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Abstract: A metaoptical system is co-designed with electronic hardware to implement deep
learning image recognition. The optical convolution block includes a reflective metasurface
to perform one layer of a deep neural network. The optical and digital components are jointly
optimized to perform an image classification task attaining 65% accuracy, which is close to
the 66% accuracy of a fully-digital network where the optical block is replaced by a digital
convolution layer.
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1. Introduction

The set of algorithms known as deep learning (also known as artificial neural networks or
deep neural networks) have become ubiquitous in many technological fields because of their
applicability in a wide array of automated tasks [1,2]. Despite having been introduced many
decades ago, they have gained notable traction in recent years due to technology improvements,
such as more powerful electronic hardware allowing for more efficient computations and larger
storage sizes [2]. Some of the most common applications of deep learning algorithms include
computer vision [3,4] and language processing [5–7]. Optical systems that implement deep
learning were proposed several decades ago [8]. However, the recent rise of deep learning has
revived interest in optical hardware implementations. The main motivations are the potential
savings in computation and energy costs attained by performing mathematical operations
on optical hardware instead of electronic hardware. Demonstrations include implementing
existing neural network architectures, such as a multi-layer perceptron [9,10], a convolutional
neural network [11–18], and recurrent neural networks [19,20], while others implement unique
architectures enabled by optics [21–29] or use the optical hardware for data transfer [30] or logic
operations [31]. These are in addition to applications relying on image deconvolution common
in both astronomy [32] and microscopy [33].

In addition to optical systems that intend to delegate computational overhead into the optics,
there are works that propose optical systems that are designed using deep learning algorithms
to perform domain-specific tasks, in what has been termed as deep optics [34,35]. Deep optics
systems have found applications in tasks that are relevant for computer vision such as depth
estimation [36] and acquisition of high-dynamic-range images [37]. Other examples of recent
works on this field include the design of imaging systems with large depth-of-field [38], end-to-end
joint design of the lenses in an imaging system [39], design of multi-channel imaging systems
for fast acquisition of depth information in microscopy systems [40], and the joint design of
nano-optics imagers and image reconstruction algorithms for a high-quality and ultra-compact
computational imaging system [41].

In this work we extend the field of co-designed deep optics to include metasurface optical
components and provide an experimental proof-of-concept for the design framework introduced in
[18]. Metasurfaces enable flexible manipulation of light’s amplitude, phase and polarization [42]
and make possible the engineering of an optical system’s point spread function. The metasurface
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used in this work is a plasmon gradient metasurface; a type of reflective metasurface [43]. Some
recent works have used metasurfaces to implement deep learning concepts [14,22,25,29,31,41].
However, all of these works only use transmissive metasurfaces, which has left open opportunities
to demonstrate the usage of reflective metasurfaces. As such, this work is the first instance of a
deep optics system where a reflective metasurface is used and co-designed with digital neural
network layers. This is significant, as reflective elements allow light to follow paths that are
not restricted to just a straight line, which is useful when there are geometric constraints on the
optical system. Additionally, our design pipeline can be generally used in other deep optics
systems that incorporate digital neural network layers and that perform mathematical operations
using a phase-modulating optical element, such as a metasurface. Furthermore, our work is the
first one to perform joint training of the parameters of a reflective metasurface along with the
parameters of the digital components in a hybrid system that combines them to perform an image
classification task.

2. System design

A natural fit for implementing the convolution mathematical operation using optical hardware is
to use a system based on free-space propagation, as both far-field propagation and propagation
through lenses perform Fourier transform operations of the optical field at no additional energy
cost [44]. Because of this, the intensity distribution of the images that are captured by a linear
optical system with incoherent illumination can be expressed in terms of a convolution operation,
that is:

Iout(u, v) = Iin(ξ, η) ∗ PSF(ξ, η), (1)
where ∗ denotes the convolution operation, Iin is the intensity distribution in the optical system’s
input plane, and PSF is the optical system’s point-spread function (PSF), which can be viewed as
the image captured by the optical system when it is imaging a point source [44].

The concept for this work is shown in Fig. 1. As previously stated, the goal is to set up and
test an optical system that can implement the mathematical operations performed by a digital
convolutional layer and reproduce the outputs that the latter would yield. This can be achieved if
the convolution kernels of that digital convolutional layer are encoded in the optical system’s PSF.
The optical system’s PSF can be engineered by adjusting the phase modulation profile imparted
by a metasurface.

