
CoolerSpace Supplementary Materials

1 CoolerSpace Language Specification

Sec. 1.1 defines the complete syntax of CoolerSpace. Sec. 1.2 defines permissible castings dictated by color
science principles. Sec. 1.3 defines the formal typing rules.

1.1 CoolerSpace Syntax

Table 1: CoolerSpace syntax.

Arrays a ∈ floating point arrays
Variable Names x ∈ variable names
Tristimulus Color Types τtristimulus ::= τXYZ|τLMS|τsRGB|τopRGB

Perceptual Color Types τperceptual ::= τHSL|τLAB

Color Types τcolor ::= τtristimulus|τperceptual
Spectral Types τspectrum ::= τLight|τReflectance|τScattering|τAbsorption|τPigment

Physical Types τ ::= τcolor|τspectrum|τChromaticity|τMatrix

Dimension Types d ::= N|d× d
Shaped Types s ::= (τ, d)
XYZ Channels cXYZ ::= X|Y |Z
LMS Channels cLMS ::= L|M |S
sRGB Channels csRGB ::= R|G|B
opRGB Channels copRGB ::= R|G|B
HSV Channels cHSL ::= H|S|V
LAB Channels cLAB ::= L|A|B
Channels c ::= cXYZ|cLMS|csRGB|copRGB|cHSL|cLAB

Binary Operators ⊕ ::= +| − | × |/
Values v ::= x|τ(a)|τ(v)|τ(v, v)|mix(v, v, v, v)|v ⊕ v|matmul(v, v)|v.c
Expressions e ::= x = v
Programs P ::= e;P |e

1.2 Casting Graph

XYZ

sRGB

LMS

opRGB

HSV

LABLight

Chromaticity Reflectance

Pigment

Absorption

Scattering

Figure 1: The graph showing all permissible castings.

1

1.3 CoolerSpace Type System

τ /∈ {τPigment, τMatrix} d1 = d2 × channel count(t) a : d1
Init

Γ ⊢ τ(a) : (t, d2)

a : d
MatrixInit

Γ ⊢ τMatrix(a) : (τMatrix, d)

Γ ⊢ v1 : (τAbsorption, d) Γ ⊢ v2 : (τScattering, d)
PigmentInit

Γ ⊢ τPigment(v1, v2) : (τPigment, d)

TrivialBroadcast
broadcastable(d, d)

ScalarBroadcast
broadcastable(1, d)

d1 = d2 × d3
SubsetBroadcast

broadcastable(d3, d1)

Γ ⊢ v1 : (τLight, d) Γ ⊢ v2 : (τLight, d)
LightAdd

Γ ⊢ v1 + v2 : (τLight, d)

Γ ⊢ v1 : (τtristimulus, d) Γ ⊢ v2 : (τtristimulus, d)
TristimulusAdd

Γ ⊢ v1 + v2 : (τtristimulus, d)

Γ ⊢ v1 : (τperceptual, d) Γ ⊢ v2 : (τperceptual, d)
PerceptualAdd

Γ ⊢ v1 + v2 : (τperceptual, d)

Γ ⊢ v1 : (τMatrix, d1) Γ ⊢ v2 : (τMatrix, d2) broadcastable(d2, d1)
MatrixAddL

Γ ⊢ v1 + v2 : (τMatrix, d1)

Γ ⊢ v1 : (τMatrix, d1) Γ ⊢ v2 : (τMatrix, d2) broadcastable(d1, d2)
MatrixAddR

Γ ⊢ v1 + v2 : (τMatrix, d2)

Γ ⊢ v1 : (τLight, d) Γ ⊢ v2 : (τReflectance, d)
Reflect

Γ ⊢ v1 × v2 : (τLight, d)

Γ ⊢ v1 : (τtristimulus, d) Γ ⊢ v2 : (τMatrix, channel count(τtristimulus))
TriChScale

Γ ⊢ v1 × v2 : (τtristimulus, d)

Γ ⊢ v1 : (τMatrix, d1) Γ ⊢ v2 : (τMatrix, d2) broadcastable(d2, d1)
MatrixMulL

Γ ⊢ v1 × v2 : (τMatrix, d1)

Γ ⊢ v1 : (τMatrix, d1) Γ ⊢ v2 : (τMatrix, d2) broadcastable(d1, d2)
MatrixMulR

Γ ⊢ v1 × v2 : (τMatrix, d2)

Γ ⊢ v1 : (τMatrix, d1) Γ ⊢ v2 : (τMatrix, d2) broadcastable(d2, d1)
MatrixDivL

Γ ⊢ v1/v2 : (τMatrix, d1)

Γ ⊢ v1 : (τMatrix, d1) Γ ⊢ v2 : (τMatrix, d2) broadcastable(d1, d2)
MatrixDivR

Γ ⊢ v1/v2 : (τMatrix, d2)

Γ ⊢ v1 : (τtristimulus, d) Γ ⊢ v2 : (τMatrix, channel count(τtristimulus)× channel count(τtristimulus))
TriMatMul

Γ ⊢ matmul(v1, v2) : (τtristimulus, d)

2

Γ ⊢ v1 : (τMatrix, d1 × N) Γ ⊢ v2 : (τMatrix,N× d2)
MatMul

Γ ⊢ matmul(v1, v2) : (τMatrix, d1 × d2)

Γ ⊢ v1, v2 : (τPigment, d) Γ ⊢ v3, v4 : (τMatrix, d)
PigmentMix

Γ ⊢ mix(v3, v1, v4, v2) : (τPigment, d)

Γ ⊢ v : (τ1, d) path exists(τ1, τ2)
Cast

Γ ⊢ τ2(v) : (τ2, d)

τ ̸= τPigment Γ ⊢ v : (τ, d)
MatrixCast

Γ ⊢ τMatrix(v) : (τMatrix, d× channel count(τ))

Γ ⊢ v : (τi, d) c ∈ ci
ChannelGet

Γ ⊢ v.c : (τMatrix, d)

Figure 2: CoolerSpace typing rules. path exists(τ1, τ2) in the Cast rule type checks only if there exists a
path from τ1 to τ2 in Fig. 1.

3

2 Translational Soundness

Programs written in CoolerSpace are translated to ONNX [11]. This section proves that CoolerSpace
is translationally sound. For the translation between CoolerSpace to ONNX to be sound, every well-typed
value in CoolerSpace must be translated to a well-typed value in ONNX. Translational soundness indicates
that our translation preserves typeability: the type safety of CoolerSpace is as strong as that of ONNX.

To succinctly demonstrate our proof strategy without losing generality, we have defined a subset of our
language, dubbed SmallerSpace (Sec. 2.1). The syntax for SmallerSpace can be found in Tbl. 3, and the
corresponding type rules can be found in Fig. 3. We have also formalized a subset of ONNX that is relevant to
our translation (Sec. 2.2). The syntax can be found in Tbl. 4, and the corresponding type rules are in Fig. 4.
Sec. 2.3 defines the formal translational semantics from SmallerSpace to ONNX. Sec. 2.4 shows the proof of
translational soundness.

Tbl. 2 defines a channel count lookup table that will be referenced by the channel count(·) function used
during translation and type checking in this section.

channel count(τLMS) = 3
channel count(τXYZ) = 3
channel count(τLight) = 89
channel count(τReflectance) = 89

Table 2: Channel count lookup table

2.1 SmallerSpace Syntax and Typing Rules

Natural numbers N ∈ natural numbers
Arrays a ∈ floating point array literals
Dimension types d ::= N|d× d
Color types τcolor ::= τXYZ|τLMS|τsRGB

Spectral types τspectrum ::= τLight|τReflectance

Physical types τ ::= τcolor|τspectrum
Shaped types s ::= (τ, d)
Values v ::= τ(a)|τ(v)|v + v|v × v

Table 3: SmallerSpace syntax

d1 = d2 × channel count(τ) a : d1
Init

τ(a) : (τ, d2)

v : (τ1, d) path exists(τ1, τ2)
Cast

τ2(v) : (τ2, d)

v1, v2 : (τcolor, d)
ColorAdd

v1 + v2 : (τcolor, d)

v1, v2 : (τLight, d)
LightAdd

v1 + v2 : (τLight, d)

v1 : (τLight, d) v2 : (τReflectance, d)
Reflect

v1 × v2 : (τLight, d)

Figure 3: SmallerSpace type rules.

4

2.2 ONNX Syntax and Typing Rules

Natural Numbers N ∈ natural numbers
Arrays a ∈ floating point arrays
Dimension Types d ::= N|d× d

Values
u ::= a|add(u, u)|div(u, u)|mul(u, u)
|sub(u, u)|matmul(u, u)|pow(u, u)

Table 4: Simplified ONNX syntax.

TrivialBroadcast
broadcastable(d, d)

ScalarBroadcast
broadcastable(1, d)

d1 = d2 × d3
SubsetBroadcast

broadcastable(d3, d1)

u1 : d1 u2 : d2 broadcastable(d2, d1)
OnnxAddL

add(u1, u2) : d1

u1 : d1 u2 : d2 broadcastable(d1, d2)
OnnxAddR

add(u1, u2) : d2

u1 : d1 u2 : d2 broadcastable(d2, d1)
OnnxSubL

sub(u1, u2) : d1

u1 : d1 u2 : d2 broadcastable(d1, d2)
OnnxSubR

sub(u1, u2) : d2

u1 : d1 u2 : d2 broadcastable(d2, d1)
OnnxMulL

mul(u1, u2) : d1

u1 : d1 u2 : d2 broadcastable(d1, d2)
OnnxMulR

mul(u1, u2) : d2

u1 : d1 u2 : d2 broadcastable(d2, d1)
OnnxDivL

div(u1, u2) : d1

u1 : d1 u2 : d2 broadcastable(d1, d2)
OnnxDivR

div(u1, u2) : d2

u1 : d1 u2 : d2 broadcastable(d2, d1)
OnnxPowL

pow(u1, u2) : d1

u1 : d1 u2 : d2 broadcastable(d1, d2)
OnnxPowR

pow(u1, u2) : d2

Figure 4: Simplified ONNX type rules.

5

2.3 Translational Semantics

JNK ≜ N T-Nat

Jv1 + v2K ≜ Φ(+, τ1, τ2)(v1, v2), v1 : (τ1, d1), v2 : (τ2, d2) T-Add

JaK ≜ a T-Array

Jv1 × v2K ≜ Φ(×, τ1, τ2)(v1, v2), v1 : (τ1, d1), v2 : (τ2, d2) T-Mul

Jτ(a)K ≜ a T-Init

Jτd(vo)K ≜ Ψ(τo, τd)(vo), vo : (τo, do) T-Cast

JdK ≜ d T-Dim

J(τ, d)K ≜ d× channel count(τ) T-Type

Φ(+, τXYZ, τXYZ)(v1, v2) ≜ add (Jv1K, Jv2K)
Φ(+, τLMS, τLMS)(v1, v2) ≜ add (Jv1K, Jv2K)
Φ(+, τsRGB, τsRGB)(v1, v2) ≜ mul(pow(add(pow(div(Jv1K,

[
255

]
),
[
2.2

]
), div(pow(Jv2K,

[
255

]
)
[
2.2

]
)),

[
0.455

]
),
[
255

]
)

Φ(×, τLight, τReflectance)(v1, v2) ≜ mul(Jv1K, Jv2K)
Ψ(τLight, τLMS)(v) ≜ matmul (JvK,M1)

Ψ(τLMS, τXYZ)(v) ≜ matmul (JvK,M2)

Ψ(τXYZ, τsRGB)(v) ≜ pow
(
mul

(
matmul (JvK,M3) ,

[
255

])
,
[
2.2

])
Table 5: SmallerSpace to ONNX translational semantics. M1, M2, and M3 represent the LMS Cone Fun-
damentals, XYZ to LMS transformation matrix, and XYZ to RGB transformation matrix, respectively. They
are constant matrices that can be found in standard color science texts [15], and are omitted here.

