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Fig. 1. Hardware models used in our rendering power estimation. (top): the original GSCore hardawre [Lee et al. 2024]; (bottom): GSCore augmented to
support foveated rendering, where the augmentations are highlighted.

A Rendering Power Modeling

A.1 Unit Energy
Unit energy depends on specific hardware implementation and fab-

rication process. For unit FLOP energy, we use the number from a

16-bit floating-point (FP16)Multiply-Accumulate (MAC) design [Tor-

torella et al. 2022]. FP16 is shown to be sufficiently accurate for

3DGS [Lee et al. 2024]. SRAM unit energy (energy per Byte) is esti-

mated by compiling a 256KB SRAM using the Arm Artisan memory

compiler [Arm 2024], which matches the size of GSCore [Lee et al.

2024], a state-of-the-art 3DGS hardware accelerator. DRAM unit

energy (energy per Byte) is estimated based on a 16 Gb LPDDR5x
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design [Ahn et al. 2024]. FLOP and SRAM energy numbers are scaled

to an advanced fabrication process node (7nm) using the DeepScale

tool [Sarangi and Baas 2021]. The process node is representative of

that used in today’s high-end integrated circuits. Overall, the energy

per FLOP is 0.53 𝑝 𝐽 , SRAM access consumes 0.24 𝑝𝐽 per byte, and

DRAM access consumes 10.88 𝑝𝐽 per byte in our modeling.

A.2 Operation Count for Uniform Rendering
Estimating the operation counts required to run 3DGS P at pose

𝑇 involves two steps: modeling a hardware architecture to support

3DGS and executing a 3DGSmodel at pose𝑇 to collect the related sta-

tistics: the total number of FLOPS, the total Bytes of SRAM accesses,

and the total Bytes of DRAM accesses. Our hardware architecture is

based on GSCore [Lee et al. 2024], as illustrated in Fig. 1 (top), and

is divided into three stages: Projection, Sorting, and Rasterization.
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In the Projection stage, three modules are considered: frustum

culling, splatting, and tile-point intersection test based on the Ori-

ented Bounding Box (OBB). FLOPs and data access patterns of first

two modules are same as 3DGS official code [Kerbl et al. 2023], OBB

test is based on GSCore paper. We collect input and output volumes

for these modules and convert the collected data into FLOPs and

memory access counts.

In the Sorting stage, points intersecting each tile are sorted from

near to far. While 3DGS official code uses GPU-based RadixSort,

we model a piece of dedicated sorting hardware for sorting. The

sorting units sort the points hierarchically, as described in GSCore.

This design includes two 7-pivot quicksort unit and a 16-channel

bitonic sorter. The operation counts for this stage are obtained by

collecting the points-tile intersection statistics.

In the Rasterization stage, point attributes are fetched fromDRAM

and stored in an on-chip SRAM feature buffer for alpha blending.

Rasterization units access attributes from SRAM to compute alpha,

point color, and integrate the color into pixels. The read attributes

are reused across units in a 1-D systolic array manner to minimize

on-chip buffer access. Finally, the computed pixel colors are written

back to DRAM. Computations in this stage follow the same algo-

rithm as 3DGS official code. By collecting input and output volumes

of each module, we can infer the FLOPs and memory access counts.

The total operation counts (FLOPs and number of SRAM/DRAM

accesses) for a frame is obtained by summing the results from all

three stages. Multiplying the operation counts by the unit energy

provides the per-frame energy.

A.3 Supporting Foveated Rendering
We also extend GSCore to support computation-sharing foveated

rendering, as shown in Fig. 1 (bottom), where the extensions are

highlighted. The key difference lies in the Projection stage, where

we extend the OBB test with eccentricity-based foveated filtering.

This module takes user’s gaze as input, computes the eccentricity

of points using their positions in 2D image space, and filters out

points not needed at the current eccentricity level.

Aswith all prior foveated rendering techniques, we blend different

levels at the boundaries by rendering pixel colors for boundary tiles

twice (one for each level) and blending them. The blending is done

at the end of the Rasterization stage. The blending introduce extra

overhead. Fortunately, due to our computation-sharing strategy,

around 79% computations and 66% memory access in Rasterization

can be shared across levels.

B Iso-Quality Curve Reconstruction

B.1 Implementation Details
Normalization. We reconstruct the underlying display power

model 𝐷 (𝜌) and rendering power model 𝑅(𝜌) by fitting an inverse

Michaelis–Menten kinetics from samples. We find at most 5 samples

are usually sufficient.

We also find that normalizing the display/rendering power and

pruning ratio of the samples to [0,1] before fitting the model pa-

rameters improves the regression stability. The normalization is

done such that the maximum and minimum power/𝜌 value in the

samples is cast to 1 and 0, respectively, and other values are scaled

accordingly:

𝑥 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
, (1)

where 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum and maximum values in the

samples, 𝑥 is the unnormalized value, and 𝑥 is the normalized value.

The inverted normalization is applied to the model output to obtain

the actual power value.