The output numerical array yielded by this optical system will differ slightly from the one
that would have been yielded by the original digital convolutional layer. However, since that
convolutional layer doesn’t exist in a vacuum and is instead part of an artificial neural network
whose purpose is to perform a task (such as object detection or image classification), we are more
interested in the performance that the rest of the network (referred to as the suffix layers moving
forward) would have when it takes the output of the optical convolution system as an input instead
of taking the output of the original digital convolutional layer. Because of this, the process
for testing the metasurface-based optical convolution system is designed around measuring the
performance of the joint hybrid system that is comprised by the optical convolution block and the
digital suffix layers.

We follow a design pipeline, which was proposed in our previous work [18], where a sequence
of steps are followed in order to train the parameters of both the optical convolution block
and the digital suffix layers. This pipeline can be summarized as follows. First, a fully-digital
neural network is trained to classify images from the CIFAR-10 dataset, created by the Canadian
Institute for Advanced Research (from which it gets its name) [45]. Then, the first convolutional
layer of this network is replaced by a parametrized model of the optical convolution block,
and this model’s parameters are co-trained along with those of the digital suffix layers. The
optical model’s trained parameters are then used to fabricate the metasurface that is present
in the physical optical convolution block. Finally, the parameters of the suffix layers need to
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Fig. 1. Our optical convolution system aims to reproduce the same result as a digital
convolutional layer. The response of the optical system is characterized by its point-spread
function (PSF), which is controlled by the phase modulation profile of a metasurface. This
phase modulation profile is first trained so that the optical system’s yielded PSF encodes
the convolution kernels of the digital convolution layer that is being replaced by it. Then, it
is co-trained along with the parameters of the suffix digital layers to optimize the system’s
performance on an image classification task. After that, the co-trained phase profile is used
to fabricate the optical system’s metasurface, and the hybrid system is able to carry out the
image classification task. Finally, the parameters of the hybrid system’s digital suffix layers
are fine-tuned to improve its classification performance.

be fine-tuned to account for the differences between the outputs of the optical system and the
original digital layer that was replaced by the former.

The key elements of this pipeline are the algorithms that are used to encode the convolution
kernels into the optical system’s PSF, as well as jointly training the parameters of the optical
convolution block with those of the digital suffix layers. The former is done with a phase
optimization algorithm, where the phase modulation profile of the metasurface is optimized via
gradient descent so that its yielded PSF approaches a target PSF that encodes the digital layer’s
convolution kernels. Meanwhile, the latter is accomplished by performing backpropagation
training (which is another form of gradient descent optimization) on the differentiable model that
results from parametrizing the network’s first layer’s convolution kernels in terms of the phase
modulation profile of the optical convolution block’s metasurface. In order to perform both of the
aforementioned tasks, it is necessary to compute the gradient ∇ΦL of a task-related loss function
L with respect to the phase modulation profile Φ. These processes are illustrated in Fig. 1.

In the case of the phase optimization task, the loss function LPhaseOpt. that is to be minimized
via gradient descent is given by:

LPhaseOpt.(Φ; PSFtarget) = | | (PSFtarget/ATT) − |F −1
2D

{︁
eiΦ}︁ |2 | |2F, (2)

where PSFtarget is the target PSF that encodes the original digital layer’s convolution kernels, ATT
is an attenuation profile that affects the PSF yielded by the metasurface, F −1

2D denotes an invese
2D Fourier transform, and | | · | |F denotes the Frobenius norm. More technical details regarding
the attenuation profile ATT can be found in the Supplement 1. The gradient of LPhaseOpt. with
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respect to Φ is given by:

∇ΦLPhaseOpt. = −4Im
[︂
e−iΦF2D

{︂(︂
Y −

|︁|︁F −1
2D

{︁
eiΦ}︁|︁|︁2)︂ F −1

2D
{︁
eiΦ}︁}︂]︂ , (3)

where Y = (PSFtarget/ATT), and Im denotes the function that returns the imaginary part of an
array of complex numbers.

In the case of the co-training task, where the phase modulation profile is jointly trained with
the system’s digital layers, the loss function LNetwork to be minimized is the cross-entropy loss
function (also known as log-loss). This is the same loss function that is minimized when a
fully-digital network is trained to perform its classification task. The log-loss function measures
the “confidence” the system has in assigning the correct class label (ground truth) to each image
that it is classifying, as the value of the log-loss function is lower if the predicted probabilities
assigned by the system to the ground truth labels are higher [2]. When the original fully-digital
network is trained, the convolution kernels W of the first layer are iteratively updated by computing
∇WLNetwork. However, when these kernels are parametrized in terms of Φ, Φ needs to be updated
by computing the gradient ∇ΦLNetwork instead. The latter gradient can be computed in terms of
the former as:

∇ΦLNetwork = 2Im
[︁
e−iΦF2D

{︁
F (∇WLNetwork) F

−1
2D

{︁
eiΦ}︁}︁]︁ , (4)

where F (∇WLNetwork) = ∇PSFLNetwork is the gradient of LNetwork with respect to the PSF yielded
by Φ, and can be obtained by re-arranging the elements of ∇WLNetwork. More details about the
relationship between ∇WLNetwork and ∇PSFLNetwork, as well as rigorous derivations of Eq. (3)
and Eq. (4) can be found in our previous work [18].

