
Ptolemy: Architecture Support for Robust Deep Learning

Yiming Gan*

University of Rochester
ygan10@ur.rochester.edu

Yuxian Qiu*

Shanghai Jiao Tong University
qiuyuxian@sjtu.edu.cn

Jingwen Leng
Shanghai Jiao Tong University

leng-jw@cs.sjtu.edu.cn

Minyi Guo
Shanghai Jiao Tong University

guo-my@cs.sjtu.edu.cn

Yuhao Zhu
University of Rochester

yzhu@rochester.edu

Abstract—Deep learning is vulnerable to adversarial attacks,
where carefully-crafted input perturbations could mislead a
well-trained Deep Neural Network (DNN) to produce incorrect
results. Adversarial attacks jeopardize the safety, security, and
privacy of DNN-enabled systems. Today’s countermeasures to
adversarial attacks either do not have the capability to detect
adversarial samples at inference-time, or introduce prohibitively
high overhead to be practical at inference-time.

We propose Ptolemy, an algorithm-architecture co-designed
system that detects adversarial attacks at inference time with low
overhead and high accuracy. We exploit the synergies between
DNN inference and imperative program execution: an input
to a DNN uniquely activates a set of neurons that contribute
significantly to the inference output, analogous to the sequence
of basic blocks exercised by an input in a conventional program.
Critically, we observe that adversarial samples tend to activate
distinctive paths from those of benign inputs. Leveraging this in-
sight, we propose an adversarial detection framework, which uses
canary paths generated from offline profiling to detect adversarial
samples at runtime. The Ptolemy compiler along with the co-
designed hardware enable efficient execution by exploiting the
unique algorithmic characteristics. Extensive evaluations show
that Ptolemy achieves higher or similar adversarial detection
accuracy than today’s mechanisms with much lower (as low as
2%) runtime overhead.

Keywords—DNN; Robustness; Deep learning; Adversarial At-
tack; Adversarial Samples; Defense;

Artifact—https://github.com/Ptolemy-DL/Ptolemy

I. Introduction
Deep Neural Networks (DNN) are not robust. Small per-

turbations to inputs could easily “fool” DNNs to produce
incorrect results. By manipulating the inputs, a range of so-
called adversarial attacks have been demonstrated to mislead
DNNs to mis-predict [50], [13], [36], [63], [48], [28], leading
to potentially severe consequences. For instance, physically
putting a sticker on a stop sign could lead a well-trained
object recognition DNN to misclassify the stop sign as a
yield sign [36]. Beyond mission-critical scenarios such as
autonomous driving, the robustness issue also obstructs the
deployment of DNN in privacy/security-sensitive domains
such as biometric authentication [51], [60].

We take a first step toward architectural support for robust
deep learning. For a robustness scheme to be effective in

*Equal contribution

practice, it not only has to accurately detect adversarial inputs,
but must also do so efficiently at inference time so that
proper measure could be taken. This paper proposes Ptolemy,
an algorithm-architecture co-design system that detects ad-
versarial attacks at inference time with low overhead and
high accuracy. This enables applications to reject incorrect
results produced by adversarial attacks during inference. Fig. 1
provides an overview of the system.

Existing countermeasures to adversarial attacks are unable
to detect adversarial samples at inference time [12], [25].
Fundamentally, they treat DNN inferences as black boxes,
ignoring their runtime behaviors. To enable efficient online
adversarial detection, this paper takes a different approach. We
exploit the fact that each input to a DNN uniquely exercises
an activation path—a collection of neurons that contribute
significantly to the inference output, analogous to the sequence
of basic blocks exercised by an input in a conventional
program. Analyzing “hot” activation paths in DNNs, our key
observation is that inputs that lead to the same inference class
tend to exercise a group of paths that are distinctive from other
inference classes.

We propose a general algorithmic framework that exploits
the runtime path behaviors for efficient online adversarial
detection. The detection framework constructs a canary class
path offline for each inference class by profiling the training
data. At runtime, it builds the activation path for an input,
and detects the input as an adversary if the activation path is
different from the canary path associated with the predicted
class. The general algorithm framework exposes a myriad of
design knobs affecting the critical trade-off between detection
accuracy and compute cost, such as how a path is formulated
and when the path is constructed. To widen the applicability
of our detection framework, Ptolemy provides a high-level
programming interface, which allows programmers to calibrate
the algorithmic knobs to explore the accuracy-cost trade-off

that best suits an application’s needs.
Ptolemy provides an efficient execution substrate. The key

to the execution efficiency is the Ptolemy compiler, which
hides and reduces the detection overhead by exploiting the
unique parallelisms and redundancies exposed by the detection
algorithms. We show that with the aggressive compile-time
optimizations and a well-defined ISA, detection algorithms can

https://github.com/Ptolemy-DL/Ptolemy

Algorithm Framework

Canary
Class
Paths

Programming Interface
output = Inference()
foreach Layer
 ExtractImptNeurons()
 GenMask()
return Classify()

Compiler
Optimizations

✓ Layer-Level Pipelining
✓ Neuron-Level Pipelining
✓ Comp.-Mem. Trade-off

ISA

.set rfsize 0x200
mov r3, rfsize
findrf r4, r1
sort r1, r3, r6
acum r6, r1, r5

Offline Profiling &
ExtractionExtraction Inference

Reduce CostHide Cost

Algorithm Knobs

DNN Models and
Legitimate Training

Samples
Classification

Hardware Architecture

Memory

Augmented DNN
Accelerator

Programmable
Path Extractor

Selective
Extraction

Extraction
Direction

Thresholding
Mechanism

Fig. 1: Ptolemy system overview.

be implemented on top of existing DNN accelerators with a set
of basic, yet principled, hardware extensions, further widening
the applicability of Ptolemy.

Ptolemy enables highly accurate adversarial detection with
low performance overhead. Compared to today’s defense
mechanisms that introduce over 10 × performance overhead,
we demonstrate a system that achieves higher accuracy with
only 2% performance overhead. Ptolemy defends not only
existing attacks, but also adaptive attacks that are specifically
designed to defeat our defense [11]. We also demonstrate
the Ptolemy framework’s flexibility by presenting a range
of algorithm variants that offer different accuracy-efficiency
trade-offs. For instance, Ptolemy could trade 10% performance
overhead for 0.03 higher detection accuracy.

