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ABSTRACT

Despite many recent efforts, accelerating robotic computing is still
fundamentally challenging for two reasons. First, robotics software
stack is extremely complicated. Manually designing an accelera-
tor while meeting the latency, power, and resource specifications
is unscalable. Second, the environment in which an autonomous
machine operates constantly changes; a static accelerator design
leads to wasteful computation.

This paper takes a first step in tackling these two challenges
using localization as a case study. We describe Archytas, a frame-
work that automatically generates a synthesizable accelerator from
the high-level algorithm description while meeting design con-
straints. The accelerator continuously optimizes itself at run time
according to the operating environment to save power while sus-
taining performance and accuracy. Archytas is able to generate
FPGA-based accelerator designs that cover large a design space
and achieve orders of magnitude performance improvement and/or
energy savings compared to state-of-the-art baselines.
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1 INTRODUCTION

Robotic computing has reached a tipping point. A myriad of au-
tonomous machines such as drones, logistic robots, and self-driving
cars are on the cusp of becoming an integral part of our everyday
life. The continuous proliferation of autonomous machines, how-
ever, depends critically on an efficient computing substrate, driven
by higher performance requirements and the miniaturization of
machine form factors. As a result, it comes with no surprise that a
great amount of recent efforts focus on accelerating various robotics
tasks [9, 24, 36, 39, 42, 44, 45, 59–61, 68, 73].

This paper specifically focuses on localization, i.e., calculating
the position of an agent in the environment. Accelerating local-
ization has two challenges. First, to arrive at a practical design
for production, designers often must explore a large design space
delineated by the performance requirement, resource constraints,
and the expected accuracy level. However, the robotics software is
often extremely complicated. For instance, the popular localization
framework VINS [5, 66] has about a hundred thousand lines of
code. Thus, manually exploring the design space to derive an opti-
mal accelerator design is unscalable. A slight modification to the
algorithm, target hardware platform, or performance requirement
would potentially require a manual redesign.

Second, the environment that an autonomous machine operates
in is constantly changing, and thus the load of work at run time is
dynamically changing. A purely static accelerator, as in virtually
all prior work, accommodates the worst case, necessarily leading
to wasteful computation at run time.

This paper presents Archytas, a framework that automatically
generates localization accelerators (in the form of synthesizable
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Fig. 1: System overview. Archytas first generates a M-DFG from a high-level algorithm description. The M-DFG is then mapped

to a parameterized hardware template, which is concretized by the hardware synthesizer (in the form of synthesizable Verilog

code) given the latency and power specifications. The run-time system continuously re-optimizes the hardware according to

the operating environment to opportunistically save power.

Verilog) from high-level algorithm descriptions given the power,
latency, and resource specifications. At run time, the accelerator
continuously re-optimizes itself according to the operating environ-
ment to save power while sustaining performance and accuracy.

We target a specific family of localization algorithms based on
maximum a posteriori (MAP) estimation [15]. TheMAP formulation
is widely used in mobile robots [67], aerial robots [5], autonomous
vehicles [76], and Mars rovers [19]. MAP allows an autonomous
machine to localize in previously-unseen environments [56] and
to correct cumulative errors during long-term, continuous localiza-
tion [72]; both are key to real-world deployment. Fig. 1 shows an
overview of the Archytas system.

Static Synthesis In generating the accelerator statically,Archy-
tas addresses two challenges. First, while the general localization
algorithm description is well-established, many algorithmic blocks,
such as matrix inversion and linear system solver, can be imple-
mented in different ways. By exploiting domain-specific knowledge
(e.g., inherent data sparsity, data-flow across blocks), Archytas
generates a concrete software implementation of localization, in
the form of a macro data-flow graph (M-DFG), which minimizes
the computation cost for each algorithmic block and facilitates
hardware resource sharing across blocks (Sec. 3).

Second, given the M-DFG, Archytas generates hardware us-
ing a pre-designed template. We show how to optimize the key
hardware blocks in the template by exploiting the locality and par-
allelism unique to localization (Sec. 4). Critically, we identify a set of
“customizable” hardware blocks whose resource provisions dictate
the resource-vs-latency trade-off. Given the design specifications
(e.g., resource and latency constraints), Archytas generates the
exact configurations of the customizable blocks via constrained
optimization, yielding a concrete accelerator (Sec. 5).

Dynamic Optimization At run time, Archytas dynamically
re-optimizes its hardware configuration to minimize power (Sec. 6).
We leverage the observation that the load of work at run time varies
with the environment in which an autonomous machine operates.
Archytas dynamically scales down the hardware provision when
the workload decreases with little accuracy/latency impact. Crit-
ically, we show that almost all run-time decisions could be made
offline and memoized, leading to negligible run-time overhead.

Results We generate designs targeting the Xilinx Zynq-7000
FPGA platform. Archytas is able to generate designs that cover

a design space of 5× performance difference and 2× power differ-
ence. Evaluating on two common datasets, KITTI Odometry [26]
for self-driving cars and EuRoC [14] for drones, an Archytas-
generated accelerator is able to provide a 6.2× speedup and 74.0×
energy reduction over a 16-core Intel Comet Lake CPU and a 39.7×
speedup and 14.6× energy reduction over a quad-core ArmA57 core.
The dynamic optimization introduces another 2× energy reduction
without degrading the accuracy or performance.

In summary, this paper makes the following contributions:
• We observe that there exists a large software design space for
the generic localization algorithm. We exploit localization-
specific knowledge to generate a concrete software imple-
mentation (an M-DFG graph) from the algorithm description
that minimizes the overall computation and enables hard-
ware resource sharing.

• We present a template hardware for accelerating localization.
We show how to optimize key hardware blocks in the tem-
plate by exploiting the data sparsity, locality, and parallelism
inherent in localization.

• We present a hardware synthesis framework that automati-
cally generates a concrete localization accelerator given the
M-DFG and the hardware template. We demonstrate that the
generated accelerators can flexibly trade performance for
energy and out-perform multi-core baselines and existing
localization accelerators.

• We introduce a run-time system that dynamically re-optimizes
the hardware to save power according to the operating envi-
ronment without degrading accuracy and performance.

2 BACKGROUND

Wefirst introduce the scope of the localization problem (Sec. 2.1), fol-
lowed by describing themost widely used SLAMalgorithm (Sec. 2.2),
which we target in this paper.

2.1 Simultaneous Localization and Mapping

An autonomous machine localizes itself by calculating its position
in an environment. Since the environment in many scenarios is
unknown, the agent usually simultaneously constructs a map of
the environment while localizing itself, giving rise to the notion of
Simultaneous Localization and Mapping (SLAM) [15]. While other
localization settings are possible (e.g., assuming the environment
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map is available), this paper focuses on SLAM since it is the least
restrictive and is widely used in virtually all autonomous machines,
such as self-driving cars [24], Augmented Reality [1], and drones [9,
73]. SLAM is also central to many offline applications such as 3D
reconstruction, for which perhaps one of the most notable examples
is the Google Street View [37].

Formally, a 3D map is a set of points in the world coordinate sys-
tem, where each point is represented by the < 𝑥 , 𝑦, 𝑧 > coordinates.
Localization generates the pose of an agent in the world coordi-
nate system. The pose is represented by the six degrees of freedom
(DoF), which includes the three translational DoF, i.e., the < 𝑥 , 𝑦,
𝑧 > coordinates, and the three rotational DoF, i.e., the orientation
about the three orthogonal axes (a.k.a., yaw, roll, and pitch).

