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Co-designed pre-capture privacy
optics for computer vision:
supplemental document

In this Supplemental Document, we show the derivation for the equations that are used at the
core of our computational model for the imaging system used in our work. Additionally, we
provide additional detailed explanations for the design of the loss function terms that are used
in the gradient-based joint optimization process of our models. Furthermore, we expound on
the design and implementation of the simulation of the camera’s image signal processing (ISP)
algorithm that was incorporated into our Optics model. Lastly, we examine the class-specific
performance of the image classifier models, to identify which classes of objects are obscured the
most by the optimized optical aberrations.

1. LINEAR IMAGING SYSTEMS WITH BROADBAND SPATIALLY INCOHERENT ILLUMI-
NATION AND AN ANISOTROPIC OPTICAL ELEMENT

For a linear imaging system with spatially incoherent monochromatic illumination under the
scalar Optics regime, the intensity distribution in the output plane is given by the convolution
between the intensity distribution in the input plane and the imaging system’s point-spread
function (PSF) [1]:

Iout(x, y) = Iin
(
ξ̃, η̃

)
∗ PSF

(
ξ̃, η̃

)
. (S1)

In the main document, we based our Optics computational model on a similar equation, for
the case of a linear imaging system with spatially incoherent illumination and a wavelength-
dependent PSF:

Gout(x, y; ν) = Gin(ξ̃, η̃; ν) ∗ PSF
(
ξ̃, η̃; ν

)
=
∫∫
Gin(ξ̃, η̃; ν)PSF(x− ξ̃, y− η̃; ν)dξ̃dη̃, (S2)

where Gin and Gout denote the power spectral density distribution at the input and output planes,
respectively. In this section, we provide a derivation for this equation. Our analysis also takes
into consideration the anisotropic properties of the metasurface’s nano-pillars that are present in
the system used in our work.

Since we are dealing with an anisotropic optical element, we need to use vector Optics analysis
[2, 3]. We start by considering the Jones matrix associated with one of these anisotropic nano-
pillars:

T̂(0) =

 S1eiφ1 0

0 S2eiφ2

 . (S3)

Without loss of generality, we assume that light propagates along the Cartesian z axis. Addition-
ally, S1,2 and φ1,2 are the modulation to the magnitude and phase, respectively, of the incident
light’s electric field’s components on the directions aligned with the material’s main axes (as-
sumed to coincide with the Cartesian x and y axes) after the light propagated through it. If the
nano-pillar now becomes rotated around the propagation axis so that there is an angle θ between
the Cartesian axes and the material’s main axes, the Jones matrix would then be given by:

T̂(θ) =

cos θ − sin θ

sin θ cos θ

S1eiφ1 0

0 S2eiφ2

 cos θ sin θ

− sin θ cos θ


T̂(θ) =

 S1eiφ1 cos2 θ + S2eiφ2 sin2 θ
(

S1eiφ1 − S2eiφ2

)
cos θ sin θ(

S1eiφ1 − S2eiφ2

)
cos θ sin θ S1eiφ1 sin2 θ + S2eiφ2 cos2 θ

 .

(S4)

We will now perform the analysis of light’s propagation through our imaging system. In this
imaging system, a micro-display screen is placed in the front focal plane of a lens with focal
length f1, and our metasurface is placed in the back focal plane of said lens. The metasurface’s



plane also coincides with the front focal plane of a second lens, with focal length f2, and whose
back focal plane is the output plane of the overall imaging system. Propagation from the display
to the front of the metasurface is functionally the same as the propagation from the back of the
metasurface to the imaging system’s output plane. Additionally, the field at a point at the back of
the metasurface um′ is given by the field at the front of the metasurface um and the Jones matrix
for that point: um′x(u, v; ν)

um′y(u, v; ν)

 =

T11(u, v; ν) T12(u, v; ν)

T21(u, v; ν) T22(u, v; ν)

umx(u, v; ν)

umy(u, v; ν)

 , (S5)

where (u, v) are the spatial coordinates on the metasurface’s plane, and ν denotes the frequency
components of the field and the frequency dependence of the Jones matrix’s elements.

