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Abstract: A metasurface-based pre-capture privacy optical system is jointly optimized with
a binary classification computer vision (CV) task. The pre-capture privacy module degrades
the quality of images before they are captured and saved to the device’s memory, making these
obscured inputs the only available data for both privacy-breaching attackers and the CV task
model. The objective of attaining a trade-off of preserving privacy and CV performance that
favors the latter was accomplished as a demonstration of the joint optimization co-design scheme
proposed in this work. Specifically, when comparing the maximal performance of the attacker
and CV task models attained on their respective tasks when taking unobscured versus obscured
inputs, the former model’s performance drastically drops from 75.4% accuracy to 17.5% accuracy,
while the latter’s decreases from 95.7% average precision (AP) to 67.0% AP.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Recent decades have seen widespread application of computer vision technologies over a
multitude of fields. As a consequence of the ensuing ubiquitous deployment of digital cameras
that continuously collect image data, concerns about privacy have been growing, and there has
been an increasing demand to address them [1]. While many different approaches exist to conceal
sensitive information contained in the captured images, in this work we will solely focus on the
one where images are obscured or encrypted before they are captured by the camera’s sensor,
referred to as “pre-capture privacy” [2–5]. The merit of this approach is to prevent malicious
attackers from ever accessing the unobscured version of the captured images, since only the
obfuscated version is saved in digital form to the device’s memory. However, the downside is that
these obfuscated images are also the only ones that are available for the device’s computer vision
task to work with, which can lead to a decrease in its performance. In order to mitigate this,
some approaches have been proposed to use deep learning algorithms [6,7] to co-train (jointly
optimize) the parameters of the pre-capture privacy module with those of the computer vision
task’s computational model [4,5]. In these, an adversarial computational model that attempts to
extract the sensitive information from the obfuscated images is integrated into the co-training
scheme, with the purpose of making the system produce obfuscations that are more robust against
sophisticated privacy-breaching attacks that make use of deep learning algorithms. The goal of
these joint optimization techniques is to reach a favorable trade-off between privacy preservation
and the computer vision task’s performance.

The emerging field known as “Deep Optics” is characterized by the usage of deep learning
algorithms to optimize the parameters of optical systems designed to perform domain-specific
tasks [8–10]. Previous works in this field have demonstrated various optimized optical systems
designed to carry out a wide variety of computer vision task applications [11–15]. Furthermore,
there are existing works that demonstrate the design of different types of optical elements that
were optimized to introduce pre-capture privacy while maintaining the performance of a given
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computer vision task. Specifically, these works use coded apertures with pinhole arrays used
in lensless cameras [16,17], or a phase mask on an imaging system with lenses [18–20]. A
common approach present in all of them is the usage of a single customized optical element that
tailors the point spread function (PSF) of the device’s imaging system to degrade the entirety of
the captured images. Alternatively, some recent works have proposed a different approach for
designing optical systems that implement pre-capture privacy, where a set of optimized diffractive
layers are used to attain more complex functionality, such as optically suppressing some classes
of objects in the captured scene while others are imaged with high quality [21,22]. While this
approach opens up avenues for more sophisticated optical encryption than the preceding works, it
has currently only been demonstrated in the terahertz (THz) range and in experiments where only
images of simple objects (monochromatic, low-resolution handwritten digits) are being captured.

In this work, we demonstrate a co-trained imaging system that works at visible wavelengths and
that attains a favorable trade-off between privacy preservation and a good level of performance on
an object classification computer vision task. Furthermore, the input images are taken from a more
complex dataset than the one used in our previous work [23], and they consist of high-resolution
pictures of different classes of objects [24]. These images are degraded by the aberrations
introduced into the PSF of the imaging system before they are captured by the camera’s sensor.
The PSF is controlled by a phase modulation profile that a co-designed metasurface imparts on
incident light. Compared to the previous pre-capture privacy works that also use phase masks
[18–20], this work attains the physical implementation of a phase profile composed by a much
larger number of Zernike polynomials. Specifically, the phase-modulating optical element that
was used in our laboratory experiments realized a phase profile with 252 Zernike polynomials,
while the previous works were limited to only 15 Zernike polynomials. The increased parameter
space allows the optical system in this work to produce more severe optical aberrations that
further degrade the quality of the captured images.

A metasurface is our phase-modulating optical element of choice because of the flexible
manipulation of light’s properties with subwavelength resolution that it offers, along with its
lightweight and compact form factor [25,26]. Specifically, the phase modulation profile is
implemented via the geometrical phase that is introduced by the light’s interaction with an array
of anisotropic nano-pillars [25,27]. By using unit cells containing multiple nano-pillars that
each have different geometrical properties, it is possible to create independent phase modulation
profiles for different wavelength bands in the visible spectrum [28,29]. Conversely, it is also
possible to multiplex different phase modulation profiles (each with a distinct constant amplitude
modulation profile) within the metasurface’s area. This work focuses on exploring the latter
possibility, using the PSF yielded by three multiplexed phase modulation profiles to obfuscate
monochromatic input images in both laboratory experiments and simulations. Complementarily,
the former possibility is still studied with secondary simulations, similarly to our previous work
[29], to apply independent PSFs on each color channel of input RGB images. Finally, this work
is the first experimental demonstration of a geometrical phase metasurface being jointly designed
with a privacy-aware computer vision algorithm for image classification.