SLAM Algorithms A principled mathematical approach to
solving SLAM is Maximum a posteriori (MAP) estimation [15].
Comparing to the other popular class of SLAM algorithm based
on non-linear filtering [27, 40, 41, 41, 74, 86], MAP is more robust
in long-term localization and is more efficient, as quantified by
accuracy per unit of computing time [72].

While MAP is an extremely important subset of localization
algorithms, it is not the only algorithm, nor is it necessarily the
best algorithm for every localization scenario [24]. The filtering-
based algorithm has seen significant improvements recently with
Multi-State Constraint Kalman Filter-based algorithms [57] such
as OpenVINS [28] and MSCKF VIO [74]. Our goal is to use MAP as
a case study to demonstrate the Archytas approach, which auto-
matically generate accelerators given design specifications while
adapting to run-time dynamisms.

2.2 MAP Estimation Formulation

MAP estimation localizes an agent from a sequence of sensor mea-
surements. MAP can be thought of as a “real-time version” of the
conventional Bundle Adjustment (BA) algorithm used in offline
tasks such as Structure from Motion [77]. Compared to offline BA,
MAP for robotics has two key differences [15]. First, MAP in robot-
ics often fuses measurements from multiple sensors such as camera
and Inertial Measurement Unit (IMU) to improve the estimation
accuracy. Our work targets a common IMU+camera setup.

Second, only a fixed number ofmeasurements, maintained through
a sliding window, are used for MAP estimation to ensure real-time
performance [70], essentially providing an incremental BA. The
incremental strategy is critical for real-time performance. As the
window slides, the oldest measurements are moved out of the win-
dow. These measurements, however, are not discarded entirely.
Instead, they become the prior in the MAP estimate, through a
process known as marginalization [71], to constrain and guide the
state estimation for the next window.

More formally, given the sensor measurements in a window, the
goal of MAP is to estimate a state vector p, which contains 1) the
sequence of the machine’s 6 DoF poses (i.e., localization) and 2) the
3D coordinates of the points in space captured by the camera (i.e.,
mapping) in the current window:

p = [𝑠1, ..., 𝑠𝑖 , ..., 𝑠𝑛, 𝜆1, ..., 𝜆 𝑗 , ...𝜆𝑚], (1)

where 𝑠𝑖 represents the 6 DoF pose at 𝑖-th measurement, and 𝜆 𝑗
represents the 3D coordinates of 𝑗-th observed point.

The crux of MAP is to solve a nonlinear least squares (NLS)
optimization problem to estimate p [22]:

min
p

{
𝑁∑︁
𝑖=1

|o𝑖 − P𝑖 (p) |2C𝑖
+ |r𝑝 − H𝑝p|2} (2)

where N is the number of sensors; o𝑖 is the actual measurement of
𝑖-th sensor (“ground truth”), P𝑖 is a function that maps the (to-be-
estimated) state vector p to 𝑖-th sensor’s measurement space1, C𝑖 is
the covariance matrix of the 𝑖-th sensor, and | · |2C is the Mahalanobis
norm that quantifies the error in the current window; r𝑝 and H𝑝 are
the prior and roughly correspond to the marginalized measurement
and covariance matrix [66, 71], respectively, and | · |2 (L2 norm)
quantifies the errors imposed by the priors.

3 MAPPING ALGORITHM DESCRIPTION TO

MACRO DATA-FLOW GRAPH

We first present the general MAP algorithm (Sec. 3.1). We then de-
scribe how to generate a concrete software implementation (Sec. 3.2)
with optimal minimal storage requirement by exploiting character-
istics of SLAM-specific data structures (Sec. 3.3).

3.1 The General Algorithm Description

Fig. 2 shows the overall structure of the algorithm to solve the
MAP problem, which consists of two phases: 1) a NLS solver that
solves Equ. 2 for the current sliding window, and 2) marginalization,
which generates the prior to form the NLS objective function of the
next window. These two phases are executed sequentially.

NLS Solver Archytas targets the Levenberg-Marquardt (LM)
algorithm [54] widely-used in commercial products ranging from
robotics, AR/VR, and 3D reconstruction [3]. The LM algorithm
belongs to the class of gradient descent-based algorithms that itera-
tively update the result p with a new estimate p + 𝛿p until the final
result p+ is calculated. Each iteration calculates 𝛿p in three steps:

(1) Calculate the Jacobian matrix (the matrix of all the partial
derivatives of the objective function) using p;

(2) Given the Jacobian matrix and the priors H𝑝 and r𝑝 , form a
system of linear equations A𝛿𝑝 = b, where A and b are calcu-
lated through a sequence of matrix multiplication, transpose,
and addition operations.

(3) Solve the linear system to obtain 𝛿p.

Marginalization Marginalization uses the output of NLS solver
p+, i.e., the estimated state of the current window, to generate the
priors, H𝑝 and r𝑝 , which will participate in the objective function
of the next window. The priors are generated in three steps [17]:

(1) Calculate the Jacobian matrix J and the residual e (error of
the loss function) using p+;

(2) Calculate the informationmatrix H = J𝑇 J and the information
vector b = J𝑇 e.

(3) Block H as
[

M Λ𝑇

Λ A

]
and block b as

[
b𝑚
b𝑟

]
. Calculate the new

priors using Schur complement [71]: H𝑝 = A − ΛM−1Λ𝑇 ,
and r𝑝 = b𝑟 − ΛM−1b𝑚 .

1For instance, for camera measurements, P is a 3D to 2D camera projection.
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Fig. 2: Algorithm overview of MAP estimation. This high-level algorithm description does not directly translate to a concrete

software implementation that can be mapped to hardware. This is because many blocks such as matrix inversion and linear

system solver can be implemented in a variety of ways. Archytas generates a concrete implementation for each block using

primitive M-DFG nodes and thereby forms a final M-DFG. The final M-DFG reduces the overall computation and facilitates

hardware resource sharing by leveraging data sparsity and task dependencies unique to SLAM.

3.2 Generating Macro Data-Flow Graph

3.2.1 Design Overview. Hardware acceleration must target a con-
crete software implementation, usually represented by a data-flow
graph (DFG). In particular, Archytas represents the localization
algorithm using a M-DFG, which is a coarse-grained DFG, where
each node, instead of being one single operation, is a relatively
complex function (e.g., dense matrix multiplication) that executes
on a well-optimized hardware block (Sec. 4).

Table 1: Primitive M-DFG nodes.

Node Type Description

DMatInv Diagonal matrix inversion
MatMul Matrix multiplication
DMatMul Diagonal matrix multiplication
MatSub Matrix subtraction (addition)
MatTp Matrix transpose
CD Cholesky decomposition

FBSub
Forward and backward substitution to solve linear

system of equations with triangular matrices
VJac Calculate visual Jacobian matrix
IJac Calculate IMU Jacobian matrix

Archytas supports a set of primitive M-DFG nodes listed in
Tbl. 1. We choose these primitive nodes because they are low-level
enough to build complex algorithms but high-level enough to sim-
plify the M-DFG. M-DFG raises the level of abstraction in repre-
senting the software behaviors; it allows us to compose hardware
blocks well-optimized for each node/sub-graph and thus greatly
simplifies hardware design.

Archytas maps each block in Fig. 2 to one or a set of primitive
M-DFG nodes and then forms a final M-DFG. While many blocks
are trivially mapped (e.g., calculating J is directly mapped to a VJac
node), other blocks, such as matrix inversion and solving linear
systems, can be translated to different combinations of primitive

nodes. Archytas generates concrete primitive node combinations
for these blocks in a way that reduces the overall computation cost.
This is accomplished by leveraging the data sparsity inherent to
SLAM to build cost models for potential implementations. We now
use specific examples from both the NLS solver and marginalization
to explain the cost-driven M-DFG generation.