With the above in mind, we start our analysis by first examining the propagation from the front
focal plane of a lens to its back focal plane. The vector and frequency components of the field
obey the same wave equation, to which Fresnel propagation is a solution in the paraxial regime.
In the absence of anisotropic propagation media, a scalar Optics treatment is sufficient for this
part of the analysis. Said treatment has already been used in [1], assuming a thin achromatic lens;
for brevity sake, we cite the result. Let uo be the field of frequency ν at the front focal plane of a
lens with focal length f ; then the field u f at the back focal plane of the lens is given by:

u f (u, v; ν) =
νei2πν

(2 f )
c

ic f
F {uo(ξ, η; ν)}

∣∣∣(
ν
c f u, ν

c f v
), (S6)

where c is the speed of light in vacuum, and F {·} denotes the 2D Fourier transform, defined as:

F {g(x, y)}
∣∣∣
( fx , fy)

=
∫∫ ∞

−∞
g(x, y) exp

[
−i2π

(
fxx + fyy

)]
dx dy, (S7)

where
(

fx, fy
)

are the spatial frequency coordinates in the spatial frequency domain.
We now move on to the vector Optics analysis of the propagation from the back of the meta-

surface to the output plane of our imaging system, which are the front and back focal planes of
the system’s second lens. As such, since the field’s components each obey Fresnel propagation,
we apply the result of Eq. (S6) to both of them. Thus, the field us at the imaging system’s output
plane is given in terms of the field at the back of the metasurface um′ as:

usx(x, y; ν) =
νei2πν

(2 f2)
c

ic f2
F {um′x(u, v; ν)}

∣∣∣(
ν

c f2
x, ν

c f2
y
) (S8a)

usy(x, y; ν) =
νei2πν

(2 f2)
c

ic f2
F
{
um′y(u, v; ν)

} ∣∣∣(
ν

c f2
x, ν

c f2
y
), (S8b)

where um′ itself is given in terms of um by Eq. (S5).
Without loss of generality, let’s assume that right-hand circularly polarized light is incident on

the metasurface. In that case, we have:umx(u, v; ν)

umy(u, v; ν)

 =
1√
2

 1

−i

 um(u, v; ν), (S9)

where um(u, v; ν) is a scalar amplitude that obeys Fresnel propagation. With that, substituting
Eq. (S5) and Eq. (S9) into Eq. (S8), we get:

usx(x, y; ν) =
νei2πν

(2 f2)
c

ic f2
F
{

1√
2
(T11(u, v; ν)− iT12(u, v; ν)) um(u, v; ν)

} ∣∣∣(
ν

c f2
x, ν

c f2
y
) (S10a)

usy(x, y; ν) =
νei2πν

(2 f2)
c

ic f2
F
{

1√
2
(T21(u, v; ν)− iT22(u, v; ν)) um(u, v; ν)

} ∣∣∣(
ν

c f2
x, ν

c f2
y
). (S10b)
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Similarly, applying the result of Eq. (S6), we have that the field at the front of the metasurface um
is given in terms of the field at the display plane uo by:

um(u, v; ν) =
νei2πν

(2 f1)
c

ic f1
F {uo(ξ, η; ν)}

∣∣∣(
ν

c f1
u, ν

c f1
v
). (S11)

We now consider the projection usp of us into the base vector of the left-hand circular polar-
ization state, which has the opposite handedness to that of the light that was incident on the
metasurface. For that, we take the complex inner product between us and the unit vector 1√

2

[ 1
i
]
,

so we have:
usp = 1√

2
usx − i√

2
usy. (S12)

Finally, we substitute the values of the Jones matrix from Eq. (S4) into Eq. (S10), and substitute
both Eq. (S10) and Eq. (S11) into Eq. (S12). After some work, we get to this expression for the
projection of the field at the imaging system’s output plane usp in terms of the field at the input
plane:

usp(x, y; ν) = − ν2ei2πν
(2 f1+2 f2)

c

c2 f1 f2

(
f1
f2

)2 ∫∫ ∞

−∞
dξ̃ dη̃ uo

(
− f1

f2
ξ̃, − f1

f2
η̃; ν

)
h
(

x− ξ̃, y− η̃; ν
)

,

(S13)
where h is a function given by:

h
(

x− ξ̃, y− η̃; , ν
)
=

F
{

e−i2θ(u, v; ν)

(
S1(u, v; ν)eiφ1(u, v; ν) − S2(u, v; ν)eiφ2(u, v; ν)

2

)} ∣∣∣∣∣(
ν

c f2
(x−ξ̃), ν

c f2
(y−η̃)

). (S14)