Solving for 𝜌 . To solve for the optimal 𝜌 , we seek the value of

𝜌 that minimizes 𝐺 (𝜌) = 𝐷 (𝜌) + 𝑅(𝜌), where 𝐺 (𝜌) represents the
total power. We can prove that within the domain [0, 1], the inverse
Michaelis–Menten functions are convex, and (inverse) normaliza-

tion does not affect their convexity (see Sec. B.2). Therefore, the

sum 𝐺 (𝜌) is also convex.

To find the minimum, we solve
𝑑𝐺 (𝜌 )
𝑑𝜌

= 0 using sympy [Meurer

et al. 2017] for an analytical solution. The closed-form expression

for optimal pruning ratio 𝜌𝑜𝑝𝑡 is shown below:

Δ𝜌 = 𝜌max − 𝜌min, Δ𝑟 = 𝑟max − 𝑟min, Δ𝑑 = 𝑑max − 𝑑min

𝐴 =
√︁
𝐾𝑟𝐾𝑑𝑉𝑟𝑉𝑑

√
Δ𝑟 Δ𝑑 (𝐾𝑟 + 𝐾𝑑 + 1) Δ𝜌

𝐵 = −𝐾𝑟𝐾𝑑 Δ𝜌
[
𝑉𝑟Δ𝑟 +𝑉𝑑Δ𝑑

]
𝐶 = 𝐾𝑟𝑉𝑟 𝜌minΔ𝑟 − 𝐾𝑑𝑉𝑑𝜌maxΔ𝑑

𝜌opt =
±
(
𝐴 + 𝐵 +𝐶

)
𝐾𝑟𝑉𝑟 Δ𝑟 − 𝐾𝑑𝑉𝑑 Δ𝑑

where 𝜌max and 𝜌min are the maximum andminimum sampled prun-

ing ratios. 𝑟max, 𝑟min and𝑑max, 𝑑min correspond to the power bounds:

𝑟 refers to rendering power, and𝑑 to display power.𝐾𝑟 ,𝑉𝑟 , 𝐾𝑑 ,𝑉𝑑 are

Michaelis–Menten parameters fitted to the rendering and display

power curves, respectively. Note that although there are two possi-

ble 𝜌opt, they are negations of each other. Therefore, at most one of

them can lie within the valid range [𝜌min, 𝜌max], within which the

total power function 𝐺 (𝜌) is convex (see proof in Sec. B.2).

If both 𝜌opt lie outside the domain [𝜌min, 𝜌max], it means that the

minimum of the total power function occurs at the boundary. In

this case, we evaluate the boundary values 𝜌 = 𝜌min and 𝜌 = 𝜌max,

and select the one with lower total power. This ensures that all eval-

uations remain within the supported domain, thereby performing

interpolation rather than extrapolation on the models.

B.2 Convexity Proof
We now prove that our inverse Michaelis–Menten function in nor-

malized space (i.e., 𝑥 ∈ [0, 1]) is convex. We begin with the standard

Michaelis–Menten function:

MM(𝑥) = 𝑉𝑥

𝐾 + 𝑥 ,

where 𝑉 , 𝐾 > 0 and 𝑥 ≥ 0. The rendering power function R(𝑥)
takes its 𝑦-inverse form, which is defined by

R(𝑥) = 1 −MM(𝑥) = 1 − 𝑉𝑥

𝐾 + 𝑥 .
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To establish that R(𝑥) is convex on [0, 1], we compute its second

derivative. First, the first derivative is

R′ (𝑥) = −𝑉 𝐾
(𝐾 + 𝑥)2

.

Then, the second derivative becomes

R′′ (𝑥) = −𝑉 𝐾 ×
(
−2 (𝐾 + 𝑥)−3

)
= 2

𝑉 𝐾

(𝐾 + 𝑥)3
.

Since 𝑉 , 𝐾 > 0 and 𝑥 ≥ 0, it follows that

R′′ (𝑥) = 2 · 𝑉𝐾

(𝐾 + 𝑥)3
> 0 for all 𝑥 ≥ 0.

A strictly positive second derivative implies that R(𝑥) is strictly
convex on [0,∞), so it must be convex in [0, 1].

The display power function D(𝑥) takes the 𝑥-inverse form of the

𝑦-inverse Michaelis-Menten function above:

D(𝑥) = 1 −MM(1 − 𝑥) = 1 − 𝑉 (1 − 𝑥)
𝐾 + (1 − 𝑥) .

To show D(𝑥) is convex for 𝑥 in [0, 1], we examine its second

derivative.

D′ (𝑥) = 𝑉 𝐾

(𝐾 + 1 − 𝑥)2
,

D′′ (𝑥) = 𝑉 𝐾 × 2 (𝐾 + 1 − 𝑥)−3 = 2𝑉 𝐾

(𝐾 + 1 − 𝑥)3
.

Since 𝑉 , 𝐾 > 0 , it follows that

D′′ (𝑥) =
2𝑉𝐾

(𝐾 + 1 − 𝑥)3
> 0 for all 𝑥 ∈ [0, 𝐾 + 1) .

Since 𝐾 > 0, D(𝑥) is convex within [0, 1].

C Extending PowerGS to Support Foveated Rendering
Uniformly rendering high-quality content across the entire FoV is

unnecessary for XR applications, as human visual acuity decreases

with eccentricity. Foveated Rendering (FR) exploits this limitation

to render content with varying quality depending on eccentric-

ity [Guenter et al. 2012; Patney et al. 2016].

