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Fig. 1. Illustration of our gaze-tracking–free VR display power saving method exploiting the time course of human chromatic adaptation. (a): Our algorithm
gradually shifts the illuminant in the virtual scene from the CIE Standard Illuminant D65 (average daylight) to a green-ish tint. This is done by carefully
modulating the trajectory and the rate of the illuminant traversal to maximize display power saving while minimizing perceptual impact. (b): The plot shows
the trajectory of the illuminant traversal applied in (a) in the CIE 𝑢′𝑣′chromaticity space. The colors in the diagram represent the estimated display power
consumptions under different illuminants; the power is normalized relative to D65, and clipped at 1. All the illuminants that yield power savings relative to
D65 are colored green; the illumination shift in (a) leads to about 31% power saving. (c): To bound perceptual loss during the illuminant shift, we propose a
novel psychophysical paradigm to model human adaptation state under illumination changes. The model predicts the user adaptation state 𝑎 (𝑡 ) , (i.e., one’s
endogenous notion of neutral illuminant) given the actual illuminant 𝐴(𝑡 ) in the scene. We bound the difference between the internal adaptation state and
the actual illuminant to ensure perceptual quality during illuminant shifts. Credit for the original image used in Fig. 1a goes to Pedro Szekely [Szekely 2019].

We introduce a gaze-tracking–free method to reduce OLED display power
consumption in VR with minimal perceptual impact. This technique exploits
the time course of chromatic adaptation, the human visual system’s ability
to maintain stable color perception under changing illumination. To that
end, we propose a novel psychophysical paradigm that models how human
adaptation state changes with the scene illuminant. We exploit this model
to compute an optimal illuminant shift trajectory, controlling the rate and
extent of illumination change, to reduce display power under a given per-
ceptual loss budget. Our technique significantly improves the perceptual
quality over prior work that applies illumination shifts instantaneously. Our
technique can also be combined with prior work on luminance dimming to
reduce display power by 31% with no statistical loss of perceptual quality.
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1 INTRODUCTION
Virtual reality (VR) devices are severely power constrained. As the
need for higher frame rate and higher resolution keeps increasing,
the display contributes to an increasingly significant portion of the
total power consumption [Duinkharjav et al. 2022; Leng et al. 2019],
and is a prime candidate for power optimization.
As long been established, OLED display power consumption is

color-dependent [Chen et al. 2024; Dash and Hu 2021; Dong et al.
2009; Duinkharjav et al. 2022]. This paper presents a new method
to exploit the color dependency of OLED display power consump-
tion. Our technique relies on chromatic adaptation, the process by
which our visual system scales it sensitivity to maintain a stable
color perception under variable lighting conditions [Fairchild 2013]
(Sec. 2). For example, when moving from warm, incandescent light-
ing indoors to cooler sunlight outdoors, our visual system adapts
such that neutral objects, e.g., a white sheet of paper, always appear
white-ish, even though the “objective” color of the paper in the
colorimetric sense has changed.

We exploit this phenomenon in virtual scenes. Given a reference
scene rendered under an illuminant S, our idea is to render the same
scene with a different illuminant T; the new rendering accounts for
the photoreceptor sensitivity change from S to T and, accordingly,
shifts all the pixel colors such that the new rendering 1) appears
to be perceptually equivalent to the reference rendering and 2)
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reduces the display power consumption. The pixel color shift can
be implemented as a real-time shader with little computational cost.
While conceptually simple, leveraging chromatic adaptation is

challenging, because adaptation is not an instantaneous phenome-
non — the human visual system can take several minutes to fully
adapt to a change in illuminants [Fairchild and Reniff 1995; Gupta
et al. 2020]. The gradual nature of chromatic adaptation means that
instant shifts in the illumination of VR environments are noticeable,
as previously demonstrated [Chen et al. 2024].

Our goal, thus, is to devise a principled strategy to gradually adapt
the scene illuminant such that the perceptual impact is minimized,
while power savings are maximized. This entails two tasks. First, we
must identify “lucrative” illuminants that, if shifted to, would lead
to significant power savings. We identify such illuminants using the
chromatic adaptation theory and display power modeling (Sec. 4).

Second, we must determine how the current illuminant should be
shifted. To that end, we propose a novel psychophysical paradigm
that can query the rate and bounds of a user’s adaptation state
in real-time. Using observations from the psychophysical study,
we build a statistical inference model using Maximum Likelihood
Estimation that estimates how a user’s adaptation state changes
over time, given the trajectory of the illuminant change (Sec. 5).
Using the statistical model, we formulate a power optimization

problem to calculate the illuminant shift trajectory that minimizes
power consumption under a given perceptual loss budget. The opti-
mal trajectory is then applied online during rendering time; this is
implemented as a real-time fragment shader using little compute
budget on a mobile VR GPU (Sec. 6).
Through extensive subjective studies on a Meta Quest Pro, we

demonstrate that our algorithm leads to significantly better percep-
tual quality compared to a previous chromatic-adaptation–based
power saving method under the same power budget (Sec. 7). When
combined with uniform luminance dimming, our method achieves
31% power saving with no statistical degradation in perceptual qual-
ity. We also discuss the limitations of our method (e.g., when the
adaptation state has to be reset) and how it could be extended to
accommodate more diverse VR content (Sec. 8).
In summary, this paper makes the following contributions:

• We analyze the power-saving opportunities under chromatic
adaptation by mining a natural-scene dataset.

• We propose a novel psychophysical paradigm and statistical
inference method to probe and model human adaptation
state under dynamic (time-varying) illumination.

• Leveraging the computational model, we propose a new
display-power saving algorithm that dynamically shifts the
scene illuminant to minimize power consumption under a
perceptual degradation bound.

• Through subjective validation studies, we show that our
algorithm saves about 31% display power with no statistical
loss in perceptual quality.

2 PRELIMINARIES ON CHROMATIC ADAPTATION
Throughout the day, we encounter a variety of lighting conditions,
from incandescent bulbs to natural sunlight, yet our color perception
remains relatively stable. This constancy arises partially because

our visual system adapts to differing lighting conditions through a
process known as chromatic adaptation.We discuss the key concepts
necessary for the rest of the paper here, and leave the mathematical
details to Supplementary Material A.
von Kries [1902, 1905] hypothesized that (in modern interpreta-

tions) we adapt by scaling the spectral sensitivities of individual
classes of cone photoreceptors under different illuminants1. The
sensitivities scale such that the cone responses of a neutral point
remain constant under different illuminants as if the color of the
illuminant is “discounted.” A neutral point reflects lights uniformly
across its wavelength, so its color is the color of the illuminant itself.
Since common illuminants (e.g., daylights) appear white-ish, the
color of the illuminant or the color of a neutral point is also called
the “white point” or “reference white” of the scene.

An important concept in chromatic adaptation is the user’s adap-
tation state, or the “internal white point”, which refers to the color
that the user endogenously regards as white. When a user is ex-
posed to a natural illuminant (e.g., daylight) S for a sufficiently long
time, the user has fully adapted to the illuminant, at which point
the user’s adaptation state is S.
Critically, the adaptation state is not always the same as the il-

luminant. First, adaptation takes time (partially because it takes
several minutes for the cone sensitivities to settle when exposed
to a new illuminant) [Fairchild and Reniff 1995; Gupta et al. 2020].
Second, while humans adapt to different daylights reasonably well
(presumably driven by evolution [Pearce et al. 2014; Radonjic et al.
2016]), we do not adapt fully to overly colored illuminants: imagine
entering a room illuminated by neon red; under no amount of ex-
posure, however long, will we perceive the walls as white. A main
focus of this paper is to model the time course of the adaptation
state, even when the illuminant itself is changing.

Adaptation state must be considered during rendering. If an image
is initially presented to a user adapted to illuminant S but then later
presented to the same user, now adapted to a different illuminant T,
the colors in the image will appear differently as they do under S,
as cone sensitivity scaling depends on the adaptation state.

To compensate for the change of adaptation state, we must trans-
form a color cS in the original image rendered under S to cT such
that cT, viewed under T, appears to be the same color as cS, viewed
under S. This conversion is done via a linear Chromatic Adaptation
Transform (CAT) function, whose details are described in Supple-
mentary Material A and will be denoted as 𝑓S→T (·) in the paper:

cT =𝑓S→T (cS) . (1)

A visual example of how colors are transformed is graphed in the
CIE 𝑢′𝑣 ′chromaticity space in Fig. 2a, where we assume the source
illuminant S is the CIE Standard Illuminant D65 and the target
illuminant T is a yellow-ish color. D65 approximates the average
daylight, and is the white point in almost all common color spaces.
Overlaid in the graph are the sRGB color gamut and the Display P3
color gamut, both of which use D65 as the white point.We uniformly
sample the colors in the sRGB gamut. The arrows associated with
each sRGB color represent how the color shifts when chromatically
adapted from D65 to T.
1This is a phenomenological model in that sensitivity scaling in other retinal cells are
also almost certainly involved [Webster 2011].
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A yellow-ish T is not a random choice. Prior measurements on an
OLED display shows that blue-ish colors consume more power on
that display [Chen et al. 2024; Duinkharjav et al. 2022]. Our results
here show that, for that particular display, shifting the illuminant
to a yellow-ish color would shift all colors away from blue, leading
to power savings. We will later quantify the power saving under
different target illuminants (Sec. 4).

3 RELATED WORK

3.1 Time Course of Chromatic Adaptation
Chromatic adaptation is not instantaneous [Fairchild 2013]. The
adaptation state of a human shifts slowly in response to changes in
illumination. Several studies have measured the time course of chro-
matic adaptation under a stable illuminant after an instantaneous
change [Belmore and Shevell 2011; Coia et al. 2024; Fairchild and
Reniff 1995; Hunt 1950; Jameson et al. 1979; Rinner and Gegenfurt-
ner 2000; Shevell 2001] . Our focus, however, is to model the time
course of adaptation under dynamic (time-varying) illumination.
Only two studies to date have focused on gradual illuminant

changes [Pastilha et al. 2020; Spieringhs et al. 2019]. These studies,
however, have limitations in their methodologies that we address.