The Ptolemy artifact, including the pre-trained models,
offline-generated class paths, code to generate adaptive and
non-adaptive attacks, and the detection implementation is
available at https://github.com/Ptolemy-DL/Ptolemy. In sum-
mary, Ptolemy provides a generic framework for low-
overhead, high-accuracy online defense against adversarial
attacks with the following contributions:
• We propose a novel static-dynamic collaborative approach

for adversarial detection by exploiting the unique program
execution characteristics of DNN inferences that are
largely ignored before.

• We present a general algorithmic framework, along with
a high-level programming interface, that allows program-
mers to explore key algorithm design knobs to navigate
the accuracy-efficiency trade-off space.

• We demonstrate that with a carefully-designed ISA,
compiler optimizations could enable efficient detection
by exploiting the unique parallelisms and redundancies
exposed by our detection algorithm framework.

• We present a programmable hardware to achieve low-
latency online adversarial defense with principled exten-
sions to existing DNN accelerators.

II. Background
Adversarial Attacks DNNs are not robust to adversarial

attacks, where DNNs mis-predict under slightly perturbed
inputs [13], [36], [50], [45]. Fig. 2 shows one such example,
where the two slightly different images are both perceived
as stop signs to human eyes, but the second image is mis-
predicted by a DNN model as a yield sign. The perturbations

could be the result of carefully engineered attacks, but could
also be an artifact of normal data acquisition such as noisy
sensor capturing and image compression/resizing [64].

Legitimate Sample Adversarial Sample Perturbation

Fig. 2: Adversarial example using the FGSM [22] attack.

Formally, given a DNN C, an input x′ is defined as an adver-
sarial sample if it is close to x yet makes C∗(x) =C(x) ,C(x′),
where C∗(x) is the correct class of x. Different adversarial
samples differ in their measures of the distance between x and
x′. The distance could be small, where the input perturbations
are imperceptible to humans (as in the example above), but
could also be large, where the perturbations are visible to
humans but still “fool” a DNN. For instance, physically putting
a sticker on a stop sign could mislead a DNN to misclassify
the stop sign as a yield sign [36], [38]. Ptolemy targets
the general robustness issue that introduces mis-predictions
through input perturbations—small or large, inadvertent or
malicious. For simplicity, we refer to all of them as adversarial
attacks throughout this paper.

An adversarial attack is a black-box attack if it does not
assume knowledge of the attacked model; white-box attacks
in contrast assume full knowledge of the model. Orthogonally,
adaptive attacks have complete knowledge of the defense’s
inner workings, i.e., are specifically designed to attempt to
defeat a defense, while non-adaptive attacks do not [65], [11],
[12]. We show that our detection scheme can defend against
a range of different attacks, including the strongest form of
attack: white-box adaptive attacks.

Countermeasures We aim to enable fast and accurate
systems that can detect adversarial examples at inference-time
such that proper measures could be taken. Today’s defense
mechanisms largely fall under two categories, neither of which
meets this goal. The first class of defenses improves the
robustness of DNN models at training time (e.g., adversarial
retraining) [66], [72] by incorporating adversarial examples
into the training data. However, re-training is not suitable

https://github.com/Ptolemy-DL/Ptolemy

0.3

0.4

0.2

1.0

0.1

0.2

0.2

0.3

0.3

0.2

0.4

0.4

0.1

0.2

-0.1

0.09

0.1

-1.0

2.1

0.5

0.06

0.44

=X

0.46 = 0.1 x 2.1 + 1.0 x 0.09 + 0.4 x 0.2 + 0.3 x 0.2 + 0.2 x 0.1
0.1 x 2.1 + 1.0 x 0.09 > 0.6 x 0.46, assuming θ = 0.6

0.46

Important Neurons identified in the current layer: 1.0, 0.1
Important Neurons in the OFMap (identified before): 0.46

Input Feature Map Kernel Output Feature Map
(OFMap)

2.63

1.1

1.2

0.9

0.2

1.2

1.9

1.0

1.0

1.1

⊛
0.1

0.2

0.2

0.7

0.2 1.0

5.97

4.31

1.95

5.14

3.14

2.88

3.57

0.3 0.9

0.2

0.8

0.9
=

Important Neurons identified in the current layer: 2.0, 1.4, 1.5
Important Neurons in the OFMap (identified before): 5.47

5.47 = 2.0 x 0.7 + 1.4 x 0.9 + 1.5 x 0.8 + 1.0 x 0.9 + ……
2.0 x 0.7 + 1.4 x 0.9 + 1.5 x 0.8 > 0.6 x 5.47, assuming θ = 0.6

2.0

1.4

5.471.5

Input Feature Map Kernel Output Feature Map
(OFMap)

Layer 4
(Output Layer)

Layer 1
(Input Layer)

Layer 2

Layer 3

Important Neuron Extraction
in Fully-connected Layer

Important Neuron Extraction
in Convolution Layer

Constructing Activation Path
from Important Neurons

Fig. 3: Extracting important neurons from a fully connected layer (left) and a convolution layer (middle), and constructing the
activation path from important neurons across layers (right). Activation paths are input-specific. This figure illustrates backward
extraction using a cumulative thresholds. Forward extraction would start from the first layer rather than from the last year.
Absolute thresholding would select important neurons based on absolute partial sums rather than cumulative partial sums.

at inference-time and requires accesses to the training data.
Another class of defenses uses redundancies to defend against
adversarial attacks [64], [54], similar to the multi-module
redundancy used in classic fault-tolerant systems [59]. This
scheme, however, introduces high overhead, limiting its appli-
cability at inference time.

III. Algorithmic Framework
This section introduces the Ptolemy algorithm framework,

which enables adversarial attack detection at inference-time
with high accuracy and low latency. Ptolemy provides a set
of principled design knobs to allow programmers to customize
the accuracy vs. efficiency trade-off.

We first describe the intuition and key concepts behind
our algorithm framework (Sec. III-A). We then introduce the
algorithm framework, and show that a basic algorithm under
the framework introduces excessive compute and memory cost
(Sec. III-B). We further introduce key algorithmic knobs that
enable different algorithm variants to offer different accuracy-
efficiency trade-offs (Sec. III-C). Finally, we introduce a
high-level programming interface to flexibly express detection
algorithms within our framework (Sec. III-D).

III-A. Intuition and Key Concepts
Intuition Each input to a DNN activates a sequence

of neurons. We find that inputs that are correctly predicted
as the same class tend to activate a unique set of neurons
distinctive from that of other inputs. This is a manifestation
of recent work on class-level model sparsity [52], [69], which
shows that a small, but distinctive, portion of the network
contributes to each predicted class. Taking this perspective,
the way adversarial samples alter the inference result can be
thought of as activating a sequence of neurons different from
the canonical sequence associated with its predicted output.
Analyzing dynamic paths in DNN inferences thus allows us
to detect adversaries.