We assume a FR paradigm proposed in Lin et al. [2024, 2025],

where, as with all prior FR work, the FoV is divided into multiple

quality regions (𝑅1 having the highest quality), each covering a

range of eccentricities with a different quality constraint, shown in

Fig. 2(A). Like much of the prior FR work on radiance-field render-

ing [Deng et al. 2022; Franke et al. 2024], RTGS renders each quality

region using a separate 3DGS model pruned from a dense model.

As a result, our joint power optimization procedure can be applied

to each quality region independently. This section describes the

implementation details on how PowerGS is integrated into RTGS

to support FR.

C.1 Basic Idea
Fig. 2 illustrates the basic idea of RTGS and how our PowerGS

framework is integrated to support FR. In the basic multi-model FR

paradigm [Deng et al. 2022; Franke et al. 2024], the models used in

different regions are trained/pruned independently from the same

dense model, so the total rendering power is the sum of that of each

level of model. Instead, RTGS allow models of different regions to

share parameters and, thus, computation, so that the total rendering

power is lower than that of the sum. This is shown in Fig. 2(B),

where colored ellipses denote those in a higher-quality model 𝑅𝑛
that are absent in a lower-quality 𝑅𝑛+1 model.

Fig. 2(C) shows howPowerGS is used to obtainmodels of different

regions.We start with a densemodel and prune it to obtain themodel

for region 1 (𝑅1), which is then used as the starting point for pruning

to obtain the model for region 2 (𝑅2). This process is repeated for

subsequent regions. This way, points used by a lower quality model

form a strict subset of those used by a higher quality model. Each

pruning step applies the PowerGS method described in Section 4 of

the main text, i.e., obtaining the iso-quality curve through sample-

and-reconstruction and solving the power optimization problem.

When pruning the model of each quality region, RTGS uses a

quality measure inspired by the ventral metamerism in the visual

cortex [Freeman and Simoncelli 2011], which computes the overall

statistics (e.g., mean and standard deviation) within retinal spatial

pooling areas to assess the similarities between two visual stimuli

(e.g., a foveated image and a reference image). The pooling area

grows with eccentricity, accounting for the eccentricity-dependent

acuity falloff. We call it the Human Vision System Quality (HVSQ)

metric. The HVSQ metric is used as the quality constraint 𝑄𝑚𝑖𝑛

when solving the PowerGS power optimization problem in Eqn. 1

in the main text.

To retain flexibility for training lower-quality models, 4 out of

the 59 point attributes (opacity and the DC component of spherical

harmonic coefficients) are tunable when fine-tuning a lower-quality

model; the remaining parameters are fixed once 𝑅1 is trained and

are shared across all quality levels.

An advantage of this partial parameter sharing is to allow different

models to share all the computations up until the color integration

step in rasterization, reducing rendering power. Fig. 2(D) shows the

three main stages in 3DGS rendering, including projection, sorting,

and rasterization, and the rasterization stage is subdivided into the

pre-integration stage and the final color integration stage
1
. Up to

87.7% of the rendering power consumption (the first three stages)

of a 𝑅1 model is unrelated to opacity and SHs DC and, thus, can be

shared across all models. This computation sharing is faithfully mod-

eled in hardware and the rendering power modeling, as discussed

in Sec. A.3.

C.2 Level 1 (Highest-Quality Region) Training
During the training of the fovea model (first level), we use both

PSNR and SSIM as the quality metrics. PSNR ensures pixel-wise

fidelity, while SSIM preserves structural details.

Specifically, we set a quality requirement (𝑄min) for each metric,

such as 99% of that of the dense model. When dynamically adjusting

𝜆, we evaluate and monitor all metrics individually. Only when all

metrics meet their respective quality requirements do we consider

the quality satisfied and increase 𝜆 to trade surplus quality for lower

power. Conversely, if any metric fails to meet its requirement, the

quality is considered unsatisfactory, and 𝜆 is decreased to restore

the quality.

1
Projection splats 3D Gaussian points onto the image plane. Sorting arranges the points

by depth. Rasterization integrates point colors into pixels. The actual color integration

depends on opacity and SH coefficients that can differ between models, but all the steps

before integration (e.g., Gaussian evaluation) can be shared across models.
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Fig. 2. Overview of how PowerGS builds on top of RTGS [Lin et al. 2024, 2025] to support FR. (A): as with all prior FR work, we divide the Field-of-View (FoV)
into different quality regions. (B): each quality region is rendered by a separate model; points used by a lower quality model are strictly a subset of that of
the higher quality model; color ellipses denote ellipses of a higher quality model 𝑅𝑛 that are absent in a lower quality model 𝑅𝑛+1. (C): PowerGS can be
easily extended to support FR: model 𝑅𝑛+1 is derived from model 𝑅𝑛 using the power optimization described in the main paper (dense model being 𝑅0) with
a ventral-metamer–inspired, eccentricity-dependent quality metric HVSQ [Freeman and Simoncelli 2011; Walton et al. 2021]. (D): point sharing enables
computation sharing, further reducing rendering power: all the computations in the 3DGS rendering pipeline except the final color integration step can be
shared across models (blending across quality regions is omitted in the figure but is implemented), and the shared portion is about 87.7% of the 𝑅1’s rendering
power (numbers above each stage show the rendering power breakdown).