2. System design

2.1. Joint optimization scheme

We use the three-way co-training scheme illustrated in Fig. 1(a), which involves the following
parametrized, differentiable computational models: The optical system’s image formation model
(referred to as “Optics model” for simplicity), the computer vision (CV) task model, and an
adversarial attacker model (referred to as simply “Attacker model” for the rest of this work).
Under this scheme, each model is trained (optimized) via gradient descent using deep learning
algorithms. This means that performance-related loss functions are used to iteratively update
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the models’ parameters after computing the gradient of these loss functions with respect to said
parameters.

Fig. 1. a) Co-training scheme: A differentiable, parametrized, computational Optics model
that introduces the optical aberrations is jointly optimized with a Computer Vision (CV) and
an Adversarial (Attacker) deep learning models. By design, the Optics model’s optimization
process receives feedback from those of the other two models, with the objective of stopping
the Attacker’s attempts to extract sensitive private information from the obscured input
images, without hindering the performance of the CV model’s task. b) Schematic of the
Optics model’s forward pass. The model estimates the wavelength channels in the input
scene’s power spectral density, and simulates the interaction of these components with the
metasurface and the camera’s sensor as light of different wavelengths propagates through the
system. Since a monochromatic display is used to project images in this work’s laboratory
experiments, only one wavelength component is of interest, as illustrated in this diagram.

The Optics model has the goal of degrading the quality of the input images before they are
passed down as inputs for the CV task and the Attacker models. The loss function LOpt quantifies
the extent to which this goal is accomplished. Meanwhile, the CV task and Attacker models are
optimized independently of each other using loss functions LCV and LAtk, respectively, with the
goal of maintaining their performance in spite of the increasing amount of optical aberrations
present in the images they receive as inputs. A more in-depth explanation about the design of
these loss functions can be found in the Supplement 1 document.

The loss functions LCV and LAtk are included as terms in the functional form of LOpt, which
translates into the Optics model receiving feedback from the other two models, and which results
into a coupling between the training processes of the three models. By design, when updating
the Optics model’s parameters by minimizing LOpt via gradient descent, the LAtk term is driven
to increase while the LCV term is driven to decrease. This makes the Optics model converge
to a state where it produces optical aberrations that drastically reduce the performance of the
Attacker model without significantly hindering the CV task model. This way, a favorable trade-off
between the preservation of both pre-capture privacy and computer vision task performance can
be attained.

https://doi.org/10.6084/m9.figshare.28941362
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2.2. Image formation model

The Optics model is built to simulate the image formation process of the set-up that would
later be used in the laboratory experiments. An overview of the computations performed to
run the Optics model is presented by the diagram found in Fig. 1(b). The optical system layout
that implements this pipeline consists of a 4f system [30] where a micro-display is placed in
its input plane, a geometrical phase metasurface is placed in its Fourier plane, and an output
image is formed in its output plane. Additionally, an arrange of polarization-manipulating optical
elements are used to make the light incident on the metasurface have a circular polarization state.
A diagram of the laboratory experiment’s set-up can be found in Fig. 2. Furthermore, a more
detailed explanation and the specifications of this system’s components are found in Section 3.3.

Fig. 2. Light emitted by a red LED is spectrally filtered by a band-pass filter SF, is then
expanded and collimated by lenses L1 and L2, and is finally steered towards the digital
micro-mirror display (DMD) by mirrors M1 and M2. Images projected by the illuminated
DMD go into the 4f system comprised by lenses L3 and L4, in whose Fourier plane the
fabricated metasurface is placed. Light is converted into the left-hand circular polarization
state by linear polarizer LP1 and quarter-wave plate QWP1 before being incident on the
metasurface. Their counterparts QWP2 and LP2 filter out any unconverted light, leaving
only the right-hand circularly polarized component encoding the obscured image, which is
shrunk down and relayed to the CCD camera’s sensor by the 4f system comprised by lenses
L5 and L6.

When circularly polarized light is transmitted by an anisotropic element that has an in-
plane orientation angle θ, a wavelength-dependent portion of the light is converted to the
circular polarization state of opposite handedness and is imbued with a wavelength-independent
geometrical phase equal to 2θ [27]. The metasurface is comprised by an array of anisotropic
nano-pillars with rectangular cross-sections. The polarization conversion efficiency (PCE), which
is the fraction of the incident light that gets imbued with the geometrical phase, is determined by
the geometrical properties of the nano-pillar that is interacting with the incident light [28]. By
varying the geometrical parameters and in-plane orientation of the nano-pillars located at each
coordinate (u, v) in the metasurface’s plane, we can produce a customizable amplitude and phase
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modulation profile represented by the frequency-dependent transmission function T(u, v; ν),
where ν denotes the frequency dependence.