A sequence of activated neurons is analogous to a sequence
of basic blocks exercised by an input to a conventional

program. The frequently exercised basic block sequences, i.e.,
“hot paths” [7], [20], [15], can be used to improve performance
in classic profile-guided optimizations and dynamic compil-
ers [57], [56], [19]. Our approach shares a similar idea, where
we treat a DNN as an imperative program, and leverage its
runtime paths (sequence of neurons) to guide adversarial sam-
ple detection. Conventional countermeasures largely ignore the
program execution behaviors of DNN inferences.

Important Neurons The premise of our detection algo-
rithm framework is the notion of important neurons, which
denote a set of neurons that contribute significantly to the
inference output. Important neurons are extracted in a back-
ward fashion. The last layer Ln has only one important neuron,
which is the neuron n that corresponds to the predicted class.
At the second last layer Ln−1, the important neurons are the
minimal set of neurons in the input feature map that contribute
to at least θ (0 ≤ θ ≤ 1) of n. Here, θ controls the coverage of
important neurons. To extract the important neurons of layer
Ln−1, we simply rank the partial sums used to calculate n, and
choose the minimal number of neurons whose partial sums
collectively contribute to at least θ×n.

The left panel in Fig. 3 shows an example using a fully-
connected layer. Assuming θ = 0.6 and the second neuron in
the output feature map (0.46) is the important neuron identified
in the next layer. The fourth (1.0) and the fifth (0.1) neurons in
the input feature map are identified as the important neurons in
the current layer, because they contribute the two large partial
sums and their cumulative partial sum (0.3) contribute to more
than 60% of the important neuron in the output feature map.
The same process can be extended to convolution layers. The
middle panel in Fig. 3 shows an example. For the important
neuron in the output feature map, we first find its receptive
field in the input feature map, and then identify the minimal
set of neurons in the receptive field whose cumulative partial
sums contribute to at least θ×n.

This process is repeated backwards from the last layer to
the first layer, as shown in the right panel in Fig. 3. The

Path Extraction
and Aggregation

Inference

Path Extraction
Training

Data Class Paths Adversarial
Classification Input

Adversary? (Y/N)
+ Output

Offline Online

Extraction Direction (Forward vs. Backward)

Thresholding Mechanism (Cumulative vs. Absolute)

Selective Extraction (Start/Termination Layer)

Path
Extraction
Knobs

Fig. 4: Adversarial detection algorithm framework. It provides a range of knobs for path extraction, which dominates the
runtime overhead. Note that the path extraction methods in both the offline and online phases must match.

0 1 2 3 4 5 6 7 8 9
class

0
1

2
3

4
5

6
7

8
9

cl
as

s

1 0.37 0.34 0.36 0.35 0.37 0.27 0.29 0.36 0.34

0.37 1 0.35 0.37 0.33 0.38 0.28 0.28 0.35 0.35

0.34 0.35 1 0.33 0.32 0.34 0.27 0.29 0.3 0.31

0.36 0.37 0.33 1 0.32 0.37 0.27 0.27 0.34 0.33

0.35 0.33 0.32 0.32 1 0.32 0.29 0.29 0.36 0.33

0.37 0.38 0.34 0.37 0.32 1 0.26 0.29 0.35 0.35

0.27 0.28 0.27 0.27 0.29 0.26 1 0.29 0.27 0.29

0.29 0.28 0.29 0.27 0.29 0.29 0.29 1 0.28 0.29

0.36 0.35 0.3 0.34 0.36 0.35 0.27 0.28 1 0.36

0.34 0.35 0.31 0.33 0.33 0.35 0.29 0.29 0.36 1 0.32

0.40

0.48

0.56

0.64

(a) AlexNet @ ImageNet.

0 1 2 3 4 5 6 7 8 9
class

0
1

2
3

4
5

6
7

8
9

cl
as

s

1 0.61 0.61 0.6 0.6 0.59 0.58 0.6 0.63 0.61

0.61 1 0.6 0.61 0.6 0.6 0.6 0.61 0.62 0.64

0.61 0.6 1 0.63 0.64 0.63 0.63 0.62 0.6 0.6

0.6 0.61 0.63 1 0.63 0.65 0.63 0.63 0.6 0.61

0.6 0.6 0.64 0.63 1 0.63 0.63 0.64 0.59 0.61

0.59 0.6 0.63 0.65 0.63 1 0.62 0.63 0.59 0.61

0.58 0.6 0.63 0.63 0.63 0.62 1 0.61 0.58 0.6

0.6 0.61 0.62 0.63 0.64 0.63 0.61 1 0.59 0.62

0.63 0.62 0.6 0.6 0.59 0.59 0.58 0.59 1 0.62

0.61 0.64 0.6 0.61 0.61 0.61 0.6 0.62 0.62 1

0.60

0.62

0.64

0.66

0.68

0.70

(b) ResNet18 @ CIFAR-10.

Fig. 5: Class path similarity (θ = 0.5).

important neurons identified at layer Li are used to determine
the important neurons at layer Li−1.

From Neurons to Paths The collection of important
neurons across all the layers under a given input constitutes an
activation path of that input, similar to how a sequence of basic
blocks constitutes a path/trace in a program. We represent a
path using a bitmask, where each bit mi, j indicates whether
the neuron (input feature map element) at layer i position j is
an important neuron.

From individual activation paths, we introduce the concept
of a class path for a class c, which aggregates (bitwise OR) the
activation paths of different inputs that are correctly predicted
as class c. That is: Pc =

⋃
x∈x̄c P(x), where P(x) denotes the

activation path of input x, x̄c denotes the set of all the correctly
predicted inputs of class c,

⋃
denotes bitwise OR, and Pc

denotes the class path of class c. We observe that Pc starts to
saturate around 100 images and including more images from
the training dataset does not result all bits being 1. We do not
manually stop filling the bits.