C.3 Lower-Quality Regions Training Details
The HVS Quality (HVSQ) loss [Walton et al. 2021, 2022] is inspired

by classic neuroscience studies on the ventral pathway of the human

visual system [Freeman and Simoncelli 2011]. The loss evaluates

the similarity between a reference image and an altered image, in-

corporating the eccentricity of each pixel, which depends on the

display resolution and the eye-display distance. A lower loss indi-

cates higher similarity between the images as perceived by humans.

We use the implementation of the HVS Loss in Akşit et al. [2024],

which we refer interested readers to for details.

The HVSQ loss is based on the principle that the retina aggre-

gates photoreceptor outputs into spatial regions known as spatial

poolings. In image space, these spatial poolings correspond to clus-

ters of adjacent pixels, with pooling size increasing quadratically

with eccentricity. Computational models of the human visual sys-

tem [Freeman and Simoncelli 2011] suggest that as long as the

statistical properties (mean and standard deviation) of the content

within a spatial pooling are similar between two images, humans

cannot distinguish between them.

After obtaining the foveal model that minimizes power while

satisfying the quality requirements, we measure its quality using

HVSQ with an eccentricity of 0
◦
. We then use the HVSQ of the

foveal region as the quality requirement for all higher-level regions

during pruning and fine-tuning. This ensures that the HVSQ of

higher levels is not worse than that of the fovea, representing a

quality alignment between different regions in PowerGS.

In PowerGS, we set the starting eccentricity of each region to be

0
◦
, 18

◦
, 27

◦
, and 33

◦
. The HVSQ for all regions is computed based on

their starting eccentricity. Even though the same numerical HVSQ

constraint is applied to all levels, the quality constraints for higher

levels are effectively relaxed, because the HVS loss uses a larger

pool area to calculate statistics in higher eccentricities.

During subjective evaluation, users are instructed to fixate at the

center of the visual field. This is the same as the fixed-foveated ren-

dering regime used in XR devices such as Meta Quest [Meta 2024].

This mitigates flickering caused by eye movements—a known chal-

lenge in FR that is beyond the scope of this paper [Arabadzhiyska

et al. 2017; Patney et al. 2016].

D Additional Results
We provide experiments on two additional real-world datasets in ad-

dition to Mip-NeRF360 [Barron et al. 2022] (9 scenes) and Synthetic

NeRF [Mildenhall et al. 2020] (8 scenes), including Tanks&Temples [Knapitsch

et al. 2017] (2 scenes) and Deep Blending [Hedman et al. 2018] (2

scenes). We provide detailed scene-wise breakdown as described

below.

Detailed Scene-wise Metrics. In Tbl. 1 and Tbl. 2, we report

the per-scene metrics for seven methods: 3DGS, MiniSplatting-D,

MiniSplatting, LightGS-H, FR-Display-H, FR-Render-H, and our

PowerGS-H. The first two are dense 3DGS variants that offer the

highest quality but incur high power consumption. The next two

are pruned, efficient versions of 3DGS, but apply uniform rendering.

The final three methods implement foveated rendering in differ-

ent ways: FR-Display-H optimizes only for display power by color

adjustment, FR-Render-H optimizes only for rendering power via

pruning, and PowerGS-H co-optimizes both to minimize the total

power.

Specifically, Tbl. 1 presents results on the 13 real-world scenes

(9 from Mip-NeRF360, 2 from Tanks&Temples, and 2 from Deep

Blending), while Tbl. 2 includes results from the 8 Synthetic NeRF

scenes. For each method, we report quality metrics: PSNR, SSIM,

and LPIPS. For foveated methods, these metrics are computed in

the fovea region, as we align HVSQ across eccentricity. We also

report the Rendering Power, Display Power, and Total Power to

highlight the power savings achieved by PowerGS-H. Additionally,

we report Giga Floating Point Operations (GFLOPs) per frame, which
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is commonly used as a proxy for the rendering latency, which is

important to real-time rendering.

The results demonstrate that PowerGS-H achieves comparable

or superior visual quality to all other methods, while consistently

achieving the lowest total power consumption across all scenes.
At the same time, it is the second fastest among all methods (only

slightly slower than FR-Render-H), achieving approximately 5×
fewer GFLOPs on average compared to its dense counterpart, thanks

to FR.

Scene-wise Visualizations. Fig. 3 to 6 show qualitative re-

sults for Mip-NeRF360 scenes. Fig. 7 and 8 show visualizations for

Tanks&Temples and Deep Blending, respectively. Fig. 9 to Fig. 12

display qualitative comparisons for Synthetic NeRF scenes.

Each figure contains comparisons of the 7 methods, with annota-

tions for Rendering Power and Display Power. For foveated versions,

the gaze is fixed at the center of the image. We provide zoom-in

views of both the foveal and peripheral regions to allow better visual

comparison.