3. Results

The metasurface’s phase modulation profile was obtained after finishing the co-training steps
of the design pipeline, where it was optimized alongside the parameters of the digital suffix
layers in order to perform an image classification task on images from the CIFAR-10 dataset.
Before fabricating the metasurface, a fully-digital neural network was built where the first layer’s
convolution kernels were derived from the co-trained phase modulation profile, and the suffix
layer’s parameters were set to those obtained at the end of the co-training steps. The full network
had a classification performance of 86% accuracy and a log-loss of 0.50 on the test set of the
CIFAR-10 dataset.

After fabricating the metasurface, it was placed in the optical system to perform optical
convolution. Images from the test set were projected into the optical convolution block, and the
yielded captures were saved into a computer’s hard drive. An example capture can be found
in Fig. 2(a)). The captures went through digital post-processing to produce tensors that were
used as inputs to the digital suffix layers, in order to get a set of classification predictions for
every input image. More details on this experiment can be found in the Methods section. The
initial classification performance of this hybrid system was 11% accuracy and 4.48 log-loss,
before any fine-tuning of the digital suffix layers was done. However, after the parameters of
the suffix layers were fine-tuned to account for the differences between the inputs coming from
the original first digital layer and those coming from the optical convolution block, the hybrid
system’s performance increased to 65% accuracy and 1.09 log-loss.

This performance was benchmarked against a fully-digital network that was constructed by
setting the parameters of its suffix layers to have the values they had after the final fine-tuning
step, while the convolution kernels of its first layer were set to have the values obtained from
the metasurface’s phase modulation profile. A diagram illustrating the construction of this
benchmark digital network can be found in Fig. 2(b)). By construction, the only difference
between the benchmark network and the hybrid system is that the digital first layer is being
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Fig. 2. a) Example capture: simulation vs experiment. b) Construction of the benchmark
digital neural network.

replaced by the optical convolution block in the latter system, and both systems have the same
parameters in their suffix layers. The benchmark network has a performance with an accuracy of
66% and a log-loss of 1.11. Given this, it can be seen that the performance remains almost the
same when the digital first layer is replaced by the optical convolution block in the hybrid system.

Despite the similar classification performance of the hybrid system and the digital benchmark
network, the predictions yielded by each system for a given individual input tend to be different.
This is to be expected, due to the qualitative differences that exist between the outputs yielded by
the digital and physical versions of the network’s first layer, despite the latter being designed
to reproduce the outputs of the former. An example qualitative comparison between both can
be found in Fig. 3. In the final step of the optimization pipeline, the digital suffix layers were
fine-tuned so that they could improve their classification performance when receiving inputs
coming from the optical convolution block, but it is important to note that this fine-tuning
process would not necessarily translate into having the suffix layers yield the same response when
receiving inputs coming from the optical convolution block as when receiving inputs coming
from a digital layer. That is, the differences between both types of inputs gives rise to differences
between the corresponding outputs yielded by the same suffix layers. As such, there’s differences
between the responses that the hybrid system and the fully-digital benchmark network will have
for a given input image. We quantify these differences by comparing the predictions given by
both systems when receiving pictures from the test set of the CIFAR-10 dataset as inputs. Out
of the 10000 pictures in the test set, both systems coincided in their predicted classes for 5482
of these pictures. Out of these 5482 overlapping predictions, 4918 were correct predictions
(predicted class matching ground truth class). However, beyond those overlaps, the hybrid system
got 1601 correct predictions that the digital benchmark network got incorrect, while the latter
got other 1699 correct predictions that the former got incorrect, and there were 1782 pictures
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Fig. 3. a) Sample inputs, one for each of the ten possible classes in the dataset. b)
Corresponding outputs yielded by the digital first layer. c) Corresponding outputs yielded by
the optical convolution block (after post-processing). In both b) and c), only one channel of
the three-dimensional output tensors is shown.