Spieringhs et al. [2019] studies chromatic adaptation under smooth
transitions in illumination along a blue-yellow trajectory. At differ-
ent times during the transition, a participant is presented with a
colored stimuli, and is asked to classify the color as either bluish
or yellowish. To estimate the adaptation state, the authors assume
that if a queried color is achromatic (matching the adaptation state),
the participants would have an even chance of classifying the color
as either yellowish or bluish. Their task design has two challenges.
First, the task relies on color naming, which is subjective and cultur-
ally dependent [Gibson et al. 2017; Kay and Regier 2003]. Second, as
we show in Sec. 5.3, the assumption that the achromatic point corre-
sponds to a 50/50 chance of picking yellow or blue is questionable.
Pastilha et al. [2020] also measures chromatic adaptation under

dynamic lighting. The illuminant is shifted between different colors
along the daylight curve over a 10 second span, by the end of which
participants are asked if they noticed any change in illumination.
The paper does not aim to model the user adaptation state as a
function of changes in lighting conditions, which is a main focus
of our work. Due to the hard 10-second limit, their psychophysical
paradigm is limited in its ability to probe the bounds of illuminants
that humans can adapt to. We derive such bounds, which is both of
scientific value, and directly impacts our power savings technique.

3.2 Display Power Optimization
Reducing display power has long been a subject of research; tech-
niques include reducing luminance [Dash and Hu 2021; Shye et al.
2009; Yan et al. 2018], better hardware design [Miller et al. 2006; Shin
et al. 2013], color modulation [Dong et al. 2009; Dong and Zhong
2011], and multi-primary displays [Boroson et al. 2009; Miller et al.
2007]. Recently, there is been an interest in VR display power opti-
mizations [Chen et al. 2024; Duinkharjav et al. 2022].
PEA-PODs [Chen et al. 2024] evaluates the perceptual impact

of many power-saving algorithms. One of the algorithms tested
is “whitepoint shift”, which, as we discuss in Sec. 7.1, applies the

illuminant shift instantaneously. This results in visible artifacts,
as their implementation neglects the gradual nature of chromatic
adaptation, which is what this paper aims to address.
Additionally, Chen et al. [2024] does not construct or use any

models of chromatic adaptation to guide their white-point shift
algorithm. Instead, they re-use the color discrimination model from
Duinkharjav et al. [2022] to decide on an optimal illuminant by
setting the eccentricity to 0 deg. In contrast, this paper proposes
a novel psychophysical paradigm to model the human adaptation
state and use the model to derive an optimal illumination shift.

3.3 Models of Perceptual Quality
Many previous works have characterized andmodeled human visual
perception under various low-level stimulus characteristics such as
spatial/temporal frequency, stimuli area , luminance, eccentricity,
color, and background conditions [Ashraf et al. 2024; Cai et al. 2024;
Krajancich et al. 2021; Mantiuk et al. 2022; Tursun and Didyk 2022] .
These models could serve as the basis of subjective perceptual met-
rics [Mantiuk et al. 2021, 2024]. Many perceptual metrics consider
mid to high-level processing in the visual system [Fu et al. 2023;
Walton et al. 2021].

Some of the quality metrics have been extended to work on Aug-
mented Reality data [Chapiro et al. 2024]. To our best knowledge,
none accounts for (shifts in) the adaptation state. Mantiuk et al.
[2024] explicitly assumes that the user is adapted to D65 lighting
conditions. It would be an interesting future work to integrate the
time course of chromatic adaptation into subjective metrics.
Color Appearance Models [Fairchild 2013] do account for the

scene illuminants but their focus is on modeling steady-state adap-
tation under stable illuminants. Our focus, however, is to model the
dynamics of adaptation under dynamic illumination.

4 IDENTIFYING POWER-SAVING ILLUMINANTS
The goal of this section is to identify “lucrative” illuminants under
which one could obtain significant power savings. This section is not
concerned with how the illuminant should be adjusted (to minimize
perceptual impact), which is the focus of Sec. 5.

4.1 Methodology
In order to identify power-saving illuminants, we must build a
model that relates the display power consumption to the target
illuminant T we want to change to. Fundamentally, however, the
power consumption of emissive displays like an OLED is dictated by
the pixel colors. We relate the power consumption to the illuminant
of a virtually rendered scene in three steps, as shown in Eq. 2.

cT = 𝑓𝐷65→T (c), (2a)

𝑝 (cT) = p𝑇
𝑑𝑖𝑠𝑝

× cT + 𝑝𝑠𝑡𝑎𝑡𝑖𝑐 , (2b)

P(T) =
𝑁∑︁
c

𝑝 (cT) ·𝑊c . (2c)

First, we calculate how each linear sRGB color c ∈ R3 in the original
scene is adapted from D65 illuminant to a new illuminant T ∈ R3,
assuming that the adaptation to T is complete. We choose D65 as the
source illuminant because it is the white of all commonly used color
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Table 1. A table of symbols used in the paper and their definitions.

.

Symbol Definition

𝑓S→T (c) CAT function transforming a linear sRGB color c from illuminant S to a new illumination T.
𝑝 (c) Display power consumption of displaying color c.
p𝑑𝑖𝑠𝑝 Vector of unit power of each color channel.
𝑝𝑠𝑡𝑎𝑡𝑖𝑐 Static power of a display.
P(T) Average display power consumption under illuminant T.
𝐴(𝑡) The scene illumination as a function of time 𝑡 .
𝑎(𝑡) A user’s adaptation state as a function of time 𝑡 .
𝑎′ (𝑡) The rate of change in the user’s adaptation state over time 𝑡 .
𝑘1 Coefficient of adaptation rate.
𝑘2 Coefficient of adaptation completeness ∈ [0, 1].
𝐹, 𝐿 Two stimuli used in 2AFC tests in Sec. 5. 𝐹 (farther) is ahead of 𝐿 (lagging) in the direction of illuminant traversal.
𝑚 Midpoint between 𝐹 and 𝐿.

𝐺 (𝑚 − 𝑎;𝜃 ) A logistic psychometric function showing the proportion of picking 𝐿 given𝑚 − 𝑎; it is parameterized by 𝜃 = {𝑘, 𝑥0}.
𝑣 Velocity of illuminant traversal defined as 𝑢′𝑣 ′distance/second.
𝜙 Direction of illuminant traversal defined in radians (horizontal direction pointing to the right is defined as 𝜙 = 0).

𝑡1, 𝑡2 Duration of the second and third measurement phase of the pilot study (Sec. 5.4).
𝐷 Distance of illuminant traversal in the first measurement phase of the pilot study (Sec. 5.4).
d65 Chromaticity of D65 in the 𝑢′𝑣 ′space (∈ R2).
Δ𝑇 Permissible difference between 𝐴(𝑡) and 𝑎(𝑡) in the power optimization (Sec. 6).

spaces supported by modern displays, and it is assumed that users
are adapted to D65 when viewing content exclusively from emissive
displays (without ambient lights), which is the case in VR [Fairchild
2013]. The adaptation is carried out by the CAT function 𝑓𝐷65→T (·)
in Eq. 2a (see Sec. 2). Let’s denote the adapted color as cT.
Second, we then estimate the power consumption of displaying

cT. The power consumption of displaying a particular color on
OLEDs is established in the literature [Dash and Hu 2021; Dong
et al. 2009; Tsujimura 2017] as a linear combination of the RGB
channel values in the color plus the constant static power 𝑝𝑠𝑡𝑎𝑡𝑖𝑐
(e.g., consumed by peripheral circuitry [Huang et al. 2020]). This is
shown in Eq. 2b, where p𝑑𝑖𝑠𝑝 ∈ R3 represents the vector of the unit
power of each color channel, and is usually regressed from actual
display power measurement. In our study, we use the parameters
measured and reported on a Wisecoco 3.81 inch OLED Display used
in prior work [Chen et al. 2024; Duinkharjav et al. 2022].

Finally, since the pixel colors in an image to be displayed depend
on the specific scene being rendered, the power saving is necessarily
scene specific. For the results to be generally applicable, we instead
estimate an average power saving given natural scene statistics.

Specifically, we obtain a color value distribution from a large nat-
ural scene dataset, Places365 [Zhou et al. 2017]. We use Places365 as
opposed to more well-known datasets like ImageNet, as the images
in Places365 are not of specific objects but, rather, of entire envi-
ronments and, thus, are more true to VR viewing statistics. Fig. 2b
shows the color density distribution from Places365 as a heatmap.
We then use each color’s density to weight the power consump-

tion of each color. The form of average power saving is given in
Eq. 2c, where𝑊c is the weight given to color c, and 𝑁 = 2563 indi-
cates that there are 16.7 million 8-bit sRGB colors; the weights are

normalized such that
∑𝑁
c 𝑊c = 1. Our power estimation method-

ology can easily applied to a specific scene, if known, to obtain
scene-specific power consumptions.

In summary, P(T) in Eq. 2 represents the power consumption of
displaying an image, which is to be viewed under illuminant T and
has the same color appearance as that under the initial illuminant
D65, assuming an average color distribution of natural scenes.

4.2 Results and Discussions
We perform a sweep of illuminants Twithin the human visual gamut
and, for each T, estimate its power consumption using Eq. 2. The
results are plotted in the CIE 1976 UCS chromaticity diagram, shown
in Fig. 2c. The power numbers are normalized to the power of the
D65 illuminant and are clipped at 1. The colors in the figure represent
the (relative) power consumption, with all the illuminant colors that
lead to the same or higher power than that of D65 plotted in yellow.
The gray dashed curve denotes the boundary that separates the
power-saving illuminants and the power-increasing illuminants.
For reference, we also overlay on the plot 1) the daylight locus,
which contains the colors of daylights [Judd et al. 1964] and 2) the
gamut of the sRGB color space and the Display P3 color space.
We can see that greener and redder illuminants (corresponding

to the top left and right of the 𝑢′𝑣 ′ diagram) yield power savings.
This arises from a combination of two reasons. First, chromatic
adaptation theory dictates that shifting the illuminant towards red
or green would generally shift other colors toward red and green
too; see Fig. 2a for a visual example. Second, the blue subpixels in the
particular OLED we use [Chen et al. 2024; Duinkharjav et al. 2022]
consume twice as much power as the red and green subpixels. Thus,
shifting colors toward red/green inherently reduces the strength of
the blue channel, leading to power reduction.
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(b) sRGB color frequency under natural scenes.
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(c) Power-saving illuminants.