Critically, class paths are significantly different from each
other. Fig. 5a shows the path similarity in AlexNet [35] across
10 randomly-sampled classes from ImageNet [17]. Fig. 5b
shows the path similarity in ResNet18 [61] across the 10
classes in CIFAR-10 [34]. All the results are obtained on
the training set. The average inter-class path similarity is
only 36.2% (max 38.2%, 90-percentile 36.6%) for AlexNet
on ImageNet and 61.2% (max 65.1%, 90-percentile 63.4%)
for ResNet18 on CIFAR-10, suggesting that class paths are
distinctive. In an attempt to normalize the dataset, we also
perform the same experiment on ResNet50 on ImageNet. The
average inter-class path similarity is 37.6% (max 40.9%, 90-

percentile 39.1%), similar to those of AlexNet on ImageNet.
The class path similarity is much higher in CIFAR-10 than

in ImageNet. This is because ImageNet has 1,000 classes that
cover a wide range of objects and CIFAR-10 has only 10
classes, which are similar to each other (e.g., cat vs. dog).
The randomly picked 10 classes in ImageNet are more likely
to be different from each other than the 10 classes in CIFAR-
10. Across all the 1,000 classes in ImageNet, the maximum
inter-class path similarity is still only 0.44, suggesting that our
random sampling of ImageNet is representative.

III-B. Detection Framework and Cost Analysis

We leverage the clear distinction across different class paths
to detect adversarial inputs. If an input x is predicted as class
c while its activation path P(x) does not resemble the class
path Pc, we hypothesize that the input is an adversary.

Framework Fig. 4 shows an overview of the algorithm
framework, which requires static-dynamic collaboration. The
static component profiles the training data to extract activation
paths P(x) for each correctly predicted sample x, and generates
the class path Pc for each class c as described before. The class
paths are stored offline and reused over time. Critically, our
profiling method can easily integrate new training samples,
whose activation paths would simply be aggregated (OR-ed)
with the existing class paths without having to re-generate the
entire class paths from scratch.

At inference-time, the dynamic component extracts the path
for a given input. Note that activation paths are extracted
only after the entire DNN inference finishes, because the
identification of important neurons starts from the predicted
class in the last layer and propagates backward. We will show
other variants in Sec. III-C that relax this restriction.

Given the activation path P(x) of an input x and the
canary class path Pc, where c is the predicted class of x, a
classification module then decides whether x is an adversary or
not based on the similarity between P(x) and Pc. While a range
of similarity metrics and algorithms could be used, we propose
a lightweight algorithm that is extremely efficient to compute
while providing high accuracy. Specifically, we first estimate
the similarity S between P(x) and Pc: S = ‖P(x) & Pc‖1/‖P(x)‖1,
where ‖P‖1 denotes the number of 1s in the vector P, and &
denotes bitwise AND. S is fed into a learned classifier, for which
we use the lightweight random forest method [39], for the

final classification. The classification module is lightweight,
contributing to less than 0.1% of the total detection cost.

Cost Analysis The algorithm described above is able
to achieve accuracy higher than state-of-the-art methods (see
Sec. VII). However, runtime extraction of activation paths also
introduces significant memory and compute costs.

The memory cost is significant because every single partial
sum generated during inference must be stored in the mem-
ory before the path extraction process begins. The detection
algorithm introduces 9 × to 420 × memory overhead, which
is a lower bound of the actual memory traffic overhead in real
systems because the massive partial sums will not be buffered
completely on-chip. Storing partial sums will also stall the
computing units and increase latency.

Path extraction also introduces compute overhead due to
sorting and accumulating partial sums. Using AlexNet as
an example, at θ = 0.9, the compute overhead could be as
high as 30%. At first glance, it might be surprising that the
compute overhead is “only” 30%. Further investigations show
that percentage of important neurons in a network is generally
below 5% even with θ = 0.9. Thus, the expensive sorting and
accumulation operations are applied to only a small portion
of partial sums. Note that the compute cost shown here leads
to much higher latency overhead in reality because, while
inference is massively parallel, sorting and accumulating are
much less so. A pure software implementation of the detection
algorithm introduces 15.4× and 50.7× overhead over inference
on AlexNet and ResNet50, respectively.

III-C. Algorithmic Knobs and Variants

To trade little accuracy loss for significant efficiency gains,
we introduce three algorithmic knobs that control how ac-
tivation paths are extracted, which dominates the runtime
performance/energy overhead. The result is a set of algorithm
variants that follow the same algorithm framework described
in Fig. 4, but that differ in how the paths are extracted.

Hiding Detection Cost: Extraction Direction
The cost introduced by the basic detection algorithm directly

increases the inference latency because path extraction and
inference must be serialized. We identify a key algorithmic
knob that provides the opportunity to hide the compute cost
of detection by overlapping detection with inference.

The key to the new algorithm is to extract important neurons
in a forward rather than a backward manner. Recall that in
the original backward extraction process, we use the important
neurons in layer Li’s output (which is equivalent to layer Li+1’s
input) to identify the important neurons in layer Li’s input.
In our new forward extraction process, as soon as layer Li
finishes inference we first determine the important neurons in
its output by simply ranking output neurons according to their
numerical values and selecting the largest neurons, instead of
waiting until after the extraction of layer Li+1. In this way, the
extraction of important neurons at layer Li and the inference
of layer Li+1 can be overlapped.

Reducing Detection Cost: Thresholding Mechanism

def AdversaryDetection(model, input, θ, φ):
 output = Inference(model, input)
 N = model.num_layers
 // Selective extraction only in the last three layers
 for L in range(N-3, N):
 if L != N-1:
 // Forward extraction using absolute thresholds
 ImptN[L] = ExtractImptNeurons(1, 1, φ, L)
 else:
 // Forward extraction using cumulative thresholds

 ImptN[L] = ExtractImptNeurons(1, 0, θ, L)
 dynPath.concat(GenMask(ImptN[L]))
 classPath = LoadClassPath(argmax(output))
 is_adversary = Classify(classPath, dynPath)
 return is_adversary

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Fig. 6: An adversarial detection algorithm expressed using the
programming interface.

The forward extraction process hides the extraction behind
inference, but does not reduce the detection cost, which could
significantly increase the energy overhead.

To reduce the detection cost, we propose to extract impor-
tant neurons using absolute thresholds rather than cumulative
thresholds. Whenever a partial sum is generated during infer-
ence it is compared against an absolute threshold φ. A single-
bit mask is stored to the memory based on the comparison
result. Later during path extraction, the masks (as opposed
to partial sums) are loaded to determine important neurons.
Thresholding can be specified at each layer, and can be applied
to both extraction directions.

Using absolute thresholds significantly reduces both the
compute and memory costs (Sec. VII-C), because comparing
partial sums against a threshold is much cheaper than sorting
and accumulating them, and writing single-bit masks rather
than partial sums significantly reduces the memory accesses.