where both systems gave incorrect predictions (though they coincided in the same wrong answer
on only 564 out of these pictures). In total, the hybrid system got 6519 correct predictions and
the digital benchmark network got 6617 correct predictions, giving rise to the 65% accuracy for
the former and 66% accuracy for the latter that were reported above. We do further quantitative
comparisons by computing the structural similarity index measure (SSIM) and root-mean-square
difference (RMSE) between the outputs coming from each version of the network’s first layer.
Before doing so, the output tensors associated with each picture in the dataset were normalized
to have a maximum value of 1, to have both versions of each tensor have the same dynamic range

Fig. 4. Histograms and cumulative distribution functions of the SSIM and RMSE between
the outputs yielded by the physical and digital versions of the network’s first layer.
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at the time of computing the SSIM and RMSE. In Fig. 4, we show histograms and cumulative
distribution functions of the values that the SSIM and RMSE metrics have when comparing the
outputs yielded by both versions of the network’s first layer when given each picture from the
CIFAR-10 test set as their input. The average SSIM is 0.66, and the average RMSE is 0.0798,
which is 7.98% of the dynamic range of the compared tensors.

4. Methods

4.1. Optical system layout

A diagram illustrating the layout of the optical convolution block is shown in Fig. 5. In this
system, 633 nm light from a HeNe laser is imaged out-of-focus into the surface of a rotating
glass diffuser, and the diffused light is collimated and sent into the surface of a DLP LightCrafter
6500 digital micro-mirror display (DMD). The light incident on the DMD has become spatially
incoherent after going through the rotating diffuser, and it overfills the array of display pixels that
are used to project pictures into the optical convolution block. The display plane and lenses L3
and L4 are arranged in a 4f system, which is a configuration used to perform optical convolution
[44]. That is, the display plane is placed in the front focal plane of lens L3, and the metasurface
is placed on the back focal plane of this lens, which coincides with the front focal plane of lens
L4 and is the Fourier plane of the 4f system. Both lenses L3 and L4 have a focal length of
125 mm. Since the metasurface is reflective, a pellicule beam-splitter is placed between L3 and
the metasurface, so that light reflected by the latter can be pathed into lens L4. Additionally,
since light incident on the metasurface needs to have vertical polarization so that it can impart
the intended phase values on the reflected light, a linear polarizer is also added between lens L3
and the beam-splitter.

An image that consists of the convolution between the picture projected on the display and the
PSF yielded by the metasurface is formed on the output plane of this first 4f system, which is the
back focal plane of lens L4. This plane coincides with the input plane of a second 4f system
composed by lenses L5 and L6. The metasurface and the beam-splitter are tilted at angles that
allow the portion of interest in the 4f system’s output image to be incident at the center of the
clear aperture of mirror M5, and the tilt angle of this mirror is adjusted so that reflected light can
propagate along the direction of the line that connects the centers of lenses L5 and L6. Lens
L5 has a focal length of 150 mm and lens L6 has a focal length of 15 mm, so this 4f system
has a magnification of − 1

10 . The goal of this second 4f system is to have the portion of interest
of the image that is formed at its input plane shrunken down in size so that it can fit into the
Basler acA1600-20um camera’s sensor. The camera’s capture contains an array of sub-images
that are equal to the individual convolutions between the picture projected on the DMD and the
convolution kernels that have been encoded on the system’s PSF by the metasurface’s phase
profile.

4.2. Capture acquisition process

Once the alignment of the components in the optical system is completed, the capture acquisition
process is performed to obtain captures containing the system outputs associated with each of the
pictures in the CIFAR-10 dataset. Captures associated with both the training set and the test set
are obtained on the same experiment session, so that they are acquired under the same conditions.
In order to sequentially project the hundreds of pictures contained in each set, video files for both
sets are created. In these videos, each frame contains a different picture and the video is played
at 10 frames per second. The computer that controls the DMD and the camera is set-up to play
these videos on the DMD, which is configured as a second display. Meanwhile, the camera is set
to acquire captures at 20 frames per second, which is twice the frequency at which pictures in the
video are changed. This is done to avoid getting captures of a transitory state of the DMD (when
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Fig. 5. Optical convolution block. Light from a laser is passed through some optical
elements (labeled with letters L for lenses and M for mirrors) to make it become spatially
incoherent before it illuminates the surface of a digital micro-mirror display (DMD). The
illuminated DMD projects images, and light coming from it passes through lens L3, a linear
polarizer (LP), and a pellicule beam-splitter (BS) before being incident on the metasurface.
Light reflected by the metasurface is then reflected by the beam-splitter into lens L4. An
image is formed in the back focal plane of lens L4, which consists of the convolution between
the input picture projected by the DMD and the point spread function of the optical system,
which is controlled by the metasurface’s phase modulation profile. The region of interest
containing the result of the optical convolution is imaged into a CCD camera’s sensor using
mirror M5 and lenses L5 and L6.

it switches from a picture to another). However, the camera is also set up to save only every
second capture it acquires to the computer’s hard disk. That way, there is one saved capture for
every picture in the dataset (for both the training set and the test set).