6

2.4 Translational Soundness Proof

Theorem. The theorem for translational soundness is given below:

Jv : (τ, d)K
JvK : J(τ, d)K

We will prove the theorem through structural induction. The induction hypothesis can be generally stated as follows:

Jvi ⊂ vK Jvi : (τi, di)K Jv : (τ, d)K
IndHypJviK : J(τi, di)K

We will be using the converse of several typing rules in SmallerSpace. These rules will be labeled as Conv-RuleName. In order for a converse rule to be valid,
the set of expressions that are type checked by a rule must only be type check-able by said rule. We will show this assumption to be true for every case. We also use
the Subst rule to indicate substitution of equivalent values.

In this proof we iterate over every rule in SmallerSpace, and show that each rule is translationally sound.

Base case: Init

Values of the form τ(a) do not have value subterms. This makes it our base case for induction. There is only one type rule under which τ(a) type checks: Init.
Therefore Conv-Init is valid. We also introduce a new rule T-ArrType to assist with this proof. T-ArrType ensures that the dimension type of an array literal is
preserved after translation.

Ja : dK
T-ArrTypeJaK : JdK

Given Jτ(a) : (τ, d)K, we can conclude that the translated type of Jτ(a)K is d× channel count(τ).

Jτ(a) : (τ, d)K
Conv-InitJa : d× channel count(τ)K
T-ArrTypeJaK : Jd× channel count(τ)K

T-Array
JaK ≜ a

Subst
a : Jd× channel count(τ)K

T-Init
Jτ(a)K ≜ a

Jτ(a)K : Jd× channel count(τ)K
T-Dim

Jd× channel count(τ)K ≜ d× channel count(τ)
SubstJτ(a)K : d× channel count(τ)

J(τ, d)K also translates to d× channel count(τ). Therefore, we can conclude that Jτ(a)K : J(τ, d)K. This satisfies the translational soundness theorem.

Jτ(a)K : d× channel count(τ)
T-Type

J(τ, d)K ≜ d× channel count(τ)
SubstJτ(a)K : J(τ, d)K

7

Case 1: ColorAdd

In order for Conv-ColorAdd to be a valid rule, the set of expressions that are type checked by ColorAdd must only be type check-able by ColorAdd. In other
words, v1 + v2 : (τcolor, d) must type check if and only if the premises for ColorAdd are satisfied. We know this to be true, as there is no other rule that type checks
addition between color types.

The proof below shows the validity of ColorAdd for τXYZ + τXYZ. This proof must be repeated for LMS and sRGB.

Jv1 + v2 : (τXYZ, d)K
Conv-ColorAddJv1, v2 : (τXYZ, d)K Jv1, v2 ⊂ v1 + v2K

IndHypJv1, v2K : J(τXYZ, d)K
TrivBroad

broadcastable(J(τXYZ, d)K, J(τXYZ, d)K)
OnnxAddR

add(Jv1K, Jv2K) : J(τXYZ, d)K

Jv1, v2 : (τXYZ, d)K
T-Add

Jv1 + v2K ≜ add(Jv1K, Jv2K)
SubstJv1 + v2K : J(τXYZ, d)K

Case 2: LightAdd

Like ColorAdd, LightAdd is the only rule that can type check v1+ v2 : (τLight, d). Thus, Conv-LightAdd is valid. The proof tree is similar to that of ColorAdd.

Jv1 + v2 : (τLight, d)K
Conv-LightAddJv1, v2 : (τLight, d)K Jv1, v2 ⊂ v1 + v2K

IndHypJv1, v2K : J(τLight, d)K
TrivBroad

broadcastable(J(τLight, d)K, J(τLight, d)K)
OnnxAddR

add(Jv1K, Jv2K) : J(τLight, d)K

Jv1, v2 : (τLight, d)K
T-Add

Jv1 + v2K ≜ add(Jv1K, Jv2K)
SubstJv1 + v2K : J(τLight, d)K

Case 3: Reflect

Reflect is the only way by which v1 × v2 is type checked in SmallerSpace. Therefore Conv-Reflect is valid. Given Jv1 × v2 : (τLight, d)K, we can conclude that
Jv1K and Jv2K are of type d× channel count(τLight) after translation.

Jv1 × v2 : (τLight, d)K
Conv-ReflectJv1 : (τLight, d)K Jv1 ⊂ v1 × v2K

IndHypJv1K : J(τLight, d)K
T-DimJv1K : d× channel count(τLight)

Jv1 × v2 : (τLight, d)K
Inv-ReflectJv2 : (τReflectance, d)K Jv2 ⊂ v1 × v2K

IndHypJv2K : J(τReflectance, d)K
T-DimJv2K : d× channel count(τReflectance) channel count(τReflectance) = channel count(τLight)

SubstJv2K : d× channel count(τLight)

8

With this information, we can show that mul(Jv1K, Jv2K) : d× channel count(τLight).

Jv1K : d× channel count(τLight) Jv2K : d× channel count(τLight)
TrivBroad

broadcastable(d× channel count(τLight), d× channel count(τLight))
OnnxMulR

mul(Jv1K, Jv2K) : d× channel count(τLight)

Since v1 × v2 is translated to mul(Jv1K, Jv2K) with type d × channel count(τLight), and since J(τLight, d)K is also typed d × channel count(τLight) after translation, we
can conclude that Reflect is translationally sound.

mul(Jv1K, Jv2K) : d× channel count(τLight)

Jv1 : (τLight, d)K Jv2 : (τReflectance, d)K
T-Mul

Jv1 × v2K ≜ mul(Jv1K, Jv2K)
SubstJv1 × v2K : d× channel count(τLight)

T-Type
J(τLight, d)K ≜ d× channel count(τLight)

SubstJv1 × v2K : J(τLight, d)K

Case 4: Cast

For any output physical type, there are multiple origin physical types that can satisfy the Cast rule. Therefore, we must show that Cast is translationally sound for
every pair of types τ1, tau2 such that path exists(τ1, τ2). All these proofs are similar in structure. I will be showing the proof for Light to LMS.

We first show that JvK is of type d× channel count(τLight) after translation.

JτLMS(v) : (τLMS, d)K
Conv-Cast-Light2LMSJv : (τLight, d)K Jv ⊂ τLMS(v)K

IndHypJvK : J(τLight, d)K
T-Type

J(τLight, d)K ≜ d× channel count(τLight)
SubstJvK : d× channel count(τLight)

JτLMS(v)K translates to matmul(JvK,M1), where M1 is a constant matrix of dimension channel count(τLight)× channel count(τLMS).

Jv : (τLight, d)K
T-Cast

JτLMS(v)K ≜ matmul(JvK,M1)

We can conclude that JτLMS(v)K : d× channel count(τLMS).

JvK : d× channel count(τLight) M1 : channel count(τLight)× channel count(τLMS)
OnnxMatMul

matmul(JvK,M1) : d× channel count(τLMS) JτLMS(v)K ≜ matmul(JvK,M1)
SubstJτLMS(v)K : d× channel count(τLMS)

9

Since J(τLMS, d)K also translates to d× channel count(τLMS), the translational soundness theorem holds true for the Cast rule when the origin type is τLight and the
destination type is τLMS.

JτLMS(v)K : d× channel count(τLMS)
T-Type

J(τLMS, d)K ≜ d× channel count(τLMS)
SubstJτLMS(v)K : J(τLMS, d)K

Translational soundness for Cast must be proven for every valid pair of origin and destination types. The remaining Cast proofs are of similar form to the one
above.

Conclusion

We have shown that every rule in SmallerSpace is translationally sound under the inductive hypothesis. We have also proven that a base case, Init, is translationally
sound independent of the inductive hypothesis. Therefore, by the principle of structural induction, SmallerSpace must be translationally sound.

10

3 Type Soundness Background Information

We can additionally show that CoolerSpace is type sound. In this section we will describe the requisite
information for the type soundness proof. Similar to our proof of translational soundness, We will prove type
soundness over SmallerSpace, a subset of CoolerSpace. We define SmallerSpace’s syntax and type
rules in Sec. 3.1. Evaluation rules are specified in Sec. 3.2. These evaluation rules represent the expected
computation for each operation. In Sec. 4, we will utilize the information outlined in this section to prove that
SmallerSpace is type sound.

11

3.1 SmallerSpace Syntax and Rules

The SmallerSpace syntax that we use here has been augmented with array expressions. These array expres-
sions allow us to perform arithmetic on raw floating point arrays, akin to NumPy array operations. Like ONNX,
broadcasting rules are also used in array expressions. The syntax for SmallerSpace can be found in Tbl. 6,
and the corresponding type rules can be found in Fig. 5.

Natural numbers N ∈ natural numbers
Binary operators ⊕ ::= +| − | × |/| ∗ ∗
Arrays a ∈ A (set of floating point array literals)
Array Expressions α ::= a|(α)⊕ (α)|matmul(α, α)
Dimension types d ::= N|d× d
Tristimulus types τtristimulus ::= τXYZ|τLMS|τsRGB

Spectral types τspectrum ::= τLight|τReflectance

Physical types τ ::= τtristimulus|τspectrum
Shaped types s ::= (τ, d)
Values v ::= τ(α)|τ(v)|v ⊕ v

Table 6: Augmented SmallerSpace syntax

α : d× channel count(τ)
Init

τ(α) : (τ, d)

v : (τ1, d) path exists(τ1, τ2)
Cast

τ2(v) : (τ2, d)

v1, v2 : (τtristimulus, d)
TristimulusAdd

v1 + v2 : (τtristimulus, d)

v1, v2 : (τLight, d)
LightAdd

v1 + v2 : (τLight, d)

v1 : (τLight, d) v2 : (τReflectance, d)
Reflect

v1 × v2 : (τLight, d)

TrivialBroadcast
broadcastable(d, d)

ScalarBroadcast
broadcastable(1, d)

d1 = d2 × d3
SubsetBroadcast

broadcastable(d3, d1)

α1 : d1 α2 : d2 broadcastable(d2, d1)
ArrayBinOpL

(α1)⊕ (α2) : d1

α1 : d1 α2 : d2 broadcastable(d1, d2)
ArrayBinOpR

(α1)⊕ (α2) : d2

α1 : d1 × di α2 : di × d2
ArrayMatMul

matmul(α1, α2) : d1 × d2

Figure 5: Augmented SmallerSpace type rules.