3.2.2 M-DFG for NLS Solver. The main complexity in the NLS
solver is to solve the linear system A𝛿p = b. A linear system is
typically solved using Schur elimination [13, 85], which transforms
a system of linear equations of size (𝑝 +𝑞) × (𝑝 +𝑞) to two simpler
systems of linear equations, each with a size of 𝑝 × 𝑝 and 𝑞 × 𝑞,
respectively, that are cheaper to solve. However, this transformation
is not without overhead. Our M-DFG builder determines an optimal
𝑝 (or equivalently 𝑞) and generates a concrete linear system solver
to maximize the speedup.

Formally, SLAM requires us to solve the linear system A𝛿p = b,
where A is a (𝑝 +𝑞) × (𝑝 +𝑞) matrix, and both 𝛿p and b are (𝑝 +𝑞)-
dimensional column vectors. Without losing generality, let A be
expressed in the blocked matrix form

[ U X
W V

]
, where U, X, W, and V

are 𝑝 ×𝑝 , 𝑝 ×𝑞, 𝑞×𝑝 , and 𝑞×𝑞 matrices. The original linear system
can then be expressed in the following blocked-matrix form:

{
U𝛿p𝑥 + X𝛿p𝑦 = b𝑥
W𝛿p𝑥 + V𝛿p𝑦 = b𝑦

(3)

where 𝛿p𝑥 and b𝑥 are 𝑝-dimensional column vectors, and 𝛿p𝑦 and
b𝑦 are 𝑞-dimensional column vectors.

The idea of Schur elimination is to multiply the first equation
withWU−1 and subtract the first equation from the second equation,
which gives a new linear system:

{
U𝛿p𝑥 + X𝛿p𝑦 = b𝑥
(V − WU−1X)𝛿p𝑦 = b𝑦 − WU−1b𝑥

(4)
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Fig. 3: TheM-DFGbuilder identifies the best blocking strategy

of A and b to generate a concrete M-DFG for solving the

system of linear equations.

Critically, the second half of Equ. 4 is a 𝑞×𝑞 system and requires
solving only 𝛿p𝑦 , solvingwhichwould allow us to solve the first half
of Equ. 4, a 𝑝×𝑝 system that involves only 𝛿p𝑥 . Thus, Equ. 4 is much
cheaper to solve than Equ. 3. Schur elimination, however, comes
with its overhead. Comparing Equ. 3 and Equ. 4, Schur elimination
requires computing WU−1X (also known as the Schur complement
of matrix A) and WU−1b𝑥 . The overhead must be less than the
work reduction for this transformation to be meaningful.

The M-DFG builder determines 𝑝 to minimize the compute cost.
This is achieved by building a cost model, parameterized by 𝑝 , of
solving Equ. 4. The cost model is obtained by accumulating the
amount of arithmetic operations of each primitive M-DFG node
involved in solving Equ. 4 (e.g., matrix multiplication requires 𝑛3
arithmetic operations). The cost minimization yields itself as a
simple convex optimization problem that is calculated offline.

Interestingly, the optimal solution almost always blocks A in
such a way that U is a diagonal matrix. This is because a diagonal
matrix U reduces the computational complexity of inverting U and
calculating WU−1 from O(𝑛3) to O(𝑛) and O(𝑛2), respectively. We
call V − WU−1X a D-type Schur when U is a diagonal matrix.

As a desirable side effect, the inherent structure of A dictates that
X is necessarily the same as W𝑇 when U is a diagonal matrix [13],
which reduces the on-chip memory storage requirement. Fig. 3a
shows a blocking example with a 10 × 10 matrix A. Correspond-
ingly, Fig. 3b shows the generated M-DFG for solving Equ. 4, which
includes the sub M-DFG for calculating the D-type Schur.

3.2.3 M-DFG for Marginalization. Most of the blocks in marginal-
ization can be translated to M-DFGs trivially, as they have fixed
implementations using the primitive M-DFG nodes. The difficulty
lies in transforming the prior calculations (A − ΛM−1Λ𝑇 and b𝑟 −
ΛM−1b𝑚), which have the form of a Schur complement, but can not
be simply transformed to a D-type Schur’s M-DFG since M is not a
diagonal matrix. Calculating these priors, which we call M-type

Schur, hinges upon calculating M−1.
Without losing generality, let M be expressed in the blocked

matrix form:
[

M11 M12
M21 M22

]
. Then:

M−1 =
[
M−1

11 + M−1
11 M12S′−1M21M−1

11 −M−1
11 M12S′−1

−S′−1M21M−1
11 S′−1

]
, (5)

k

6

k-6
S matrix

Camera’s
contribution

to S

IMU’s
contribution

to S

= +

k

k

kb

Fig. 4: Storage optimization of the symmetric matrix S.

where S′ is M22 − M21M−1
11 M12.

Archytas, again, builds a cost model to analyze the ideal block-
ing strategy. We find that the optimal solution blocks M such that
M11 is a diagonal matrix. This way, S′ becomes a D-type Schur and
inverting M11, a diagonal matrix, is trivial. The M-DFG is omitted
here due to space limit.

A desirable side effect of S′ being a D-type schur is that it can
share the same D-type schur hardware resource used by that in the
NLS solver (V − WU−1W𝑇 ), as the NLS solver and marginalization
are serialized. Archytas schedules both D-type Schur calculations
to the same hardware block (Sec. 4.1) to reduce hardware resources.

3.3 Optimizing Data Layout

Along with the M-DFG, Archytas also generates the layout for
key data structures to reduce the on-chip storage. We find that
the largest gain comes from exploiting data characteristics unique
to SLAM. For instance, Fig. 4 shows the structure of the matrix
that stores the parameters for the linear system, which we call
the S matrix, which contributes to 40% – 80% of the total storage
requirement. S is a 𝑘𝑏×𝑘𝑏 symmetric matrix, where 𝑏 is the number
of IMU observations in the current sliding window, and 𝑘 is the
number of states in one IMU observation.

Upon an initial glance, it is not clear what opportunity exists
other than exploiting the symmetry of the S matrix, which reduces
the storage by half. Leveraging the domain knowledge, however,
one realizes that S is the sum of two matrices, S𝑐 and S𝑖 , which
represent the contributions of the camera and the IMU, respectively.

The insight is that both S𝑐 and S𝑖 are symmetric with structured
sparsities. Specifically, the non-zero elements of S𝑖 exist only in the
diagonal and sub/super-diagonal blocks. This is because an IMU
observation is related only to the adjacent keyframes. Meanwhile,
the non-zero elements of S𝑐 exist only in a 6 × 6 sub-block in each
𝑘 × 𝑘 block, where 6 denotes the 6 degrees of freedom [23].

Therefore, Archytas stores S𝑖 and S𝑐 separately. Only the diago-
nal and sub/super-diagonal blocks in S𝑖 are stored; we compact the
non-zero elements in S𝑐 and exploit the symmetry of the compacted
matrix. Overall, our optimization reduces the space requirement
from 𝑘2𝑏2 to 18𝑏2 + 2𝑏𝑘2, which is a 78% space saving under a
typical 𝑘 = 15 and 𝑏 = 15. Compared to a CSR-compressed format,
our compression consumes 17.8% less space.
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4 CUSTOMIZABLE HARDWARE

This section first describes the overall hardware template of Archy-
tas, introducing its customizable design that can be tailored to
meet specific resource and/or latency constraints (Sec. 4.1). We
then describe how we optimize three key blocks in the template by
leveraging the data and computation patterns inherent to SLAM:
Jacobian matrix computation (Sec. 4.2), Cholesky decomposition
(Sec. 4.3), and Schur complement computation (Sec. 4.4).