Fig. 2. (a) How sRGB colors are shifted under chromatic adaptation; when the illuminant shifts from D65 to a yellow-ish illuminant, all colors shift toward
yellow, too. (b) The distribution of colors in the natural scene dataset Places 365 [Zhou et al. 2017] in CIE 𝑢′𝑣′space. (c) Relative power consumption given the
color distribution in (b) under different illuminants. Illuminants are equiluminant and represented in the 𝑢′𝑣′space. Power consumptions of each illuminant
are normalized to that of D65. The color map of the relative power consumptions is clipped at 1. All illuminants above the savings boundary yield an average
reduction in power consumption. The daylight curve contains the CIE Standard Illuminant D series, representing the colors of daylights.

5 PILOT STUDY: MEASURING AND MODELING THE
TIME COURSE OF CHROMATIC ADAPTATION

5.1 Goal and Basic Method
Recall our ultimate goal: gradually change the initial illuminant of
the scene𝐴(0), e.g., D65, to a target illuminant to save display power
consumption. To minimize noticeable artifacts, the illuminant at
any given time 𝑡 , denoted 𝐴(𝑡), cannot be too great a distance from
the user’s adaptation state 𝑎(𝑡). For instance, an instant change
from 𝐴(0) to a very chromatic illuminant does not afford the time
one needs for chromatic adaptation and, thus, inevitably introduces
noticeable artifacts.

The key challenge is, thus, to have a model that is capable of esti-
mating the user’s adaptation state 𝑎(𝑡) as the scene illuminant 𝐴(𝑡)
changes over time 𝑡 . Inspired by Spieringhs et al. [2019], we use a
model that extends the classic Weber’s law in psychophysics [Fech-
ner 1948] and is analytically expressed as:

𝑎′ (𝑡) = d𝑎(𝑡)
d𝑡

= 𝑘1 (𝑘2𝐴(𝑡) − 𝑎(𝑡)) (3)

Eq. 3 models the rate of change of the viewer’s adaptation state.
The basic intuition is that chromatic adaptation takes place because
what we think is white (i.e., our adaptation state or internal white
point) is different from what the scene illuminant appears to be (i.e.,
the actual white point). We hypothesize that the rate of adaptation
(𝑎′ (𝑡)) is proportional to the difference between the user’s current
adaptation state and the actual illuminant: when the illuminant
appears more chromatic, we adapt faster, and vice versa. Therefore,
the first-order derivative of the adaptation function 𝑎(𝑡) is linearly
correlated with 𝐴(𝑡) − 𝑎(𝑡) up to a positive constant 𝑘1.

It is known that humans can never fully adapt to extremely chro-
matic illuminants (Sec. 2). This is called “partial adaptation.” We

introduce another parameter 𝑘2 in Eq. 3 as the coefficient of adap-
tation completeness to account for partial adaptation. The way to
interpret 𝑘2 is to consider the following scenario, where 𝐴(𝑡) is a
constant for any 𝑡 > 0. In this case, when 𝑡 approaches ∞, 𝑎′ (𝑡)
would approach 0, indicating the fact that given enough time our
adaptation state would eventually settle under a constant illuminant.
When 𝑘2 is 1, 𝑎(∞) must equal 𝐴(∞), indicating complete adapta-
tion. When 𝑘2 < 1, 𝑎(∞) < 𝐴(∞), indicating partial adaptation.

Eq. 3 is a standard first-order ordinary differential equation that
can be solved if we know 𝑘1 and 𝑘2. We regress 𝑘1 and 𝑘2 from pairs
of 𝐴(𝑡) and 𝑎(𝑡) observations. While we have control over 𝐴(𝑡),
the challenge is to estimate 𝑎(𝑡), a participant’s adaptation state at
any given time 𝑡 . In an ideal world, we would “freeze the time” and
probe the participant (e.g., adjust a test patch until the test patch
appears achromatic). In reality, however, the adaptation state of the
participant would almost definitely shift while measuring.

Instead, our method is based on Maximum Likelihood Estimation
(MLE). We devise a psychophysical task that generates adaptation-
state–dependent observations from participants, and then estimate
the most probable adaptation state (at any given time) that maxi-
mizes the likelihood of the participants’ responses being observed.

5.2 The Maximum Likelihood Estimation Framework
To probe a participant’s adaptation state, the core component of
our psychophysics is a Two-Alternative Forced Choice (2AFC) task,
where we present to participants two colored stimuli simultaneously
against a background illuminant and ask which stimulus is less
saturated, i.e., more achromatic. An example of the task is shown
in Fig. 3. The colors of the two stimuli are a set distance apart in
𝑢′𝑣 ′space, and are placed along the trajectory of the illuminant. One
stimulus’ color is further ahead of the other stimulus’ color in the



212:6 • Ethan Chen, Sushant Kondguli, Carl Marshall, and Yuhao Zhu

Current 
Illuminant

D65

Further 
Stimulus

Lagging 
Stimulus

Midpoint (Estimated) 
Adaptation State

Fig. 3. A visual example of the 2AFC task. Two colored stimuli on top of a background illuminant are flashed on the screen for 0.75 seconds, and the participant
is asked to choose which patch is more achromatic. The background illuminant is a pink (1/𝑓 ) noise pattern mimicking the natural scene statistics [Field 1987;
Ruderman and Bialek 1993] and, in this case, has a green-ish average color as it shifts away from D65. The ordering of the further stimulus (farther away from
D65) and the lagging stimulus (closer to D65) is randomized across trials.

direction of the illuminant’s travel. We term this patch the “further”
patch, and the patch with the lagging color the “lagging” patch.
The background has a pink noise pattern to mimic the power

spectrum statistics of natural scenes [Field 1987; Ruderman and
Bialek 1993]. The average color of the illuminant in Fig. 3 gradually
shifts from D65 to a greener illuminant. Therefore, the further patch
is the green patch on the left, and the lagging patch is the gray patch
on the right.
Informally, if 𝑎(𝑡), the participant’s adaptation state at time 𝑡 , is

closer to the further patch, the participant is more likely to pick the
further patch as being more achromatic; in contrast, if 𝑎(𝑡) is closer
to the lagging patch, the participant is more likely to pick the lagging
patch as appearing achromatic. Let us use𝑚 to denote the midpoint
between the lagging patch 𝐿 and the further patch 𝐹 , i.e.,𝑚 = 𝐹+𝐺

2 in
the𝑢′𝑣 ′ space.We define𝐺 (𝑚−𝑎;𝜃 ) as the psychometric function
that quantifies the probability of picking the lagging patch given
the distance between𝑚 and 𝑎; 𝐺 (·) is parameterized by 𝜃 .

During our psychophysical study (whose protocol will be detailed
in Sec. 5.4), we present a series of 2AFC tasks to the participants as
the illumination shifts over time. Each instance of the task at time 𝑡
has a different background illuminant 𝐴(𝑡), lagging patch 𝐿(𝑡), and
further patch 𝐹 (𝑡). We use MLE to estimate the adaptation state
𝑎(𝑡) at any time 𝑡 by maximizing the likelihood function. That is:

argmax
𝑘1,𝑘2

∏
𝑡 ∈L

𝐺 (𝑚(𝑡)−𝑎(𝑡 ;𝑘1, 𝑘2);𝜃 )·
∏
𝑡 ∈F

1−𝐺 (𝑚(𝑡)−𝑎(𝑡 ;𝑘1, 𝑘2);𝜃 ),

(4)
where we use 𝑎(𝑡 ;𝑘1, 𝑘2) to make explicit that 𝑎(𝑡) is parameterized
by the (to-be-estimated) 𝑘1 and 𝑘2 coefficients; L is the set of all
timesteps where a lagging stimulus is chosen, and F is the set of
all timesteps where a further stimulus is chosen. The likelihood

function essentially represents the probability of observing the re-
sponses from a participant, where individual responses are governed
by the probability distribution given by the psychometric function.

Two questions remain. First, we need a way to parameterize and
(experimentally) obtain the psychometric function 𝐺 (·); this will
be discussed in Sec. 5.3. Second, we need a procedure to determine
what exact𝐴(𝑡), 𝐿(𝑡), and 𝐹 (𝑡) to present to a participant at a given
time 𝑡 ; this will be discussed in Sec. 5.4. Then finally in Sec. 5.5 we
will describe how to estimate 𝑘1 and 𝑘2 from the experimental data.

5.3 Calibrating the Psychometric Function 𝐺 (·)
The psychometric function𝐺 (·) represents the probability of a user
picking the lagging patch based on the distance between one’s
adaptation state and the middle point of the lagging and further
patch. We choose to parameterize𝐺 (·) using the logistic function
commonly used in 2AFC psychophysics [Wichmann and Hill 2001],
which has two free parameters 𝑘 and 𝑥0 to be estimated:

𝐺 (𝑚 − 𝑎;𝑘, 𝑥0) =
1

1 + 𝑒−𝑘 (𝑚−𝑎−𝑥0 )
. (5)

To estimate 𝑘 and 𝑥0, each participant goes through a calibration
stage. The participant enters the calibration stage fully adapted to
D65 by being exposed to a D65 illuminant for 5 minutes, which is
shown to be sufficient to fully adapt humans to D65 [Fairchild 2013,
2020]. They then wear a VR headset where the calibration tasks is
performed. The background illumination is held constant at D65
throughout the calibration stage , which means the adaptation state
𝑎(𝑡) is always D65 during calibration, too.

We query the participant with 70 instances of the 2AFC task
while varying the lagging and further stimuli in each instance. The
distance between the lagging and the further stimuli is always held at
6 Just Noticeable Differences (JND) in the 𝑢′𝑣 ′space (1 JND is about
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(a) Raw data of an example calibration trial.
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(b) Aggregated psychometric functions across participants.

Fig. 4. Results from the calibration stage. (a): Raw data from a calibration trial; pink/green markers represent the midpoint of a trial where a lagging/further
stimulus is chosen. We then estimate a logistic psychometric function, representing the probability of a user picking the lagging patch, given the distance
between the midpoint of the patch and the user’s adaptation state. It is mathematically described in Eq. 5. (b): Psychometric functions aggregated across
participants and across sessions.