12

3.2 Evaluation Rules

We have defined rules for evaluating SmallerSpace expressions. These rules can be found in Fig. 6. These
evaluation rules operate on “basic values” like τLight(a1) and τXYZ(a2). a1 and a2 are array literals. Basic
values are significant, as they represent the most reduced version of a colorspace value. They are defined only
by a physical type and an array literal. As such, they cannot be evaluated any further. We will utilize vB to
indicate the set of all basic values.

τLight(a1) + τLight(a2) → τLight((a1) + (a2)) E-LightAdd

τXYZ(a1) + τXYZ(a2) → τXYZ((a1) + (a2)) E-XYZAdd

τLMS(a1) + τLMS(a2) → τLMS((a1) + (a2)) E-LMSAdd

τsRGB(a1) + τsRGB(a2) →
τsRGB((((((a1)/([255])) ∗ ∗(γτsRGB)) + (((a2)/([255])) ∗ ∗((γτsRGB)))) ∗ ∗(γ−1

τsRGB
))× ([255])) E-sRGBAdd

τLight(a1)× τReflectance(a2) → τLight((a1)× (a2)) E-Reflect

Figure 6: Evaluation rule for SmallerSpace type rules. γτsRGB
and γ−1

τsRGB
are 1 dimension type array constants

that represent the gamma value of the sRGB color space. They are 2.2 and 2.2−1, respectively.

We have several rules for evaluating castings. The rules listed in Fig. 7 represent edges in the casting graph
(Fig. 1). In other words, they evaluate castings between adjacent types.

τLMS(τLight(a)) → τLMS(matmul(a,MLight2LMS)) E-Light2LMS

τLMS(τXYZ(a)) → τLMS(matmul(a,MXYZ2LMS)) E-XYZ2LMS

τXYZ(τLMS(a)) → τXYZ(matmul(a,MLMS2XYZ)) E-LMS2XYZ

τsRGB(τXYZ(a)) → τsRGB((matmul(a,MXYZ2sRGB)) ∗ ∗(γ−1
τsRGB

)) E-XYZ2sRGB

τXYZ(τsRGB(a)) → τXYZ(matmul((a) ∗ ∗(γτsRGB
),MsRGB2XYZ)) E-sRGB2XYZ

Figure 7: Adjacent casting rules. The M values represent array literal constants. All M values with the
exception of MXYZ2LMS are of dimension 3× 3. MXYZ2LMS is of dimension 89× 3

However, SmallerSpace also allows casting between types that are not adjacent on the casting graph. In
order to achieve this, we have defined an additional function: distance(τ1, τ2) returns the number of edges in
the shortest path from τ1 to τ2. We also define E-CastHop to evaluate casts between non-adjacent types.

path exists(τo, τd) 1 ≤ distance(τi, τd) < distance(τo, τd) distance(τo, τi) = 1
E-CastHop

τd(τo(a)) → τd(τi(τo(a)))

We also need to account for castings from a type to itself. We design the E-CastTrivial evaluation relation
for this purpose.

τ(τ(v)) → τ(v) E-CastTrivial

E-PropBinOpL and E-PropBinOpR allow an evaluation step to be taken on a binary operation if either
operand can be further evaluated. E-PropCast does the same for casts. E-PropInit fulfills a similar function
for nested array expressions that can be further evaluated.

v1 → v′1
E-PropBinOpL

v1 ⊕ v2 → v′1 ⊕ v2

v2 → v′2
E-PropBinOpR

v1 ⊕ v2 → v1 ⊕ v′2

13

v → v′
E-PropCast

τ(v) → τ(v′)

α → α′
E-PropInit

τ(α) → τ(α′)

Since we have augmented SmallerSpace with array expressions, we also need rules to evaluate those,
namely E-ArrBinOpL, E-ArrBinOpR, and E-ArrMatMul. These evaluation rules do not manipulate ar-
ray literals, as array literals are abstracted in SmallerSpace. Instead, these evaluation rules utilize dimension
type information to check if the evaluation is possible.

α1 : d1 α2 : d2 α1, α2 ∈ A broadcastable(d2, d1)
E-ArrBinOpL∃a3 : d1 | (α1)⊕ (α2) → a3

α1 : d1 α2 : d2 α1, α2 ∈ A broadcastable(d1, d2)
E-ArrBinOpR∃a3 : d2 | (α1)⊕ (α2) → a3

α1 : d1 × dm α2 : dm × d2 α1, α2 ∈ A
E-ArrMatMul∃a3 : d1 × d2 | matmul(α1, α2) → a3

We also need evaluation step propagation rules for array expressions as well.

α1 → α′
1

E-PropArrBinOpL
(α1)⊕ (α2) → (α′

1)⊕ (α2)

α2 → α′
2

E-PropArrBinOpR
(α1)⊕ (α2) → (α1)⊕ (α′

2)

α1 → α′
1

E-PropArrMatMulL
matmul(α1, α2) → matmul(α′

1, α2)

α2 → α′
2

E-PropArrMatMulR
matmul(α1, α2) → matmul(α1, α

′
2)

14

4 Type Soundness Proof

We will prove type soundness through individual proofs of progress and preservation. A “basic value” is a value
of the form τ(a). Basic values are significant as they are composed of only a physical type and an array literal.
They cannot be evaluated any further. We will use vB to indicate the set of all basic values.

We prove SmallerSpace is type sound by showing that SmallerSpace satisfies both progress and preser-
vation. Our proof for progress can be found in Sec. 4.3. Our preservation proof is in Sec. 4.4. Since
SmallerSpace satisfies both progress and preservation, SmallerSpace is type sound. In order to show
that SmallerSpace is type sound, we first define a set of “converse rules” in Sec. 4.1. Then, we prove that
SmallerSpace’s new array expressions also satisfy type soundness in Sec. 4.2.

4.1 Converse Rules

Similar to our proof of translational soundness, we will also be utilizing converse rules to prove type soundness.
These rules will be labeled as Conv-RuleName. In this section, we will detail each converse rule we utilize in
our proof, and explain why they are valid.

τ(α) : (τ, d)
Conv-Init

α : d× channel count(τ)

The Conv-Init type rule is the converse rule for the Init type rule. Conv-Init is valid because the Init
rule is the only rule that type checks values of the form τ(α).

v : (τ, d) v ∈ vB
Conv-BasicInit∃a : d× channel count(τ) | v = τ(a)

Conv-BasicInit represents an alternative converse rule for the Init type rule. Conv-BasicInit is valid
as if v is a basic type, we know v must take the form of τ(a), where a is an array literal. Therefore, we can
apply Conv-Init to derive the dimension type of a.

v1 + v2 : (τtristimulus, d)
Conv-TristimulusAdd

v1, v2 : (τtristimulus, d)

v1 + v2 : (τLight, d)
Conv-LightAdd

v1, v2 : (τLight, d)

v1 × v2 : (τLight, d)
Conv-Reflect

v1 : (τLight, d) ∧ v2 : (τLight, d)

τ2(v) : (τ2, d)
Conv-Cast∃τ1 | v : (τ1, d) ∧ path exists(τ1, τ2)

matmul(α1, α2) : d
Conv-ArrayMatMul∃d1, d2, di | d = d1 × d2 ∧ α1 : d1 × di ∧ α2 : di × d2

Conv-TristimulusAdd, Conv-LightAdd, Conv-Reflect, Conv-Cast, and Conv-ArrayMatMul
are inverted rules corresponding to the TristimulusAdd, LightAdd, Reflect, Cast, and ArrayMatMul
rules. These converse rules are valid as TristimulusAdd, LightAdd, Reflect, Cast, and ArrayMatMul
are the only rules that are able to type check v1 + v2 : (τtristimulus, d), v1 + v2 : (τLight, d), v1 × v2 : (τLight, d),
τ2(v) : (τ2, d), and matmul(α1, α2) : d1 × d2.

(α1)⊕ (α2) : d
Conv-ArrBinOp

(∃d1 | α1 : d1 ∧ α2 : d ∧ broadcastable(d1, d)) ∨ (∃d2 | α2 : d2 ∧ α1 : d ∧ broadcastable(d2, d))

(α1)⊕ (α2) : d
Conv-ArrBinOpL∃d1 | α1 : d1 ∧ α2 : d ∧ broadcastable(d1, d)

(α1)⊕ (α2) : d
Conv-ArrBinOpR∃d2 | α2 : d2 ∧ α1 : d ∧ broadcastable(d2, d)

Since there are two rules that can type check the expression (α1) ⊕ (α2) (ArrayBinOpL and Array-
BinOpR), there are two disjoint conclusions that can be drawn from (α1)⊕ (α2) : d. At least one of the conclu-
sions must be true. We split Conv-ArrBinOp into two individual rules for ease of use: Conv-ArrBinOpL
and Conv-ArrBinOpR. These two rules are not valid in isolation. Every proof case that uses the Conv-
ArrBinOpL type rule must also show that their conclusion holds when the Conv-ArrBinOpR type rule is
used instead (and vice versa).

15

4.2 Array Expressions Type Soundness

Before we can prove the type soundness of SmallerSpace, we must first prove that array expressions are type
sound. In order to do this, we must show that array expressions satisfy both progress and preservation.

4.2.1 Array Expressions Progress

Theorem. A typed array expression α is either an array literal (α ∈ A) or can take an evaluation step to
some α′. The theorem is formally stated below:

α /∈ A α : d
Array-Progress∃α′ | α → α′

The progress theorem is paired with the following inductive hypothesis:

αi ⊂ α αi /∈ A α : d
Array-ProgHyp∃α′

i | αi → α′
i

We will demonstrate that array expressions satisfy the progress theorem through proof by induction.

Case 1: α ∈ A. If α ∈ A, α is an array literal already and does not need to be further evaluated. The
progress theorem holds for case 1.

Case 2: α = (α1)⊕ (α2) and α1 /∈ A.

α1 ⊂ (α1)⊕ (α2) α1 /∈ A (α1)⊕ (α2) : d
Array-ProgHyp∃α′

1 | α1 → α′
1

E-PropArrBinOpL∃α′
1 | (α1)⊕ (α2) → (α′

1)⊕ (α2)

Since (α1)⊕ (α2) can be further evaluated to (α′
1)⊕ (α2), progress holds for this case.

Case 3: α = (α1)⊕ (α2) and α2 /∈ A. Similar to case 2.

α1 ⊂ (α1)⊕ (α2) α2 /∈ A (α1)⊕ (α2) : d
Array-ProgHyp∃α′

2 | α2 → α′
2

E-PropArrBinOpR∃α′
2 | (α1)⊕ (α2) → (α1)⊕ (α′

2)

Since (α1)⊕ (α2) can be further evaluated to (α1)⊕ (α′
2), progress holds for this case.

Case 4: α = (α1)⊕ (α2) and α1, α2 ∈ A.

(α1)⊕ (α2) : d
Conv-ArrBinOpL∃d1 | α1 : d1 ∧ α2 : d ∧ broadcastable(d1, d) α1, α2 ∈ A

E-ArrBinOpR∃a3 : d | (α1)⊕ (α2) → a3

Since Conv-ArrBinOpL is used in the above proof, we must also show that the conclusion holds when
Conv-ArrBinOpR is used instead.