It can be shown that for a linear imaging system with spatially incoherent illumination, the
power spectral density Gout(x, y; ν) in the output plane is given by a convolution between the
power spectral density Gin(ξ, η; ν) in the input plane and a frequency-dependent point spread
function PSF(ξ, η; ν):

Gout(x, y; ν) = Gin(ξ̃, η̃; ν) ∗ PSF
(︁
ξ̃, η̃; ν

)︁
=

∬
Gin(ξ̃, η̃; ν)PSF(x − ξ̃, y − η̃; ν)dξ̃dη̃. (1)

Furthermore, in the case of a 4f system, the frequency-dependent PSF is given by the magnitude
squared of the Fourier transform of the transmission function T(u, v; ν) of the optical element
placed in its Fourier plane:

PSF(x − ξ, y − η; ν) =
|︁|︁F2D {T(u, v; ν)}

|︁|︁2|︁|︁|︁|︁(︂
ν

c0 f2
(x−ξ), ν

c0 f2
(y−η)

)︂ , (2)

where c0 is the speed of light in vacuum and f2 is the focal length of the second lens in the 4f
system. The Supplement 1 document contains a derivation of the above equations, where the
optically anisotropic properties of the metasurface placed in the Fourier plane of the 4f system
used in this work are taken into account.

Additionally, we model the power spectral density produced by the micro-display in terms of
the emission spectra Sc(ν) of its pixels, where c = {R, G, B} denotes the c-th color channel of
the projected RGB images. The power spectral density produced by the display to project the
images’ c-th color channel can be represented as a separable function, i.e. as a product between
the function that only depends on frequency, Sc(ν), and a function that only depends on spatial
position, Iin,c(ξ, η). Assuming that the light emitted by the display is incoherent, i.e. each pixel is
statistically independent from the others, we can model the total power spectral density produced
by the display to project an input image as the sum of the power spectral densities associated
with each color channel of said image:

Gin(ξ, η; ν) =
∑︂

c
Sc(ν)Iin,c(ξ, η), (3)

where Iin,c(ξ, η) represents the c-th color channel of the input digital RGB image that is being
projected by the display.

Finally, the raw signal intensity from the k-th type of camera pixel (the k-th channel of the
raw RGB image) in the detector’s plane (the system’s output plane) is given by the integral over
frequencies of the product between the incident power spectral density Gout(x, y; ν) and the
spectral sensitivity Rk(ν) of the pixel located at point (x, y):

I ′out,k(x, y) =
∫ ∞

0
Rk(ν)Gout(x, y; ν)dν . (4)

In this work’s main experiments, we used a monochromatic illumination source and a micro-
display with reflective pixels to project the input images. As such, we model the input power
spectral density from Eq. (3) as:

Gin(ξ, η; ν) = δ(ν − ν0)
∑︂

c

1
3 Iin,c(ξ, η), (5)

where ν0 is the frequency of the monochromatic light that illuminates the reflective micro-display.
In other words, the Sc(ν) from Eq. (5) were modeled as delta functions centered on ν0 for the

https://doi.org/10.6084/m9.figshare.28941362
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three color channels of the input RGB images. The way in which Eq. (5) is written shows that
this is equivalent to projecting a grayscale monochromatic image obtained by taking the average
between color channels from every pixel of the original RGB digital inputs.

In a similar fashion, the final digital image Iout(x, y) that serves as the output of the Optics
model and is passed down as an input to the CV task and Attacker models is obtained from
I ′out(x, y) by taking the average over the color channels of the image processed by the camera’s
image signal processing (ISP) algorithm. This is done because both the CV task and Attacker
models expect to take grayscale monochromatic images as inputs by design. More details about
how a simulation of the camera’s ISP algorithm was incorporated into our Optics model can be
found in the Supplement 1 document.

Additionally, we conducted complementary simulations where color input images were
projected with an OLED display. These made use of Eq. (3) instead of Eq. (5), and the process
for obtaining Iout(x, y) from I ′out(x, y) still made use of the simulated camera’s ISP algorithm.
However, the final color-averaging step before passing Iout(x, y) to the CV task and Attacker
models was omitted, since those models expected color images as inputs in that case.

2.3. Optics model parametrization

The image formation model makes use of the following fixed parameters: The spectra of the
light coming from the micro-display’s pixels Sc(ν), the sensitivity spectra of the camera’s pixels
Rk(ν), and the field PCE spectra An(ν) of the metasurface’s nano-pillars, all of which are shown
in Fig. 3(a). As mentioned in Section 2.2, Sc(ν) are modeled as delta functions centered on a
design frequency ν0 in the main experiments of this work. More specifically, the value of ν0
is ν0 = c0/(632.8 nm) ≈ 474 THz. The emission spectra Sc(ν) of the OLED micro-display’s
pixels (used in the complementary simulations of the broadband illumination case) and the
camera’s sensitivity spectra Rk(ν) were obtained from technical specifications provided by the
devices’ manufacturers. Meanwhile, the metasurface’s field PCE spectra An(ν) were obtained by
finite-difference time-domain (FDTD) simulations of the interactions between its nano-pillars
and incident light. Further information about these FDTD simulations can be found in Section
3.2. It should be noted that it is possible to have the properties of the nano-pillars (along with the
yielded PCE spectra) be optimizable parameters rather than fixed ones [31–34], but taking that
approach is out of the scope of this work.