4.1 Hardware Design Overview

Fig. 5 shows the hardware architecture, which consists of a collec-
tion of optimized hardware blocks, each responsible for a part of
the overall M-DFG. For instance, the Visual Jacobian Unit calculates
the VJac primitive M-DFG node; the D-type Schur Unit calculates
the D-type Schur, a sub M-DFG consisting of multiple primitive
M-DFG nodes (Fig. 3b).

Customizability To explore the trade-off between performance,
energy, and resource utilization, Archytas identifies a set of cus-
tomizable hardware blocks: their compute and memory resources
are parameterized. The exact parameters are determined by the
synthesizer depending on the resource/latency constraints (Sec. 5).

Specifically, the customizable blocks are the Cholesky decompo-
sition block, the D-type Schur block, and the M-type Schur comple-
ment block. They are ideal candidates for customization, as they
present a large resource-vs-latency trade-off space: varying their
design parameters could change the end-to-end latency by over 20
× and the overall resource consumption by about 3 × (Sec. 7.2).

Static Scheduling The M-DFG is scheduled to the hardware
statically, because the M-DFG is known offline. The scheduler en-
sures a high hardware utilization through two techniques.

First, the scheduler shares main hardware blocks between the
two inherently sequential phases of the algorithm: the NLS phase
(solid lines in Fig. 5) and marginalization phase (dashed lines in
Fig. 5). The scheduler achieves this by traversing theM-DFG to iden-
tify identical subgraphs, which are mapped to the same hardware
block. Second, the scheduler pipelines hardware blocks whenever
possible. For instance, the Jacobian block and the Schur block are
pipelined across feature points.

4.2 Jacobian Matrix Block

The visual matrix calculation is a primitive M-DFG node (Tbl. 1)
shared by the NLS solver and marginalization (Fig. 2).

Basic Design Let us explain the basic hardware design using
the simple example in Fig. 6. The example is a snapshot of a sample
sliding window consisting of 2 keyframes, 3 feature points (𝑃1 ∼ 𝑃3),
and 4 observations (𝑂1 ∼ 𝑂4). Recall that the observations are
generated from feature points through the projection function (P
in Equ. 2), whose partial derivatives form the Jacobian matrix, the
3 × 4 matrix J in Fig. 6. Only valid <feature point, observation>
pairs have non-zero values in the matrix, i.e., need to be calculated.

The basic hardware design is shown in Fig. 7. The Observation
block is responsible for calculating the matrix elements (partial
derivatives), which requires two pieces of data. To calculate [𝑂1,
𝑃1], for instance, the Observation block requires: 1) the 3D coordi-
nates of the feature point 𝑃1 in the world coordinate system; this
is calculated by the Feature block; and 2) the rotation matrix of
keyframe 1 (that contains 𝑂1) with respect to the world coordinate
system; this is calculated by the Keyframe block.

Optimizing for Data Reuse We exploit characteristics unique
to SLAM data to effectively capture data reuse. Two forms of data-
reuse exist. First, each feature point is reused across its associ-
ated observations (e.g., 𝑃1 is reused over 𝑂1 and 𝑂3). Second, each
keyframe’s rotationmatrix is reused over all the observationswithin
the keyframe (e.g., keyframe 1’s rotation matrix is reused over 𝑂1
and 𝑂2). Critically, the number of feature points is far more than
the number of keyframes: in our profiling, a typical sliding window
on average would have 10× more feature points than keyframes.

We thus prioritize feature point reuse over rotation matrix reuse.
This is naturally achieved by calculating the Jacobian matrix ele-
ments in the row-major order. Architecturally, this translates to a
“feature-stationary” data flow, where each feature point stays in the
Observation block until an entire matrix row is calculated.

Given the “feature-stationary” design, the Feature block and the
Observation block form a producer-consumer pair. As a result, their
communication is through a FIFO. In contrast, accesses to keyframe
rotation matrices are arbitrary, since different observations of a
feature point could be captured in different keyframes. Thus, the
rotation matrices are stored in a RAM. Note that a RAM is much
more power-hungry to access than a FIFO. Had we prioritized
rotation matrix reuse (and thus calculating the matrix in a column-
major order), the massive amount of feature points would have to
be accessed from a power-hungry RAM.

Balancing Pipeline With the Feature block and the Observa-
tion block communicating through a FIFO, it is critical to ensure
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which is designed to exploit feature point reuse.

that speeds of the two blocks roughly match so as to avoid a large
FIFO or constantly stalling the pipeline.

We observe that the number of observations is typically 10×more
than that of feature points. Thus, the Observation block does more
computation, and needs to be more aggressively pipelined, than
the Feature block to have an equal speed. However, it is impossible
for a design to always ensure a balanced pipeline all the time. This
is because the amount of work the Observation block does for each
feature point is non-deterministic, as each feature point is naturally
associated with a different amount of observations.

Our design decision is to build a statistically-balanced pipeline
design by statically pipelining the blocks based on the average sta-
tistics profiled offline. This empirical decision greatly simplifies
the hardware design. In particular, we first pipeline the Observa-
tion block as deep as possible to maximize the throughput, and
denote the per-stage latency 𝐶𝑜 . We then estimate the average
number of observations associated with a feature point, and denote
it 𝑁𝑜 . Given 𝑁𝑜 and 𝐶𝑜 , the Feature block is then pipelined into
𝐿𝑓 /(𝑁𝑜𝐶𝑜 ) stages, where 𝐿𝑓 denotes the latency of the Feature
block and is fixed since the amount of work the Feature block does
for each feature point is constant.

Analytical Modeling Given the statistically-balanced pipeline
design above, the total latency of calculating the Jacobian matrix
elements for a feature point 𝐿𝐽 𝑎𝑐 , ignoring the pipeline start-up
delay, is given by:

𝐿𝐽 𝑎𝑐 = 𝑁𝑜𝐶𝑜 . (6)

4.3 Cholesky Decomposition Block

Cholesky decomposition is a primitive M-DFG node (Tbl. 1) that
participates in solving linear systems and inverting matrices. While
Cholesky decomposition is not unique to SLAM, Archytas lever-
ages SLAM-specific knowledge to optimize its hardware design.

Recall that Cholesky decomposition decomposes a symmetric
matrix 𝑆 into 𝐿𝐿𝑇 , where 𝐿 is a lower triangular matrix. The hard-
ware iteratively generates columns of 𝐿, starting from the first
column. Assuming that 𝑆 is of dimension 𝑛 × 𝑛, the first iteration
would calculate the first column of 𝐿 (the Evaluate phase), using
which a new matrix 𝑆 ′ of size (𝑛 − 1) × (𝑛 − 1) is generated (the
Update phase). 𝑆 ′ becomes the input matrix to the second iteration.
This process continues until the entire 𝐿 is calculated.

Fig. 8 shows the basic hardware design of the Cholesky decom-
position unit, which cascades the Evaluate structure and the Update
structure. The example shows how a 6×6 input matrix 𝑆 (denoted as
𝑆6), after the two phases, becomes a 5× 5matrix 𝑆5, which becomes
the input of the next iteration.

