high power consumption.
• Pruned 3DGSs: LightGS [Fan et al. 2024], which is pruned
from 3DGS, and Mini-Splatting [Fang and Wang 2024],
which pruned from Mini-Splatting-D. They ignore the dis-
play power and do not support FR. We provide three variants
of LightGS (H, M, L) by varying 𝜌 (66%, 76%, 86%).
• FRmethods optimizing only for rendering power (FR-Render)
and only for the display power (FR-Display) in each region.
FR-Render is RTGS [Lin et al. 2024, 2025], and FR-Display
is a variant of PowerGS that fine-tunes the pixel values of a
dense model without pruning. They also have the three H, M,
and L variants like PowerGS.

All FR methods are implemented with blending across region
boundaries using the method described in Guenter et al. [2012].
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Fig. 4. 2IFC results showing the fraction of times users prefer our method
over the baselines. Ours is significantly better than LightGS (𝑝 < 0.01) and
has an insignificant difference compared to the other two baselines (𝑝 > 0.8
in both cases).
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Fig. 5. 2AFC results showing the proportion of times users report seeing
artifacts in each method. Users are significantly less likely to report seeing
artifacts in ours than in LightGS (𝑝 < 0.01); ours has an insignificant differ-
ence compared to FR-Display (𝑝 > 0.57) and to FR-Render (𝑝 > 0.07) in all
scenes except bicycle.

6.2 User Study
We conduct an IRB-approved user study to show that PowerGS
provides a subjective quality no worse than other baseline meth-
ods while having a lower power consumption. We compare with
LightGS-L, FR-Render-H, and FR-Display-L, overwhich PowerGS-H
saves 16.8%, 12.3%, and 50.6% power, respectively. We do not include
dense methods like 3DGS due to their excessive power consump-
tion (2.7 × higher than PowerGS-L) and low frame rate (∼5 FPS on
Jetson Xavier) on XR-suitable mobile devices.
Procedure. We select the bicycle and room scenes from the

Mip-NeRF360 dataset and the hotdog and materials scenes from
the Synthetic NeRF dataset for evaluation. We interpolate the sparse
poses in the dataset interpolation to generate 1,350 poses per scene,
forming three 5-second clips for each scene at 90 FPS.
We recruit 9 participants (5 male and 4 female; age 20 to 30),

all with normal or corrected-to-normal vision. We first conduct a
classic preference-based Two-Interval Forced Choice (2IFC) study
commonly used in psychophysical experiments for perceptual ren-
dering [Chen et al. 2024; Deng et al. 2022; Guenter et al. 2012; Perez-
Ortiz et al. 2019; Rolff et al. 2023; Shi et al. 2024; Walton et al. 2021].
For each comparison, we present a clip from PowerGS-H and a clip
from a baseline method in random order and ask participants to
select their preferred version. A 1-second interval is added between
videos in each comparison. Each comparison is repeated 4 times,
resulting in 144 randomized (4 scenes × 3 clips × 3 comparison ×
4 repeats) total comparisons (288 videos) for each participant. The
experiment takes approximately 1 hour per participant.

We also perform a Two-Alternative Forced Choice (2AFC) exper-
iment, where each participant is asked to respond whether they
see artifact in each video, following the procedure used by a prior
display-power optimization work [Duinkharjav et al. 2022].
Result. Fig. 4 shows the 2IFC results, where 𝑦-axis shows the

fraction of times participants prefer PowerGS rendering compared
to each of the three baselines (chance level is 0.5). The error bars rep-
resent the standard errors. PowerGS performs significantly better
than LightGS (two-sided binomial test 𝑝 < 0.01 ). The difference
between PowerGS and the other two baselines is statistically in-
significant (𝑝 > 0.8 in both cases).
Fig. 5 shows the 2AFC results, where the 𝑦-axis shows the pro-

portion of reported artifacts in each method. PowerGS has a sig-
nificantly lower artifact ratio compared to LightGS (two-tailed

two-proportion z-test 𝑝 < 0.01 ). The differences between PowerGS
and FR-Display are insignificant (𝑝 > 0.57). The difference w.r.t. to
FR-Render is insignificant (𝑝 > 0.07) except in bicycle.
Fig. 13 shows one bicycle frame rendered by PowerGS and all

the baselines. LightGS-L in the foveal region has the artifact around
the tire that many participants notice. Both variants of FR-Display,
to save display power, shade the foveal region overwhelmingly
green that many report. PowerGS shades the peripheral region
(which is originally achromatic) in a yellow-green hue compared to
FR-Render, which leads to a higher proportion of reported artifacts.
See Sec. 7 for further discussions of this color shift.