0.004 in 𝑢′𝑣 ′space [Wyszecki and Stiles 2000]), but the midpoint
𝑚(𝑡) is normally placed betweenD65± 3 JND.We choose to separate
the patches by 6 JND. Separating the patches by lower distances
increases the difficulty of the task while separating them by too
much puts patches at risk of touching the display gamut. In each
instance, the two stimuli are shown for 750 ms, followed by a 3
second interval during which the participant can input their answer.

An example of the calibration raw data is shown in Fig. 4a, where
the 𝑥-axis shows𝑚(𝑡) − 𝑎(𝑡) and the 𝑦-axis is the proportion pick-
ing the lagging patch. Note that for each𝑚(𝑡) − 𝑎(𝑡), we poll the
participant only once, so the proportion in the raw responses is
always 0 (green; further stimulus chosen) or 1 (purple; lagging stim-
ulus chosen)2. Using the results of these responses, we can fit the 𝑘
and 𝑥0 coefficients of the psychometric function using, again, MLE.
The solid curve in Fig. 4a shows the psychometric curve fit to the
individual responses of this example.

Fig. 4b shows individual psychometric functions collected across
participants and across study sessions. It is interesting to observe
that in many cases, the chance level of picking the lagging stimulus
(0.5 on the 𝑦-axis) does not correspond to𝑚(𝑡) − 𝑎(𝑡) = 0 on the
𝑥-axis. That is, users have an internal bias toward which color is less
achromatic even when presented with two stimuli that are equally
distant from a color they regard as white (adaptation state). Our
psychometric functions capture this bias.

2We find that polling each participant multiple times for a given midpoint yields similar
psychometric functions but would dramatically increase the (already-long) total time
for each participant (10 hours; see Sec. 5.4).

5.4 Psychophysical Protocol
With the understanding of the psychometric function, we will now
describe the protocol of our psychophysical study, which generates
experimental data to estimate how the adaptation state 𝑎(𝑡) changes
under a time-varying illuminant 𝐴(𝑡) (Eq. 3).
We recruit 𝑁 = 9 participants (ages 18-25; 2 female, 7 male). All

participants have normal or correct-to-normal vision, and are all
unaware of our study. Each participant spends roughly 10 hours
in total for the study, and the time is separated into five sessions
that are at least one day apart. We cap the duration per session at
two hours to minimize lapse of concentration: we notice that the
quality of the responses starts degrading after two hours. All the
experiments are approved by our IRB.
Fig. 5a illustrates the structure of our study. We use a Meta

Quest 3 VR headset for trials in our study. The participants interact
with our study through a keyboard. We begin by administering
a color blindness test and measuring the participant’s IPD. The
participant then wears the headset, and goes through a training
program that instructs the participant on how to perform the 2AFC
psychophysical task. Afterwards, we begin to run individual trials.

Trial Structure. Each trial is composed of awarm-up, calibration,
and measurement stage.

• In the warm-up stage, the participant is exposed to one
minute of a background illuminant (without the test stimuli)
with an average color of D65.

• Following the warm-up stage is the calibration stage, which
is used to derive the participant-specific psychometric func-
tion with a protocol described in Sec. 5.3.
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Fig. 5. Structure of our pilot study. (a): The protocol of out psychophysical pilot study, where the illuminant shifts along a controlled trajectory and participants
are asked to pick the more achromatic color patch of the two presented. (b): Examples of tests presented at the beginning, middle, and the end of the first
measurement phase. (c): Illuminant trajectories applied in the first measurement phase; plotted on top of the relative power consumption by illuminant
(normalized to D65 power clipped at 1). The trajectories are plotted as dotted colored lines. The terminal illuminant of each trajectory is indicated by a cross.

• Next in the measurement stage, we gradually change the
background illuminant (away from D65) and the two stimuli,
and probe the participants with a series of 2AFC tasks in
order to estimate the adaptation state. The details of the
measurement stage is discussed shortly.

At the end of the trial, the user takes off their headset for three
minutes. The test room is illuminated by a diffuse lamp with a
correlated color temperature of 6500 K (closely matching a D65
illuminant) and a color rendering index of 80. This ensures that
the participant’s adaptation state slowly recovers to D65 over the
course of the break. Following the break, the participant wears the
headset again and returns to the warm-up stage for another trial.
Measurement Stage. The measurement stage is where we get

the bulk of the data to estimate the adaptation state. There are three
phases in the measurement stage.
In the first phase, the background illuminant slowly traverses

away from D65 at a set velocity 𝑣 along a direction 𝜙 in 𝑢′𝑣 ′space.
The first phase ends when the illuminant reaches the “terminal
illuminant”, which is a distance D away from D65. In our study, we
choose D to be 6 JNDs. Each trial has a different traversal speed 𝑣
and a traversal direction 𝜙 . In the second phase, the illuminant is
held at the terminal illuminant for a period of 𝑡1. In the third phase,
the illuminant jumps back down to D65 and stays there for a period
of 𝑡2. To reduce the time consumed per trial, 𝐷 is limited to 6 JND
and 𝑡1 and 𝑡2 are both set to one minute.

As the background illuminant changes, we continuously present
2AFC tasks like the one shown in Fig. 3. The two stimuli are always

6 JND apart, but the midpoint of the two stimuli is normally dis-
tributed around the running prediction of the adaptation state3, a
typical strategy in adaptive psychophysics [Leek 2001]. Three ex-
ample tests at the beginning, middle, and the end of the first phase
are shown in Fig. 5b . As the trial progresses, the illuminant shifts
toward green, and so do the two stimuli.
Throughout the measurement stage, we hold the luminance of

the background illuminant constant, and the two stimuli have the
same luminance as the background illuminant.

Parameter Selection and Scale of Study. Each trial, a different
velocity 𝑣 and trajectory 𝜙 pair is selected. We test four different
trajectories and three different velocities for each trajectory. For
each trajectory and velocity pair (of which there are 12), we run 3
trials, leading to 36 trials per participant. We selected three evenly
spaced velocities (defined as the distance in the 𝑢′𝑣 ′space per sec-
ond): 0.0001, 0.0002, and 0.0003. The velocities that we tested are
bottlenecked by total test duration (10 total hours per participant).
We use these three velocities, as we find that the change in illumi-
nant for velocities over 0.0003 are trivially detectable. We lower
bound the tested velocities at 0.0001 due to time constraints. At
0.0001, each trial already takes time in excess of 16 minutes.
Fig. 5c shows the four trajectories we select overlaid over the

power-saving landscape in the𝑢′𝑣 ′space. Three of the four are linear
trajectories while the other is the daylight locus (i.e., CIE Standard
Illuminant D series) [Judd et al. 1964]; all start from D65.

3The running prediction uses the same MLE-based method for offline prediction, which
we discuss in Sec. 5.5.
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(a) The illuminant traverses the daylight curve in the first phase.
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(b) The illuminant traverses linearly toward 1.47 radians in the first phase.

Fig. 6. Two example trials of the triphasic measurement stage. The blue line represents the illuminant trajectory, and the black line represents the estimated
adaptation state (through MLE). The green markers represent the midpoints of the two stimuli presented in the 2AFC tasks. If the lagging patch is chosen in a
2AFC response, the corresponding marker is circled. The adaptation state is much closer to the illuminant when the illuminant traverses the daylight locus (a)
than the 1.47 radian trajectory (b), because humans are better at adapting to daylights [Pearce et al. 2014; Radonjic et al. 2016].

The three linear trajectories each have an angle of 1.47, 1.863, and
2.256 radians respectively, where an angle of 0 radians is defined to
correspond to the horizontal direction pointing to the right in the
𝑢′𝑣 ′space. The illuminant trajectory of 1.863 radians was selected
as that trajectory yielded the greatest power savings at 4 JND away
from D65, as identified by our power analysis in Sec. 4. The other
two linear trajectories, 1.47 and 2.256, are 22.5 degrees clockwise
and counterclockwise from 1.863. Both of these linear trajectories
are well within the power-saving regime.

We choose the daylight locus as an additional trajectory because
the human visual system is better at (with an evolutionary advan-
tage) adapting to daylight illuminants [Pearce et al. 2014; Radon-
jic et al. 2016]. The daylight locus is not a straight line; it has a
standardized trajectory calculated from the emission spectra of day-
light [Condit and Grum 1964; Henderson and Hodgkiss 1963], and
we use a quadratic parameterization of the locus by Judd et al. [1964].

5.5 Estimating the Adaptation State
Given the triphasic measurement protocol (Fig. 5), 𝐴(𝑡) is analyti-
cally expressed as a piece-wise linear function: 4,

4While technically the daylight locus is not linear, the portion of the daylight curve we
test (D65 to around D50) is approximately linear, as seen in Fig. 5(c)

𝐴(𝑡) =

d65 + 𝑣 · 𝑡 · u, 0 ≤ 𝑡 < 𝐷

𝑣

d65 + 𝐷 · u, 𝐷
𝑣 ≤ 𝑡 < 𝐷

𝑣 + 𝑡1
d65, 𝐷

𝑣 + 𝑡1 ≤ 𝑡 ≤ 𝐷
𝑣 + 𝑡1 + 𝑡2

,

u =

[
cos(𝜙)
sin(𝜙)

]
,

(6)

where d65 ∈ R2 represents the chromaticity of D65 in the 𝑢′𝑣 ′space
(we keep the luminance of the illuminant constant throughout a
trial so the lightness dimension of the illuminant is omitted), and 𝐷
is the traversal distance in the first phase.
Given the analytical form of 𝐴(𝑡), we can analytically solve the

differential equation in Eq. 3 to derive 𝑎(𝑡):

𝑎(𝑡) =

d65 +
(
𝑘2𝑣
𝑘1

𝑒−𝑡𝑘1 + 𝑘2𝑣𝑡 − 𝑘2𝑣
𝑘1

)
· u 0 ≤ 𝑡 ≤ 𝐷

𝑣

d65 + 𝑘2
©­­«𝐷 −

𝑣𝑒−𝑘1𝑡
(
𝑒
𝐷𝑘1
𝑣 −1

)
𝑘1

ª®®¬ u 𝐷
𝑣 ≤ 𝑡 < 𝐷

𝑣 + 𝑡1

d65 +
𝑘2𝑒

−𝑘1𝑡
(
𝑒
𝐷𝑘1
𝑣

(
𝐷𝑘1𝑒

𝑘1𝑡2−𝑣
)
+𝑣

)
𝑘1

· u 𝐷
𝑣 + 𝑡1 ≤ 𝑡 ≤ 𝐷

𝑣 + 𝑡1 + 𝑡2
(7)

We can see that 𝑎(𝑡) is parameterized by/dependent on 𝑘1 and 𝑘2.
Plugging Eq. 7 back to the MLE-based optimization problem in Eq. 4
(where the psychometric function 𝐺 (·) is defined in Eq. 5), we can
solve for the best-fit 𝑘1 and 𝑘2, from which we obtain an estimate
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Table 2. Best-fit 𝑘1 and 𝑘2 constants by illuminant trajectory. The trajecto-
ries all start from D65, and are visualized in Fig. 5c .