With this result, we can find the power spectral density Gsp of this field’s projection by as:

Gsp(x, y; ν) = lim
T→∞

1
T

〈∣∣usp(x, y; ν)
∣∣2〉

=

(
ν

c f

)4 ∫∫∫∫ ∞

−∞
Go (ξ1, η1; ξ2, η2; ν)

h (x− ξ1, y− η1; , ν) h∗ (x− ξ2, y− η2; ν) dξ1dη1dξ2dη2,
(S15)

where Go is the power spectral density of the field at the input plane, and we used f1 =
f2 = f for simplicity. Since light emitted by the display is spatially incoherent, we have
Go (ξ1, η1; ξ2, η2; ν) = κ Go (ξ1, η1; ν) δ (ξ1 − ξ2, η1 − η2), for some constant κ. As such, sub-
stituting that definition into Eq. (S15), we at last have:

Gsp(x, y; ν) = κ

(
ν

c f

)4 ∫∫ ∞

−∞
Go (ξ, η; ν) |h (x− ξ, y− η; ν)|2 dξdη. (S16)

After grouping some scalar factors together and doing some notation changes, Eq. (S13), Eq. (S14),
and Eq. (S16) conclude the derivation for the equations used in the main document as part of our
Optics model.

2. OPTICS MODEL LOSS FUNCTION

As mentioned in the main document, the loss function LOpt that is used to train the Optics model
incorporates the losses LCV and LAtk that are used to train the CV task and Attacker models,
to create a feedback loop that couples the optimization processes of the three models. In this
work, the CV task and Attacker models are image classification models with a deep learning
architecture known as convolutional neural network (CNN) [4, 5]. Since both models carry out
classification tasks, both LCV and LAtk are the cross-entropy function, which is commonly used
to train classification models. A lower value for the cross-entropy loss function indicates that
the model in question produces more accurate classifications with more certainty [6]. There are
some distinctions between the functional forms of LCV and LAtk, which stem from the fact that
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the CV task model carries out a binary classification task while the Attacker model performs
multi-class classification. Furthermore, each set of classes (whether the two in the CV task model’s
binary classification or the 80 in the Attacker’s multi-class classification task) is assigned with a
set of scalar weights that are introduced as standard practice to compensate for the imbalanced
distribution of samples across the classes [6].

Apart from the LCV and LAtk terms, the Optics model’s loss function contains three other terms.
The first term is the structural similarity index measure (SSIM) [7], which compares the input
image that is passed down into the Optics model with the obscured image that is returned as
its output. When minimizing LOpt, we want to minimize this SSIM, so that the obscured image
stops resembling the input image. The SSIM term is completely independent of the CV task and
Attacker models, unlike the last two terms present in LOpt.

These two remaining terms seek to drive the obscured images returned by the Optics model
into producing specific kinds of responses from the CV task and Attacker models. This is done by
either minimizing or maximizing the difference between given target outputs and the outputs
returned by the convolution layers present in these models’ architectures. These target outputs are
generated by using separate, fixed (non-trainable) instances of the CV task and Attacker models’
architectures that are set to their “baseline” states. As explained in the main document, the CV
task and Attacker models are initially pre-trained to attain high performance when receiving
the original unobscured images as their inputs. The states that these models reach after this
pre-training process are used to initialize the co-trained models; as such, we refer to the model
instances that are fixed in these states as “baseline models”. The outputs from the baseline models’
intermediate convolutional layers provide insight about the features from the input image that
the models extract and use to perform their classification tasks [4, 5].

Because of the above, adjusting the Optics model so that the responses from the co-trained
classification models to the produced obscured images, Opt(Iin), resemble the responses from the
baseline models to the original unobscured images, Iin, would allow the former to emulate the
latter to attain a high classification performance despite receiving inputs with degraded image
quality. The first of the remaining terms works with the models’ feature maps, which are the
final outputs of their series of convolution layers and that can be interpreted as the model’s
“perception” to the inputs’ features [8]. As such, this term is referred to as perceptual loss . In
this work, it seeks to make the feature maps from the co-trained CV task model resemble those
from the baseline model as much as possible, while making the feature maps from the co-trained
Attacker model resemble random noise, hindering its performance:

Lperc = E
[∣∣∣CV(Conv layers)

cotrained (Opt(Iin))−CV(Conv layers)
baseline (Iin)

∣∣∣2]
+ E

[∣∣∣Atk(Conv layers)
cotrained (Opt(Iin))− ReLU (Randomnormal)

∣∣∣2] ,
(S17)

where E [·] denotes taking the average over all the elements in the numerical array in between
the square brackets, and ReLU is the rectifying linear function that maps positive numbers to
themselves and non-positive numbers to 0.