Optimizing and Parameterizing the Design Analyzing the
fine-grained data dependencies shows that the Evaluate phase and
the Update phase could be pipelined [48]. However, that Update
phase is longer than the Evaluate phase. Specifically, at iteration 𝑖

the number of operations of the Evaluate and the Update phase is 𝑖
and 𝑖 (𝑖 − 1)/2, respectively.

To ensure a balanced pipeline, our design uses multiple Update
units, the exact number of which is parameterized. Fig. 9 shows
a sample hardware design with six Update units, which are time-
multiplexed with the Evaluate unit. Fig. 10 shows the timeline of
execution under this particular configuration, where 𝐸𝑖 and 𝑈𝑖

denote the Evaluate and Update latency in iteration 𝑖 , respectively.
Analytical Modeling Let us use the example in Fig. 10 to

explain the analytical latency model. Given 6 Updates units, every
6 Evaluate-Update iterations form a round; next round could only
start when there is no structural hazard. That is, the Evaluate unit
and at least one Update unit are both available, which leads to
two scenarios: 1) when an Update unit is available later than the
Evaluate unit is available (e.g., Round 1), and 2) when the Evaluate
unit is available later than an Update unit (e.g., Round 2).

Generally, given s Update units, the𝑚 ×𝑚 input matrix 𝑆 , and
the latency of the Evaluate unit 𝐸, the total latency is:

𝐿𝑐ℎ𝑜𝑙𝑒𝑠𝑘𝑦 =

⌊𝑚s ⌋∑︁
𝑘=0

𝑚𝑎𝑥{s𝐸, 𝐸 + 𝑚𝑘 (𝑚𝑘 − 1)
2

}, (7)

𝑚𝑘 =𝑚 − 𝑠𝑘 − 1 (8)

where the𝑚𝑎𝑥 operation models the two scenarios.

4.4 Schur Complement Blocks

Calculating the Schur complement is central to both the NLS solver
and marginalization: the NLS solver calculates a D-type Schur V −
WU−1W𝑇 , and the marginalization calculates a M-type Schur A −
ΛM−1Λ𝑇 . The difference is that U is a diagonal matrix that can be
trivially inverted, while M is a generic matrix, which is inverted
according to Equ. 5.
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The basic hardware design for both types is a straightforward
mapping from their M-DFGs. For instance, the D-type Schur hard-
ware cascades blocks for DMatInv (U−1), DMatMul (WU−1), MatMul
(WU−1W𝑇 ), and MatSub (V − WU−1W𝑇 ). We observe that the D-
type Schur of different feature points are independent. We exploit
the parallelism by pipelining the D-type Schur unit across the fea-
ture points. The M-type Schur unit meanwhile is inherently not
amenable to this feature-level pipelining, as it operates on a matrix
(M) that mixes information from all the feature points.

Analytical Modeling The two hardware Schur blocks are
parameterized by the number of MAC units, which dictates the
performance of MatMul — the bottleneck of calculating both Schur
complements.

Assuming that each feature point on average has 𝑁𝑜 observa-
tions, the D-type Schur module multiplies a 6𝑁𝑜 × 1 vector (WU−1)
with 1 × 6𝑁𝑜 vector (W𝑇 ). Given the number of MAC units nd,
the latency of the calculating the D-type Schur complement for a
feature point is:

𝐿𝐷𝑆𝑐ℎ𝑢𝑟 (nd) = (6𝑁𝑜 )2/nd (9)

Given that there are nm MAC units in the M-type hardware, the
overall M-type Schur latency is the following:

𝐿𝑀𝑆𝑐ℎ𝑢𝑟 (nm) ≈15𝑎𝑚 + 𝑎2𝑚 + 𝑏𝑘 (15 + 𝑎𝑚) (6(𝑏 − 1) + 9)

+ 𝑏𝑘 (6(𝑏 − 1) + 9)2, 𝑏𝑘 =
15 + 𝑎𝑚

nm
(10)

where 𝑎𝑚 denotes the number of features that are moved out of
the current sliding window (to be marginalized), and 𝑏 denotes the
number of keyframes in the sliding window. The approximation
is introduced by eliding trivial operations. We omit the detailed
derivation due to space limit.

5 SYNTHESIZING THE HARDWARE

Instead of designing just one specific accelerator, Archytas allows
designers to explore a large design space. In particular, designers
specify the resource, latency, or power constraints, from which
Archytas generates an optimal accelerator design that meets the
constraints. This is accomplished by calculating the parameters of
the three customizable blocks: the number of Update units s in the

Cholesky decomposition block and the number of MAC units in the
D-type Schur and the M-type Schur blocks, nd and nm, respectively.

Problem Formulation The task of hardware generation is
expressed in the form of a constrained optimization:

min
nd,nm,s

𝑃𝑜𝑤𝑒𝑟 (nd, nm, s)

𝑠 .𝑡 . 𝐿𝑎𝑡 (nd, nm, s) ≤ 𝐿∗, 𝑅𝑒𝑠 (nd, nm, s) ≤ 𝑅∗, (11)

where 𝑃𝑜𝑤𝑒𝑟 (·), 𝐿𝑎𝑡 (·), and 𝑅𝑒𝑠 (·) denote the total power, latency,
and resource utilization, respectively; they are functions of nd, nm,
and s. 𝐿∗ is the latency constraint specified by the designer, and 𝑅∗
is the resource constraint imposed by a particular FPGA system.

Note that other optimization formulations are possible. For in-
stance, the following formulation could be used for scenarios where
performance, rather than power, is the main design objective:

min
nd,nm,s

𝐿𝑎𝑡 (nd, nm, s) 𝑠 .𝑡 . 𝑅𝑒𝑠 (nd, nm, s) ≤ 𝑅∗, (12)

Latency Model Archytas derives the latency model by calcu-
lating the critical path latency of the M-DFG given the analytical
latency models of each of the primitive nodes:

𝐿𝑎𝑡 (nd, nm, s) = 𝐼𝑡𝑒𝑟 × 𝐿𝑁𝐿𝑆 (nd, s) + 𝐿𝑀𝑎𝑟𝑔 (nd, nm, s) (13)

where 𝐿𝑁𝐿𝑆 denotes the latency of an iteration of the (iterative)
NLS solver, 𝐼𝑡𝑒𝑟 denotes the total number of iterations in the NLS
solver — a parameter set by the application, and 𝐿𝑀𝑎𝑟𝑔 denotes the
marginalization latency.

The critical-path latency of an NLS iteration (the blocks along
the solid arrows in Fig. 5) is expressed as follows:

𝐿𝑁𝐿𝑆 (nd, s) =
𝑎∑︁
𝑖=1

max{𝐿𝐽 𝑎𝑐 , 𝐿𝐷𝑆𝑐ℎ𝑢𝑟 (nd)} + 𝐿𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦 (s) + 𝐿𝑆𝑢𝑏

(14)

where 𝑎 denotes the number of feature points in the current sliding
window, 𝐿𝐽 𝑎𝑐 denotes the latency to calculate the Visual Jacobian
matrix (Equ. 6), 𝐿𝐷𝑆𝑐ℎ𝑢𝑟 (𝑛) denotes the latency to calculate the
D-type Schur complement and is parameterized by nd (Equ. 9),
𝐿𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦 (𝑠) is the latency of Cholesky decomposition and is pa-
rameterized by s (Equ. 7), and 𝐿𝑠𝑢𝑏 denotes the back substitution
latency, which is fixed-function logic with a fixed latency indepen-
dent of nd and s. The𝑚𝑎𝑥 operation reflects the pipeline parallelism
between calculating the Visual Jacobian and the D-type Schur com-
plement across all 𝑎 feature points.
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The marginalization latency is the cumulative latency of calcu-
lating the Jacobian matrix, D-type, and M-type Schurs:

𝐿𝑀𝑎𝑟𝑔 (nd, nm, s)
= 𝑎𝑚𝐿𝐽 𝑎𝑐 + 𝐿𝐷𝑆𝑐ℎ𝑢𝑟 (nd) + 𝐿𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦 (s) + 𝐿𝑀𝑆𝑐ℎ𝑢𝑟 (nm) (15)

where 𝑎𝑚 denotes the number of feature moved out of the current
sliding window (to be marginalized).