𝐴(𝑡) trajectory (first phase) 𝑘1 𝑘2

Daylight locus 0.127 0.712
linear @ 1.470 radians 0.101 0.685
linear @ 1.863 radians 0.107 0.638
linear @ 2.256 radians 0.069 0.707

of 𝑎(𝑡) given 𝐴(𝑡). This optimization problem is non-convex (due
to the logistic psychometric function), and we use a fine-grained
grid search (0.0004 increments along 𝑘1, 0.0006 increments along
𝑘2). Solvers like gradient descent give worse results. While perhaps
obvious, it is worth emphasizing that the estimated 𝑎(𝑡) depends
on the exact form of 𝐴(𝑡): a different equation for 𝐴(𝑡) would lead
to a different equation for 𝑎(𝑡).

5.6 Results and Discussion
Fig. 6 shows two example trials, one for the daylight trajectory and
the other for the 1.47 radian trajectory in the first phase. In each plot,
the 𝑦-axis represents the distance between the current illuminant
and D65 in the 𝑢′𝑣 ′space. The blue line represents the trajectory
of the illuminant 𝐴(𝑡), and the black line represents the estimated
adaptation state 𝑎(𝑡). The green markers represent the midpoints
of the two stimuli presented in the 2AFC tasks. If the lagging patch
is chosen in a 2AFC response, the corresponding marker is circled.
The trend of 𝑎(𝑡) is intuitive given the triphasic 𝐴(𝑡). 𝑎(𝑡) ini-

tially rises as 𝐴(𝑡) rises in the first phase, indicating that chromatic
adaptation is taking place (i.e., more chromatic colors are regarded
by participants as “white”). 𝑎(𝑡) then gradually saturates as 𝐴(𝑡) is
held constant at the terminal color in the second phase, and finally
decays as 𝐴(𝑡) jumps back to D65.
The 𝑎(𝑡) curve actually justifies our choice of a triphasic mea-

surement protocol, which better estimates 𝑘1 and 𝑘2 than if only the
first phase was used. We can see that 𝑎(𝑡) in the first phase is close
to linear5, which indicates just one free parameter could reasonably
fit the curve. As a result, the two parameters 𝑘1 and 𝑘2 could not be
robustly estimated. This is addressed by adding the second phase
that decouples 𝑘1 and 𝑘2. Examining the analytical solution of 𝑎(𝑡)
in the second phase in Eq. 7, we can see that as 𝑡 increases, 𝑎(𝑡)
approaches 𝑘2𝐷 , isolating the effect of 𝑘1.

Table 2 summarizes the fits of𝑘1 and𝑘2 under the four trajectories,
each estimated from the data across all velocities and across all
nine participants. Supplementary Material H shows the confidence
intervals of these fits, which are narrow and are indicative of good
fits. The two coefficients depend on the 𝐴(𝑡) trajectory, which is
unsurprising considering their interpretations: 𝑘1 represents the
rate of adaptation and 𝑘2 represents the adaptation completeness,
both of which are affected by the illuminant.

5Technically the adaptation slightly accelerates during this phase, as evidenced by the
slightly increasing slope of 𝑎 (𝑡 ) ; this is because 𝑎 (𝑡 ) always lags behind𝐴(𝑡 ) and the
gap grows over time.

For instance, the two coefficients are the highest for the daylight
trajectory, consistent with previous literature that finds that the hu-
man visual system better adapts to daylight illuminants [Pearce et al.
2014; Radonjic et al. 2016], so the rate of adaptation is faster and the
adaptation is more complete, which is captured by our psychophys-
ical study and the estimation method. This is also visually reflected
in the two plots in Fig. 6a and Fig. 6b , where the adaptation state
under the daylight traversal is much closer to the illuminant and
the slope is much higher than is under the 1.47 radiance trajectory.

6 CHROMATIC ADAPTATION-GUIDED POWER
OPTIMIZATIONS

Using the adaptation model, this section describes a method that
gradually shifts the illuminant in a virtual scene to reduce display
power with minimal perceptual impacts.

6.1 Formulation
To save power, the illuminant should gradually shift toward a power-
saving color, as discussed in Sec. 4 and shown in Fig. 2c. The illumi-
nant should be shifted slowly to allow users to adapt, but a VR user
spends only a finite amount of time in a session, so an overly slow
shift reduces the potential power savings and is undesirable as well.

Our method, thus, imposes a time limit on the illuminant change
— the illuminant trajectory must arrive at the terminal illuminant
within 𝑡max seconds. The illuminant then remains constant for the
rest of the usage session. Our goal is to maximize the steady-state
power saving (after the illumination stabilizes) while minimizing
the perceptual impact. We quantify the perceptual impact by the
distance between the user’s adaptation state, 𝑎(𝑡), and the illumi-
nant, 𝐴(𝑡), in the 𝑢′𝑣 ′space. Therefore, the optimization problem is
formally stated as:

argmin
𝐴(𝑡 )

P(𝐴(𝑡𝑚𝑎𝑥 ))

s.t.: max
0≤𝑡≤𝑡max

[𝐴(𝑡) − 𝑎(𝑡)] ≤ Δ𝑇,
(8)

where P(T) is the average power consumption under an illuminant
T as discussed in Sec. 4.16, and Δ𝑇 is the permissible difference be-
tween one’s adaptation state and current illuminant. The constraint
is specified to ensure that the perceptual impact is within the Δ𝑇 al-
lowance at all times during the illumination change; the adaptation
state 𝑎(𝑡) will only get closer to 𝐴(𝑡) after the illuminant stabilizes,
so no constraint need to be specified for 𝑡 > 𝑡𝑚𝑎𝑥 .

6.2 Solution
The optimization problem is too general to solve because 𝐴(𝑡) can
technically take any arbitrary form (or even expressed only numeri-
cally): the illuminant can traverse an arbitrary curve in an arbitrarily
time-varying speed. To reasonably limit the scope of possible 𝐴(𝑡),
we impose two simplifying constraints. First, the illuminant must
traverse one of the four curves we have experimentally measured in
our pilot study (Sec. 5.4 and Table 2): three linear traversals plus the

6We could also estimate the power frame by frame for a given video if known but for
generality we choose the average power from natural scene statistics.
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Fig. 7. The tradeoff between power savings over D65 (𝑦-axis) and permissible
perceptual loss expressed in units of JND (𝑥-axis) under the four illuminant
trajectories we study. Overall, the 1.47 radians trajectory Pareto-dominates
the others. The daylight trajectory’s power saving curve here is cut off short,
as the CIE D-series illuminant is defined only over a limited distance. Each
trajectory at each Δ𝑇 has an underlying optimal 𝑣 (not shown) .

daylight curve. Second, the traversal velocity is the constant that
should be optimized.
Since there are only four traversal curves, we solve for the op-

timal velocity for each curve independently. We make two ob-
servations. First, 𝐴(𝑡) − 𝑎(𝑡) monotonically increases, given that
𝐴(𝑡) follows a linear trajectory (see Supplementary Material C for
a proof). Therefore, the constraint in Eq. 8 can be simplified to
𝐴(𝑡𝑚𝑎𝑥 )−𝑎(𝑡𝑚𝑎𝑥 ) ≤ Δ𝑇 . Second, for a given traversal curve, travers-
ing farther always leads to higher power savings (see Fig. 2c for an
intuition). Therefore, minimizing power consumption is equivalent
to maximizing the traversal distance at 𝑡𝑚𝑎𝑥 .
Given these two observations, the optimization formulation in

Eq. 8 is simplified to (for a given trajectory):

argmax
𝑣

𝐴(𝑡𝑚𝑎𝑥 ; 𝑣)

s.t.: 𝐴(𝑡𝑚𝑎𝑥 ; 𝑣) − 𝑎(𝑡𝑚𝑎𝑥 ; 𝑣) ≤ Δ𝑇 .
(9)

Since both 𝐴(𝑡𝑚𝑎𝑥 ; 𝑣) and 𝐴(𝑡𝑚𝑎𝑥 ; 𝑣) − 𝑎(𝑡𝑚𝑎𝑥 ; 𝑣) are monotoni-
cally increasing with 𝑣 (see Supplementary Material C), the optimal
𝑣 that maximizes 𝐴(𝑡𝑚𝑎𝑥 ) is when 𝐴(𝑡𝑚𝑎𝑥 ) − 𝑎(𝑡𝑚𝑎𝑥 ) = Δ𝑇 (the
proof is a simple proof by contradiction, which we omit):

𝑣 = − 𝑒𝑘1𝑡𝑚𝑎𝑥𝑘1Δ𝑇

𝑘2 − 𝑒𝑘1𝑡𝑚𝑎𝑥 (𝑘2 + 𝑘1𝑡𝑚𝑎𝑥 − 𝑘1𝑘2𝑡𝑚𝑎𝑥 )
(10)

6.3 Results and Discussions
Fig. 7 shows, for each traversal trajectory, how the power savings
(𝑦-axis) vary with the permissible perceptual impact Δ𝑇 (𝑥-axis),
which is quantified in units of JND. We set the time limit parameter

𝑡max to be 2 minutes, which is much shorter than the average length
of a VR session estimated to be around 38 minutes [Alsop 2022].
The power saving is calculated over the power consumption under
the typical D65 illuminant. Unsurprisingly, as the allowance for
perceptual impact Δ𝑇 increases, the power saving increases, too.
The linear traversal at 1.47 radians is better than the other tra-

jectories and, in particular, the daylight curve. This is interesting
because illuminants mostly studied in the literature and used in
the real world are limited to those on the daylight curve — for a
good reason: evolutionarily humans are much better at adapting to
daylights [Pearce et al. 2014; Radonjic et al. 2016]. Our results show
that adapting the illuminant along the 1.47 radians trajectory leads
to lower perceptual loss under the same power consumption.
It might initially seem rather restrictive to study only four tra-

jectories. We note, however, that the fundamental psychophysical
paradigm and the power optimization method are generalizable to
other trajectories if one wishes. Robustly interpolating or extrapo-
lating to other trajectories would likely require more than four data
points, which is challenging, given that each trajectory already takes
over 10 hours per participant to collect data for. Even with these
restrictions, however, we are still able to identify power-efficient
adapting illuminants that are previously unexplored.