Meanwhile, the final term works with the Fourier transform of the outputs of the models’ first
convolutional layers, and is referred to as the spatial frequency domain loss. The rationale for its
inclusion is that the spatial frequency content of the first layer’s outputs determines the feature
content in the last layer’s outputs. This is because both the Optics model’s PSF and the classifier
model’s first layer’s convolution filters modulate the spatial frequency content in the input image
before it is passed down to the next layers to extract features. The goal of this term is to minimize
the differences in the spatial frequency domain between the outputs of the baseline and co-trained
versions of the CV task model, while maximizing said differences for the two versions of the
Attacker model:

Lfreq = E
[∣∣∣F {CV(1st layer)

cotrained (Opt(Iin))
}
−F

{
CV(1st layer)

baseline (Iin)
} ∣∣∣2]

− E
[∣∣∣F {Atk(1st layer)

cotrained (Opt(Iin))
}
−F

{
Atk(1st layer)

baseline (Iin)
} ∣∣∣2] .

(S18)

Finally, it should be noted that both Lperc and Lfreq are also incorporated into the training of the
CV task model, making it easier to maintain a similar perception and performance as its baseline
counterpart. With this, the parameters α from the Optics model, along with the parameters
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βCV and βAtk of the CV task and Attacker models are optimized via gradient descent with the
following update rules:

α← α−∇α

(
λOptLSSIM + λCVLCV − λAtkLAtk + λpercLperc + λfreqLfreq

)
, (S19a)

βCV ← βCV −∇βCV

(
LCV + λperc′Lperc + λfreq′Lfreq

)
, (S19b)

βAtk ← βAtk −∇βAtk (LAtk) , (S19c)

where we use the notation ∇X(·) to represent the gradient of the function in parentheses with
respect to the variable numerical array X in the subindex, and λ{·} are scalar weighting factors.
Through trial and error, we empirically found that using λOpt = 0.7, λCV = 0.2, λAtk = 0.1,
λperc = λperc′ = 0.1, and λfreq = λfreq′ = 0.01 in this work led to a more stable joint optimization
process while also yielding more favorable Privacy-Performance trade-off results.

3. SIMULATED ISP IMPLEMENTATION

From the main document, we have that the raw signal intensity produced by the camera pixels
with the k-th type of color filter is given by:

I′out,k(x, y) =
∫ ∞

0
dν Rk(ν)

(
PSF

(
ξ̃, η̃; ν

)
∗∑

c
Sc(ν)Iin,c

(
ξ̃, η̃

))
, (S20)

where Rk(ν) is the sensitivity spectrum of this k-th type of camera pixel, Sc(ν) is the emission
(or reflection) spectrum associated with the c-th color channel of the images Iin,c

(
ξ̃, η̃

)
that are

projected by the display into the imaging system that has a frequency-dependent point-spread
function PSF

(
ξ̃, η̃; ν

)
.

Let’s consider the ideal case where the imaging system has unit magnification and is aberration-
free. In that case, the PSF would be modeled as a delta function for all frequencies. As such, the
camera’s raw output signal intensity would be given by:

I′out,k(x, y) = ∑
c

Mkc Iin,c (x, y) , (S21)

where Mkc are the elements of a 3× 3 matrix M̄, given by:

Mkc =
∫ ∞

0
Rk(ν)Sc(ν)dν. (S22)

As such, Eq. (S21) can be viewed as a matrix multiplication between a 3× 3 matrix M̄ and a
3× N matrix Īin representing the projected image, where N denotes the total number of pixels
in the digital image. The result of this matrix multiplication would be a 3 × N matrix Ī′out
representing the camera’s raw output signal intensity. This can be written in matrix form as:

Ī′out = M̄Īin. (S23)

The above examination of the ideal aberration-free case paves the path towards a simple way
of simulating the camera’s image signal processing (ISP) algorithm, which maps the raw camera
signal intensity Ī′out to the output digital image Īout in the general case. In this work, given
the knowledge of the spectra Rk(ν) and Sc(ν), we first compute the constant matrix M̄ whose
elements are given by Eq. (S22). After simulating the the camera’s raw output signal intensity
Ī′out with the Optics model using Eq. (S20), we simulate the camera’s ISP by using the mapping