Resource Model The resource consumption of the hardware is
modeled as:

𝑅𝑒𝑠 (nd, nm, s) = 𝑅0 + nd × 𝑅𝑑 + nm × 𝑅𝑚 + s × 𝑅𝑠 , (16)

where 𝑅𝑑 , 𝑅𝑚 , and 𝑅𝑠 denote the unit resources consumption of the
structured that are parameters by nd, nm, and s, respectively, and 𝑅0
denotes the resource consumption independent of customization.
We consider four major types of resources when targeting FPGA:
LUT, FF, BRAM, and DSP. The resource constraint must be met for
all four resource types, because exceeding the limit of even one
resource type would mean that the design could not be instantiated.

PowerModel The power of an FPGA is dictated by its hardware
resource utilization, similar to the fact that an ASIC’s power is
correlated with its area. Thus, we model the power as the weighted
sum of the three customization parameters (nd, nm, and s) plus a
constant base power 𝑃0 that is independent of customization:

𝑃𝑜𝑤𝑒𝑟 (nd, nm, s) = 𝑃0 + nd × 𝑃𝑑 + nm × 𝑃𝑚 + s × 𝑃𝑠 , (17)

We fit the coefficients (𝑃𝑑 , 𝑃𝑚 , and 𝑃𝑠 ) for a particular FPGA plat-
form using regression models offline. This strategy adapts to other
FPGAs and does not require measuring the power of individual
blocks on an FPGA fabric, which is difficult to obtain in practice.

Synthesizer The structure of the optimization problem in
Equ. 11 is a 3-variable mixed-integer convex programming, for
which a near-optimal solution can be found in milliseconds using
common optimization packages such as YALMIP [47] andMLOPT [16].

The solver calculates s, nd, and nm, which are then used to
generate the three customizable blocks. The synthesizer will also
automatically customize the on-chip memory sizes for data internal
to the three customized blocks given the s, nd, and nm values, and
add memory interfaces and the address generation modules.

6 DYNAMIC OPTIMIZATIONS

Given an initial design generated by the hardware synthesizer,
Archytas dynamically optimizes the hardware configuration at
run time to save power. We first motivate the need for run-time
optimizations (Sec. 6.1), and then describe our run-time system
design and implementation (Sec. 6.2).

6.1 Opportunity

The discussion so far assumes that the amount of work is fixed over
time. However, in a real-world SLAM deployment the amount of
work done in each sliding window often varies over time in order to
sustain the accuracy. If a sliding window has fewer feature points,
the accuracy would drop because less information is available to
estimate the pose. Fig. 11 shows a snapshot of execution on the
KITTI Odometry dataset [26]. The error (left 𝑦-axis) increases as
the number of feature points (right 𝑦-axis) decreases.
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A common strategy to sustain the accuracy level, when the
feature points are insufficient, is to increase the number of iterations
in the iterative NLS solver (i.e., 𝐼𝑡𝑒𝑟 in Equ. 13). Using profiling
results from the KITTI dataset [26], Fig. 12 shows that the overall
Root Mean Square Error (𝑦-axis) decreases as the number of NLS
solver iterations (𝑥-axis) increases.

More iterations lead to more work and, thus, require more ca-
pable hardware configurations. Our static design is necessarily
conservative to accommodate a large iteration count. At run time,
if fewer NLS iterations are needed Archytas re-configures the
hardware to provision less hardware resources.

6.2 Design

The idea is that Archytas dynamically adjusts the number of NLS
iterations 𝐼𝑡𝑒𝑟 required to sustain a target accuracy; given an 𝐼𝑡𝑒𝑟 ,
Archytas calculates a new hardware configuration. We will show
that with intelligent design decisions, the run-time reconfiguration
has little to none overhead.

Adjusting Iteration Count We use a simple mechanism to
dynamically adjust the NLS iteration count. We first construct a
lookup table that maps the number of feature points to 𝐼𝑡𝑒𝑟 . This
is done by profiling datasets of interest offline. 𝐼𝑡𝑒𝑟 is capped at 6,
because we find that iterating over 6 times usually provides little
accuracy improvement.

In a real-world deployment, when our system enters a new envi-
ronment we would collect and profile the data from the environ-
ment to determine the 𝐼𝑡𝑒𝑟 cap. The profiling and optimization can
happen asynchronously and does not have to be interactive. The
𝐼𝑡𝑒𝑟 cap can then be used later when the system enters the same
environment. This strategy is commonly used in robotics, where
a robot collects and analyzes data from a new environment and
creates an optimized strategy for use in the future [50].

At run time, the sensing front-end provides the number of fea-
ture points, which is then mapped to 𝐼𝑡𝑒𝑟 based on a simple two-bit
saturating counter. That is, 𝐼𝑡𝑒𝑟 is adjusted (incremented or decre-
mented) when the number of feature points maps to a different 𝐼𝑡𝑒𝑟
(according to the offline-constructed lookup table) in two consecu-
tive sliding windows.

Re-optimization Given an 𝐼𝑡𝑒𝑟 , the run-time system obtains a
new latency model (which is a function of 𝐼𝑡𝑒𝑟 as shown in Equ. 13)
and solves the following optimization problem to generate a new
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Fig. 13: The influences of nd, nm, s on the hardware resources (left 𝑦-axes) and execution time (right 𝑦-axes).

hardware configuration:

min
nd,nm,s

𝑃𝑜𝑤𝑒𝑟 (nd, nm, s)

𝑠 .𝑡 . 𝐿𝑎𝑡 (nd, nm, s) ≤ 𝐿∗, nd < nd
∗, nm < nm

∗, s < s∗, (18)

where nd
∗, nm

∗, and s∗ denote the initial resource allocations gen-
erated by the static synthesizer.

Examining the optimization formulation, we see that the run-
time optimization enforces that the new hardware must consume
less resource than the initial design on all resource types (i.e., the
customization parameters must take smaller values). This is critical
as it allows us to use simple mechanisms such as clock-gating to
reconfigure/throttle the hardware. Otherwise, a complete reconfig-
uration of the FPGA (synthesis, layout, bitstream programming)
would have to take place, impractical for real-time operations.

Due to this design decision, we can avoid reconfiguring the
FPGA dynamically, i.e., no new bitstream is sent to the FPGA at
run time. Each sliding window, the host triggers the FPGA and
simply passes three numbers (nd, nm, s), which toggle the clock
gating logic according to a look-up table. Critically, since there are
only 6 𝐼𝑡𝑒𝑟 choices, Equ. 18 is solved exhaustively against all 𝐼𝑡𝑒𝑟
values offline. At run time before the FPGA is triggered for each
sliding window, the nd, nm, and s values are looked up based on
𝐼𝑡𝑒𝑟 and passed to the FPGA if different from the current values.
This way, run-time re-optimization effectively has no overhead.