(α1)⊕ (α2) : d
Conv-ArrBinOpR∃d2 | α2 : d2 ∧ α1 : d ∧ broadcastable(d2, d) α1, α2 ∈ A

E-ArrBinOpL∃a3 : d | (α1)⊕ (α2) → a3

Regardless of whether Conv-ArrBinOpL or Conv-ArrBinOpR is used, we have shown that (α1)⊕ (α2)
evaluates to some a3 : d in this case. Therefore, progress holds for this case.

16

Case 5: α = matmul(α1, α2) and α1 /∈ A.

α1 ⊂ matmul(α1, α2) α1 /∈ A matmul(α1, α2) : d
Array-ProgHyp∃α′

1 | α1 → α′
1

E-PropArrMatMulL∃α′
1 | matmul(α1, α2) → matmul(α′

1, α2)

Since matmul(α1, α2) evaluates to matmul(α′
1, α2), progress holds for this case.

Case 6: α = matmul(α1, α2) and α2 /∈ A.

α2 ⊂ matmul(α1, α2) α2 /∈ A matmul(α1, α2) : d
Array-ProgHyp∃α′

2 | α2 → α′
2

E-PropArrMatMulR∃α′
2 | matmul(α1, α2) → matmul(α1, α

′
2)

Since matmul(α1, α2) evaluates to matmul(α1, α
′
2), progress holds for this case.

Case 7: α = matmul(α1, α2) and α1, α2 ∈ A.

matmul(α1, α2) : d
Conv-ArrayMatMul∃d1, d2, di|d = d1 × d2 ∧ α1 : d1 × di ∧ α2 : di × d2 α1, α2 ∈ A

E-ArrMatMul∃a3 : d1 × d2 | matmul(α1, α2) → a3

Since matmul(α1, α2) evaluates to some a3 : d1 × d2, progress holds for this case.

Summary. The seven cases that we prove progress for are comprehensive. In each case, we show that the
corresponding array expression can take an evaluation step given the inductive hypothesis. Therefore, we have
shown that the progress theorem holds for array expressions.

4.2.2 Array Expression Preservation

Theorem. A typed array expression α preserves its type after taking an evaluation step to α′. The theorem
is formally stated below:

α : d α → α′
Array-Preservation

α′ : d

The preservation theorem is paired with the following inductive hypothesis:

αi ⊂ α αi → α′
i αi : d

Array-PresHyp
α′
i : d

We will demonstrate that array expressions satisfy the preservation theorem through proof by structural
induction. We will utilize the same cases that we utilized in the progress proof for array expressions.

Case 1: α ∈ A. If α ∈ A, α is an array literal already and cannot be evaluated further. Therefore, the
preservation theorem does not apply.

Case 2: α = (α1)⊕ (α2) and α1 /∈ A.

α1 /∈ A
(α1)⊕ (α2) : d

Conv-ArrBinOpL∃d1 | α1 : d1 ∧ α2 : d ∧ broadcastable(d1, d)
Array-Progress∃α′

1 | α1 → α′
1

E-PropArrBinOpL∃α′
1 | (α1)⊕ (α2) → (α′

1)⊕ (α2)

α2 : d ∃d1 | broadcastable(d1, d)
α1 ⊂ (α1)⊕ (α2) ∃α′

1 | α1 → α′
1 ∃d1 | α1 : d1

Array-PresHyp∃α′
1, d1 | α′

1 : d1
ArrayBinOpR∃α′

1 | (α′
1)⊕ (α2) : d

17

Since Conv-ArrBinOpL is used in the above proof, we must also show that the conclusion holds when
Conv-ArrBinOpR is used instead.

α1 /∈ A
(α1)⊕ (α2) : d

Conv-ArrBinOpR∃d2 | α1 : d ∧ α2 : d2 ∧ broadcastable(d2, d)
Array-Progress∃α′

1 | α1 → α′
1

E-PropArrBinOpL∃α′
1 | (α1)⊕ (α2) → (α′

1)⊕ (α2)

∃d2 | α2 : d2 ∃d2 | broadcastable(d2, d)
α1 ⊂ (α1)⊕ (α2) ∃α′

1 | α1 → α′
1 α1 : d

Array-PresHyp∃α′
1 | α′

1 : d
ArrayBinOpL∃α′

1 | (α′
1)⊕ (α2) : d

We have shown that (α1) ⊕ (α2) → (α′
1) ⊕ (α2) and (α′

1) ⊕ (α2) : d. (α1) ⊕ (α2) also has the type d.
Therefore, preservation is satisfied for this case.

Case 3: α = (α1)⊕ (α2) and α2 /∈ A. Similar to case 2.

α2 /∈ A
(α1)⊕ (α2) : d

Conv-ArrBinOpL∃d1 | α1 : d1 ∧ α2 : d ∧ broadcastable(d1, d)
Array-Progress∃α′

2 | α2 → α′
2

E-PropArrBinOpR∃α′
2 | (α1)⊕ (α2) → (α1)⊕ (α′

2)

∃d1 | α1 : d1 ∃d1 | broadcastable(d1, d)
α2 ⊂ (α1)⊕ (α2) ∃α′

2 | α2 → α′
2 α2 : d

Array-PresHyp∃α′
2 | α′

2 : d
ArrayBinOpR∃α′

2 | (α1)⊕ (α′
2) : d

Since Conv-ArrBinOpL is used in the above proof, we must also show that the conclusion holds when
Conv-ArrBinOpR is used instead.

α2 /∈ A
(α1)⊕ (α2) : d

Conv-ArrBinOpR∃d2 | α1 : d ∧ α2 : d2 ∧ broadcastable(d2, d)
Array-Progress∃α′

2 | α2 → α′
2

E-PropArrBinOpR∃α′
2 | (α1)⊕ (α2) → (α1)⊕ (α′

2)

α1 : d ∃d2 | broadcastable(d2, d)
α2 ⊂ (α1)⊕ (α2) ∃α′

2 | α2 → α′
2 α2 : d

Array-PresHyp∃α′
2, d2 | α′

2 : d2
ArrayBinOpL∃α′

2 | (α1)⊕ (α′
2) : d

We have shown that (α1) ⊕ (α2) → (α1) ⊕ (α′
2) and (α1) ⊕ (α′

2) : d. (α1) ⊕ (α2) also has the type d.
Therefore, preservation is satisfied for this case.

Case 4: α = (α1)⊕ (α2) and α1, α2 ∈ A. We know from case 4 of the progress proof that (α1)⊕ (α2) → a3
and that a3 : d. Since (α1)⊕ (α2) also has the dimension d, the preservation theorem is satisfied for this case.

Case 5: α = matmul(α1, α2) and α1 /∈ A.

α1 /∈ A
matmul(α1, α2) : d

Conv-ArrayMatMul∃d1, d2, di | d = d1 × d2 ∧ α1 : d1 × di ∧ α2 : di × d2
ArrayProgress∃α′

1 | α1 → α′
1

E-PropArrMatMulL∃α′
1 | matmul(α1, α2) → matmul(α′

1, α2)

∃d1, d2 | d = d1 × d2

∃di, d2 | α2 : di × d2

α1 ∈ matmul(α1, α2) ∃α′
1 | α1 → α′

1 ∃d1, di | α1 : d1 × di
Array-PresHyp

∃α′
1, d1, di | α′

1 : d1 × di
ArrayMatMul

∃α′
1, d1, d2 | matmul(α′

1, α2) : d1 × d2
Subst

∃α′
1 | matmul(α′

1, α2) : d

Since matmul(α1, α2) : d, matmul(α1, α2) → matmul(α′
1, α2), and matmul(α′

1, α2) : d, preservation holds for
this case.

18

Case 6: α = matmul(α1, α2) and α2 /∈ A.

α2 /∈ A
matmul(α1, α2) : d

Conv-ArrayMatMul∃d1, d2, di | d = d1 × d2 ∧ α1 : d1 × di ∧ α2 : di × d2
Array-Progress∃α′

2 | α2 → α′
2

E-PropArrMatMulL∃α′
2 | matmul(α1, α2) → matmul(α1, α

′
2)

∃d1, d2 | d = d1 × d2

∃d1, di | α1 : d1 × di

α2 ∈ matmul(α1, α2) ∃α′
2 | α2 → α′

2 ∃d2, di | α2 : di × d2
Array-PresHyp

∃α′
2, d2, di | α′

2 : di × d2
ArrayMatMul

∃α′
2, d1, d2 | matmul(α1, α

′
2) : d1 × d2

Subst
∃α′

2 | matmul(α1, α
′
2) : d

Since matmul(α1, α2) : d, matmul(α1, α2) → matmul(α1, α
′
2), and matmul(α1, α

′
2) : d, preservation holds for

this case.

Case 7: α = matmul(α1, α2) and α1, α2 ∈ A. In case 7 of the progress proof, we showed thatmatmul(α1, α2) →
α3, and that α3 : d1 × d2. We also showed that d = d1 × d2. Therefore, α3 : d. Since matmul(α1, α2) : d,
matmul(α1, α2) → α3, and α3 : d, preservation holds for this case.

Summary. The seven cases that we prove preservation for are comprehensive. In each case, we show that, if
the corresponding array expression can be evaluated further, the type of the array expression remains unchanged
after evaluation. The preservation theorem holds for array expressions.

19

4.3 Progress

Theorem. A typed value v is either a basic value of the form τ(a) or can take an evaluation step to some v′.
The theorem is more formally stated below:

v /∈ vB v : (τ, d)
Progress∃v′ | v → v′

We will utilize structural induction to prove the progress theorem. Our inductive hypothesis is as follows:

vi ⊂ v vi /∈ vB v : (τ, d)
Prog-IndHyp∃v′i | vi → v′i

We will show that the theorem of progress holds for each SmallerSpace rule that can type check a value.

4.3.1 Init Progress

α : d× channel count(τ)
Init

τ(α) : (τ, d)

Case 1: α ∈ A. If α is an array literal, τ(α) is a basic value and cannot be evaluated further. Therefore, the
progress theorem holds for this case.

Case 2: α /∈ A. We have proven Array-Progress. As such, we know that if α /∈ A, there must exist some
α′ such that α → α′. Through E-PropInit, we can conlude that τ(α) → τ(α′). Therefore, Value-Progress
holds for case 2.

Summary. Since the progress theorem holds for all cases of the Init rule, the Init rule satisfies the progress
theorem. Any non-basic value that is type checked by the Init rule can be further evaluated.

4.3.2 Cast Progress

v : (τ1, d) path exists(τ1, τ2)
Cast

τ2(v) : (τ2, d)

Case 1: v /∈ vB. If v /∈ vB , we can conclude by the inductive hypothesis and E-PropCast that there exists
some v′ such that τ2(v) → τ2(v

′).

Case 2: v ∈ vB, τ1 = τ2.

v ∈ vB

τ2(v) : (τ2, d)
Conv-Cast∃τ1 | v : (τ1, d)

Conv-BasicInit∃τ1, a1 : d× channel count(τ1) | v = τ1(a1)

τ1 = τ2
E-CastTrivial

τ1(τ1(a1)) → τ1(a1)
Subst

τ2(τ1(a1)) → τ2(a1)
Subst∃τ1, a1 : d× channel count(τ1) | τ2(v) → τ2(a1)

Since τ2(v) → τ2(a1), progress is fulfilled for this case.