6.3 Quality-Power Trade-offs
We now compare the quality-power trade-offs using objective qual-
ity metrics. For the FR variants, the quality is obtained by applying
the model trained for the foveal region (R1) globally to the entire
frame so that we can make a fair comparison with other non-FR
methods: standard metrics (PSNR, SSIM, LPIPS) target foveal quality
and all FR methods already align HVSQ across regions. Fig. 6 com-
pares the total power (𝑥-axis) and SSIM (𝑦-axis) of our method and
the baselines on the Mip-NeRF360 dataset (top) and the Synthetic
NeRF dataset (bottom). PowerGS, LightGS, and the two FR base-
lines all have three variants each. The trends on PSNR and LPIPS
metrics are similar (Fig. 7 and Fig. 8).

PowerGS achieves the best trade-off among all methods in both
datasets. PowerGS variants Pareto-dominate existing pruned mod-
els (LightGS and Mini-Splatting). Compared with FR-Render
and FR-Display, which optimize only for the rendering power or
display power, PowerGS variants consume 13.1% and 52.5% less
power, respectively, while staying within 0.005 PSNR/SSIM loss.
Compared with the dense models (Mini-Splatting-D and 3DGS),
PowerGS reduces over 40% power with < 0.01 PSNR/SSIM loss.
As discussed in Sec. 3.3, our rendering power is modeled ana-

lytically rather than directly from a measurement on existing XR
hardware. However, our method is applicable to today’s mobile
GPUs too. For instance, PowerGS-L on Jetson Xavier GPU obtained
a 13.7× rendering power saving (no display power) on bicycle.

6.4 Varying Display vs. Rendering Power Ratio
We perform a sensitivity study to understand how our power sav-
ing will vary given different display vs. rendering power ratios by
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Fig. 9. Power saving of PowerGS over FR-Render (left 𝑦-axis) and over
FR-Display (right 𝑦-axis) as the display vs. rendering power ratio varies
(bicycle scene); all H variants.

sweeping the ratio from 0.38 to 2.66. Fig. 9 shows the power saving
of PowerGS over FR-Render (left 𝑦-axis) and FR-Display (right 𝑦-
axis) using the bicycle scene (all H variants). As the display power
becomes dominant, the advantage of PowerGS over reducing only
the rendering power increases, and vice versa. For instance, when
the display vs. rendering power ratio is 2.66 : 1, PowerGS reduces
20%, 23%, and 38% power over FR-Render, FR-Display, and the
dense model (not shown), respectively.

6.5 PowerGS Outperforms Two-Stage Baseline
We further compare against a two-stage baseline that combines
RTGS [Lin et al. 2024] with a post-processing, image-space fil-
ter [Duinkharjav et al. 2022] (hereafter D22) for display power
reduction, denoted as RTGS+D22. This baseline first train a model
using FR-Render-H to reduce the rendering power, and then apply
D22 to further reduce the display power. We use the bicycle scene
and evaluate on Jetson Xavier GPU; the results are shown in Tbl. 1.

Table 1. Comparison against RTGS+D22 on the bicycle scene.

Method FPS ↑ Power ↓ HVSQ (×10−5) ↓
R1 R2 R3 R4

RTGS + D22 78 0.34 W 2.1 2.6 3.4 5.0
PowerGS 84 0.32 W 2.1 2.1 2.1 2.1

We first compare the speed and power. PowerGS runs 8% faster as
RTGS+D22 adds∼10% runtime latency from theD22 post-processing.
In contrast, our method only incurs a training-time overhead (60%
more training time), which is paid once offlinewithout any rendering-
time overhead. RTGS+D22 also consumes 6% more power. This is
not only due to the extra filter but also because PowerGS jointly
optimizes the rendering and display power whereas RTGS+D22
optimizes the two aspects greedily in a sequence.

We evaluate quality using the eccentricity-dependent HVSQ [Wal-
ton et al. 2022] across all regions (R1–R4; see Supplementary Ma-
terial C). Our method preserves consistently high visual quality
across the visual field. In contrast, RTGS+D22 shows up to 2.4×
worse quality (R4). This degradation arises because RTGS already
prunes the model to a given quality constraint, and applying D22
on top further reduces fidelity, violating the constraint. The quality
degradation in RTGS+D22 is also visually observable.

6.6 Non-Foveated Scenarios
We also evaluate PowerGS in non-foveated scenarios (Tbl. 2), where
the entire image is treated as the fovea and rendered using the
highest-quality model. We compare PowerGS against two dense
baselines (3DGS and Mini-Splatting-D) as well as variants op-
timized only for rendering power (Render-only, which uses the
FR-Render-H model but without FR) or only for display power

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.



PowerGS: Display-Rendering Power Co-Optimization for Foveated Radiance-Field Rendering in Power-Constrained XR Systems • 9

0.0 0.2 0.4 0.6 0.8

24.0

24.5

25.0

25.5

PS
N

R
 (d

B
) PSNR

0.22

0.24

0.26

D
is

pl
ay

 P
ow

er
 (W

)Display Power

Fig. 10. 𝜆 vs. PSNR and Display Power on the bicycle scene.
As 𝜆 increases, both PSNR and display power decrease but
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display power with only a minimal drop in PSNR.
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15%). By adaptively changing 𝜆, our pruning
method can converge to a given quality target.