4.3. Post-processing steps

After these captures have been acquired, it is necessary to perform some digital post-processing
steps on them in order to obtain a set of tensors (three-dimensional numerical arrays) that
reproduce the outputs that the original digital first layer would have yielded. These tensors will
serve as the input to the network’s digital suffix layers in order to complete the image classification
task. The post-processing steps consist on extracting the patches of the capture that contain the
sub-images (which represent the results of individual convolutions between the input picture and
each convolution sub-kernel), as well as additional correction steps on the extracted sub-images,
such as resizing and brightness compensation (by multiplying the sub-image in question by a
scalar).

As explained in detail in the Supplement 1 document, each of the convolution kernels W
contained in the optical system’s PSF are split into two sub-kernels each; one sub-kernel containing
the positive values of W and the other one containing the (absolute value of) the negative values
of W. An image captured by the sensor contains an array of sub-images that are equal to the
results of convolving the corresponding input picture Iin with the sub-kernels contained in the
PSF, which encode the convolution kernels W of the replaced first digital convolutional layer.

https://doi.org/10.6084/m9.figshare.21731222
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Subtracting each sub-image with its corresponding pair during post-processing will yield a result
that is equivalent to convolving Iin with W.

After all the sub-images contained in the capture are extracted and corrected, they are subtracted
with their corresponding pair in order to obtain the results of the convolutions between the input
picture and all the convolution kernels. Then, these convolution results are stacked in a 3-D
tensor where the first two dimensions are width and height, and the third dimension is the channel
index; this is the same format as the outputs of a digital convolutional layer. Finally, a non-linear
function is applied element-wise on the resulting tensor, to obtain an output that nearly reproduces
the one that would have been yielded by the original digital convolutional layer. The non-linear
function that is used both in the digital convolutional layers and this final post-processing step is
the ReLU function, which maps non-negative numbers to themselves and negative numbers to
zero. An example of a capture and the result of the post-processing steps applied to it are shown
on Fig. 3, along with a comparison to the output of the original digital convolutional layer.

After the post-processing steps are performed on all the saved captures, the results are stacked
in a 4-D tensor dataset, where the first dimension is the capture/picture index, the second and
third dimensions are width and height, and the fourth dimension is the channel index. There is
one such tensor constructed from the captures from the test set, and one constructed from the
captures of the training set. The former is used to measure the hybrid system’s performance in
the image classification task, while the latter is used to fine-tune the parameters of the system’s
digital suffix layers.

5. Discussion and conclusion

In this proof-of-concept work we implemented a metasurface-based optical system that can
perform the same mathematical operations as a convolutional layer from an artificial neural
network, delegating some of the computation overhead from the electronic hardware into the
optical system. While the performance of the hybrid system in this work is lower than that of
the original fully-digital network, it has a performance that is on par to that of the benchmark
fully-digital network that has the same values on the parameters of its suffix layers, despite the
differences between the outputs yielded by the optical and digital versions of the system’s first
layer.

Since this is a proof-of-concept, our main goal was not to have an original fully-digital network
with state-of-art performance, nor have the system maintain such performance after replacing the
network’s first layer with the metasurface-based optical convolution block. Rather, the goal of
this work was to experimentally demonstrate the process that is followed to design and fabricate
a metasurface that can be used as part of a system that can perform a computer vision task (like
image classification in this case). Additionally, since the metasurface in question was reflective,
this proof-on-concept demonstrates that optical systems that intend to use a metasurface-based
approach to perform deep learning computations do not need to be constrained to only use
transmissive elements, allowing them to have more flexibility in their design.

The advantages in terms of reducing computation costs and latency by performing deep
learning operations on optical hardware have been discussed in other works more extensively.
An additional advantage that a system like this can have is the ability to introduce privacy
preservation into the optical systems where metasurfaces can be integrated due to their compact
and light-weight form factor, such as cell-phone cameras and augmented reality gear. This
privacy preservation element can be implemented by modifying the convolution kernels of the
replaced convolution layer or by introducing aberrations into the optics, in such a way that the
captures on the sensor are no longer human-perceptible, while the post-processing steps and the
digital suffix layers ran in the electronic portion of the system ensure that the computer vision
tasks are still carried out with high performance. Such approaches would have the benefits of
simultaneously preserving privacy and running computations on the optical hardware. However,
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while such possibilities open up interesting avenues for future research, they are out of the scope
of this work.
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