The visualization results show that all methods render high-

quality outputs at the fovea. Uniform rendering consumes more

power than foveated approaches, primarily due to unnecessarily

high quality in the peripheral regions. Among foveated methods,

optimizing for display power (FR-Display-H) introduces a green-

ish/yellowish tint in the periphery, while optimizing for render-

ing power (FR-Render-H) leads to detail loss in the periphery.

PowerGS-H strikes a balance between these two extremes, achiev-

ing the lowest total power consumption while preserving perceptual

quality.
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Table 1. Quantitative Evaluation Across Three Real-World Datasets. We evaluate seven methods on three real-world datasets using seven metrics.
PowerGS-H (green) consistently achieves the lowest total power consumption across all scenes while maintaining comparable or better quality than other
methods. We use medals , , and to highlight the 1st, 2nd, and 3rd places in each metric, respectively.

Metrics Method Mip-NeRF360 T&T Deep Blending Avg(13 Scenes)
Bicycle Bonsai Counter Flowers Garden Kitchen Room Stump Treehill Train Truck Playroom Drjohnson

PSNR↑

3DGS 25.2057 32.2180 29.0080 21.5542 27.3732 31.5089 31.5607 26.6212 22.4450 22.0455 25.3959 29.9417 29.1603 27.2337

MiniSplatting-D 25.5416 32.0301 28.2741 21.5112 27.7232 31.4544 31.5910 27.1492 22.2636 21.1891 25.3691 30.5035 29.3389 27.2261

MiniSplatting 25.2008 31.2495 28.4618 21.5723 26.8820 31.2216 31.2232 27.2471 22.6310 21.4615 25.2486 30.5157 29.3900 27.1004

LightGS-H 25.1745 32.0768 28.9753 21.5501 27.3057 31.3948 31.8148 26.6022 22.4846 22.1594 25.4984 29.9108 29.2298 27.2444

FR-Display-H 25.2142 31.8922 28.0383 21.2706 27.3849 31.1539 31.2274 26.8199 22.1883 22.0191 25.1287 29.5776 28.8727 26.9837

FR-Render-H 25.4634 31.9826 28.2242 21.4697 27.5831 31.2855 31.3827 27.1333 22.4053 21.9186 25.3574 29.6523 28.9516 27.1392

PowerGS-H 25.3044 32.0587 28.2237 21.2406 27.6358 31.0259 31.2981 26.9086 22.4189 20.9853 25.1358 29.9251 28.9341 27.0073

SSIM↑

3DGS 0.7651 0.9421 0.9086 0.6056 0.8661 0.9277 0.9196 0.7726 0.6325 0.8136 0.8817 0.9063 0.9003 0.8340

MiniSplatting-D 0.7981 0.9480 0.9085 0.6425 0.8783 0.9312 0.9286 0.8053 0.6419 0.8192 0.8898 0.9079 0.9056 0.8465

MiniSplatting 0.7725 0.9390 0.9043 0.6245 0.8477 0.9261 0.9211 0.8056 0.6525 0.8098 0.8823 0.9137 0.9089 0.8391

LightGS-H 0.7620 0.9386 0.9020 0.6044 0.8613 0.9229 0.9187 0.7737 0.6296 0.8058 0.8824 0.9053 0.8986 0.8312

FR-Display-H 0.7921 0.9496 0.9082 0.6378 0.8753 0.9302 0.9295 0.7961 0.6315 0.8177 0.8816 0.9034 0.8982 0.8424

FR-Render-H 0.7917 0.9430 0.9036 0.6369 0.8705 0.9246 0.9229 0.8015 0.6379 0.8079 0.8755 0.9044 0.8997 0.8400

PowerGS-H 0.7911 0.9439 0.9014 0.6373 0.8716 0.9209 0.9214 0.8012 0.6392 0.8211 0.8861 0.9059 0.9013 0.8417

LPIPS↓

3DGS 0.2101 0.2030 0.1995 0.3359 0.1074 0.1261 0.2182 0.2156 0.3258 0.2073 0.1471 0.2444 0.2442 0.2142

MiniSplatting-D 0.1576 0.1736 0.1753 0.2545 0.0901 0.1159 0.1878 0.1681 0.2606 0.1810 0.0999 0.2026 0.2181 0.1758

MiniSplatting 0.2242 0.1996 0.1986 0.3274 0.1498 0.1292 0.2120 0.1984 0.3141 0.2225 0.1385 0.2365 0.2406 0.2147

LightGS-H 0.2153 0.2107 0.2130 0.3431 0.1153 0.1375 0.2235 0.2179 0.3359 0.2285 0.1470 0.2502 0.2496 0.2221

FR-Display-H 0.1585 0.1689 0.1724 0.2537 0.0907 0.1159 0.1818 0.1734 0.2603 0.2043 0.1455 0.2460 0.2452 0.1859

FR-Render-H 0.1714 0.1946 0.1921 0.2775 0.1029 0.1318 0.2092 0.1943 0.3130 0.2317 0.1642 0.2596 0.2542 0.2074

PowerGS-H 0.1717 0.1929 0.1988 0.2775 0.1016 0.1386 0.2124 0.1944 0.3177 0.2086 0.1214 0.2423 0.2453 0.2018