6.4 Implementing the Power-Saving Algorithm
We implement a real-time illuminant shift algorithm on a Meta
Quest Pro headset to demonstrate our power-saving method in
practice. The algorithm is implemented as a pair of programs — a
fragment shader written in ShaderLab and a director written in C#.

The director controls the illuminant𝐴(𝑡) at any given time.𝐴(𝑡) is
calculated using the optimal 1.47 radians trajectory with a 0.000467
velocity in 𝑢′𝑣 ′space calculated in Sec. 6. The director performs
interpolation between D65 and the terminal illuminant across the
2 minute time course of the illuminant shift, and feeds the current
illuminant to the fragment shader. The fragment shader applies the
CAT to all the image pixels given a particular𝐴(𝑡) in each frame. We
use the commonly used linear Bradford CAT function [Lindbloom
2003] as discussed in Supplementary Material A. We also show the
pseudocode of the fragment shader in Supplementary Material B.

Computational Cost. The shader is lightweight to run. Linear
Bradford CAT amounts to a simple linear transformation per pixel
in the linear sRGB space. For a Meta Quest Pro headset, with two
1920 by 1800 pixel displays, our algorithm takes approximately 7.5
Giga Floating Point Operations (FLOPs) for rendering 90 FPS video.
For reference, the Quest Pro headset’s GPU is capable of outputting
1.42 Tera FLOPs [Qualcomm 2020]. The director is even cheaper
than the shader, only performing a handful of FLOPs per frame.
Our implementation uses less than 0.6% of the overall compute
capabilities of the mobile GPU and, thus, is unlikely to result in
significant increase in rendering power consumption or latency.

7 VALIDATION STUDY

7.1 Baseline Methods
Our method, henceforth termed Graduate Chromatic Adaptation
(GCA), applies an illuminant shift in the first 2 minutes and then sta-
bilizes the illuminant for the rest of the usage session, as described in
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Fig. 8. The various power-saving algorithms we benchmarked. Credit for the original image goes to Pedro Szekely [Szekely 2019].

Sec. 6. We benchmark GCA against four state-of-the-art techniques,
which are based on the experiments done in PEA-PODs [Chen et al.
2024]. PEA-PODs is a recent study that compares the perceptual
impact of various power-saving rendering techniques for OLED
displays. Fig. 8 presents a visual example comparing the various
power-saving algorithms.
Instant Chromatic Adaptation (ICA). PEA-PODs assessed

a chromatic-adaptation–based algorithm in their study, but their
implementation did not account for the time course of chromatic
adaptation; rather, the illuminant shift was applied instantly. In
particular, participants were free to switch between two images,
one without the illuminant shift shader and the other with the
shader turned on. Between images, a black screen was presented for
half a second. The shader was immediately applied after the black
screen, giving participant’s visual system no time to adapt to the
change in illuminant. We benchmark gradual chromatic adaptation
against ICA to demonstrate the need for gradual illumination shift.
Brightness Rolloff (BR). The second baseline we compare

against is Brightness Rolloff, which gradually reduces the lumi-
nance of pixels the further they are from the fovea. It is worth
noting that that BR require gaze tracking, since it is inherently a
gaze-contingent rendering method. PEA-PODs observes that at 31%
power savings, BR results in the least perceptual impact compared to
other methods — when gaze tracking power is ignored, but becomes
much less effective when the gaze tracking power is included. In
our implementation, we assume a gaze tracking power of 100 mW
as assumed in prior work [Chen et al. 2024].

Gradual Uniform Dimming (GUD). Uniform dimming uni-
formly reduces the luminance of the visual field. PEA-PODs’ im-
plementation applies the uniform dimming shader instantly, but
uniform dimming relies on bleaching recovery adaptation, which,
like chromatic adaptation, is gradual [Barlow 1972; Hecht et al. 1937],
because both photoreceptor regeneration and re-sensitization (after
being exposed to a stronger light) take time [Fain et al. 2001; Lamb
and Pugh 2006; Leibrock et al. 1998; Rushton 1965]. We, thus, imple-
ment Gradual Uniform Dimming (GUD), which gradually dims the
image over the time course of 2 minutes, which is the same duration
as the illumination shifts in our method.

GUD +GCA. We also combine our gradual chromatic adaptation
(GCA) algorithm with GUD, where GCA is applied over the course
of the first minute and GUD is applied in the second minute.

Control. The control condition shows the original videos with-
out any power-optimizing shader applied. We observe that some
participants report seeing artifacts in some original videos. Includ-
ing the control condition allows us to measure this inherent bias
and analyze all other conditions against control.

7.2 Study Design
Stimuli and Participants. The stimuli are five panoramic videos
with neutral (D65) in lighting and varied in content, each of which
is clipped to 130 seconds in length. Three of the videos were taken
outdoors at approximately noon, one of the videos was taken from
a video game, and one of the videos was taken indoors.



Modeling and Exploiting the Time Course of Chromatic Adaptation for Display Power Optimizations in Virtual Reality • 212:13

Control

GUD+GCA GUD GCA ICA BR
0.0

0.2

0.4

0.6

0.8

A
rti

fa
ct

s N
ot

ic
ed

 (p
or

tio
n)

ns * ** *** ***

Fig. 9. A comparison of participants’ ability to notice
artifacts in each condition. A star means statistically
significantly different from control (𝑝 < 0.05); two
stars indicate that 𝑝 < 0.01, three stars means that
𝑝 < 0.001. GUD+GCA is the only method that is not
statistically different (“ns”) from control. The error
bars represent 1 standard error.
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Fig. 10. Receiver Operating Characteristic
(ROC) curves for the GUD+GCA condition
plotted by participants. Three participants
(colored) are significantly better at detecting
this condition than the others (hit rate much
higher than false alarm rate). See texts for a
discussion on potential improvements.
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Fig. 11. Heatmap of power savings as a function of
both the permissible perceptual loss (Δ𝑇 ) and the
time allocated for adaptation (𝑡𝑚𝑎𝑥 ). Power saving
is expressed with respect to the power consumption
under D65. We see diminishing returns in increasing
𝑡𝑚𝑎𝑥 and, to some extent, Δ𝑇 .

We recruit 20 participants (aged 18-27; 11 female) for the valida-
tion study; none were aware of our research, nor did they partic-
ipant in the pilot study in Sec. 5. All participants have normal or
corrected-to-normal vision. Participants used the Meta Quest Pro
headset during the validation study7, where the panoramic videos
are rendered. The participants perform tasks with a keyboard.

Structure. As discussed in Sec. 6, the power saving varies with
the permissible perceptual loss. We test a Δ𝑇 = 5 JND threshold,
which gives about 31% power saving using our GCA algorithm.8
We compare different algorithms by evaluating their perceptual im-
pacts under the same power consumption budget. The gaze-tracking
power is deducted from the power budget for the BR method, the
only gaze-contingent method among all methods. We also test a 3
JND threshold, which gives about 20% power savings for GCA. The
results are detailed in Supplementary Material E.

Three of the algorithms that we test (GCA, GUD, and GUD+GCA)
are applied gradually. Therefore, we cannot rely on users to compare
pairs of stimuli using a Two-Interval Forced Choice (2IFC) paradigm,
as done in Chen et al. [2024] and Chapiro et al. [2024], as the gap
between two stimuli would be too long (each video is 130 second
long) for participants to reliably compare two stimuli.
Instead, we use a Two-Alternative Forced Choice (2AFC) para-

digm similar to that in Duinkharjav et al. [2022]. For each video
we show a participant, we ask the participant if they perceive any
visual artifacts in each video they watch (yes/no question). Before
the test begins, we show participants what artifacts they should
expect to spot, and instruct them to only report those artifacts.

In total, each participant is presented with 60 randomized videos
(5 scenes × 6 conditions × 2 repeats). We cap the duration of each
study to 2 hours per participant to ensure data quality, so not all
participants complete all 60 trials.

7We used the Quest Pro here as opposed to the Quest 3 used in the pilot study in Sec. 5,
as we needed a headset with eye-tracking capabilities to benchmark the Brightness
Rolloff algorithm.
8The mean power savings for the five videos benchmarked in the validation study was
even greater than the expected mean power savings, at 33%.

7.3 Results and Discussions
Fig. 9 compares the chances of participants noticing the different
conditions listed in Sec. 7.1. The error bars represent 1 standard
error. We perform statistical testing between control and each of
the other methods using the Generalized Estimating Equation (GEE)
technique [Liang and Zeger 1986; Seabold and Perktold 2010], clus-
tering data by participant and using the binomial distribution family.
We opt to use GEE, as 1) a participant’s responses are correlated
— some participants have consistently higher or lower response
biases (e.g. greater chance to report an artifact, even when none are
present), 2) the number of trials between algorithms is unequal, and
3) we are interested in population-level differences in detectability.
GUD+GCA results in the smallest chance of being noticed by

participants over control. In fact, the combination method is not
statistically significantly different from control (𝑝 = 0.213), while all
other methods are significantly greater than control (𝑝 < 0.05). The
fact that the combined method outperforms GUD and GCA alone
suggests that these two techniques are complementary. We discuss
potential ways to further improve the combined method in Sec. 8.
Gradual chromatic adaptation, unsurprisingly, outperforms the

instant chromatic adaptation algorithm benchmarked in Chen et al.
[2024] by a significant margin (𝑝 < 0.005). The difference in perfor-
mance demonstrates the importance of gradually shifting the scene
illuminant. GCA is not statistically different from GUD (𝑝 = 0.165).
As the only gaze-contingent method, BR is the worst condition due
to the high gaze-tracking power requirements (Sec. 7.2).