Reducing Detection Cost: Selective Extraction
An orthogonal way to reduce the cost is to skip important

neurons from certain layers altogether. In many networks, later
layers have a more significant impact on the inference output
than earlier layers [53]. Thus, one could extract important
neurons from just the last a few layers to further reduce the
cost (Sec. VII-F). When combined with forward extraction,
this is equivalent to starting extraction later (“late-start”);
when combined with backward extraction, this is equivalent to
terminating extraction earlier (“early-termination”). This knob
specifies the start/termination layer.

Summary The Ptolemy framework provides three differ-
ent knobs to explore the accuracy-efficiency trade-off. While
the extraction direction applies to the entire network and hides
the detection cost behind the inference cost, the thresholding
mechanism and the extracted layer are specified at the layer
level to reduce the detection cost.

III-D. Programming Interface

Ptolemy provides a (Python-based) programming interface
that allows programmers to express a range of different al-
gorithmic design knobs described above. Our programming
interface is designed with two principles in mind, which we

TABLE I: Summary of Ptolemy instructions. Operands in the first three instruction classes are registers to simplify encoding.

Class Name 23-20 19-16 15-12 11-8 7-4 3-0

Inference
inf 0000 Input addr. Weight addr. Output addr. Unused
infsp 0001 Input addr. Weight addr. Output addr. First partial sum addr. Unused
csps 0010 Output neuron ID Layer ID First partial sum addr. Unused

Path Construction

sort 0011 Unsorted seq. start addr. Seq. length Sorted seq. start addr. Unused
acum 0100 Input addr. Output addr. Cumulative threshold Unused
genmasks 0101 Input addr. Output addr. Unused
findneuron 0110 Layer ID Neuron position Target neuron addr. Unused
findrf 0111 Neuron addr. Receptive field addr. Unused

Classification cls 1000 Class path addr. Activation path addr. Result Unused

Others Omitted for simplicity (mov, dec, jne, etc.)

will explain using an actual detection algorithm expressed
using the programming interface shown in Fig. 6.

Decoupled Inference/Detection The Ptolemy program-
ming interface decouples inference with detection, which
allows programmers to focus on expressing the functionalities
of the detection algorithm while leaving optimizations to the
compiler and runtime. For instance, while the inference code
(Line 2) and the path extraction code (Line 3–15) are ex-
pressed sequentially in the program, our compiler will under-
stand that the program uses the forward extraction algorithm
(Line 8 and 11), and thus will automatically pipeline inference
with important neuron extraction across layers (see Sec. IV-B).

Per-Layer Extraction Granularity Our programming in-
terface provides the flexibility to specify the important neuron
extraction method for each layer to leverage the three knobs
described above to explore the efficiency-accuracy trade-off

space. We will demonstrate its effectiveness in Sec. VII-F.
For instance in Fig. 6, the programmer selectively extracts

important neurons only for the last three layers (Line 5). In
addition, only the last layer uses the cumulative threshold to
extract important neurons (Line 11), which is more accurate
but requires more computations than using absolute thresholds,
which is the method used by the other two layers (Line 8).
Note that we do not allow backward extraction and forward
extraction to be combined in one network to avoid discrepan-
cies in the layer where they join.

IV. ISA and Compiler Optimizations
This section describes how Ptolemy efficiently maps de-

tection algorithms expressed in the high-level programming
interface to the hardware architecture. To that end, we first
introduce the software-hardware interface, i.e., the Instruction
Set Architecture (ISA) (Sec. IV-A), followed by the compiler
optimizations (Sec. IV-B).

IV-A. Instruction Set Architecture
Ptolemy provides a custom CISC-like ISA to allow efficient

mapping from high-level detection algorithms to the hardware
architecture. The design principles of the ISA are two-fold.
First, it abstracts away hardware implementation details; the
semantics are closer to high-level DNN programmers, and

the instructions will be decomposed by micro-instructions
controlled by an FSM. Second, it exposes opportunities for
compiler and hardware to exploit parallelisms.

The Ptolemy ISA contains four types of instructions: In-
ference, Path Construction, Classification, and Others. They
are high-level instructions in the CISC style that perform
complex operations. We use a 24-bit fixed length encoding,
and provide 16 general-purpose registers. Table I summarizes
the instructions. We highlight key design decisions.
• Inference These instructions dictate the inference process.

In addition to support usual inferences (inf), Ptolemy
also provides an instruction that stores the partial sums
to memory (infsp) during inference for backward extrac-
tion. Each inference instruction operates on one layer to
match the per-layer extraction semantics in the high-level
programming interface. Finally, the ISA also provides a
special instruction that calculates and stores all the partial
sums given an output feature map element (csps), which
will be used by the compiler for memory optimizations.

• Path Construction This class of instructions is used to
construct activation path dynamically at runtime for any
given input. To construct path, the ISA provides in-
structions to identify important neurons (sorting sort,
accumulate acum) and to generate the masks from the
identified important neurons to form an activation path
(genmasks). There are also instructions to calculate neu-
ron addresses, which are convenient in finding the start
address of a receptive field for a given neuron (findrf)
and finding a given neuron given its position in the
network (findneuron).

• Classification The classification instruction (cls) is used
to classify an input as either adversarial or benign.

• Others The ISA provides a set of control-flow instructions
(e.g., and jne), arithmetic instructions (e.g., dec), and
scalar data movement instructions (e.g., mov).

Example Lst. 1 shows a sample code that uses cumulative
thresholds to extract important neurons. Through a loop, it
iteratively finds a receptive field (findrf), sorts partial sums
in the receptive field (sort), and uses the sorted partial sums
to identify important neurons whose cumulative partial sums
exceed the threshold (acum).

.set rfsize 0x200

.set thrd 0x08

mov r3, rfsize
mov r5, thrd
<start>

[update r7&r2 for next output neuron]

findneuron r2, r7, r4
mul r5, (r4)
findrf r4, r1
sort r1, r3, r6
acum r6, r1, r5
dec r11
jne <start>

Listing 1: Generating important neurons using a cumulative
threshold. .set is a directive setting compiler-calculated con-
stants. [code] indicates code omitted for simplicity.

It highlights an important design decision of the Ptolemy
ISA: all the detection related instructions use register operands.
This design simplifies instruction encoding with little perfor-
mance impact. For instance, the findrf instruction requires
the receptive field size as an operand, which can be statically
calculated by the compiler given the DNN model configura-
tions. Since the receptive field size could be arbitrarily large
and thus does not always fit in a reasonable, fixed-length
encoding, a mov instruction is used to move the statically
calculated immediate value to a register (r3), which is later
used in the sort instruction. While a more complex instruction
encoding that limits the range of immediate operands could
eliminate this mov instruction, the performance overhead in-
troduced by this mov instruction is negligible compared to the
heavy-duty sort and acum instructions.