Case 3: v ∈ vB, τ1 adjacent to τ2. If τ1 and τ2 are adjacent in the casting graph and path exists(τ1, τ2),
there exists a corresponding adjacent casting rule. A list of these rules can be found in Fig. 7. We can apply
these rules to show that there exists some α such that τ2(v) → τ2(α). This shows that Value-Progress holds
for this case. We will show one example of this case, where τ1 = τLight and τ2 = τLMS:

v ∈ vB

τ1 = τLight

τ2(v) : (τ2, d)
Conv-Cast

∃τ1 | v : (τ1, d)
Subst

v : (τLight, d)
Conv-BasicInit

∃a : d × channel count(τLight) | v = τLight(a)

τ2 = τLMS
E-Light2LMS

τLMS(τLight(a)) → τLMS(matmul(a,MLight2LMS))
Subst

τ2(τLight(a)) → τ2(matmul(a,MLight2LMS))
Subst

τ2(v) → τ2(matmul(a,MLight2LMS))

Since τ2(v) → τ2(matmul(a,MLight2LMS)), the progress theorem holds for this sub-case. Other instances of
this case (i.e. τ1 = τXYZ, τ2 = τsRGB) come to the same conclusion.

20

Case 4: v ∈ vB, τ1 not adjacent to τ2. From Conv-Cast, we know that path exists(τ1, τ2). We also know
that in this case there is at least 1 hop that needs to be made between τ1 and τ2 on the casting graph. Since the
casting graph is a directed forest, there is a unique shortest path between τ1 and τ2. Therefore, E-CastHop
will be able to find some τi such that τ2(v) → τ2(τi(v)). We will show one example where τ1 = τLight and
τ2 = τXYZ:

τ2 = τXYZ

path exists(τLight, τXYZ) 1 ≤ distance(τLMS, τXYZ) ≤ distance(τLight, τXYZ) distance(τLight, τLMS) = 1
E-CastHop

τXYZ(τLight(a)) → τXYZ(τLMS(τLight(a)))
Subst

τ2(τLight(a)) → τ2(τLMS(τLight(a)))

τ2(τLight(a)) → τ2(τLMS(τLight(a)))

v ∈ vB

τ1 = τLight

τ2(v) : (τ2, d)
Conv-Cast∃τ1 | v : (τ1, d)
Subst

v : (τLight, d)
Conv-BasicInit∃a× channel count(τLight) | v = τLight(a)
Subst

τ2(v) → τ2(τLMS(v))

Since τ2(v) → τ2(τLMS(v)), the progress theorem holds for this sub-case. Other instances of this case (i.e.
τ1 = τLMS, τ2 = τsRGB) come to the same conclusion.

Summary. Since the progress theorem holds for all cases of the Cast rule, the Cast rule satisfies the progress
theorem. Any non-basic value that is type checked by the Cast rule can be further evaluated.

4.3.3 TristimulusAdd Progress

v1, v2 : (τtristimulus, d)
TristimulusAdd

v1 + v2 : (τtristimulus, d)

Case 1: v1 /∈ vB and/or v2 /∈ vB. By the inductive hypothesis, there must exist some v′1 such that v1 → v′1
or some v′2 such that v2 → v′2. By E-PropBinOpL or E-PropBinOpR, we can conclude that v1+v2 → v′1+v2
or v1 + v2 → v1 + v′2. Therefore, progress holds for this case.

Case 2: v1, v2 ∈ vB. We can see from the Conv-TristimulusAdd rule that both v1 and v2 must share the
same shaped type. A different evaluation rule may apply to the value depending on what tristimulus type v1
and v2 share. We will exhaustively cover every possible tristimulus type case.

Case 2-a: v1, v2 : (τXYZ, d)

v1 ∈ vB

v1 + v2 : (τXYZ, d)
Conv-TristimulusAdd

v1 : (τXYZ, d)
Conv-BasicInit∃a1 : d× channel count(τXYZ) | v1 = τXYZ(a1)

v2 ∈ vB

v1 + v2 : (τXYZ, d)
Conv-TristimulusAdd

v2 : (τXYZ, d)
Conv-BasicInit∃a2 : d× channel count(τXYZ) | v2 = τXYZ(a2)

E-XYZAdd
τXYZ(a1) + τXYZ(a2) → τXYZ((a1) + (a2)) ∃a1 : d × channel count(τXYZ) | v1 = τXYZ(a1)

Subst
∃a1 : d × channel count(τXYZ) | v1 + τXYZ(a2) → τXYZ((a1) + (a2))

∃a1 : d × channel count(τXYZ) | v1 + τXYZ(a2) → τXYZ((a1) + (a2)) ∃a2 : d × channel count(τXYZ) | v2 = τXYZ(a2)
Subst

∃a1, a2 : d × channel count(τXYZ) | v1 + v2 → τXYZ((a1) + (a2))

Since v1 + v2 → τXYZ((a1) + (a2)), progress holds for this case.

21

Case 2-b: v1, v2 : (τLMS, d)

v1 ∈ vB

v1 + v2 : (τLMS, d)
Conv-TristimulusAdd

v1 : (τLMS, d)
Conv-BasicInit∃a1 : d× channel count(τLMS) | v1 = τLMS(a1)

v2 ∈ vB

v1 + v2 : (τLMS, d)
Conv-TristimulusAdd

v2 : (τLMS, d)
Conv-BasicInit∃a2 : d× channel count(τLMS) | v2 = τLMS(a2)

E-LMSAdd
τLMS(a1) + τLMS(a2) → τLMS((a1) + (a2)) ∃a1 : d × channel count(τLMS) | v1 = τLMS(a1)

Subst
∃a1 : d × channel count(τLMS) | v1 + τLMS(a2) → τLMS((a1) + (a2))

∃a1 : d × channel count(τLMS) | v1 + τLMS(a2) → τLMS((a1) + (a2)) ∃a2 : d × channel count(τLMS) | v2 = τLMS(a2)
Subst

∃a1, a2 : d × channel count(τLMS) | v1 + v2 → τLMS((a1) + (a2))

Since v1 + v2 → τLMS((a1) + (a2)), progress holds for this case.

Case 2-c: v1, v2 : (τsRGB, d)

v1 ∈ vB

v1 + v2 : (τsRGB, d)
Conv-TristimulusAdd

v1 : (τsRGB, d)
Conv-BasicInit∃a1 : d× channel count(τsRGB) | v1 = τsRGB(a1)

v2 ∈ vB

v1 + v2 : (τsRGB, d)
Conv-TristimulusAdd

v2 : (τsRGB, d)
Conv-BasicInit∃a2 : d× channel count(τsRGB) | v2 = τsRGB(a2)

E-sRGBAdd
τsRGB(a1) + τsRGB(a2) → τsRGB((((((a1)/([255])) ∗ ∗(γτsRGB

)) + (((a2)/([255])) ∗ ∗((γτsRGB
)))) ∗ ∗(γ−1

τsRGB
)) × ([255]))

v1 : (τsRGB, d) τsRGB(a1) + τsRGB(a2) → τsRGB((((((a1)/([255])) ∗ ∗(γτsRGB
)) + (((a2)/([255])) ∗ ∗((γτsRGB

)))) ∗ ∗(γ−1
τsRGB

)) × ([255]))
Subst

∃a1 : d × channel count(τsRGB) | v1 + τsRGB(a2) → τsRGB((((((a1)/([255])) ∗ ∗(γτsRGB
)) + (((a2)/([255])) ∗ ∗((γτsRGB

)))) ∗ ∗(γ−1
τsRGB

)) × ([255]))

v2 : (τsRGB, d) v1 + τsRGB(a2) → τsRGB((((((a1)/([255])) ∗ ∗(γτsRGB
)) + (((a2)/([255])) ∗ ∗((γτsRGB

)))) ∗ ∗(γ−1
τsRGB

)) × ([255]))
Subst

∃a1, a2 : d × channel count(τsRGB) | v1 + v2 → τsRGB((((((a1)/([255])) ∗ ∗(γτsRGB
)) + (((a2)/([255])) ∗ ∗((γτsRGB

)))) ∗ ∗(γ−1
τsRGB

)) × ([255]))

Since v1 + v2 → τsRGB(...), progress holds for this case.

Summary. Since the progress theorem holds for all cases of theTristimulusAdd rule, theTristimulusAdd
rule satisfies the progress theorem. Any non-basic value that is type checked by the TristimulusAdd rule can
be further evaluated.

4.3.4 LightAdd Progress

v1, v2 : (τLight, d)
LightAdd

v1 + v2 : (τLight, d)

Case 1: v1 /∈ vB and/or v2 /∈ vB. By the inductive hypothesis, there must exist some v′1 such that v1 → v′1
or some v′2 such that v2 → v′2. By E-PropBinOpL or E-PropBinOpR, we can conclude that v1+v2 → v′1+v2
or v1 + v2 → v1 + v′2. Therefore, progress holds for this case.

22

Case 2: v1, v2 ∈ vB.

v1 ∈ vB

v1 + v2 : (τLight, d)
Conv-LightAdd

v1 : (τLight, d)
Conv-BasicInit∃a1 : d× channel count(τLight) | v1 = τLight(a1)

v2 ∈ vB

v1 + v2 : (τLight, d)
Conv-LightAdd

v2 : (τLight, d)
Conv-BasicInit∃a2 : d× channel count(τLight) | v2 = τLight(a2)

E-LightAdd
τLight(a1) + τLight(a2) → τLight((a1) + (a2)) ∃a1 : d × channel count(τLight) | v1 = τLight(a1)

Subst
∃a1 : d × channel count(τLight) | v1 + τLight(a2) → τLight((a1) + (a2))

∃a1 : d × channel count(τLight) | v1 + τLight(a2) → τLight((a1) + (a2)) ∃a2 : d × channel count(τLight) | v2 = τLight(a2)
Subst

∃a1, a2 : d × channel count(τLight) | v1 + v2 → τLight((a1) + (a2))

Since v1 + v2 → τLight((a1) + (a2)), progress holds for this case.

Summary. Since the progress theorem holds for both cases of the LightAdd rule, the LightAdd rule
satisfies the progress theorem. Any non-basic value that is type checked by the LightAdd rule can be further
evaluated.

4.3.5 Reflect Progress

v1 : (τLight, d) v2 : (τReflectance, d)
Reflect

v1 × v2 : (τLight, d)

Case 1: v1 /∈ vB and/or v2 /∈ vB. By the inductive hypothesis, there must exist some v′1 such that v1 → v′1
or some v′2 such that v2 → v′2. By E-PropBinOpL or E-PropBinOpR, we can conclude that v1×v2 → v′1×v2
or v1 × v2 → v1 × v′2. Therefore, progress holds for this case.