Signal Detection Theory Perspective. We use signal detection
theory (SDT) to offer another interpretation of the data. The idea
is to frame the validation study as detecting a signal (reporting a
particular power-saving shader being applied) over noise (control
condition). We compute the discriminability index, 𝑑′ (d-prime),
of each condition over control based on the hit rate (detecting a
particular shader when it is applied) and false alarm rate (detecting
a particular shader when it is not applied) [Prins and Kingdom 2016,
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Table 3. The discriminability index 𝑑 ′ (closer to 0 is better) and z-scores for
each of the different condition averaged across participants.

Method Mean d’ Hit Rate False Alarm Rate

GUD + GCA 0.035 23.9% 20.6%
GUD 0.209 25.9% 17.0%
GCA 0.424 31.9% 17.0%
ICA 0.909 49.1% 17.0%
BR 1.728 70.1% 12.5%

Chpt. 6]. A similar analysis is performed by Pastilha et al. [2020]
when analyzing their adaptation data.

Table 3 compares the 𝑑′ figures averaged across participants for
each condition. 𝑑′ = 0 means the hit rate equals the false alarm
rate, indicating a chance-level performance. A higher 𝑑′ means
participants are better at detecting a shader being present. Among
all conditions, participants are least able to detect the GUD+GCA
condition with an average 𝑑′ close to 0. The ordering of 𝑑′ values
matches that in Fig. 9. Bar charts comparing the mean 𝑑′ values
of each algorithm and their standard deviations can be found in
Supplementary Material G.

Understanding Failure Cases. The GUD+GCA condition com-
bines uniform dimming and gradual chromatic adaptation by simply
cascading them. It is encouraging that such a simple implementation
is slightly, albeit not significantly, better than GUD or GCA alone.
To understand the “failure cases” under the combined condition, we
use the SDT data to graph the Receiver Operating Characteristic
(ROC) curve for every participant for the GUD+GCA condition in
Fig. 10. Additional ROC curves for different algorithms can be found
in Supplementary Material F.
Three participants in particular have high ROC curves under

GUD+GCA; they are significantly better at detecting the presence
of the GUD+GCA shader compared to the other participants. In
contrast, two of three three participants have very low performance
in detecting the GUD condition (not shown).

The performance of GUD+GCA can be improved in the future by
addressing two limitations. First, chromatic adaptation is luminance
dependent [Vincent et al. 2016; Wei and Chen 2019], but GUD+GCA
uses a chromatic adaptation model tuned at one luminance level
across all luminance levels during dimming. An important future
work is to extend our time course study to different luminance levels
and apply a luminance-dependent illuminant shift.

Second, the adaptation model derived from the pilot study (Sec. 5)
may not apply to these three participants. After all, the model is
based on 𝑘1 and 𝑘2 coefficients regressed at the population level.
These three participants may be better suited through more person-
alized parameters, which we leave to future work.

7.4 Power Saving Sensitivity
The results so far are based on the setting where adaptation time
limit 𝑡𝑚𝑎𝑥 is 2 minutes (Sec. 6.3) and the permissible perceptual loss
Δ𝑇 is 5 JND (Sec. 7.2). We analyze the sensitivity of power savings
under varying 𝑡𝑚𝑎𝑥 and Δ𝑇 . The results of this analysis for the
1.47 radians trajectory are shown in Fig. 11. There are diminishing

returns on power savings as 𝑡𝑚𝑎𝑥 increases. This is because, at high
time limits, the distance we are able to adapt the user to is limited
more by the completeness of chromatic adaptation (𝑘2) than by the
adaptation rate (𝑘1). Sensitivity data under other trajectories can be
found in Supplementary Material D.

8 LIMITATIONS AND FUTURE WORK
Assumptions in Computational Modeling. We have assumed
that the psychometric function𝐺 (·) in Sec. 5.3 is a function of𝑚−𝑎,
the distance between the adaptation state and midpoint of the two
test stimuli, but not the absolute adaptation state 𝑎. While this makes
intuitive sense, future work could rigorously test this by performing
the calibration test at under different illuminants.
In our computational model of the adaptation state (Eq. 3), we

assume that 𝑘2 is constant under a given trajectory, and is universal
across all three phases of the pilot study (Sec. 5.4). However, since the
actual illuminant 𝐴(𝑡) changes over time, it would be more precise
to parameterize 𝑘2 as a function of𝐴(𝑡). The parameterization could
be empirically derived by, for instance, individually measuring the
adaptation completeness under varying illuminants. There is also
evidence that chromatic adaptation can even be affected by recent
illuminant exposure history [Cai and Fairchild 2018; Fairchild 2022].
Therefore, the 𝑘1 and 𝑘2 coefficients might be modeled as a function
of illuminant history over a time window.

Implementations. Our psychophysical pilot study, the compu-
tational model, and the validation study all assume that the original
illuminant in a scene is D65, which is a fair assumptions since D65
is the white point of sRGB and Display P3, the two most commonly
used color spaces in rendering and video content. If the scene is ren-
dered in a color space that uses a different white point, e.g., D60 in
DCI-P3, one needs to specifically derive a D60-specific model — us-
ing the our psychophysical paradigm and computational modeling
methodology, which are generalizable to other illuminants.
Our adaptation model (Sec. 5) enables a host of power optimiza-

tions. Our current optimization (Sec. 6) is formulated as maximizing
the power savings after the illuminant stabilizes. Alternative forma-
tions exist. For instance, one could maximize the total power saving
throughout a usage session if the duration is known. One could also
minimize perceptual loss 𝐴(𝑡) − 𝑎(𝑡) under a given power budget.
Our validation study assumes uninterrupted VR usage. If a user

takes off the VR headset and is exposed to the ambient illuminant,
we have to restart the adaptation when they put the headset back
on. This would reduce the potential power saving opportunities.
Our current implementation also assumes that the lighting in

the original VR scene is relatively stable. This assumption does not
hold true for some VR content. Our technique can, however, be
readily extended to account for dynamic lighting conditions. The
exact formulation for this extension is detailed in Supplementary
Material I.
Luminance Dependence. In principle, chromatic adaptation

could be luminance dependent [Vincent et al. 2016; Wei and Chen
2019], whereas the present study holds the luminance constant. An
important future work is to extend our study to different luminance
levels and understand how the time course of chromatic adaptation
is affected by luminance. Such an extension would also inform a
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better implementation of the GCA + GUD algorithm, because GUD
adjusts the scene luminance.
Color Foveation. Duinkharjav et al. [2022] exploited the hu-

man visual system’s reduced color discrimination in peripheral
vision to shift rendered colors imperceptibly while reducing display
power. Their work builds a power model for OLED displays, which
we use in this paper. A key advantage of our technique compared
to [Duinkharjav et al. 2022] is that we do not rely on gaze tracking,
which could be power hungry [Chen et al. 2024; Feng et al. 2024].
However, color foveation and chromatic adaptation are not mutu-
ally exclusive. To systematically exploit the two simultaneously, an
interesting future work is to derive color discrimination thresholds
under different illuminants and adaptation states.

Extension to Augmented Reality. While this study focuses on
VR, chromatic adaptation is equally, if not more, important to AR,
where color vision is constantly modulated by real-world lighting.
Accounting for chromatic adaptation is critical not only for saving
power but also for accurate color reproduction.
The key for AR scenarios, of course, is illuminant estimation,

which has long been studied in the context of auto white balancing
and computational color constancy [Barnard et al. 2002; Gijsenij et al.
2011; Rowlands 2020]. An interesting future work is to extend our
psychophysics and modeling to AR and to integrate chromatic adap-
tation into AR perceptual models [Chapiro et al. 2024]. With lighting
estimation become more mature in product AR toolkits [Google
[n. d.]], we expect techniques incorporating chromatic adaptation,
whether for improving perceptual quality or for reducing power, to
be increasingly practical and deployable in real-world AR devices.

9 CONCLUSION
This paper makes both a scientific contribution and an engineering
contribution. Scientifically, we propose a novel psychophysical par-
adigm along with the statistical inference method to model a user’s
adaptation state given the trajectory of dynamic illuminant change.
We then demonstrate an engineering application of this model. We
devise an algorithm to gradually shift the scene illuminant in virtual
environments to reduce OLED display power consumption by 31%
with little perceptual impact.
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A BACKGROUND ON CHROMATIC ADAPTATION TRANSFORM (CAT) FUNCTION
Chromatic adaptation, phenomenologically, relies on scaling the sensitivities of the cone photoreceptors. We discuss the key mathematical
processes here, and refer interested readers to MacAdam [1982, Chpt. 11], Wandell [1995, Chpt. 9], and Fairchild [2013] for comprehensive
discussions. The cone responses of a color after scaling can be represented as:


1/𝐿S 0 0
0 1/𝑀S 0
0 0 1/𝑆S

 ×

𝐿

𝑀

𝑆

S , (1)

where 𝐿S,𝑀S, and 𝑆S represent the LMS cone responses of the white point/illuminant of the scene, and [𝐿,𝑀, 𝑆]𝑇S represents the unscaled LMS
cone responses of an arbitrary color under illuminant S. We can see that if [𝐿,𝑀, 𝑆]𝑇S is the illuminant itself, the scaled cone responses would
be constant (which is customarily normalized to [1, 1, 1]𝑇 in the literature) — regardless of the color of the illuminant, which is discounted.

For color cS viewed under illuminant S to have the same color appearance as cT viewed under T, the following must hold:


1/𝐿S 0 0
0 1/𝑀S 0
0 0 1/𝑆S

 × cS =


1/𝐿T 0 0
0 1/𝑀T 0
0 0 1/𝑆T

 × cT, (2)

where both cS ∈ R3 and cT ∈ R3 are expressed in the LMS cone space; 𝐿T,𝑀T, and 𝑆T represent the LMS cone responses of the illuminant T.
That is, the scaled cone responses under both illuminants must match.