The trainable (optimizable) parameters of the image formation model are the phase modulation
profilesΦn(u, v) that introduce optical aberrations into the imaging system, which are produced by
the arrays of nano-pillars in the metasurface. These phase modulation profiles are two-dimensional
numerical arrays that are parametrized as a linear combination of Zernike polynomials:

Φn(u, v) =
J∑︂

j=1
αn,jZj(u, v), (6)

where Zj(u, v) is the j-th Zernike polynomial in OSA notation [35,36], and αn,j is the j-th scalar
coefficient that is used to build the n-th phase modulation profile. In this work, we make use of
J = 252 terms in the Zernike polynomial basis to parametrize N = 3 distinct phase modulation
profiles. Each of these three phase modulation profiles is imparted on incident light by an array
of nano-pillars that have shared geometrical properties but different in-plane orientation angles.
The metasurface layout is divided into unit cells that contain these three types of nano-pillars,
so the three modulation profiles are spatially multiplexed. The layout and dimensions of the
nano-pillars placed in these unit cells is shown in Fig. 3(b).

The size of the metasurface’s unit cells is in the order of one wavelength, while the dimensions
of the nano-pillars and the separation between them are sub-wavelength. This fact is taken into
account when implementing the numerical arrays that represent the metasurface’s modulation

https://doi.org/10.6084/m9.figshare.28941362
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Fig. 3. a) Plots of the data values of the Optics model’s fixed parameters: the light
sources’ emission spectra Sc, the metasurface nano-pillars’ field polarization conversion
efficiency spectra An, and the sensor pixels’ sensitivity spectra Rk. b) Layout and geometrical
specifications of the metasurface’s unit cells, which contain three types of nano-pillars.
The RGB-based color coding of the nano-pillars in this diagram matches the label of their
corresponding An curve plotted in a).

profiles, which is necessary to properly compute the Fourier transform operations. The
metasurface’s transmission is modeled as a continuous function given by the sum of the spatially-
multiplexed transmission profiles associated with the arrays of the three different types of
nano-pillars:

T(u, v; ν) =
N∑︂
n

An(ν)Qn(u, v)eiΦn(u, v), (7)

where i is the imaginary unit with i2 = −1, and Qn(u, v) is a binary function that is equal to 1 in
the points (u, v) on the metasurface’s plane that are part of a nano-pillar of the n-th type and that
is equal to 0 elsewhere.

In order to incorporate the transmission function shown in Eq. (7) into our computational
model, we represent both sides of the equation as multi-dimensional discretized numerical arrays.
When monochromatic illumination is used (like in this work’s case of interest) and we set ν = ν0
on both sides of Eq. (7), the terms in the sum on the right-hand side are represented by a 3D array.
The first two dimensions represent the spatial dependence on the coordinates (u, v), and each pixel
represents a different unit cell in the metasurface. Meanwhile, the third dimension represents
the different multiplexed nano-pillar arrays indexed by n. As a result, after performing the sum
over n to compute T(u, v; ν0), this transmission function is represented by a 2D numerical array,
since it depends only on spatial coordinates. Meanwhile, for the broadband illumination case, the
numerical arrays representing the functions on both sides of the equation would have one more
dimension, which denotes the dependence on frequency ν.

2.4. Design and characterization pipeline

At the start of the joint optimization process, the CV task and Attacker models are initialized with
pre-loaded parameter values referred to as “Imagenet weights” [37]. Afterwards, both of them
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are independently pre-trained to attain high performance in their respective tasks when receiving
the original unobscured dataset images as their inputs, in the absence of the Optics model. Once
this initial round of pre-training is completed, the models reach a state which we refer to as
“baseline”, since it is later on used to initialize the models that are part of the co-training process.
The baseline CV task and Attacker models not only serve as benchmarks for the performance of
their co-trained counterparts, but their outputs are also used to compute some of the terms in the
Optics model’s loss function LOpt, as explained in more detail in Supplement 1.

Meanwhile, the Zernike coefficients that parametrized the Optics model’s phase profiles are
initialized with random values that follow a zero-mean normal distribution. Empirically, this
initial state of the Optics model’s parameters produces very mild aberrations that do not degrade
the quality of the images. This allows the co-trained CV task and Attacker models to follow a
smoother evolution of their trainable parameters, where they initially expect high-fidelity inputs
and then gradually start adapting to receiving increasingly degraded inputs.

Once the joint optimization process is over, we then proceed to evaluate the trade-off between
privacy preservation and CV task performance that is attained by the final state of the co-trained
Optics model with its yielded optical aberrations. To do so, we first create a new instance of an
Attacker model (referred to as "Independent Attacker" for the rest of this work). The Independent
Attacker is initialized with Imagenet weights and is then trained with the inputs degraded by the
Optics model’s optimized aberrations until it converges to the best performance it can attain under
those conditions. Meanwhile, the CV task model starts off with the values that its parameters
converged to at the end of the joint optimization process. From this starting point, the CV
task model is fine-tuned until it too reaches the best performance it can attain when receiving
inputs degraded by the Optics model. In other words, the Optics model’s “Privacy-Performance”
trade-off is quantitatively characterized by the maximal performance metrics attained by the
fine-tuned CV task model and the trained Independent Attacker that receive inputs that have been
obscured by the Optics’ optimized optical aberrations.