Case 2: v1, v2 /∈ vB.

v1 ∈ vB

v1 × v2 : (τLight, d)
Conv-Reflect

v1 : (τLight, d)
Conv-BasicInit∃a1 : d× channel count(τLight) | v1 = τLight(a1)

v2 ∈ vB

v1 × v2 : (τLight, d)
Conv-Reflect

v2 : (τReflectance, d)
Conv-BasicInit∃a2 : d× channel count(τReflectance) | v2 = τReflectance(a2)

E-Reflect
τLight(a1) × τReflectance(a2) → τLight((a1) × (a2)) ∃a1 : d × channel count(τLight) | v1 = τLight(a1)

Subst
∃a1 : d × channel count(τLight) | v1 × τReflectance(a2) → τLight((a1) + (a2))

∃a1 : d × channel count(τLight) | v1 × τReflectance(a2) → τLight((a1) × (a2)) ∃a2 : d × channel count(τReflectance) | v2 = τLight(a2)
Subst

∃a1 : d × channel count(τLight), a2 : d × channel count(τReflectance) | v1 × v2 → τLight((a1) × (a2))

Since v1 × v2 → τLight((a1)× (a2)), progress holds for this case.

Summary. Since the progress theorem holds for both cases of the LightAdd rule, the LightAdd rule
satisfies the progress theorem. Any non-basic value that is type checked by the LightAdd rule can be further
evaluated.

4.3.6 Progress Summary

We have shown that each SmallerSpace type rule fulfills the progress theorem by the principle of induction.
Therefore, any type checked SmallerSpace non-basic value can be evaluated further. SmallerSpace satisfies
the progress theorem.

23

4.4 Preservation Theorem

Theorem. A non-basic typed value v can be evaluated to v′ according to the progress theorem. v : (τ, d)
implies v′ : (τ, d). The theorem is more formally stated below:

v : (τ, d) v → v′
Preservation

v′ : (τ, d)

We will utilize structural induction to prove the preservation theorem. The inductive hypothesis is as
follows:

vi ⊂ v vi : (τi, di) vi → v′i
Pres-IndHyp

v′i : (τi, di)

4.4.1 Init Preservation

α : d× channel count(τ)
Init

τ(α) : (τ, d)

Case 1: α ∈ A. If α is an array literal, τ(α) is a basic value and cannot be evaluated further. Therefore, the
preservation theorem holds for this case.

Case 2: α /∈ A.

α /∈ A
Array-Progress∃α′ | α → α′

τ(α) : (τ, d)
Conv-Init

α : d× channel count(τ)
Array-Preservation∃α′ : d× channel count(τ) | α → α′

E-PropInit∃α′ : d× channel count(τ) | τ(α) → τ(α′)

α′ : d× channel count(τ)
Init

τ(α′) : (τ, d)

Since τ(α) : (τ, d), τ(α) → τ(α′), and τ(α′) : (τ, d), preservation holds for this case.

Summary. Preservation holds for both cases of the Init rule. Any non-basic type that Init type checks can
be evaluated further (Progress). The type of the non-basic value is preserved after the evaluation step.

4.4.2 Cast Preservation

v : (τ1, d) path exists(τ1, τ2)
Cast

τ2(v) : (τ2, d)

Case 1: v /∈ vB If v /∈ vB , we know that there exists some v′ such that τ2(v) → τ2(v
′) by the progress

theorem. By the inductive hypothesis, v has the same type as v′.

v : (τ1, d) path exists(τ1, τ2)
Cast

τ2(v) : (τ2, d)

v′ : (τ1, d) path exists(τ1, τ2)
Cast

τ2(v
′) : (τ2, d)

Since τ2(v) : (τ2, d), τ2(v) → τ2(v
′), and τ2(v

′) : (τ2, d), preservation holds for this case.

24

case 2: v ∈ vB, τ1 = τ2.

v ∈ vB

τ2(v) : (τ2, d)
Conv-Cast∃τ1 | v : (τ1, d)

Conv-BasicInit∃τ1, a1 : d× channel count(τ1) | v = τ1(a1)

τ1 = τ2
E-CastTrivial

τ1(τ1(a1)) → τ1(a1)
Subst

τ2(τ1(a1)) → τ2(a1)
Subst∃τ1, a1 : d× channel count(τ1) | τ2(v) → τ2(a1)

a1 : d× channel count(τ1) τ1 = τ2
Subst

a1 : d× channel count(τ2)
Init

τ2(a1) : (τ2, d)

Since τ2(v) : (τ2, d), τ2(v) → τ2(a1), and τ2(a1) : (τ2, d), preservation holds for this case.

Case 3: v ∈ vB, τ1 adjacent to τ2. We know that there exists a corresponding adjacent casting rule for
τ1 and τ2. We will show that preservation holds for τ1 = τLight and τ2 = τLMS. Other proofs for this case are
similar in form.

v ∈ vB

τ1 = τLight

τ2(v) : (τ2, d)
Conv-Cast

∃τ1 | v : (τ1, d)
Subst

v : (τLight, d)
Conv-BasicInit

∃a : d × channel count(τLight) | v = τLight(a)

τ2 = τLMS
E-Light2LMS

τLMS(τLight(a)) → τLMS(matmul(a,MLight2LMS))
Subst

τ2(τLight(a)) → τLMS(matmul(a,MLight2LMS))
Subst

τ2(v) → τLMS(matmul(a,MLight2LMS))

τ2 = τLMS

channel count(τLMS) = 3

MLight2LMS : 89 × 3

a : d × channel count(τLight) channel count(τLight) = 89
Subst

a : d × 89
E-ArrMatMul

matmul(a,MLight2LMS) : d × 3
Subst

matmul(a,MLight2LMS) : d × channel count(τLMS)
Init

τLMS(matmul(a,MLight2LMS)) : (τLMS, d)
Subst

τLMS(matmul(a,MLight2LMS)) : (τ2, d)

Since τ2(v) : (τ2, d), τ2(v) → τLMS(matmul(a,MLight2LMS)), and τLMS(matmul(a,MLight2LMS)) : (τ2, d),
preservation holds for this sub-case. Other sub-cases (i.e., τ1 = τXYZ and τ2 = τLMS) come to the same
conclusion.

Case 4: v ∈ vB, τ1 not adjacent to τ2. Like case 4 of the Cast progress proof, we will demonstrate this
case for when τ1 = τLight and τ2 = τXYZ. The proof for other pairs of types are similar in form.

τ2 = τXYZ

path exists(τLight, τXYZ) 1 ≤ distance(τLMS, τXYZ) ≤ distance(τLight, τXYZ) distance(τLight, τLMS) = 1
E-CastHop

τXYZ(τLight(a)) → τXYZ(τLMS(τLight(a)))
Subst

τ2(τLight(a)) → τ2(τLMS(τLight(a)))

τ2(τLight(a)) → τ2(τLMS(τLight(a)))

v ∈ vB

τ1 = τLight

τ2(v) : (τ2, d)
Conv-Cast∃τ1 | v : (τ1, d)
Subst

v : (τLight, d)
Conv-BasicInit∃a× channel count(τLight) | v = τLight(a)
Subst

τ2(v) → τ2(τLMS(v))

v : (τ1, d)

τ1 = τLight path exists(τLight, τLMS)
Subst

path exists(τ1, τLMS)
Cast

τLMS(v) : (τLMS, d)

τ2 = τXYZ path exists(τLMS, τXYZ)
Subst

path exists(τLMS, τ2)
Cast

τ2(τLMS(v)) : (τ2, d)

Since τ2(v) : (τ2, d), τ2(v) → τ2(τLMS(v)), and τ2(τLMS(v)) : (τ2, d), preservation holds for this sub-case.
Other sub-cases (i.e., τ1 = τLMS and τ2 = τsRGB) come to the same conclusion.

Summary. Preservation holds for all cases of the Cast rule. Any non-basic type that Cast type checks can
be evaluated further (Progress). The type of the non-basic value is preserved after the evaluation step.

25

4.4.3 TristimulusAdd Preservation

v1, v2 : (τtristimulus, d)
TristimulusAdd

v1 + v2 : (τtristimulus, d)

Case 1: v1 /∈ vB and/or v2 /∈ vB. We know from case 1 of the TristimulusAdd progress proof that there
exists some v′1 or v′2 such that v1 + v2 → v′1 + v2 or v1 + v2 → v1 + v′2. By the inductive hypothesis we can
conclude that v′1 and v′2 have the same shaped types as v1 and v2. Therefore, by the TristimulusAdd rule,
v1 + v2 is the same type as v′1 + v2 or v1 + v′2. Thus, preservation holds for case 1.

Case 2: v1, v2 ∈ vB. We can see from the Conv-TristimulusAdd rule that both v1 and v2 must share the
same shaped type. A different evaluation rule may apply to the value depending on what tristimulus type v1
and v2 share. We will exhaustively cover every possible tristimulus type case.

Case 2-a: v1, v2 : (τXYZ, d) We know from case 2-a of the progress proof for TristimulusAdd that ∃a1, a2 :
d× channel count(τXYZ) | v1 + v2 → τXYZ((a1) + (a2)).

a1, a2 : d × channel count(τXYZ)
TrivialBroadcast

broadcastable(d × channel count(τXYZ), d × channel count(τXYZ))
ArrayBinOpR

(a1) + (a2) : d × channel count(τXYZ)
Init

τXYZ((a1) + (a2)) : (τXYZ, d)

Since v1 + v2 : (τXYZ, d), v1 + v2 → τXYZ((a1) + (a2)), and τXYZ((a1) + (a2)) : (τXYZ, d), preservation holds
for this case.

Case 2-b: v1, v2 : (τLMS, d) We know from case 2-b of the progress proof for TristimulusAdd that ∃a1, a2 :
d× channel count(τLMS) | v1 + v2 → τLMS((a1) + (a2)).

a1, a2 : d × channel count(τLMS)
TrivialBroadcast

broadcastable(d × channel count(τLMS), d × channel count(τLMS))
ArrayBinOpR

(a1) + (a2) : d × channel count(τLMS)
Init

τLMS((a1) + (a2)) : (τLMS, d)

Since v1 + v2 : (τLMS, d), v1 + v2 → τLMS((a1) + (a2)), and τLMS((a1) + (a2)) : (τLMS, d), preservation holds
for this case.

Case 3-b: v1, v2 : (τsRGB, d) We know from case 2-c of the progress proof for TristimulusAdd that
∃a1, a2 : d×channel count(τsRGB) | v1+v2 → τsRGB((((((a1)/([255]))∗∗(γτsRGB))+(((a2)/([255]))∗∗((γτsRGB))))∗
∗(γ−1

τsRGB
))× ([255])).

In order to show that τsRGB((((((a1)/([255]))∗∗(γτsRGB
))+(((a2)/([255]))∗∗((γτsRGB

))))∗∗(γ−1
τsRGB

))×([255])) :
(τsRGB, d), we must show that (((((a1)/([255]))∗∗(γτsRGB

))+(((a2)/([255]))∗∗((γτsRGB
))))∗∗(γ−1

τsRGB
))×([255]) :

d× channel count(τsRGB).
All operations in the above array expression are binary array operations, and can be evaluated by the rules

E-ArrBinOpL and E-ArrBinOpR. These rules stipulate that the left operand must be broadcastable to
the right operand, or vice versa. a1 and a2 both have the same dimension, d × channel count(τsRGB). [255],
γτsRGB

, γ−1
τsRGB

all have the dimension of 1, and thus can be broadcast to d × channel count(τsRGB) by the
ScalarBroadcast rule.

The output of the rules E-ArrBinOpL and E-ArrBinOpR has the dimension type of the dimension being
broadcast to. (In broadcastable(d1, d2), d1 is being broadcast to d2.) Therefore, the final dimension type of
(((((a1)/([255])) ∗ ∗(γτsRGB)) + (((a2)/([255])) ∗ ∗((γτsRGB)))) ∗ ∗(γ−1

τsRGB
))× ([255]) is d× channel count(τsRGB).