Discussion Our contribution here is two-fold. First, we are the
first to identify the NLS iteration count as a run-time knob. Prior
localization accelerators do not harness this knob as they treat the
NLS optimization as a black box. By identifying this knob, we expose
the opportunity for clock gating. Without identifying the knob, the
hardware would not clock gate the circuits during iterations that
could have been omitted.

Second, we propose a simplemechanism (2-bit saturating counter)
to tune the knob and show that this simple mechanism could read-
ily reduce power with little accuracy impact. We leave it to future
work to explore other mechanisms to tune the knob (e.g., training
a machine learning model).

7 EVALUATION

After the experimental setup (Sec. 7.1), we show that the three
customizable design parameters indeed provide a large latency-vs-
resource trade-off space (Sec. 7.2), which can be explored by our
hardware generator extremely rapidly (Sec. 7.3). The generated
accelerators achieve one order of magnitude higher speed and/or

lower energy compared to the baselines (Sec. 7.4) and other accel-
erators (Sec. 7.5). We show that our dynamic optimization reduces
energy by double digits without affecting the accuracy (Sec. 7.6).
Finally, we show results on other FPGA platform and algorithms to
demonstrate the general applicability of Archytas (Sec. 7.7).

7.1 Experimental Setup

Hardware Platform We target the Xilinx Zynq-7000 SoC ZC706
FPGA [7]. The synthesizer is implemented in Python, and the gen-
erated Verilog code goes through the FPGA synthesis and layout
flow using Vivado Design Suite 2018.2.

The FPGA is triggered by the host for each sliding window.
The host passes to the FPGA the visual features from the sensing
front-end as well as the three customization parameters if they are
different from the previous sliding window.

Our FPGA designs operate at a fixed frequency of 143 MHz. The
FPGA power consumption is estimated using the Vivado power
analysis tool using real workloads under test. All power and re-
source consumption data is obtained after the designs pass the
post-layout timing.

Implementation Details Our synthesizer is implemented in
Python, which generates synthesizable Verilog code. The synthe-
sizer uses the popular YALMIP package [47] to solve the constrained
optimization problem.

Dataset We evaluate Archytas using two common datasets:
KITTI Odometry [26] (grayscale sequence) for self-driving cars and
EuRoC [14] (Machine Hall sequences) for drones.

Baselines We compare against a software implementation of
SLAM, which uses Google’s ceres solver [2] to implement bundle
adjustment. The software implementation is parallelized through
multithreaded vectorized CPU execution.

The software is evaluated on two hardware platforms: one on
an Intel Comet Lake processor that has 12 cores and operates at 2.9
GHz, and the other on the quad-core Arm Cortex-A57 processor on
the Nvidia mobile Jetson TX1 platform [4] operating at 1.9 GHz. The
Comet Lake’s power is measured through a power meter and the
Arm core power is measured through the power sensing circuitry
on TX1. We also compare against previous localization accelerators.

7.2 Impact of Customization

The three knobs, nd, nm, s, significantly influence the latency and
the overall resource consumption. They are, thus, ideal targets for
customization. Fig. 13 shows the influences of nd, nm, s on the FPGA
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resources (left𝑦-axes) and execution time (right𝑦-axes). Each figure
sweeps one parameter while leaving the other two constant.

Overall, increasing the three customization knobs (nd, nm, s)
leads to significantly better performance until the point of diminish-
ing return. s has the most significant impact on resource utilization
(e.g., 50% increase in the DSP utilization when s increases from
1 to 80). The DSP is the most demanded resource, because many
hardware blocks require intensive matrix calculations.

7.3 Hardware Generator Efficiency

The three parameters (nd, nm, s) constitute a design space of about
90,000 designs. If one were to exhaustively search the design space,
going through the FPGA synthesis and layout flow (which takes
roughly 1.5 hours on our machine), to identify the optimal design
point, it would take 15 years.

Our hardware generator takes around 3 seconds to identify a
design given the resource constraint and generate the synthesizable
Verilog code, which then goes through the FPGA synthesis and
layout flow, as any FPGA design would do.

Validation It would be nearly impossible to definitively show
that the designs generated by our synthesizer are Pareto-optimal,
as it would require an exhaustive search of the design space, which
is prohibitively expensive.

We perform a best-effort validation. Fig. 14 shows the latency-
vs-power Pareto-optimal designs (square markers) generated by our
hardware generator by varying the latency constraint in Equ. 11. We
then slightly vary the parameters of the designs on the frontier, and
measure their corresponding latencies and power consumptions;
the results are denoted by the circle markers. The circle markers are
Pareto-dominated by the square markers, suggesting the validity
of the Pareto-optimal frontier and, by extension, our generator.

7.4 Speedup and Energy Reduction Results

Representative Study Using a KITTI trace, Fig. 15 showcases
the speedup and energy reduction of the power-optimized, Pareto-
optimal designs in Fig. 14 over both baselines. A higher speedup
leads to a higher energy reduction due to the impact of static power,
but the energy reduction increase eventually tapers off, because
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Table 2: FPGA resource consumption (utilization percentages

and absolute numbers) and the customization parameter val-

ues of the High-Perf and Low-Power designs.

Design LUT FF BRAM DSP nd nm s

High-Perf
62.41%
(136432)

37.28%
(163006)

46.88%
(255.5)

94.33%
(849)

28 19 97

Low-Power
43.81%
(95777)

28.97%
(126670)

26.79%
(146)

49.11%
(442)

21 8 34

a design that consumes overly high power provides diminishing
return for speedup.

The speedup over Comet Lake is lower than that over Arm,
but the energy reduction is higher. The best design achieves 7.4×
speedup and 83.1× energy reduction over Comet Lake and 32.0×
speedup and 12.9× energy reduction over Arm.

Comprehensive Study The significant efficiency gains are
consistently found in the entire KITTI and EuRoC benchmarks. We
select two design points that are optimized under a 20 ms and a
33 ms latency constraint, respectively. We denote them High-Perf
and Low-Power. The former consumes about 2 W higher power
than the latter. The difference between the two designs are evi-
dent in Tbl. 2, which compares the FPGA resource consumption
and the three customization parameter values of the two designs.
High-Perf consumesmore resources than Low-Power.High-Perf
is ultimately limited by the DSP resource.

Fig. 16 summarizes the average speedup and energy reduction
of these two designs over the baselines on the EuRoC and KITTI
benchmarks. Error bars denote one standard deviation across bench-
mark traces. High-Perf achieves a 6.2× speedup and 74.0× energy
reduction over Intel and a 39.7× speedup and 14.6× energy reduc-
tion over Arm. Low-Power achieves a 3.7× speedup and 68.6×
energy reduction over Intel and a 23.6× speedup and 13.6× energy
reduction over Arm.

7.5 Existing Accelerator Comparisons

Different localization accelerators target slightly different algorith-
mic variants/FPGA platforms and are evaluated on different bench-
marks, so a fair comparison is difficult. Below is our best-effort
comparisons with prior localization accelerators.
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Apart from the efficiency gains we will show next, Archytas
has two fundamental advantages. First, Archytas is a synthesis
framework that generates a specific accelerator instance given the
latency/power/resource specifications, while prior work manually
designs a specific accelerator instance with a fixed resource-vs-
latency-vs-power trade-off. Second, our generated accelerator also
adapts to run-time dynamisms while all prior accelerators do not.