ISP
(
Ī′out

)
= M̄−1Ī′out (S24)

to get the simulated output digital image Īout that is later passed as the input to the CV task
and Attacker computational models in the system. As such, the simulated camera ISP given
by Eq. (S24) is designed to produce output digital images with identical RGB values to those of
the system’s digital inputs Īin under the ideal circumstances where Eq. (S23) would hold true.
That is, the simulated Optics model would become an identity function in the absence of the
metasurface’s light manipulation and optical aberrations.

There are a couple of additional considerations regarding the implementation of this simulated
ISP. As stated in the main document, this work made use of a digital micro-mirror display (DMD)
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illuminated by monochromatic illumination to project the images. As such, images produced by
an Optics model that simulates the main laboratory experiment’s conditions would be expected
to yield a monochromatic output that is passed down as the CV task and Attacker models’ inputs.
As such, the Optics model’s final output Īout is obtained by taking the average over the color
channels of the image ISP (Ī′out) computed using the expression from Eq. (S24). As a minute side-
note, Īout is still represented as a 3-channel RGB image (where the three color channels are equal
to the aforementioned average), because that is the format that the ResNet50 layers [4, 5] in the
CV task and Attacker models’ architectures expect to receive as inputs. (This architecture could
not be adjusted to take single-channel image inputs because that would have not allowed us to
use the pre-loaded “Imagenet weights” [9], which were used to initialize the models’ parameters,
as explained in the main document).

The second consideration has to do with the computation of the constant matrix M̄. When
introducing the data of the Sc(ν) associated with the monochromatic display into Eq. (S22), the
resulting matrix is not invertible. To get around this issue, we used the Sc(ν) data of an eMagin
SXGA096 OLED micro-display instead. In other words, the matrix M̄ in Eq. (S24) was computed
using the OLED display’s Sc(ν) data, while the image Ī′out was obtained from Eq. (S20) using
the monochromatic display’s Sc(ν) data. The resulting images ISP (Ī′out) have the red color that
would be expected from the monochromatic illumination at 632.8 nm used in this work.

4. CO-TRAINED IMAGE CLASSIFICATION MODELS’ CLASS-SPECIFIC PERFORMANCE

We present a complementary analysis to study the class-specific performance metrics of the
CV task and Attacker models from the simulations and laboratory experiments that work with
monochromatic images, while continuing the comparison between both. We start by listing the
80 different classes that the dataset images can belong to, which are grouped together into 12
categories in the annotation data from the source COCO dataset [10]. In indexing order, the classes
(listed inside parentheses) belonging to each category (written between quotation marks) are:
“Person” (person), “vehicle” (bicycle, car, motorcycle, airplane, bus, train, truck, boat), “outdoor”
(traffic light, fire hydrant, stop sign, parking meter, bench), “animal” (bird, cat, dog, horse, sheep,
cow, elephant, bear, zebra, giraffe), “accessory” (backpack, umbrella, handbag, tie, suitcase),
“sports” (flying disc, skis, snowboard, sports ball, kite, baseball bat, baseball glove, skateboard,
surfboard, tennis racket), “kitchen” (bottle, wine glass, cup, fork, knife, spoon, bowl), “food”
(banana, apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donut, cake), “furniture” (chair,
couch, potted plant, bed, dining table, toilet), “electronic” (television, laptop, computer mouse,
remote control, keyboard, cellphone), “appliance” (microwave oven, stove oven, toaster, sink,
refrigerator), “indoor” (book, clock, vase, scissors, teddy bear, hair drier, toothbrush). It must be
clarified that only the 80 individual class labels played a role during the training and evaluation
of the models in this work, but the 12 broad categories will be used in this section to simplify the
presented data visualization, analysis and discussion.