(((((a1)/([255])) ∗ ∗(γτsRGB
)) + (((a2)/([255])) ∗ ∗((γτsRGB

)))) ∗ ∗(γ−1
τsRGB

)) × ([255]) : d × channel count(τsRGB)
Init

τsRGB((((((a1)/([255])) ∗ ∗(γτsRGB
)) + (((a2)/([255])) ∗ ∗((γτsRGB

)))) ∗ ∗(γ−1
τsRGB

)) × ([255])) : (τsRGB, d)

Since v1 + v2 : (τsRGB, d), v1 + v2 → τsRGB((((((a1)/([255])) ∗ ∗(γτsRGB)) + (((a2)/([255])) ∗ ∗((γτsRGB)))) ∗
∗(γ−1

τsRGB
))×([255])), and τsRGB((((((a1)/([255]))∗∗(γτsRGB

))+(((a2)/([255]))∗∗((γτsRGB
))))∗∗(γ−1

τsRGB
))×([255])) :

(τsRGB, d), preservation holds for this case.

Summary. Preservation holds for all cases of the TristimulusAdd rule. Any non-basic type that Tristim-
ulusAdd type checks can be evaluated further (Progress). The type of the non-basic value is preserved after
the evaluation step.

26

4.4.4 LightAdd Preservation

v1, v2 : (τLight, d)
LightAdd

v1 + v2 : (τLight, d)

Case 1: v1 /∈ vB. Since v1 is not in vB , we know from the progress theorem that there exists some v′1 such
that v1 → v′1. Additionally, from the preservation inductive hypothesis, we know that v′1 is of the same type as
v1.

v1 /∈ vB
Progress∃v′1 | v1 → v′1

E-PropBinOpL∃v′1 | v1 + v2 → v′1 + v2

v1 + v2 : (τLight, d)
Conv-LightAdd

v1 : (τLight, d) v1 → v′1
Pres-IndHyp

v′1 : (τLight, d)

v1 + v2 : (τLight, d)
Conv-LightAdd

v2 : (τLight, d)
LightAdd

v′1 + v2 : (τLight, d)

Since v1 + v2 : (τLight, d), v1 + v2 → v′1 + v2, and v′1 + v2 : (τLight, d), preservation holds for this case.

Case 2: v2 /∈ vB. Since v2 is not in vB , we know from the progress theorem that there exists some v′2 such
that v2 → v′2. Additionally, from the preservation inductive hypothesis, we know that v′2 is of the same type as
v2.

v2 /∈ vB
Progress∃v′2 | v2 → v′2

E-PropBinOpR∃v′2 | v1 + v2 → v1 + v′2

v1 + v2 : (τLight, d)
Conv-LightAdd

v2 : (τLight, d) v2 → v′2
Pres-IndHyp

v′2 : (τLight, d)

v1 + v2 : (τLight, d)
Conv-LightAdd

v1 : (τLight, d)
LightAdd

v1 + v′2 : (τLight, d)

Since v1 + v2 : (τLight, d), v1 + v2 → v1 + v′2, and v1 + v′2 : (τLight, d), preservation holds for this case.

Case 3: v1, v2 /∈ vB. For this case, the proofs from both case 1 and case 2 apply. Therefore, preservation
holds for this case.

Case 4: v1, v2 ∈ vB. Case 2 of the progress proof for the LightAdd rule has the same stipulations as this case.
We know from case 2 of the progress proof that ∃a1, a2 : d×channel count(τLight) | v1+v2 → τLight((a1)+(a2)).

a1, a2 : d × channel count(τLight)
TrivialBroadcast

broadcastable(d × channel count(τLight), d × channel count(τLight))
ArrayBinOpR

(a1) + (a2) : d × channel count(τLight)
Init

τLight((a1) + (a2)) : (τLight, d)

Since v1+v2 : (τLight, d), v1+v2 → τLight((a1)+(a2)), and τLight((a1)+(a2)) : (τLight, d), preservation holds
for this case.

Summary. Preservation holds for all cases of the LightAdd rule. Any non-basic type that LightAdd type
checks can be evaluated further (Progress). The type of the non-basic value is preserved after the evaluation
step.

4.4.5 Reflect Preservation

v1 : (τLight, d) v2 : (τReflectance, d)
Reflect

v1 × v2 : (τLight, d)

27

Case 1: v1 /∈ vB. Since v1 is not in vB , we know from the progress theorem that there exists some v′1 such
that v1 → v′1. Additionally, from the preservation inductive hypothesis, we know that v′1 is of the same type as
v1.

v1 /∈ vB
Progress∃v′1 | v1 → v′1

E-PropBinOpL∃v′1 | v1 × v2 → v′1 × v2

v1 × v2 : (τLight, d)
Conv-Reflect

v1 : (τLight, d) v1 → v′1
Pres-IndHyp

v′1 : (τLight, d)

v1 × v2 : (τLight, d)
Conv-Reflect

v2 : (τReflectance, d)
Reflect

v′1 × v2 : (τLight, d)

Since v1 × v2 : (τLight, d), v1 × v2 → v′1 × v2, and v′1 × v2 : (τLight, d), preservation holds for this case.

Case 2: v2 /∈ vB. Since v2 is not in vB , we know from the progress theorem that there exists some v′2 such
that v2 → v′2. Additionally, from the preservation inductive hypothesis, we know that v′2 is of the same type as
v2.

v2 /∈ vB
Progress∃v′2 | v2 → v′2

E-PropBinOpR∃v′2 | v1 × v2 → v1 × v′2

v1 × v2 : (τLight, d)
Conv-Reflect

v2 : (τReflectance, d) v2 → v′2
Pres-IndHyp

v′2 : (τReflectance, d)

v1 × v2 : (τLight, d)
Conv-Reflect

v1 : (τLight, d)
Reflect

v1 × v′2 : (τLight, d)

Since v1 × v2 : (τLight, d), v1 × v2 → v1 × v′2, and v1 × v′2 : (τLight, d), preservation holds for this case.

Case 3: v1, v2 /∈ vB. For this case, the proofs from both case 1 and case 2 apply. Therefore, preservation
holds for this case.

Case 4: v1, v2 ∈ vB. We know from case 3 of the progress proof that ∃a1 : d × channel count(τLight), a2 :
d× channel count(τReflectance) | v1 × v2 → τLight((a1)× (a2)).

channel count(τLight) = 89 channel count(τReflectance) = 89
Subst

channel count(τLight) = channel count(τReflectance) a2 : d × channel count(τReflectance)
Subst

a2 : d × channel count(τLight)

a1, a2 : d × channel count(τLight)
TrivialBroadcast

broadcastable(d × channel count(τLight), d × channel count(τLight))
E-ArrBinOpR

(a1) × (a2) : d × channel count(τLight)
Init

τLight((a1) × (a2)) : (τLight, d)

Since v1×v2 : (τLight, d), v1×v2 → τLight((a1)× (a2)), and τLight((a1)× (a2)) : (τLight, d), preservation holds
for this case.

Summary. Preservation holds for all cases of the Reflect rule. Any non-basic type that Reflect type
checks can be evaluated further (Progress). The type of the non-basic value is preserved after the evaluation
step.

4.4.6 Preservation Summary

We have shown that each SmallerSpace type rule fulfills the preservation theorem by the principle of induc-
tion. Any type checked SmallerSpace value that can take an evaluation step preserves its type after said
evaluation step.

28

5 Equality Saturation Rewrite Rules

Tbl. 7 is a list of the rewrite rules used in our equality saturation optimizer. Part of the rules are adapted
from TASO [8], which investigates rewrite rules for tensor algebra containing up to four operators. We have
pruned rewrite rules that cause a substantial increase in equality saturation runtime. Rules involving the
exponentiation operator (Pow) are newly introduced by us.

add-associative (Add x (Add y z)) ↔ (Add (Add x y) z)
add-commutative (Add x y) ↔ (Add y x)
mul-associative (Mul x (Mul y z)) ↔ (Mul (Mul x y) z)
mul-commutative (Mul x y) ↔ (Mul y x)

matmul-is-associative (MatMul x (MatMul y z)) ↔ (MatMul (MatMul x y) z)
mul-distributes-over-add (Mul (Add x y) z) ↔ (Add (Mul x z) (Mul y z))
matmul-is-linear-over-add (MatMul x (Add y z)) ↔ (Add (MatMul x y) (MatMul x z))
pow-distributes-over-mul (Pow (Mul x y) z) ↔ (Mul (Pow x z) (Pow y z))
div-distributes-over-add (Div (Add x y) z) ↔ (Add (Div x z) (Div y z))

Table 7: Rewrite Rules

29

6 Benchmarking Programs in CoolerSpace

6.1 SpaceConv

The SpaceConv program converts an input image from sRGB space to opRGB space. CoolerSpace performs
type checking on the conversion operation (line 13) to ensure that the conversion between the input object’s type
and the destination type is valid (rule Cast from Fig. 2). CoolerSpace also abstracts away the complexity
of applying and removing gamma from sRGB and opRGB. This allows programmers to focus on the semantics
of manipulating an image’s color space without worrying about the implementation of color space conversion.

1 import coolerspace as cs
2 import sys
3
4 # Compilation Arguments
5 path = sys.argv[1]
6 shape_y = int(sys.argv[2])
7 shape_x = int(sys.argv[3])
8
9 # Inputs

10 srgb = cs.create_input("image", [shape_y, shape_x], cs.sRGB)
11
12 # Conversion from sRGB to opRGB
13 op = cs.opRGB(srgb)
14
15 # Compilation
16 cs.create_output(op)
17 cs.compile(path)

6.2 ColorBlindness

Original Deuteranopia Tritanopia

Figure 8: Color blindness simulation. Original image courtesy of Simon Amarasingham [5].

The ColorBlindness program takes as input an image in sRGB space and a projection matrix representing
a specific type of dichromatic color blindness, and outputs an image simulating the effects of color blindness.
The simulation algorithm is based on the the single-plane approach described by Viénot et al. [14].

Fig. 8 shows the output of the program for simulating Deuteranopia (a particular kind of “red-green blind-
ness” due to the missing of M cones on the retina), and Tritanopia (missing S cones and thus cannot correctly
perceive blue hues). As expected, red and green shades appear almost identical in the simulated Deuteranopia
image; the simulated Tritanopia image correctly shows that Tritanopes cannot correctly perceive blue hues.

While most images are originally encoded in the sRGB space, principled color blindness simulation must
be done in the LMS space. CoolerSpace automatically handles the implementation logic of casting from
sRGB to LMS and back. The program also demonstrates CoolerSpace’s ability to treat colors as geometric
objects and to cast them using a linear transformation matrix (Line 17). This transformation is type checked
to ensure that the dimensions of the image in LMS space and the colorblindness matrix are compatible for a
matrix multiplication. This type checking is performed by the TriMatMul rule in Fig. 2.