𝜋-BA [45] accelerates only the Jacobian calculation and Schur
elimination on FPGA; BAX [75] is a full hardware accelerator for
BA; neither supports marginalization and both are evaluated on
the BAL dataset [8]. To normalize the difference between datasets,
we report the results per NLS solver iteration. High-Perf achieves
a 137× speedup and 132× energy reduction over 𝜋-BA and is 9
× faster and consumes 44% less energy compared to BAX. The
gains over BAX mainly come from our optimized datapath in the
hardware, whereas BAX uses generic vector units for acceleration.

Zhang et al. [88] jointly explore the algorithm and hardware de-
sign space for accelerating localization. They instantiate an FPGA
accelerator, where the optimization problem is solved using an
on-manifold Gauss-Newton (GN) method (as opposed to the LM
algorithm by Archytas). High-Perf uses roughly 2× more hard-
ware resources [87] and achieves over 20× speedup on EuROC. The
main gain of Archytas, from our educated guess, comes from that
Archytas generates an optimal M-DFG configuration for the NLS
solver to reduce the total computation while Zhang et al. use a fixed
parameter configuration for the NLS solver.

HLS Comparison Two graduate students with deep experience
in HLS development spent about a week on optimizing a Vivado
HLS implementation of Cholesky decomposition (Sec. 4.3). The HLS-
generated design operates at 30% lower clock frequency, roughly
doubles the resource consumption, and overall is 16.4× slower than
our optimized design. The performance gains over HLS comes from
how we co-design the Cholesky decomposition algorithm to expose
fine-grained optimization opportunities that HLS does not exploit
(Fig. 10). Specifically, we expose 1) the pipeline parallelism between
the Evaluate and Update stage, and 2) the independency among
different Update iterations.

PISCES [9] is an HLS-based FPGA accelerator for the entire
SLAM pipeline, including feature extraction and BA. Comparing the
BA part alone,High-Perf is about 5.4× faster on the MH sequences
in EuRoC with about 3× higher energy, based on data estimated
from the figures in PISCES [9].

Fundamentally, HLS requires extensive manual tuning of each
module in the algorithm with knowledge in both algorithms and
hardware. The manual tuning effort exponentially increases when
designers must meet prescribed design specifications (performance,
power, resource targets). In contrast,Archytas requires only a high-
level algorithm description from users and automatically generates
the entire accelerator given the design specification.

7.6 Dynamic Optimizations

Our run-time system effectively reduces the energy. UsingHigh-Perf,
dynamically clock-gating the unused hardware structures leads to
21.6% energy saving on the KITTI dataset and 20.8% on the EuRoC
dataset. Using Low-Power, the energy saving is 7.7% on KITTI and

6.8% on EuRoC. Note that the dynamic optimization involves only
table lookups (Sec. 6.2) and, thus, has little to none overhead.

The dynamic optimization has minimal impact on accuracy.
Across all KITTI traces, we see no increase in the mean translational
accuracy. Across all EuRoC traces, the mean translational accuracy
is degraded by at most 0.01 cm. In many traces, dynamic optimiza-
tion even improves the accuracy due to the stochastic nature of the
iterative optimization.

Finally, the results in Fig. 16 are obtained when both the baselines
and our accelerators do not use the dynamic optimization. When
both use the dynamic optimization, High-Perf achieves a 5.1×
speedup and 89.8× energy reduction over Intel and a 30.4× speedup
and 41.3× energy reduction over Arm; Low-Power achieves a 2.8×
speedup and 62.2× energy reduction over Intel and a 16.7× speedup
and 28.5× energy reduction over Arm.

7.7 Results on Other FPGAs and Algorithms

To show the generalizability of Archytas, we evaluate two addi-
tional Xilinx FPGAs: one from the Kintex-7 series (XC7K160tfbg484)
and the other from the Vertix-7 series (XC7VX690tffg1761). We use
Archytas to generate the biggest design that fits each board. On
the EuROC dataset, our designs achieve a 6.6× and 10.2× speedup
as well as a 105.1× and 114.6× energy reduction over Intel on the
two boards, respectively. The speedups over Arm are 56.2× and
86.3×, and the energy reduction over Arm are 68.9× and 75.1×, on
the two boards, respectively.

While this paper focuses on MAP in SLAM, MAP is prevalent in
other robotic algorithms [6, 17] such as planning [18], control [82],
and tracking [64]. To demonstrate how Archytas generalizes to
non-SLAM tasks, we target two new algorithms. For both algo-
rithms, we use their well-optimized parallel software implementa-
tions [2] as the baselines and use Archytas to generate the fastest
accelerator that fits the ZC706 FPGA for each algorithm.

First, we target the curve fitting problem used for robotic plan-
ning [18, 30]. Our design achieves an 8.5× speedup and a 257.0×
energy reduction compared to Intel. Second, we target the pose
estimation problem commonly found in Augmented Reality [52].
Our design achieves an 7.0× speedup and a 124.8× energy reduction
compared to Intel.

8 RELATEDWORK

LocalizationAccelerators Prior accelerators target both ASIC [42,
73, 83] and FPGA [9, 11, 24, 25, 45, 46, 86, 88], and accelerate dif-
ferent algorithms including optimization-based algorithms [21, 22,
58, 65] (e.g., BA) and probabilistic estimation-based filtering algo-
rithms [35, 51, 53, 57]. This paper focuses on BA-based algorithms
due to their wide applicability, and target FPGA due to its rich sen-
sor interfaces that ease its integration into an end-to-end computing
system [84].

Archytas differs from previous accelerators in two main ways.
First, unlike most of the prior accelerators, which are manually
designed for a particular design point, Archytas is a localization
accelerator generation framework, which generates an accelerator
given the design specifications. Second, Archytas-generated accel-
erators dynamically re-optimize themselves at run time to adapt to
the operating environment, where all prior accelerators are static.
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Archytas is part of a broad, recent effort in designing an efficient
computing substrate for robotic computing [78]. Recent efforts also
include accelerating motion planning and control [43, 59–61, 68],
exploring the general design space [31], leveraging distributed plat-
forms [32, 33, 55], resource management [10, 89], and benchmark-
ing [12, 29, 79].

Accelerator Design Designing, generating, and scheduling
accelerators is a thriving area of research. Recent efforts include new
programming models/intermediate representations [20, 38, 62, 69]
and design space exploration/scheduling through search [80, 81]
and constrained optimization [34, 63].

Different from prior work, Archytas abstracts the software be-
havior using a coarse-grained M-DFG, which raises the level of
abstraction and simplifies the hardware design. The coarse-grained
abstraction is critical because, unlike prior work that targets rela-
tively lean computational kernels (e.g., FFT, convolution), we target
robotics algorithms (i.e., localization) that are very complex with
hundreds of thousands of lines of code. M-DFG allows us to com-
pose accelerators well-optimized for individual kernels.

While M-DFG has been demonstrated as a desirable abstrac-
tion [49, 68], we show that deriving a M-DFG for localization is
non-trivial because key algorithmic kernels have a range of imple-
mentation choices. We exploit the data sparsity and dependencies
unique to SLAM to automatically generate a concrete M-DFG from
the high-level algorithm description.

9 CONCLUSION

Using MAP as a case study, this paper provides a concrete exam-
ple of automatically generating accelerators for robotic algorithms,
which are becoming increasingly complex. The key is to use a
coarse-grained M-DFG to represent the MAP algorithm, which sim-
plifies the hardware design and translates hardware generation into
a constrained optimization that can be solved in seconds. We also
demonstrate a lightweight run-time system that exploits environ-
ment dynamism to reduce energy by re-optimizing the accelerator.
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