The purpose of this analysis is to quantitatively determine which types of objects were suc-
cessfully obscured from the Attacker models and which were still recognizable by them. To that
effect, we use the Attacker models’ test set predictions (outputs with probability scores for each
class returned by a multiclass classifier) to compute the average precision (AP) for each class.
As discussed in the main document, a higher class-specific AP value is indicative of a classifier
model’s ability to consistently distinguish between the “positive samples” (samples belonging to
the class of interest) and the “negative samples” (samples belonging to all other classes, in the
context of multiclass classification), assigning high probability scores to the former and low ones
to the latter. In Fig. S1 a) we present scatter plots whose horizontal axes represent the AP values
attained by the benchmark Attacker (trained with unobscured images) for each class, while the
vertical axes represent the AP values attained by the Independent Attackers that are trained with
obscured images produced by the simulation with the optimized computational Optics model
(left plot) or by the metasurface-based optical system in the laboratory experiment (right plot).
As such, these plots display data points corresponding to each the 79 non-person classes, using a
different type of marker for each of the 11 corresponding categories.

It can be observed that among the classes that the benchmark Attacker could correctly identify
with high AP values, most of them can no longer be correctly classified with high AP values by the
Independent Attackers that are trained with obscured images (both from the simulation and the
laboratory experiment). However, in the case of the simulation-generated obscured images, the
corresponding Independent Attacker could retain relatively high AP values for a small amount of
classes, mostly from the animal, vehicle and furniture categories. The highest values correspond
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a)

b)

c) d)

Fig. S1. a) Average precision (AP) values for each non-person class attained by the Indepen-
dent Attackers that receive obscured inputs, plotted against those attained by the benchmark
Attacker that works with unobscured images. b) Class-specific AP values attained by Indepen-
dent Attackers trained with reconstructed images, plotted against those attained when training
with obscured images. c) Averages of the CV task models’ predictions’ log-loss values over the
test set samples belonging to each category. d) Percentile plot of the distribution of the CV task
models’ predictions’ log-loss values over the test set samples that belong to the person class.

to the zebra class (animal category) and the stop sign class (outdoor category), which retain AP
values over 77.1% (the AP attained by the CV task model in its binary classification task with
simulated obscured images). Meanwhile, in the case of the obscured images captured from the
laboratory experiment, the highest class-specific AP value that was attained by the corresponding
Independent Attacker was 54.1% for the stop sign class, which is significantly lower than the AP
of 67.0% attained by the CV task model that performed the binary classification task of identifying
the person class on the same set of obscured images. As such, the Privacy-Performance trade-off
of the laboratory experiment’s optical obscurations is still shown to favor the CV task model from
the perspective of this class-based analysis, since the Independent Attacker model suffers from
significant drop-offs in the class-specific AP for all the classes for which the benchmark Attacker
had initially attained high performance.

The rest of this section will focus on identifying cases where a favorable Privacy-Performance
trade-off fails to be achieved on a per-class basis. We first examine the class-specific performance
that an Independent Attacker could attain after being trained with images reconstructed by a
dedicated image reconstruction network. As mentioned in the main document, this assumes
a scenario where attackers get access to the privacy-preserving optical system and are able
to measure its PSF and take captures of obscured-unobscured image pairs to train an image
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reconstruction network. Privacy would become compromised in such a scenario, because a trained
image reconstruction network allows the Attackers to restore the visual quality of images that
had been captured by the device in the past. After training two dedicated image reconstruction
networks that restore the quality of the obscured images (one for those from the simulation and
one for those from the laboratory experiment), separate Independent Attackers were trained
with the corresponding reconstructions of the dataset images. The scatter plots in Fig. S1 b)
compare the class-specific AP values that can be attained by the Independent Attackers trained
with reconstructed images versus those that were attained by the Independent Attackers that
were trained with obscured images. The former values are represented on the vertical axis,
while the latter are represented on the horizontal axis. In the case of the obscured images
produced by the computational Optics model’s simulation, the Independent Attacker that uses
their corresponding reconstructions trades off the AP between some classes, leading to higher
AP values in some of them at the expense of lower ones in a few others, when compared to
the class-specific performance of the counterpart that used the obscured images. However, the
Independent Attacker using reconstructed images is favored by this trade-off, since it attains a
slightly higher classification accuracy among the non-person classes (37.4% with reconstructed
images versus 33.5% with obscured ones). Meanwhile, in the case of the obscured laboratory
experiment’s captures, using the reconstructed images leads to noticeable improvements in the
AP of almost all classes when compared to what was attained with the obscured images. The
highest class-specific AP values with the reconstructed laboratory captures correspond to the
stop sign class (83.5%) and the bus class (64.4%), which are higher than (or close to) the AP of
67.0% that the CV task model attains on its binary classification when working with the obscured
laboratory captures (rather than their reconstructions). Thus, the CV task model is still favored in
general from the perspective of this analysis (with the exception of one class), despite not being
aided by reconstructed images like the separate Independent Attacker that is.