3. Methods

3.1. Image classification models and dataset

Both the CV task and Attacker models used in this work are convolutional neural networks (CNN)
with the ResNet50 architecture [38,39], and they each carry out different image classification
tasks. The former performs a binary classification task to determine whether the input image is a
picture of a person or not. Meanwhile, the latter performs a multi-class classification task to
determine what class the object shown in the input image belongs to, with more weight being
given to the accuracy in the classification of samples in the non-person classes.

The dataset used in this work was built from the Common Objects in Context (COCO) dataset,
which is comprised of high-resolution images of complex everyday scenes, divided into training,
validation, and test sets [24]. Only the training and validation datasets have publicly available
annotations that indicate what pixel regions belong to each of the object instances in each picture,
as well as what class, of the 80 labeled ones, said objects belong to.

In this work, those annotations are used to produce a collection of images that focus only on
one object each, by cropping the bounding boxes that contain each labeled object. To produce
our datasets, we only kept the cropped regions of interest that had sizes of more than 256 pixels
in both width and height, discarding the rest. Afterwards, these regions of interest were resized
down to be images with 256 by 256 pixels. Our dataset is divided into training, validation, and
test sets, which were constructed to have approximately the same class distribution and ensuring
that each of them had at least one sample of each class. The training set contains 35218 images;
the validation set, 11334; and the test set, 5913. Of these, 10584 belong to the “person” class in
the training set, as is the case for 3402 images in the validation set and 1720 images in the test set.

https://doi.org/10.6084/m9.figshare.28941362
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Finally, due to the fact that the class label distribution is not balanced for neither the binary
classification nor the multi-class classification tasks, we had to carry out the standard practice
of using dataset augmentation techniques and incorporating class-dependent weights into the
cross-entropy loss functions LCV and LAtk for the training of the classification models to be more
robust [7,40].

3.2. Metasurface nano-pillar design

In order to determine the geometrical parameters of the metasurface’s nano-pillars to be used
for fabrication, FDTD simulations were performed using the MEEP library in the Python
programming language [41]. A script was written to simulate the interaction between a plane
wave with left circular polarization and a titanium dioxide (TiO2) nano-pillar placed on top of
a fused silica substrate, at normal incidence. In order to compute the field PCE spectra, we
first run a single simulation where the nano-pillar is absent, to measure the frequency domain
complex amplitude of the original incident field, E0(ν). Afterwards, a set of simulations is ran
where the nano-pillar is present, to measure the projection into the right circular polarization
state of the transmitted field, ET, right(ν). With this, the power PCE spectrum is computed as

PCE(ν) = |ET, right(ν)|
2

|E0(ν) |
2 . Meanwhile, the field PCE spectrum was computed as A(ν) = ET, right(ν)

E0(ν)
.

Each of the simulations in this set were ran by using different values for the geometrical
parameters of the TiO2 nano-pillar. After building a library that charts the mapping between
different combinations of geometrical parameter values and the yielded PCE spectra, we examined
them and selected a set of three combinations that we deemed as the most appropriate for our
work. The selection process was primarily guided by the necessity of having distinct aspect
ratios in the geometries of the three types of nano-pillars. Additionally, having high polarization
conversion rates at different regions of the visible spectrum for the sake of energy efficiency was
contemplated too, even though the main experiments in the current work use monochromatic
illumination.

3.3. Optical system layout’s specifications

The privacy-preserving optical obscurations in this laboratory experiment are produced using
the optical system layout described in Section 2.2. The fabricated metasurface producing these
obscurations is placed in the Fourier plane of a 4f system, while images are projected by a
display that is placed in this system’s input plane. The obscured pictures are imaged to this 4f
system’s output plane, which coincides with the input plane of a second 4f system (with no optical
elements in its Fourier plane) whose purpose is to down-scale and relay the obscured images into
the sensor of the Basler a2A1920-160ucPRO camera used to capture them. Despite this being a
color camera, it was used in this work due to it having better sensitivity and resolution than the
monochromatic models that were available. Furthermore, the sensitivity spectra specifications
of this camera model had also been used during the simulations performed with color image
inputs and broadband illumination, which used the emission spectra specifications of an eMagin
SXGA096 OLED micro-display. As shown in Fig. 2 (not to scale), the first 4f system is comprised
by lenses L3 and L4, whose focal lengths are f3 = 150 mm and f4 = 100 mm, respectively.
Meanwhile, the second 4f system is comprised by lenses L5 and L6, whose focal lengths are
f5 = 75 mm and f4 = 15 mm, respectively. All lenses used in these 4f systems have a diameter of
2 in, with the exception of L6, whose diameter is 0.5 in.

In order for Eq. (1) of our Optics model to hold true in the laboratory experiments, light
coming out the first 4f system’s input plane must be spatially incoherent. To attain this, we use a
Texas Instruments DLP Lightcrafter 6500 digital micro-mirror display (DMD) illuminated by a
high-power LED to project the input images. Before being incident on the DMD, the light is
expanded and collimated by lenses L1 (with f1 = 25.4 mm) and L2 (with f2 = 200 mm), which
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have diameters of 1 in and 2 in, respectively. Additionally, in order for light incident on the
metasurface to be imbued with the intended phase modulation profile, it must have a left-handed
circular polarization state. As explained in Section 2.2, the obscured images are encoded by
the portion of the light that is imbued with the geometrical phase modulation and that has its
polarization’s handedness switched by the metasurface’s nano-pillar arrays. Thus, it is necessary
to filter out the left-handed circular polarization component (the unconverted portion) of the
light coming out of the metasurface, and to keep just the right-handed circularly polarized light
carrying the obscured image. To attain these required manipulations of light’s polarization state,
we use linear polarizers and quarter-wave plates.