1 import coolerspace as cs
2 import sys
3
4 # Compilation Arguments
5 path = sys.argv[1]
6 shape_y = int(sys.argv[2])
7 shape_x = int(sys.argv[3])
8
9 # Inputs

10 image = cs.create_input("image", [shape_y, shape_x], cs.sRGB)
11 colorblind_matrix = cs.create_input("colorblind_matrix", [3, 3], cs.Matrix)

30

12
13 # Convert image to LMS
14 image_lms = cs.LMS(image)
15
16 # Apply colorblindness matrix
17 colorblind_image_lms = cs.matmul(image_lms, colorblind_matrix)
18
19 # Convert back
20 colorblind_image = cs.sRGB(colorblind_image_lms)
21
22 # Compilation
23 cs.create_output(colorblind_image)
24 cs.compile(path)

6.3 Adaptation

Adapted to D65Original Image

Figure 9: Chromatic adaptation simulation. Original image courtesy of Trish Hartman [7].

Adaptation is a program that simulates how the visual system adapts to the illuminant of a scene and
preserves constant color perception across different illuminants [13]. Chromatic adaptation is the basis of white
balancing in the camera raw processing pipeline [12]. The output of the program is shown in Fig. 9, where the
original image captured under the CIE Standard Illuminant D35 (estimated) is adapted to one captured under
the CIE Standard Illuminant D65 (typical daylight).

For principled chromatic adaptation, one must know the light spectra of the original and adapting illumi-
nants, which are expressed in the Light type (Lines 10–11). CoolerSpace facilitates color space conversion
between Light, LMS, and sRGB. Like ColorBlindness, it also checks to ensure that the matrix multiplication
operation on the LMS object in line 37 is well-formed.

1 import coolerspace as cs
2 import sys
3
4 # Compilation Arguments
5 path = sys.argv[1]
6 shape_y = int(sys.argv[2])
7 shape_x = int(sys.argv[3])
8
9 # Inputs

10 original_illuminant = cs.create_input("original_illuminant", [1], cs.LightSpectrum)
11 target_illuminant = cs.create_input("target_illuminant", [1], cs.LightSpectrum)
12 image = cs.create_input("image", [shape_y, shape_x], cs.sRGB)
13
14 # Convert image to LMS
15 image_lms = cs.LMS(image)
16
17 # Calculating factor to adjust lms cones by
18 original_illuminant_matrix = cs.Matrix(cs.LMS(original_illuminant))
19 target_illuminant_matrix = cs.Matrix(cs.LMS(target_illuminant))
20 abc = target_illuminant_matrix / original_illuminant_matrix
21
22 # Project to diagonal matrix
23 identity_3x3 = cs.Matrix([
24 [1, 0, 0],
25 [0, 1, 0],
26 [0, 0, 1]
27])
28 project_to_3x3 = cs.Matrix([

31

29 [1],
30 [1],
31 [1]
32])
33 abc_3x3 = cs.matmul(project_to_3x3, abc)
34 abc_diagonal = abc_3x3 * identity_3x3
35
36 # Apply modulation
37 modulated_image_lms = cs.matmul(image_lms, abc_diagonal)
38 modulated_image_srgb = cs.sRGB(modulated_image_lms)
39
40 # Compilation
41 cs.create_output(modulated_image_srgb)
42 cs.compile(path)

6.4 Interpolation

Interpolation simulates the interpolation of two sRGB images. The programmer specifies on line 14 that they
want to evenly interpolate the colors of the two images. Programmers often attempt to interpolate color values
directly in sRGB space [2, 1, 4, 3], which is physically incorrect, as sRGB is a non-linear color space. sRGB
channels do not scale linearly with light intensity. CoolerSpace understands that the programmer intends to
mix two images evenly on line 14. CoolerSpace performs the even interpolation in linear RGB space instead
of sRGB space, thereby avoiding a potential bug.

1 import coolerspace as cs
2 import sys
3
4 # Compilation arguments
5 path = sys.argv[1]
6 shape_y = int(sys.argv[2])
7 shape_x = int(sys.argv[3])
8
9 # Inputs

10 image1 = cs.create_input("image1", [shape_y, shape_x], cs.sRGB)
11 image2 = cs.create_input("image2", [shape_y, shape_x], cs.sRGB)
12
13 # Interpolate between the two images by half
14 mixed = image1 * 0.5 + image2 * 0.5
15
16 # Compilation
17 cs.create_output(mixed)
18 cs.compile(path)

6.5 Mixing

The pigment mixing implementation inCoolerSpace uses the Kubelka-Munk model to simulate the mixture of
pigments. The Kubelka-Munk model [10, 9] relates the reflectance spectrum R(λ) of a pigment to its scattering
and absorption spectra as seen in Equ. 1, where K(λ) and S(λ) represent the absorption and scattering spectra,
respectively, and Ci is the concentration of the ith constituent pigment. The scattering and absorption spectra
of a homogeneous mixture of materials can be modeled by a weighted sum [6] of the spectra of the constituent
pigments. This relationship is expressed in Equ. 2.

R(λ) = 1 +
K(λ)

S(λ)
−

√
K(λ)2

S(λ)2
+ 2

K(λ)

S(λ)
(1)

Kmix(λ) =
1

N

N∑
i

Ki(λ)× Ci, Smix(λ) =
1

N

N∑
i

Si(λ)× Ci (2)

Pigment mixing is a complex phenomenon to accurately model. CoolerSpace abstracts away the com-
plexity of the K-M model and allows the programmer to simulate pigment mixing through a single call of the
mix(·) function. The mix(·) function correctly enforces that pigment mixing be done in the spectral space. The
output of the mixing, mixed, in line 26 is still of a Pigment Type. We then cast mixed to a Reflectance
Type (line 29) to calculate the color of the mixture (lines 31–35) under a user-input light (line 19).

1 import coolerspace as cs
2 import sys
3

32

4 # Compilation Arguments
5 path = sys.argv[1]
6 shape_y = int(sys.argv[2])
7 shape_x = int(sys.argv[3])
8
9 # Inputs

10 s1 = cs.create_input("scattering1", [shape_y, shape_x], cs.ScatteringSpectrum)
11 s2 = cs.create_input("scattering2", [shape_y, shape_x], cs.ScatteringSpectrum)
12
13 a1 = cs.create_input("absorption1", [shape_y, shape_x], cs.AbsorptionSpectrum)
14 a2 = cs.create_input("absorption2", [shape_y, shape_x], cs.AbsorptionSpectrum)
15
16 d1 = cs.create_input("density1", [shape_y, shape_x, 1], cs.Matrix)
17 d2 = cs.create_input("density2", [shape_y, shape_x, 1], cs.Matrix)
18
19 light = cs.create_input("light", [shape_y, shape_x], cs.LightSpectrum)
20
21 # Pigment creation
22 p1 = cs.Pigment(s1, a1)
23 p2 = cs.Pigment(s2, a2)
24
25 # Mix
26 mixed = cs.mix(d1, p1, d2, p2)
27
28 # Cast to reflectance
29 reflectance = cs.ReflectanceSpectrum(mixed)
30
31 # Reflect lights off pigment reflectance
32 reflected = cs.LightSpectrum(cs.Matrix(light) * cs.Matrix(reflectance))
33
34 # Convert to sRGB
35 image = cs.sRGB(reflected)
36
37 # Compilation
38 cs.create_output(image)
39 cs.compile(path)

6.6 LAB2HSV

The process of converting to and from LAB and HSV is extremely complicated, because both are non-linear
perceptual color spaces. CoolerSpace not only type checks the casting operation to ensure that an image
expressed in LAB space can be converted to HSV space, but also handles the complex color space transformation
logic behind the scenes. All the programmer has to do is express a single casting operation, as seen in line 13.

1 import coolerspace as cs
2 import sys
3
4 # Compilation Arguments
5 path = sys.argv[1]
6 shape_y = int(sys.argv[2])
7 shape_x = int(sys.argv[3])
8
9 # Inputs

10 lab = cs.create_input("image", [shape_y, shape_x], cs.LAB)
11
12 # Simple conversion
13 hsv = cs.HSV(lab)
14
15 # Compilation
16 cs.create_output(hsv)
17 cs.compile(path)

References

[1] Answer to ”adding/mixing colors in HSV Space”. https://stackoverflow.com/a/7388476,
September 2011.

[2] Answer to ”Interpolate from one color to another”. https://stackoverflow.com/a/21010385,
January 2014.

[3] Weird interpolation between colors in hsv? https://stackoverflow.com/q/37471461, May 2016.

33

https://stackoverflow.com/a/7388476
https://stackoverflow.com/a/21010385
https://stackoverflow.com/q/37471461

[4] How to calculate (a physical) ratio of colors to achieve a target color? https://math.stackexchange.
com/q/4335003, December 2021.

[5] Simon Amarasingham. Red and green Eclectus Parrots, December 2019.

[6] DR Duncan. The colour of pigment mixtures. Proceedings of the Physical Society, 52(3):390, 1940.

[7] Trish Hartmann. Eleuthera Sunset, November 2012.

[8] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken. Taso: opti-
mizing deep learning computation with automatic generation of graph substitutions. In Proceedings of the
27th ACM Symposium on Operating Systems Principles, pages 47–62, 2019.

[9] Paul Kubelka. New contributions to the optics of intensely light-scattering materials. part i. Josa,
38(5):448–457, 1948.

[10] Paul Kubelka and Franz Munk. An article on optics of paint layers. Z. Tech. Phys, 12(593-601):259–274,
1931.

[11] ONNX. Open neural network exchange. https://github.com/onnx/onnx, 2018.

[12] D Andrew Rowlands. Color conversion matrices in digital cameras: a tutorial. Optical Engineering,
59(11):110801, 2020.

[13] Andrew Stockman and David H Brainard. Color vision mechanisms. The Optical Society of America
Handbook of Optics, 3:11–1, 2010.

[14] Françoise Viénot, Hans Brettel, and John D Mollon. Digital video colourmaps for checking the legibility
of displays by dichromats. Color Research & Application, 24(4):243–252, 1999.

[15] Günther Wyszecki and Walter Stanley Stiles. Color science: concepts and methods, quantitative data and
formulae, volume 40. John wiley & sons, 2000.

34

https://math.stackexchange.com/q/4335003
https://math.stackexchange.com/q/4335003
https://github.com/onnx/onnx

	CoolerSpace Language Specification
	CoolerSpace Syntax
	Casting Graph
	CoolerSpace Type System

	Translational Soundness
	SmallerSpace Syntax and Typing Rules
	ONNX Syntax and Typing Rules
	Translational Semantics
	Translational Soundness Proof

	Type Soundness Background Information
	SmallerSpace Syntax and Rules
	Evaluation Rules

	Type Soundness Proof
	Converse Rules
	Array Expressions Type Soundness
	Array Expressions Progress
	Array Expression Preservation

	Progress
	Init Progress
	Cast Progress
	TristimulusAdd Progress
	LightAdd Progress
	Reflect Progress
	Progress Summary

	Preservation Theorem
	Init Preservation
	Cast Preservation
	TristimulusAdd Preservation
	LightAdd Preservation
	Reflect Preservation
	Preservation Summary

	Equality Saturation Rewrite Rules
	Benchmarking Programs in CoolerSpace
	SpaceConv
	ColorBlindness
	Adaptation
	Interpolation
	Mixing
	LAB2HSV