0 500 950

Iteration

0.2

0.4

0.6

30

35

40

PS
N

R
 (d

B
)

Target PSNR

Fig. 12. Similar analysis for another scene
(lego; 𝜌 = 65%). Our adaptive method general-
izes across scenes, pruning ratios, and quality
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Table 2. Comparison of quality and power in non-foveated scenarios. The
results are averaged over 9 scenes from the Mip-NeRF360 dataset.

Methods SSIM ↑ PSNR (dB) ↑ LPIPS ↓ Total Power (W) ↓
Mini-Splat.-D 0.831 27.50 0.176 1.11 (2.06×)
3DGS 0.816 27.50 0.216 0.80 (1.48×)
Display-only 0.828 27.24 0.175 1.06 (1.96×)
Render-only 0.826 27.44 0.199 0.56 (1.04×)
PowerGS-H 0.825 27.35 0.201 0.54 (1.00×)

(Display-only, which uses FR-Display-H but without FR). Results
are averaged across 9 scenes from the Mip-NeRF360 dataset.

All variants achieve similar quality. PowerGS achieves the lowest
power consumption (up to 2.06× savings) due to rendering–display
co-optimization. In non-foveated scenarios, however, the advantage
of PowerGS over Render-only optimization is marginal (4%). This
is because human vision is highly sensitive to foveal color, leaving
little room for display power reduction.

6.7 𝜆 vs. Quality and Display Power
As discussed in Eqn. 5, increasing 𝜆 reduces display power, but
also affects rendering quality. To demonstrate this, we fine-tune
Mini-Splatting-D using Eqn. 5 as the loss. We use different values
of 𝜆 to obtain different variants. We do not apply pruning, so the
rendering power remains approximately the same across variants.

The resulting trade-off is shown in Fig. 10. The 𝑥-axis shows 𝜆 and
the 𝑦-axis reports both PSNR (left) and display power (right). We
observe that as 𝜆 increases, both display power and PSNR decrease,
confirming the intuition in Sec. 4.1 (below Eqn. 5). Interestingly,
at 𝜆 ≈ 0.2, display power drops significantly while PSNR remains
nearly unchanged, yielding a favorable trade-off.

6.8 Effectiveness of Adaptively Weighting Display Power
To sample iso-quality models, PowerGS dynamically adjusts 𝜆 at a
given 𝜌 (Eqn. 5). This effectively reduces a 2D sampling of the [𝜌, 𝜆]
grid to sampling only along the 𝜌 dimension. Fig. 11 shows the
effectiveness of this approach (using the bicycle scene at 𝜌 = 15%)
— in two aspects. First, we empirically confirm that as 𝜆 is being
dynamically adjusted, the resulting model quality does gradually
converge to the target PSNR. Second, it takes fewer than 1,000
iterations to converge, which is roughly the same as pruning under a

given [𝜌, 𝜆] pair; this suggests that our approaches roughly achieves
a 𝑁× speedup over sampling N [𝜌, 𝜆] pairs. Fig. 12 shows a similar
time courses of another scene/𝜌 and conclusion generally holds.

7 Discussions and Future Work
In our particular display model, the blue channel consumes the
highest power [Duinkharjav et al. 2022], so to save display power
one reduces blue intensity, leading to the yellow-green-ish tint. This
is evident from Fig. 13 (and additional examples in Supplementary
Material D). This artifact is especially pronounced in the periphery
where the point density is already low, so our joint optimization
favors reducing display power rather than rendering power (which
would require pruning even more points and degrade quality).

This artifact is generally unnoticeable, but can emerge in cer-
tain scenes (e.g., bicycle as shown in Sec. 6.2). The reason is two-
fold. First, the HVSQ metric we use for training different mod-
els in FR [Walton et al. 2021], while accounting for eccentricity-
dependent visual perception, is still an approximation of the ventral
metamerism [Freeman and Simoncelli 2011]. Second, like in any
neural network training, the HVSQ loss does not become 0 during
FR model training, which means perceptual differences always exist.
Our rendering power optimization focuses solely on pruning.

Other techniques, such as compression [Fan et al. 2024; Niedermayr
et al. 2024; Takikawa et al. 2022], variable rate shading [Nvidia 2018;
Rolff et al. 2023], and temporal reuse [Feng et al. 2024a,b; Nvidia
2016] represent additional knobs, which we leave for future work.

8 Conclusion
PowerGS, for the first time, jointly optimizes the rendering and
display power of a 3DGS model under a quality constraint. This
generally intractable problem can be turned into a simple convex op-
timization by first sampling pruned models and then reconstructing
iso-quality curves. PowerGS is readily extended to support foveated
rendering to further reduce the total power. As XR devices are be-
coming increasingly computationally intensive but, at the same
time, power-limited, our work is the first step, not the final ward,
toward a holistic power optimization of XR rendering systems.
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Fig. 13. A user study session (top left) and visual comparisons of our method and the baselines in the bicycle scene. The power consumptions reported are
the rendering power + display power. The insets are the foveal (top) and peripheral (bottom) region.
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