Rendering Power (W)↓

3DGS 0.6357 0.2603 0.3301 0.3289 0.6922 0.5195 0.3141 0.3959 0.3497 0.1835 0.2906 0.2515 0.3276 0.3754

MiniSplatting-D 0.7099 0.6713 0.8975 0.5715 0.8469 0.9959 0.6574 0.5937 0.6110 0.4755 0.6008 0.3676 0.4182 0.6475

MiniSplatting 0.1254 0.1665 0.2175 0.1285 0.1437 0.2238 0.1591 0.1439 0.1328 0.0674 0.0813 0.0846 0.0856 0.1354

LightGS-H 0.2757 0.1634 0.2091 0.1826 0.3407 0.2762 0.1889 0.2333 0.2059 0.0871 0.1497 0.1296 0.1548 0.1998

FR-Display-H 0.7152 0.6602 0.8555 0.6122 0.8735 0.9759 0.6313 0.6115 0.6314 0.2018 0.3026 0.2381 0.3089 0.5860

FR-Render-H 0.1446 0.1094 0.1452 0.1473 0.1695 0.1760 0.0971 0.1062 0.0857 0.0510 0.0608 0.0453 0.0568 0.1073

PowerGS-H 0.1547 0.1222 0.1414 0.1743 0.1821 0.1512 0.1000 0.1137 0.1044 0.0776 0.1127 0.0643 0.0674 0.1205

Display Power (W)↓

3DGS 0.2688 0.3586 0.3301 0.4255 0.4799 0.6624 0.3184 0.1531 0.3922 0.8296 1.0368 0.7138 0.4176 0.4913

MiniSplatting-D 0.2666 0.3572 0.3307 0.4355 0.4780 0.6629 0.3187 0.1520 0.4012 0.8287 1.0371 0.7121 0.4147 0.4920

MiniSplatting 0.2660 0.3562 0.3296 0.4278 0.4779 0.6641 0.3189 0.1517 0.3924 0.8364 1.0352 0.7123 0.4149 0.4910

LightGS-H 0.2686 0.3572 0.3310 0.4228 0.4789 0.6613 0.3197 0.1536 0.3880 0.8278 1.0361 0.7162 0.4168 0.4906

FR-Display-H 0.1951 0.3074 0.2729 0.2876 0.3905 0.5985 0.2801 0.1094 0.2348 0.6434 0.8467 0.6441 0.3604 0.3978

FR-Render-H 0.2646 0.3586 0.3323 0.4161 0.4794 0.6624 0.3172 0.1519 0.3789 0.8330 1.0285 0.7130 0.4165 0.4886

PowerGS-H 0.2099 0.3237 0.2750 0.3020 0.4163 0.6000 0.2975 0.1164 0.2428 0.6421 0.8484 0.6530 0.3718 0.4076

GFLOPs (per frame)↓

3DGS 12.3251 5.7453 7.2813 6.2892 13.5036 11.1315 7.0784 7.7448 6.8303 3.6167 5.4464 5.5352 7.0858 7.6626

MiniSplatting-D 13.2884 13.8290 18.1651 10.7232 16.0238 20.6333 13.8494 11.3496 11.6279 8.3948 10.5551 7.7574 8.7191 12.6859

MiniSplatting 2.6911 3.8990 4.9697 2.6465 3.0791 5.1270 3.8121 3.0199 2.8073 1.3739 1.6785 2.0092 1.9890 3.0079

LightGS-H 5.6120 3.7998 4.8016 3.6985 6.9012 6.1402 4.4345 4.8211 4.2665 1.8002 2.9560 3.0141 3.5305 4.2905

FR-Display-H 13.1018 13.3774 16.8779 10.8867 15.8291 19.4941 13.1827 11.2809 11.5893 3.6941 5.5488 5.3727 6.7571 11.3071

FR-Render-H 2.3810 2.4681 3.0816 2.3071 2.7730 3.6614 2.2709 1.8910 1.5024 1.0360 1.1914 1.1283 1.3070 2.0769

PowerGS-H 2.6545 2.8115 3.2594 2.8318 3.1051 3.3934 2.4244 2.1055 2.0115 1.4329 2.0318 1.5710 1.5936 2.4020

Total Power (W)↓

3DGS 0.9045 0.6189 0.6602 0.7544 1.1721 1.1819 0.6325 0.5490 0.7419 1.0131 1.3275 0.9652 0.7452 0.8667

MiniSplatting-D 0.9765 1.0285 1.2281 1.0071 1.3250 1.6588 0.9761 0.7458 1.0122 1.3043 1.6379 1.0798 0.8328 1.1394

MiniSplatting 0.3914 0.5227 0.5471 0.5562 0.6216 0.8878 0.4780 0.2957 0.5252 0.9038 1.1165 0.7969 0.5005 0.6264

LightGS-H 0.5443 0.5206 0.5401 0.6053 0.8196 0.9375 0.5086 0.3869 0.5940 0.9149 1.1857 0.8457 0.5716 0.6904

FR-Display-H 0.9103 0.9676 1.1284 0.8998 1.2640 1.5744 0.9114 0.7209 0.8662 0.8452 1.1493 0.8822 0.6693 0.9838

FR-Render-H 0.4092 0.4680 0.4775 0.5634 0.6489 0.8385 0.4144 0.2582 0.4646 0.8840 1.0893 0.7583 0.4733 0.5960