Imparting the exact quarter-wave retardance is crucial to properly prepare the pure state of
left-handed circular polarization. As such, light incident on these wave plates must have the
wavelength for which the necessary retardance value is attained. In this laboratory experiment,
we used quarter-wave plates that work with 632.8 nm light, which was obtained by spectrally
filtering light emitted by the illumination LED with a band-pass filter that is centered at this
wavelength with a 1 nm full width at half maximum. It should also be noted that the necessity for
exact quarter-wave retardance currently represents a limitation for experimental demonstrations,
both in terms of laboratory experiments and real-world deployments, of the proposed system on
applications that involve inputs with broadband spectra. As a result, the complementary studies
with color image inputs that explore the geometrical phase metasurface’s ability to produce
independent PSFs for each color channel were performed via computational simulations only,
where ideal broadband quarter-wave plates were imposed to be part of the system’s configuration.

3.4. Capture acquisition and processing

Since the dataset used in this work contains thousands of images, it is necessary to automate
the processes of projecting them and capturing them. These processes are attained by preparing
video files with the images of the training, validation and test sets. As explained in Section 2.2,
we can opt to project grayscale versions of the dataset images on the DMD, which is the approach
we took when producing the videos’ frames. The DMD is then used to play these videos at 5
frames per second while the camera is set to capture images at 10 frames per second. With this,
two copies of each image are temporarily saved to the computer’s memory, but only one of them
is ultimately kept.

The projected images underfill the camera’s sensor, whether they are unobscured in the absence
of the metasurface or obscured in its presence. As such, after the capture acquisition process is
complete, the obtained captures need to be processed to crop the region of interest containing the
obscured images. Furthermore, since the CV task and Attacker models are designed to take input
images with 256 by 256 pixels, the obscured images need to be resized to have these dimensions
after the cropping. The final processing step is converting these captured obscured images from
color (red) to grayscale, since the downstream CV task and Attacker models used in this work’s
main laboratory-based experiment are designed to take monochromatic grayscale inputs.

4. Results

4.1. Attained privacy-performance trade-offs

As explained in Section 2.4, the evaluation of the Optics model’s Privacy-Performance trade-off
is preceded by separate rounds of fine-tuning the parameters of the CV task model and training
an Independent Attacker model while the Optics model’s parameters are fixed. These routines
have the purpose of adjusting the parameters of the CV task and Independent Attacker models to
allow them to attain their best possible performance when receiving obscured inputs. Initially,
this process is carried out using the digital Optics model, which generates simulations of what the
images obscured by the fabricated metasurface’s PSF during the laboratory experiment would
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look like. After the laboratory experiment where the obscured dataset images are captured and
processed, these routines are carried out again by using these obscured images directly as inputs
for the CV task and Independent Attacker models (without needing to use the digital Optics
model).

However, in order to properly interpret the performance metrics measured from the above
processes, they need to be compared to those of benchmark models that receive unobscured
images (in the absence of the metasurface’s aberrations) as their inputs. The benchmark CV task
model attains an average precision (AP) of 95.7% on its binary classification task of determining
which inputs belong to the “person” class. Meanwhile, the benchmark Independent Attacker
model attains an accuracy of 75.4% when classifying the inputs that belong to the 79 non-person
classes (a performance metric referred to as “non-person accuracy” in this work).

As for the models that take obscured images generated by the Optics model’s simulation as
inputs, the fine-tuned CV task model attains an AP of 77.1% while the corresponding Independent
Attacker model attains a non-person accuracy of 33.5%. On the other hand, the CV task and
Independent Attacker models that take the obscured images captured in the laboratory experiment
as their inputs attain an AP of 67.0% and a non-person accuracy of 17.5%, respectively. All the
reported metrics can be more clearly visualized in the Privacy-Performance trade-off plot shown
in Fig. 4(a). For the sake of comparison, the analogous results corresponding to the simulation
that studies the broadband illumination case are reported in this plot as well: The benchmark
CV task and Independent Attacker models attain an AP of 98.2% and a non-person accuracy of
81.1%, respectively, when taking unobscured color images as inputs. Meanwhile, the fine-tuned
CV task model and the trained Independent Attacker that take obscured color inputs attain an AP
of 85.9% and a non-person accuracy of 36.4%, respectively.

4.2. Comparison between simulation and laboratory experiments

The results presented in Fig. 4(a) indicate that the optical aberrations yielded by the fabricated
metasurface in the laboratory set-up permit a reduced performance for both the CV task and
Independent Attacker models, compared to the obscurations produced by the digital Optics model.
This is to be expected, given the presence of noise in the laboratory captures, as well as their
qualitative differences with respect to the Optics model’s simulated obscured images. An even
more degraded Independent Attacker performance is favorable, as it translates into better privacy
preservation against the classification task it carries out. However, a reduced performance of the
CV task model prompted further examination.