Lastly, we examine the instances where the CV task model performs poorly. For simplicity of
visualization, we limit the analysis to computing the category-specific mean log-loss the CV task
model, instead of computing these means for each of the individual 80 classes. That is, we take the
sum of all the log-loss values associated with the samples that belong to each category, and then
divide it by the total number of samples that belong to that category. The log-loss is defined as the
negative natural logarithm, i.e. − ln(·), of the probability score that the classifier model assigns
to the correct class label of a given sample. As mentioned in Section 2, the log-loss quantifies
the model’s consistency at distinguishing between the different classes; higher probabilities
being assigned to the samples’ correct labels leads to lower loss values [6]. Additionally, the loss
function LCV from Eq. (S19) incorporates scalar weights that are assigned to each class to multiply
the result of the − ln(·) function. For this analysis, we omit the scalar weights that were assigned
to the dichotomic positive and negative classes, and focus only on the − ln(·) function (which is
what “log-loss” will refer to). The plot in Fig. S1 c) displays the category-specific mean log-loss
values of the CV task models that use obscured images (both in the simulation and the laboratory
experiment) for each class, and compares them with those attained by the benchmark CV task
model (which used the unobscured images). A histogram of showing the distribution of samples
across categories is also shown. It can be observed that the benchmark CV task model (which was
trained with unobscured images) has the highest category-specific mean log-loss for the “sports”
category, which is the one with the fewest samples. Additionally, both CV task models that work
with obscured images have their highest mean log-loss values be those corresponding to the
person class. It can also be observed that the CV task model that works with obscured laboratory
captures has a lower person-class log-loss value than the one that works with the simulation-
generated obscured images, while the latter model attains lower mean log-loss values for all the
non-person categories than the former model. However, the high mean log-loss values associated
with the class of interest requires further examination. For the simulated obscured images’ CV
task model, the global mean log-loss (averaged across all test set samples) is 0.4044, whereas the
mean log-loss for the person class is 0.9708. Meanwhile, the values of the laboratory captures’
CV task model’s global mean log-loss and person-class mean log-loss are 0.4661 and 0.6934,
respectively. The contrast between the global and person-class mean values comes as a result of
the former being driven down by the lower log-loss values of the CV task models’ predictions for
the non-person samples (which in total comprise two thirds of the test set). Lastly, we examine the
distribution of the CV models’ log-loss values associated with their predictions for the samples
that belong to the person class. To do so, we present the corresponding percentile plots in Fig. S1
d), along with a reference horizontal dashed line for the loss value of − ln(0.5) = 0.6931, which is
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the value associated with samples who get assigned with a probability score of 50% for the correct
class. In the context of binary classification, positive-class samples that have a log-loss below the
0.6931 threshold would have assigned a probability score of more than 50% to the positive class,
resulting in a true positive prediction. From the plots in Fig. S1 d), it can be observed that this is
the case with 95% of the unobscured person-class samples classified by the benchmark CV task
model. However, upon introducing the optical obscurations, this percentage drops to 52% for the
CV task model that works with simulated obscured images, and to 62% for the one that works
with the obscured laboratory captures. From this analysis, it can be concluded that the main
source of performance degradation in the CV task model is the loss values associated with the
class of interest (the person class). The CV task model that works with the obscured laboratory
captures is less affected by this problem than its counterpart that worked with the simulation’s
obscured images. As such, performance improvements (without relying on changing the network
architecture) could be pursued with additional rounds of fine-tuning the models’ parameters with
a more specialized loss function for optimization. For instance, an alternate loss function L′CV with
different class-dependent weights focused on prioritizing the positive class performance could be
used during this additional fine-tuning instead of the LCV that had been used during co-training
(whose weights had the purpose of compensating for the imbalance between the positive and
negative classes, as mentioned in Section 2). Furthermore, other specialized loss terms besides
L′CV could be introduced during the fine-tuning process, but investigating those possibilities
is beyond this work’s scope. Regardless, the analysis presented in this section showcases that
avenues for improvement can be identified by following performance examinations that are
relevant for the applications at hand. Similar procedures would have to be followed if the CV
task and Attacker models performed different computer vision tasks or used a different neural
network architecture.
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