PowerGS-H 0.3645 0.4459 0.4165 0.4763 0.5984 0.7512 0.3974 0.2301 0.3472 0.7197 0.9611 0.7173 0.4392 0.5281



PowerGS: Display-Rendering Power Co-Optimization for Foveated Radiance-Field Rendering in Power-Constrained XR Systems: Supplementary Material • 7

Table 2. Quantitative Evaluation Across Synthetic NeRFDataset. We evaluate sevenmethods on Synthetic NeRF Dataset using sevenmetrics. PowerGS-H
(green) consistently achieves the lowest total power consumption across all scenes while maintaining comparable or better quality than other methods. We
use medals , , and to highlight the 1st, 2nd, and 3rd places in each metric, respectively.

Metrics Method Synthetic NeRF Average
Chair Drums Ficus Hotdog Lego Materials Mic Ship (8 scenes)

PSNR↑

3DGS 35.5277 26.2770 35.4939 38.0307 36.0776 30.4911 36.6839 31.6882 33.7837

MiniSplatting-D 34.3225 25.6544 27.4828 37.9712 36.1678 29.1815 32.9624 30.1773 31.7400

MiniSplatting 34.1229 25.7537 26.4539 37.9958 36.4631 29.1610 32.8124 30.6274 31.6738

LightGS-H 34.8312 26.1480 35.4556 36.5692 35.0414 29.5123 34.8355 29.6761 32.7587

FR-Display-H 35.1196 26.0002 35.1695 37.6515 35.6891 30.1998 36.3621 31.3548 33.4433

FR-Render-H 35.5149 26.0636 35.1627 37.7877 35.8032 30.2505 36.5323 31.4113 33.5658

PowerGS-H 35.3227 26.0174 35.1034 37.6577 35.6006 30.1214 36.3719 31.4142 33.4512

SSIM↑

3DGS 0.9877 0.9548 0.9870 0.9853 0.9827 0.9604 0.9925 0.9063 0.9696

MiniSplatting-D 0.9866 0.9479 0.9606 0.9860 0.9832 0.9516 0.9826 0.8878 0.9608

MiniSplatting 0.9866 0.9503 0.9597 0.9864 0.9853 0.9533 0.9842 0.8979 0.9630

LightGS-H 0.9851 0.9530 0.9867 0.9784 0.9795 0.9559 0.9894 0.8886 0.9646

FR-Display-H 0.9871 0.9539 0.9865 0.9850 0.9823 0.9601 0.9925 0.9054 0.9691

FR-Render-H 0.9873 0.9512 0.9853 0.9841 0.9816 0.9577 0.9919 0.9032 0.9678

PowerGS-H 0.9868 0.9521 0.9850 0.9835 0.9809 0.9567 0.9921 0.9030 0.9675

LPIPS↓

3DGS 0.0105 0.0367 0.0118 0.0199 0.0160 0.0369 0.0064 0.1059 0.0305

MiniSplatting-D 0.0117 0.0433 0.0409 0.0166 0.0127 0.0411 0.0186 0.0971 0.0353

MiniSplatting 0.0122 0.0416 0.0364 0.0175 0.0126 0.0432 0.0148 0.1066 0.0356

LightGS-H 0.0128 0.0388 0.0120 0.0308 0.0209 0.0462 0.0089 0.1276 0.0373

FR-Display-H 0.0109 0.0378 0.0121 0.0201 0.0160 0.0374 0.0064 0.1051 0.0307

FR-Render-H 0.0114 0.0418 0.0135 0.0233 0.0176 0.0402 0.0071 0.1136 0.0336

PowerGS-H 0.0123 0.0402 0.0138 0.0247 0.0187 0.0413 0.0069 0.1136 0.0340

Rendering Power (W)↓

3DGS 0.1503 0.1359 0.1142 0.0828 0.1245 0.0689 0.0796 0.1364 0.1116

MiniSplatting-D 0.6358 0.6689 0.6163 0.6846 0.6769 0.6555 0.6132 0.8349 0.6733

MiniSplatting 0.0430 0.0614 0.0647 0.0561 0.0733 0.0639 0.0747 0.1045 0.0677

LightGS-H 0.0590 0.0536 0.0416 0.0422 0.0495 0.0323 0.0336 0.0593 0.0464

FR-Display-H 0.1502 0.1347 0.1132 0.0802 0.1208 0.0677 0.0767 0.1349 0.1098

FR-Render-H 0.0237 0.0146 0.0111 0.0213 0.0312 0.0197 0.0111 0.0245 0.0196

PowerGS-H 0.0228 0.0198 0.0111 0.0204 0.0303 0.0225 0.0127 0.0274 0.0209

Display Power (W)↓

3DGS 0.2085 0.1391 0.0448 0.1623 0.1878 0.0914 0.0395 0.0708 0.1180

MiniSplatting-D 0.2077 0.1362 0.0358 0.1619 0.1866 0.0891 0.0367 0.0688 0.1153

MiniSplatting 0.2075 0.1362 0.0350 0.1619 0.1876 0.0893 0.0364 0.0685 0.1153

LightGS-H 0.2085 0.1391 0.0448 0.1625 0.1875 0.0906 0.0394 0.0695 0.1177

FR-Display-H 0.1805 0.0945 0.0358 0.1464 0.1665 0.0636 0.0300 0.0518 0.0962

FR-Render-H 0.2069 0.1395 0.0452 0.1630 0.1873 0.0886 0.0396 0.0709 0.1176

PowerGS-H 0.1837 0.0975 0.0377 0.1495 0.1688 0.0666 0.0316 0.0560 0.0989

GFLOPs (per frame)↓

3DGS 2.8091 2.6453 2.4253 1.6929 2.4064 1.4182 1.6040 2.9816 2.2479

MiniSplatting-D 10.2933 10.9503 11.7166 11.4359 10.8114 11.3392 10.0073 14.9711 11.4406