A more in-depth comparison between the two CV task models that receive obscured monochro-
matic inputs was carried out by plotting their Precision-Recall (PR) curves, which are shown
in Fig. 4(b). These plots offer a wider perspective of these models’ performance, since the AP
values reported above are equal to the area under the corresponding PR curve. These plots are
built making use of the probability scores that the CV task models assign to each test dataset
sample. These scores are the model’s predicted probability of each sample belonging to the
"person" class. As discussed in more detail in the deep learning algorithm literature [7], the
more consistently that a classification model assigns higher scores to the correct classes in its
predictions, the better its performance will be. This will ultimately translate into higher precision
values, and thus a higher AP metric, as is the case with the benchmark CV task model that takes
the original unobscured images as inputs. On the other hand, using the obscured images as
inputs causes the CV task models to attain notably lower precision values when compared to
the aforementioned benchmark model. However, the gap between the PR curve of the CV task
model that takes the laboratory experiment’s captures as inputs and that of the CV task model
that uses the Optics model’s simulated obscured images is not as wide as the gap between the
latter PR curve and that of the benchmark model. In other words, the level of performance that
was expected from the simulations is mostly retained during the laboratory experiment.
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Fig. 4. a) Privacy-Performance trade-offs quantified by the maximal performance metrics
of the benchmark models receiving unobscured inputs, as well as those of the models that
received obscured inputs obtained either by the Optics model’s simulation or the laboratory
experiment’s captures. b) Precision-Recall (PR) curves of the CV task models that work
with monochromatic input images. c) Histograms of the structural similarity index measure
(SSIM) and root-mean-square error (RMSE) between the obscured images captured in the
laboratory and their corresponding counterparts that had been yielded by the Optics model’s
simulations. d) Cumulative distribution functions that display the information from the
histograms in c) in a more condensed manner.

We finalize our comparison between the main simulation and laboratory experiment by
quantitatively measuring the differences and similarities between the obscured images themselves.
The former are quantified by the root-mean-squared-error (RMSE) between the normalized
obscured images simulated by the Optics model and those obscured by the fabricated metasurface’s
PSF, captured during the laboratory experiment. Meanwhile, the similarities are quantified by
the structural similarity index measure (SSIM) [42] between the two types of obscured images.
Histograms and cumulative distribution functions for the measured RMSE and SSIM values of
all datasets’ samples are shown in Fig. 4(c) and (d). The average RMSE is around 0.2, which
is 20% of the dynamic range that the normalized obscured images have. This translates into
a relatively high average pixel-wise difference between images obtained during the laboratory
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Fig. 5. a) Qualitative comparison between the ground truth unobscured input samples, the
corresponding obscured images simulated by the Optics model, the images obscured during
the laboratory experiment, as well as the respective image restorations yielded by optimized
dedicated image reconstruction models. b) Scatter plots comparing the reconstruction
quality of the obscured images obtained in the laboratory (vertical axis) versus that of those
simulated by the Optics model (horizontal axis). The dashed lines are the identity function.
c) Cumulative distribution functions showing the statistical distribution of the SSIM values
plotted in b), but separating the values from each axis into different curves.

and the simulation experiments. Despite this, the distribution of SSIM values has a fairly high
mean, of more than 70% of the SSIM function’s dynamic range, which translates into a high
degree of perceptual similarity between the compared images as a whole. This high degree of
global similarity co-existing with relatively high average pixel-wise differences can be explained
by observing the qualitative comparison shown in Fig. 5(a). In the displayed examples, it is
possible to appreciate that the laboratory experiment’s captures are very visually similar to their
simulation counterparts, but the amount of contrast is the main difference. The overall shape
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and position of the different bright and dark regions is mostly retained between simulation and
laboratory captures, but the latter’s images tend to have a higher contrast.

4.3. Robustness against reconstruction attackers

As a complementary avenue to evaluate the optical aberrations’ ability to preserve information
privacy, we performed a separate analysis where we trained and evaluated the performance of
independent image reconstruction deep learning algorithms that attempt to restore the obscured
information. It should be noted that the co-trained Optics model in this work was not optimized
to fend off against reconstruction attacks. Such an approach would be possible by using one
such image reconstruction model as the Attacker in the joint optimization scheme described
in Section 2.1. However, demonstrating the usage of this process with that additional type of
Attacker algorithm is beyond the scope of the current work.

In the present analysis, we train two separate instances of the same image reconstruction
algorithm model. One is trained to reconstruct the obscured images generated by the already
optimized Optics computational model, and the other is trained to reconstruct those yielded by
the already fabricated metasurface used in the laboratory experiment. The model architecture
and its training process are like those presented in [43,44]. This training process involves the
usage of a training set consisting of known pairs of obscured images and their corresponding
ground truth unobscured counterparts, as well as having knowledge of the PSF that produced
the obscurations. Executing this approach to training a privacy-breaching model constitutes a
simulacrum of the worst-case scenario in the effort of preserving pre-capture privacy, wherein
the attackers get access to the device (or just the pre-capture privacy module) and are able to take
the necessary measurements to train their reconstruction model (like the obscured-unobscured
image pairs and the system’s PSF). With that into consideration, this complementary analysis
provides insight about the robustness that the final optimized state of the Optics has against this
worst-case situation.