Usually colors are expressed in the (linear) sRGB space, in which case cT is transformed from cS by:

cT =𝑓S→T (cS)

=𝑇 −1
𝑠𝑅𝐺𝐵2𝑋𝑌𝑍 ×𝑇 −1

𝑋𝑌𝑍2𝐿𝑀𝑆 ×

𝐿T/𝐿S 0 0
0 𝑀T/𝑀S 0
0 0 𝑆T/𝑆S

 ×
𝑇𝑋𝑌𝑍2𝐿𝑀𝑆 ×𝑇𝑠𝑅𝐺𝐵2𝑋𝑌𝑍 × cS,

(3)

where both cS and cT are expressed in the linear sRGB space, 𝑇𝑠𝑅𝐺𝐵2𝑋𝑌𝑍 ∈ R3×3 is the transformation matrix from the linear sRGB space to
the CIE 1931 XYZ space, and 𝑇𝑋𝑌𝑍2𝐿𝑀𝑆 ∈ R3×3 is the transformation matrix from the XYZ space to the LMS space. 𝑓S→T (·) is the Chromatic
Adaptation Transform (CAT) function (operating in the linear sRGB space here). A commonly used 𝑇𝑋𝑌𝑍2𝐿𝑀𝑆 in chromatic adaptation
literature is the Bradford’s spectrally sharpened matrix [Lindbloom 2003], with which the CAT function is called the linear Bradford chromatic
adaptation (see Fairchild [2013, Chpt. 15] and Luo et al. [1996]), which we use in this paper.

B LINEAR BRADFORD PSEUDOCODE
Algo. 1 is pseudocode for the Linear Bradford algorithm [Lindbloom 2017]. The whitepoints are first converted into Linear Bradford space in
lines 1 and 2. On line 3, a diagonal matrix is computed that converts colors from the source white point to the target white point, in Linear
Bradford space. This matrix is converted back sRGB space, before being applied to the original image.

Algorithm 1: Linear Bradford

Input: RGB image I ∈ R𝐻×𝑊 ×3, source whiteW𝑠 ∈ R3, destination whiteW𝑑 ∈ R3

Constants: Linear Bradford matrixM𝐵 ∈ R3×3

Output: Adapted image I′ ∈ R𝐻×𝑊 ×3

1: W𝐵
𝑠 = W𝑠 ×M𝐵

2: W𝐵
𝑑
= W𝑡 ×M𝐵

3: D𝐵 = diag(W𝐵
𝑡 /W𝐵

𝑠 )
4: D = M𝐵 × D ×M−1

𝐵
5: I′ = I × D

C PROOF OF 𝐴(𝑡) − 𝑎(𝑡) MONOTONICITY
Assuming that the 𝐴(𝑡) trajectory follows a linear path, e.g., the first case in Eq. 6 and Eq. 7, we first prove that 𝐴(𝑡) − 𝑎(𝑡) monotonically
increases with 𝑡 . 𝐴(𝑡) − 𝑎(𝑡) is expressed as follows:
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𝐴(𝑡) − 𝑎(𝑡) = 𝑣𝑡 − (𝑘2𝑣
𝑘1

𝑒−𝑡𝑘1 + 𝑘2𝑣𝑡 −
𝑘2𝑣

𝑘1
), (4)

𝜕(𝐴(𝑡) − 𝑎(𝑡))
𝜕𝑡

= 𝑣 + 𝑘2𝑣𝑒−𝑡𝑘1 − 𝑘2𝑣 = (1 − 𝑘2)𝑣 + 𝑘2𝑣𝑒−𝑡𝑘1 . (5)

𝑣 , 𝑘1, and 𝑘2 are always positive. Therefore, the term 𝑘2𝑣𝑒−𝑡𝑘1 is always positive. Additionally, 𝑘2 represents the completeness of adaptation
and is bounded between 0 and 1. Therefore, 1 − 𝑘2 ≥ 0. The partial derive of 𝐴(𝑡) − 𝑎(𝑡) is, thus, lower bounded by 0, and the function
𝐴(𝑡) − 𝑎(𝑡) monotonically increases with 𝑡 .

We then prove that 𝐴(𝑡𝑚𝑎𝑥 ; 𝑣) − 𝑎(𝑡𝑚𝑎𝑥 ; 𝑣) monotonically increases with 𝑣 .

𝜕(𝐴(𝑡𝑚𝑎𝑥 ; 𝑣) − 𝑎(𝑡𝑚𝑎𝑥 ; 𝑣))
𝜕𝑣

= 𝑡 − 𝑘2
𝑘1

𝑒−𝑡𝑚𝑎𝑥𝑘1 − 𝑘2𝑡𝑚𝑎𝑥 + 𝑘2
𝑘1

= (1 − 𝑘2)𝑡𝑚𝑎𝑥 + 𝑘2
𝑘1

(1 − 𝑒−𝑡𝑚𝑎𝑥𝑘1 ) > 0. (6)

D 𝑡𝑚𝑎𝑥 VS Δ𝑇 VS POWER SAVINGS BY TRAJECTORY
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(a) 1.863 radians trajectory
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(b) 2.256 radians trajectory
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(c) Daylight trajectory

Fig. 1. 𝑡𝑚𝑎𝑥 and Δ𝑇 vs power savings for the 1.863 radians, 2.256 radians, and daylight trajectories.

In Fig. 1, we list the graphs comparing 𝑡𝑚𝑎𝑥 , Δ𝑇 , and power savings for the 1.863 radians, 2.256 radians, and daylight trajectories. The
graph for the 1.47 radian trajectory can be found in Fig. 11 of the main text. All results assume a Δ𝑇 of 5 JND.
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Fig. 2. A comparison of participants’ ability to notice artifact in each condition. Here, we benchmark 20% power savings, which corresponds to a Δ𝑇 allowance
of 3 JND. No algorithms are noticed statistically more than control.

We benchmark the difference between the different algorithms with a 20% power savings target, which corresponds to a Δ𝑇 allowance of 3
JND. The results are displayed in Fig. 2. Brightness Rolloff (BR) is excluded from these tests due to its poor performance in the prior round.
None of the algorithms benchmarked are noticed statistically more frequently than control (𝑝 > 0.05).
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F ROC CURVES
The complete set of Receiver Operating Characteristic (ROC) curves are graphed in Fig. 3. Three participants that were able to spot the
GUD+GCA solution exceptionally well are highlighted in Fig. 3a. These same participants are highlighted again in the ROC curve for GUD,
Fig. 3b. Two of the three participants are not able to detect GUD well.
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(a) GUD+GCA, 5 JND (31% savings)
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(c) GCA, 5 JND (31% savings)
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(d) BR, 5 JND (31% savings)
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(e) ICA, 5 JND (31% savings)
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(f) GUD+GCA, 3 JND (20% savings)
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(g) GUD, 3 JND (20% savings)
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Fig. 3. ROC curves for 5 JND (31% power savings) and 3 JND (20% power savings) threshold for Δ𝑇 .
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Fig. 4. 𝑑 ′ values for 31% and 20% power savings. Error bars indicate one standard deviation.

H 𝑘1 𝑘2 FIT UNCERTAINTY
The 95% confidence intervals for the 𝑘1 and 𝑘2 fits in Table 2 are graphed in Fig. 5a and Fig. 5b. For each trajectory, we lump the data across
all participants and all velocities and fit the corresponding 𝑘1 and 𝑘2 coefficient.
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Fig. 5. 𝑘1 and 𝑘2 95% confidence intervals. The upper and lower whiskers of each plot represent the upper and lower bounds of the 95% confidence interval.
The dot represents the value at which the MLE equation is evaluated to be highest.

Note that the 𝑘1 and 𝑘2 figures above are fit on a population-level, not on an individual-by-individual basis. While the 95% confidence
intervals are small for the population-level fit, we do not have confident fits for individuals. There is not a sufficient amount of data per-
individual to obtain a good estimate of 𝑘1 and 𝑘2. The standard deviations and average confidence interval widths of individually-fit 𝑘1 and
𝑘2 values by trajectory are documented in Table 4.
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Table 4. Variance and mean confidence interval widths for individual-level fits of 𝑘1 and 𝑘2.

Trajectory 𝑘1 std 𝑘1 mean CI width 𝑘2 std 𝑘2 mean CI width

Daylight 0.256 0.202 0.0962 0.0653
1.470 0.207 0.340 0.0794 0.0717
1.863 0.382 0.322 0.115 0.0890
2.256 0.369 0.273 0.109 0.0842

I ACCOUNTING FOR DYNAMIC LIGHTING
Using a more complex problem formulation, we are able to account for VR scenes containing dynamic lighting as well. Let 𝐴𝑜 (𝑡) represent the
illuminant over time of the origninal VR content. Let 𝑎𝑜 (𝑡) represent the predicted adaptation state of a user that is exposed to the original
VR content. In our formulation, 𝐴(𝑡) is the target illuminant of the modified VR scene, which we hope to solve for. 𝑎(𝑡) remains defined as
the predicted adaptation state of a user exposed to VR content modified by out algorithm.

We want to constrain 𝐴(𝑡) such that the appearance of the illuminant 𝐴(𝑡) under the adaptation state 𝑎(𝑡) is similar to the appearance of
𝐴𝑜 (𝑡) under 𝑎𝑜 (𝑡). Note that, since the lighting of the background in the original VR content is now dynamic, the user’s perception of white
may no longer align with the illuminant of the scene, even in the original content. This constraint translates to the following formulae:

𝐴∗ (𝑡) = 𝑓𝑎𝑜 (𝑡 )→𝑎 (𝑡 ) (𝐴𝑜 (𝑡)) (7)��𝐴(𝑡) −𝐴∗ (𝑡)
�� ≤ Δ𝐷 (8)

In the above formula, 𝐴∗ (𝑡) represents the color that appears like the illuminant 𝐴𝑜 (𝑡) under the adaptation state 𝑎𝑜 (𝑡), to an observer
with adaptation state 𝑎(𝑡). 𝑓𝑎𝑜 (𝑡 )→𝑎 (𝑡 ) represents the Chromatic Adaptation Transform (CAT) function. Δ𝐷 is similar in definition to Δ𝑇 – it
is the maximum permissible difference between the rendered illuminant, 𝐴(𝑡), and the perceptually accurate illuminant, 𝐴∗ (𝑡).

Hence, the new optimization formulation (in lieu of Eq. 8 in the main text) is:

arg min
𝐴(𝑡 )

Power(𝐴(𝑡)) (9)

s.t.∀𝑡,
��𝐴(𝑡) −𝐴∗ (𝑡)

�� ≤ Δ𝐷 (10)
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