MiniSplatting 0.8460 1.3287 1.5299 1.2064 1.3850 1.3758 1.7845 2.2697 1.4657

LightGS-H 1.1143 1.0602 0.8768 0.9123 0.9791 0.6885 0.6940 1.3408 0.9583

FR-Display-H 2.8293 2.6946 2.4641 1.7321 2.4192 1.4626 1.6132 3.0483 2.2829

FR-Render-H 0.4533 0.2956 0.2177 0.4785 0.6295 0.4304 0.2139 0.5399 0.4073

PowerGS-H 0.4705 0.4183 0.2307 0.4748 0.6434 0.5229 0.2538 0.6181 0.4541

Total Power (W)↓

3DGS 0.3587 0.2750 0.1589 0.2451 0.3123 0.1604 0.1191 0.2073 0.2296

MiniSplatting-D 0.8436 0.8051 0.6521 0.8464 0.8635 0.7446 0.6499 0.9038 0.7886

MiniSplatting 0.2506 0.1976 0.0997 0.2180 0.2609 0.1533 0.1111 0.1730 0.1830

LightGS-H 0.2675 0.1927 0.0864 0.2048 0.2369 0.1228 0.0730 0.1289 0.1641

FR-Display-H 0.3307 0.2292 0.1490 0.2267 0.2873 0.1313 0.1068 0.1867 0.2060

FR-Render-H 0.2306 0.1541 0.0563 0.1844 0.2185 0.1082 0.0507 0.0955 0.1373

PowerGS-H 0.2065 0.1174 0.0488 0.1699 0.1991 0.0891 0.0443 0.0833 0.1198
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Fig. 3. Qualitative Evaluation. Rendered images of two scenes in Mip-NeRF360 are shown, with annotated values for (rendering power, display power).
Zoom-in views of the fovea region (left) and the periphery (right) are also provided. For all foveated versions, the gaze is fixed at the center of the image.
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Fig. 4. Qualitative Evaluation. Rendered images of two scenes in Mip-NeRF360 are shown, with annotated values for (rendering power, display power).
Zoom-in views of the fovea region (left) and the periphery (right) are also provided. For all foveated versions, the gaze is fixed at the center of the image.
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Fig. 5. Qualitative Evaluation. Rendered images of two scenes in Mip-NeRF360 are shown, with annotated values for (rendering power, display power).
Zoom-in views of the fovea region (left) and the periphery (right) are also provided. For all foveated versions, the gaze is fixed at the center of the image.
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Fig. 6. Qualitative Evaluation. Rendered images of two scenes in Mip-NeRF360 are shown, with annotated values for (rendering power, display power).
Zoom-in views of the fovea region (left) and the periphery (right) are also provided. For all foveated versions, the gaze is fixed at the center of the image.
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Fig. 7. Qualitative Evaluation. Rendered images of two scenes in Deep Blending are shown, with annotated values for (rendering power, display power).
Zoom-in views of the fovea region (left) and the periphery (right) are also provided. For all foveated versions, the gaze is fixed at the center of the image.
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Fig. 8. Qualitative Evaluation. Rendered images of two scenes in Tank&Temple are shown, with annotated values for (rendering power, display power).
Zoom-in views of the fovea region (left) and the periphery (right) are also provided. For all foveated versions, the gaze is fixed at the center of the image.
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Fig. 9. Qualitative Evaluation. Rendered images of two scenes in Synthetic NeRF are shown, with annotated values for (rendering power, display power).
Zoom-in views of the fovea region (left) and the periphery (right) are also provided. For all foveated versions, the gaze is fixed at the center of the image.
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Fig. 10. Qualitative Evaluation. Rendered images of two scenes in Synthetic NeRF are shown, with annotated values for (rendering power, display power).
Zoom-in views of the fovea region (left) and the periphery (right) are also provided. For all foveated versions, the gaze is fixed at the center of the image.
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Fig. 11. Qualitative Evaluation. Rendered images of two scenes in Synthetic NeRF are shown, with annotated values for (rendering power, display power).
Zoom-in views of the fovea region (left) and the periphery (right) are also provided. For all foveated versions, the gaze is fixed at the center of the image.
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Fig. 12. Qualitative Evaluation. Rendered images of two scenes in Synthetic NeRF are shown, with annotated values for (rendering power, display power).
Zoom-in views of the fovea region (left) and the periphery (right) are also provided. For all foveated versions, the gaze is fixed at the center of the image.
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