Figure 5(a) offers a qualitative comparison between some example reconstructions yielded by
each reconstruction model and the ground truth unobscured version of the samples in question.
The general trend is that most of the perceptual information of the images was restored, except
for the components with higher spatial frequencies, such as the finer details of textures, written
text, background objects, and certain identifying features in living creatures. Furthering this
analysis, the quality of these reconstructions was quantified by measuring the SSIM between the
reconstructed images and the corresponding ground truth unobscured sample. This was done for
both the reconstructions of the obscured images captured in the laboratory experiment and those
of the obscured images generated by the Optics model’s simulation. Figure 5(b) shows scatter
plots where the former’s SSIM values are in the vertical axis and the latter’s are in the horizontal
axis. These plots show a correlation between the quality of the reconstructions of the two types of
obscured images: If a given sample had a simulated obscured image with a reconstruction of high
SSIM quality, then the corresponding counterpart captured in the laboratory would tend to also
have a reconstruction of a high SSIM quality. This is to be expected, given the high similarity
between the two types of obscured images, which was discussed in Section 4.2. However, for
the overwhelming majority of the samples, the reconstruction quality of the obscured images
captured in the laboratory experiment is lower than that of the obscured images simulated by the
Optics model. This can be further appreciated in the cumulative distribution function plots shown
in Fig. 5(c). For the sets of SSIM values associated with each type of obscured images, there is a
noticeable gap between both distributions for the lower percentiles of values, which only starts
closing beyond approximately the 70th percentile (vertical axis coordinate). This means that the
worse reconstructions have a noticeably lower quality for the laboratory experiment’s captures,
while the best reconstructions have the same level of quality for both types of obscured images.
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To finalize the analysis, we trained independent instances of the Attacker and CV task models
until they converged to their maximal performance on their respective set of reconstructed images
(whether from the simulation or the laboratory experiment). After reconstructing the images that
had been obscured in simulation by the computational Optics model, the Attacker model could
attain a non-person accuracy of 37.4% while the CV task model could attain an AP of 79.5%.
Meanwhile, when using the reconstructions of the obscured images captured in the laboratory
experiment, the Attacker and the CV task model attained a non-person accuracy of 32.5% and
an AP of 76.9%, respectively. These additional results are plotted in Fig. 6(a), where they are
compared against those reported in Section 4.1 and Fig. 4(a) for the simulation and laboratory
experiment with monochromatic images. Similarly, the PR curves corresponding to the CV task
models that were trained with the reconstructed images are plotted in Fig. 6(b), where they are
compared against the PR curves that had been presented in Fig. 4(b). In the simulation-generated
obscured images’ case, neither the Attacker nor the CV task models saw significant performance
improvements upon using the corresponding reconstructions, which is contrasted with the evident
performance improvements that happened in the laboratory-captured images’ case. Finally, the
performance metrics that both image classification models attained when using the two types
of reconstructed images ended up being very close to each other, which is consistent with the
similarities and differences between the distributions of image quality values that had been shown
in Fig. 5(c): The higher floor of image quality attained with the simulation-generated obscured
images’ reconstructions is what allows the image classifier models to achieve a slightly higher
performance when using these images compared to the case where they use the reconstructions
of the obscured laboratory captures.

Fig. 6. a) Privacy-Performance trade-offs quantified by the maximal performance metrics of
the Attacker and CV task models that take monochromatic images projected by the DMD as
inputs, comparing the maximal performance attained when the image classification models
use obscured, reconstructed, or unobscured images. b) Precision-Recall (PR) curves of the
CV task models whose AP was plotted in a).

5. Discussion and conclusion

In this work, we demonstrated the joint optimization of a pre-capture privacy metasurface-based
optical system and a binary classification computer vision task model. The pre-capture privacy
optical module does not incur on additional computational overhead for the device carrying
out the computer vision task, and it drastically decreases the maximal performance of the
privacy-breaching attackers that it was designed to fend off against. This comes at the cost of
having the performance of the CV task model also being reduced. However, the trade-off between
privacy and performance preservation favors the latter, since the CV task model’s performance
drop-off is not as drastic as that of the hindered Attacker model.

Furthermore, the optimized optical system displays a decent level of competence at hindering
attackers that use advanced image reconstruction algorithms despite having being trained to fend
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off image classification attackers instead. Even though most of the perceptual information can be
restored by strong reconstruction models, we demonstrated how some key features with high
spatial frequency components were unable to be reconstructed. A future avenue of research is to
explore if the robustness against reconstruction attackers could be improved by incorporating
them as the adversarial component in the joint optimization process that was demonstrated
in this work. However, given the strength of deep-learning-based reconstruction algorithms,
attaining a high level of performance in fending off against them would also require to engineer
more complex and sophisticated ways to optically degrade the images before they are captured.
Tackling the problems associated with building such systems with arrays of metasurfaces that
work at visible wavelengths and studying the Privacy-Performance trade-offs that they attain
would constitute interesting research paths, but it is currently out of the scope of the present work.
Still, we have provided the groundwork to facilitate the inclusion of the technical improvements
that are necessary to pursue those research goals using the design and optimization framework
demonstrated in this work. Additional technical improvements, such as pursuing miniaturization
by using only metasurface-based optical components or resolving the technical problems that
limit experimental implementations for applications with broadband illumination, could add
further practical value to these future research endeavors.
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