IV-B. Code Generation and Optimization
The compiler maximizes performance by exploiting unique

parallelisms and redundancies inherent to the detection al-
gorithms. This is achieved through statically scheduling in-
structions, which minimizes runtime overhead and hardware
complexity. Static scheduling is possible because the compute
and memory access behaviors of both DNN inference and
detection are known at the compile time.

Layer-Level Pipelining A key characteristic of algorithms
that use the forward extraction method is that inference and ex-
traction of different layers can be overlapped. While the high-
level programming interface decouples inference (Inference)
and extraction (ExtractImptNeurons), and expresses them
sequentially, our compiler will reorder instructions to enable
automatic pipelining at runtime, in a way similar to classic
software-pipelining technique [5].

Fig. 7a shows an example. We use pseudo-code to remove
unnecessary details. <extraction for j> indicates the code
block for extracting important neurons at layer j, and inf(j)
indicates inference at layer j. By simply reordering instruc-
tions, inference of layer j+1 and extraction of layer j, which
are independent, could be pipelined. At the hardware level,

for j = 1 to L {
 inf(j)
 <extraction for j>
}

inf(1)
for j = 1 to L-1 {
 inf(j+1)
 <extraction for j>
}
<extraction for L>

; inference & extraction of a model

(a) Overlapping inference with extrac-
tion across layers in forward extrac-
tion. L is the total number of DNN
layers.

for i = 1 to N {
 sort(i)
 acum(i)
}

sort(1)
for i = 1 to N-1 {
 sort(i+1)
 acum(i)
}
acum(N)

; extraction within a layer

(b) Neuron-level pipelining in im-
portant neuron extraction. N de-
notes the number of important
neurons in the current layer’s out-
put.

Fig. 7: Pseudo-code of instruction scheduling examples. The
code in (b) is the extraction block simplified in (a).

once inf(j) is issued to execute on the DNN accelerator,
<extraction for j> could be issued and executed imme-
diately on our hardware extension (Sec. V-B).

Note that our software pipelining technique does not fully
hide the instruction latency to guarantee that a new instruction
can be dispatched every cycle. Both inference and the extrac-
tion code block take tens of millions of cycles. Fully hiding
latencies requires expensive optimizations in classic compiler
literature [67], [27]. We find that our simple static instruction
reordering is able to largely overlap inference with extraction,
leading to very low performance overhead. A side effect of
not fully hiding the instruction latencies is that our hardware
would still have the logic to check dependencies and stall the
pipeline if necessary. But the hardware remains in-order with-
out the expensive out-of-order instruction scheduling logic.

Neuron-Level Pipelining Similar to layer-level pipelining,
our compiler will also automatically pipeline the extraction
of different important neurons within a layer. Fig. 7b shows
an example, where cumulative thresholds are used. The two
steps needed to extract important neurons, sorting all the
partial sums (sort) and accumulating the partial sums until the
threshold is reached (acum), have data dependencies. The com-
piler overlaps the extraction across different important neurons
(iterations), improving hardware utilization and performance.

Trading-off Compute for Memory Algorithms that use
cumulative thresholds have high memory cost because all the
partial sums must be stored to memory (Fig. 5). However, if a
receptive field does not correspond to an important neuron in
the output feature map, its partial sums will not be used later.
We observe that fewer than 5% of the partial sums stored are
used later to extract important neurons.

We propose to use redundant computation to reduce mem-
ory overhead. Instead of storing all the partial sums during
inference, we re-compute the partial sums during the extrac-
tion process only for the receptive fields that are known to
correspond to important neurons in the output feature map.

DNN Accelerator

SRAM (Weights, Feature
Maps, Partial Sums, Masks)

Path Constructor

Sort & Merge Accumulate

Controller

SRAM (Code,
Paths)

DRAM

Input/Output

Weights

Feature Maps

Partial Sums

Masks

Mask
Gen.

SRAM (Partial sums, Partial masks, Masks)Paths

Fig. 8: Ptolemy architecture overview.

The compiler implements this by generating csps instructions
to re-compute partial sums.

V. Architecture Support
This section introduces the Ptolemy hardware architecture.

Following an overview (Sec. V-A), we describe the designs of
major hardware components (Sec. V-B – Sec. V-D).

V-A. Overview
Our architecture builds on top of a conventional DNN accel-

erator. Fig. 8 provides an overview of the Ptolemy architecture,
which consists of an augmented DNN accelerator, a Path
Constructor that builds the activation path for an input, and a
Controller that dispatches instructions, runs state machines that
control the hardware blocks, and executes the final classifier.
An off-chip memory stores all the data structures that are
needed for inference and detection. Both the DNN accelerator
and the Path Constructor use double-buffered on-chip SRAMs
to capture data reuse and to overlap DMA transfer with com-
putation. The controller’s SRAM stores the compiled detection
program and activation/class paths for classification.

V-B. Enhanced DNN Accelerator
Ptolemy can be integrated into general DNN accelerator

designs. Without losing generality we assume a TPU-like
systolic array design [31]. Each PE consists of two 16-bit
input registers, a 16-bit fixed-point MAC unit with a 32-bit
accumulator register, and simple trivial control logic.

Ptolemy minimally extends each MAC unit. Fig. 9a shows
the simple MAC unit augmentations (shaded). Specifically,
algorithms that use absolute thresholds compare each partial
sum with the threshold and store the single-bit mask to the
SRAM; algorithms that use cumulative thresholds require each
partial sum to be stored to the SRAM. Note that with the
re-computation optimization, partial sums are recomputed at
extraction time only for important neurons instead of being
stored during inference.

To avoid the SRAM becoming a scalability bottleneck, the
partial sums and the masks are double-buffered in the SRAM
and doubled-buffered to the DRAM through a DMA. Later,
the partial sums and/or masks are double-buffered back to the
SRAM, similar to how feature maps and kernels are accessed.
The extra DRAM space required to store partial sums is small

i w

x

+ psum

>?

thd

M
U
X

0/1

mode

to SRAM

to SRAM

(a) Enhanced MAC unit.

…

SRAM

Merge Unit

Sort
Unit

Sort
Unit

(b) Sorting logic.

Fig. 9: Microarchitecture details. MAC and sorting constitutes
99.9% of the operations in our detection algorithm.

as we will show in Sec. VII-A. The additional DRAM traffic
incurred by storing and reading partial sums is negligible
(<0.1%) compared to the original DRAM traffic since each
partial sum is read and stored only once.

The PE array is used both for the usual inference and
for re-computing partial sums as instructed by the clps
instruction (Sec. IV-B). During re-computation, only the first
row in the PE array is active because only a selected few
elements in the output feature maps are to be re-computed.

V-C. Path Constructor
The goal of the path constructor is to extract important

neurons and to construct activation paths. Algorithms that use
cumulative thresholds requires sorting partial sums in receptive
fields. Since receptive fields in modern DNNs are usually large
(tens of thousands of elements), sorting all the elements on one
piece of hardware could become a latency bottleneck as the
sequence length increases. Our design splits a long sequence
into multiple subsequences, which are sorted in parallel and
merged together. Fig. 9b shows the sort unit organization. The
sort unit uses the classic sorting network [32], and the merge
unit uses a standard merge tree, both have efficient hardware
implementations [46], [16], [33].

The path constructor uses lightweight mask generation
hardware, which generates the important neuron masks for
each layer, from which the entire activation path (a bit vector)
is constructed. The path constructor also integrates hardware
that calculates similarities between an activation path and a
canary class path, which is a highly bit-parallel operation. The
SRAM in the path constructor is separate from the SRAM used
by the DNN accelerator to avoid resource contention, and is
also doubled-buffered.

V-D. Controller
We assume a micro-controller unit (MCU) in the baseline

hardware, as is common in today’s DNN-based Systems-on-
a-chip (SoCs) [2]. We piggyback two key tasks on the MCU:
dispatching instructions and executing the final classifier to
detect adversaries. Both are lightweight tasks that can be
executed efficiently on an MCU without extra hardware.

Dispatching Instructions Thanks to the simple ISA
encoding (Table I), the compiled programs can be interpreted
on the MCU (i.e., software decoding) efficiently while avoid-
ing extra hardware cost. The overhead of interpreting the

code is negligible compared to the total execution time. The
programs are very small in size. The largest one, which uses
cumulative thresholds and backward extraction, is about 30
static instructions (below 100 bytes).

Classification The similarity between an activation path
and the canary class path calculated from the path constructor
is fed into a random forest (RF) for the final classification
(Sec. III-B). Our particular RF implementation uses 100
decision trees, each of which has an average depth of 12. In
total, RF consumes about 2,000 operations on AlexNet (five
orders of magnitude lower than inference), and could execute
on an MCU in microseconds.

VI. Evaluation Methodology
This section explains the basic hardware and software setup

(Sec. VI-A) and the evaluation plan (Sec. VI-B).

VI-A. Experimental Setup
Hardware Implementation We develop RTL implementa-

tion using Synposys synthesis and Cadence layout tools with
Silvaco’s Open-Cell 15nm technology [1]. The on-chip SRAM
is generated using an ARM memory compiler and the off-
chip DRAM is modeled after four Micron 16 Gb LPDDR3-
1600 channels. We assume an ARM Cortex M4-like micro-
controller (MCU) as the controller in the hardware (Sec. V-D).
The synthesis and memory estimation results are used to drive
a cycle-level simulator for performance and energy analyses.

Networks and Datasets We evaluate Ptolemy using two
networks: 1) ResNet18 [61] on the CIFAR-100 dataset [34]
with 100 different classes and 50,000 training images, and 2)
AlexNet [35] on the ImageNet dataset [17] with 1000 different
classes and 1 million training images. The networks and
datasets we evaluate are at the high end of the benchmark scale
evaluated by today’s countermeasure mechanisms [12], [25],
[43], which mostly use much smaller datasets and networks
(e.g., MNIST, CIFAR-10) [37], [47] that are less effective
in exercising the capability of our system. The test sets are
evenly split between adversarial and benign inputs, following
the common setup of adversarial attack research.

The clean AlexNet without attacks has an accuracy of
55.13% on ImageNet; ResNet18 has an accuracy of 94.49%
and 75.87% on CIFAR-10 and CIFAR-100, respectively.

Attacks We evaluate Ptolemy against a wide range of
attacks. We first evaluate using five common non-adaptive
attacks: BIM [36], CWL2 [14], DeepFool [45], FGSM [49],
and JSMA [49], which comprehensively cover all three types
of input perturbation measures (L0, L2, and L∞) [4].

We also specifically construct attacks that attempt to defeat
our detection mechanism (a.k.a., adaptive attacks [12]). In par-
ticular, we assume an adversary that has a complete knowledge
of Ptolemy’s detection algorithms and the attacked model, and
thereby generates adversarial samples by incorporating path
similarities into the loss function.

Metrics We use the standard “area under curve” (AUC)
accuracy metric (between 0 and 1) for adversarial detec-
tion [29], which captures the interaction between true positive

rate and false positive rate. Unless otherwise noted, we report
the average accuracy across all attacks. We confirm that the
accuracy trend is similar across attacks.

VI-B. Evaluation Plan
Our evaluation is designed to demonstrate that 1) Ptolemy

achieves similar or higher accuracy than today’s detection
mechanisms with a much lower performance penalty, and 2)
the general framework allows for a large accuracy-efficiency
trade-off. To that end, we develop and evaluate four algorithm
variants using our programming model. All the compiler
optimizations (Sec. IV-B) are enabled when applicable.
• BwCu: Backward extraction with cumulative thresholds.
• BwAb: Backward extraction with absolute thresholds.
• FwAb: Forward extraction with absolute thresholds.
• Hybrid: Hybrid algorithm where BwAb is used on the

first half of a network and BwCu is used on the rest.
Baselines We compare against three state-of-the-art ad-

versarial detection mechanisms: EP [52], CDRP [69], Deep-
Fense [54]. Both EP and CDRP leverage class-level sparsity.
CDRP requires retraining and thus is not able to detect
adversaries at inference-time. Note that we evaluate Ptolemy
using the exact same attacks used in the above papers.

DeepFense represents a class of detection mechanisms that
use modular redundancy. DeepFense employs multiple latent
models as redundancies. We directly use the accuracy results
reported in their papers. Note that DeepFense is evaluated us-
ing ResNet18 on CIFAR-10, on which we perform additional
experiments for a fair comparison.

VII. Evaluation
We first show the area and DRAM space overhead intro-

duced by Ptolemy’s hardware extensions (Sec. VII-A) are
small. We show that Ptolemy provides more accurate detection
(Sec. VII-B) with lower latency and energy overhead than prior
work (Sec. VII-C – Sec. VII-D). We show that Ptolemy is
robust against adaptive attacks that are specifically designed
to defeat it (Sec. VII-E). Ptolemy provides a large accuracy-
efficiency trade-off space (Sec. VII-F). We further study the
sensitivity and scalability of Ptolemy (Sec. VII-G). Finally, we
report additional results on several other models (Sec. VII-H).

VII-A. Overhead Analysis
Area Overhead The baseline DNN accelerator incor-

porates a 20×20 MAC array operating at 250MHz. The
accelerator has an SRAM size of 1.5 MB, which is banked at
a 64 KB granularity. Ptolemy augments the baseline hardware
with a 32 KB SRAM banked at 2KB granularity for storing
partial sums/masks, and a 64 KB SRAM used by the path
constructor, which includes two 16-element sort units, one 16-
way merge tree, and an accumulation unit. This accelerator is
used in evaluating both Ptolemy and all our baselines.

On top of the baseline DNN accelerator, Ptolemy introduces
a total area overhead of 5.2% (0.08 mm2), of which 3.9%
is contributed by the additional SRAM. The rest of the area

0.95

0.90

0.85

0.80

A
cc
ur
ac
y

Bw
Cu
Bw
AbFw

Ab
Hyb

rid EP
CD
RP

(a) AlexNet on ImageNet.

1.00
0.95
0.90
0.85
0.80
0.75

A
cc
ur
ac
y

Bw
Cu
Bw
AbFw

Ab
Hyb

rid EP
CD
RP

(b) ResNet18 on CIFAR-100.

Fig. 10: Accuracy comparisons with EP and CDRP. Error bars
indicate the max and min accuracies of all the attacks.

overhead is attributed to the MAC unit augmentation (0.4%)
and other logic (0.9%).

DRAM Space Under BwAb and FwAb, AlexNet and
ResNet18 require 1.6 MB and 2.2 MB extra DRAM space.
To show scalability, we also evaluated VGG19, which is 13×
larger than ResNet18 and requires only 18.5 MB extra DRAM
space. With the recompute optimization, AlexNet, ResNet18,
and VGG19 require only an extra 12.8 MB, 17.6 MB, and
148.0 MB in DRAM, respectively under BwCu. The additional
DRAM traffic is less than 0.1% (Sec. V-B).

VII-B. Accuracy

Ptolemy’s accuracy varies with the choice of θ and φ, which
control the coverage of important neurons. Using BwCu as
an example, Table II shows how its accuracy changes as θ
varies from 0.1 to 0.9. As θ initially increases from 0.1 to
0.5 the accuracy also increases, because a higher θ captures
more important neurons. However, as θ increases to 0.9, the
accuracy slightly drops. This is because a high θ value causes
different class paths to overlap and become less distinguish-
able. Meanwhile, the latency and energy consumption increase
almost proportionally as θ increases. We thus use θ = 0.5 for
the rest of our evaluation. The trend with respect to φ is similar,
but is omitted due to limited space.

TABLE II: Sensitivity of
accuracy, latency, and en-
ergy of BwCu as θ varies.
Latency and Energy are
normalized to inference.

θ Accuracy Latency Energy

0.1 0.86 4.7× 2.9×
0.5 0.94 12.3× 7.7×
0.9 0.91 25.7× 15.6×

Ptolemy variants achieve similar or better accuracy than
existing defense mechanisms. Fig. 10 shows the accuracy
comparison. On AlexNet across all attacks (Fig. 10a), the
three backward extraction-based variants (BwCu, BwAb, and
Hybrid) outperform EP and CDRP by up to 0.02 and 0.1,
respectively. FwAb uses forward extraction and has 0.03
lower accuracy than EP (0.06 higher than CDRP), indicating
the accuracy benefits of backward extraction. On ResNet18
(Fig. 10b), Ptolemy consistently achieves higher (0.14 – 0.16)
accuracy than CDRP, and has similar or higher accuracy than
EP (at most 0.01 accuracy loss).

Note that adversarial attacks generated by CWL2 have low
confidence of the rank1 class, and the confidence of rank1
class is similar to that of the rank2 class. Thus, evaluating

1

2

4

8

16

 L
at

en
cy

 O
ve

rh
ea

d

BwCu
BwAb

FwAb
Hybrid EP

1

2

4

8 E
nergy O

verhead

(a) AlexNet on ImageNet.

1

4

16

64

256

La
te

nc
y

O
ve

rh
ea

d

1

4

16

64

256 E

nergy O
verhead

BwCu
BwAb

FwAb
Hybrid EP

(b) ResNet18 on CIFAR-100.

Fig. 11: Latency and energy comparisons with EP.

CWL2 let us understand Ptolemy’s robustness against ad-
versarial attacks launched by “low-confidence” images. On
Imagenet against CWL2, Ptolemy’s accuracy is 0.95, while
the baselines are 0.94 (EP) and 0.85 (CDRP); on CIFAR10,
Ptolemy’s accuracy is 0.96 while DeepFense is 0.93.

VII-C. Latency and Energy

Ptolemy could achieve low performance and energy over-
head over usual DNN inference. Fig. 11a and Fig. 11b show
the latency and energy consumption of the four Ptolemy
variants normalized to DNN inference, respectively. For com-
parison purposes, we also show the latency and energy of EP.
We do not show the results of CDRP because CDRP requires
retraining and is not suitable for online detection.

Although having the highest accuracy, BwCu also has the
highest latency and energy overhead due to the expensive
partial sum sorting and accumulation operations during extrac-
tion, which is serialized with inference. On AlexNet, BwCu
introduces 12.3× latency overhead and increases the energy by
7.7×. The corresponding results on ResNet18 are 195.4× and
105.9×, respectively. The overhead on ResNet18 (18 layers)
is higher than on AlexNet (8 layers), because as the network
becomes deeper the amount of important neurons increases,
which in turn increases the extraction time.

The overhead of BwCu is similar to EP, while BwAB,
FwAB and Hybrid all achieve much lower latency and energy
overhead. BwAb uses absolute thresholds to avoid sorting and
storing partials sums. BwAb reduces the latency and energy
overhead on AlexNet to only 1.2× and 1.1×, respectively, and
3.2× and 2.0× on ResNet18, respectively.

FwAb further reduces the latency overhead to only 2.1%
and 2.1× on the two networks, respectively, by using forward
extraction to overlap extraction with inference. The latency
overhead on ResNet18 is higher because ResNet18 is deeper
with a higher important neuron density (explained above),
leading to longer extraction latency that is harder to hide
behind the inference latency. FwAb does not reduce energy
overhead significantly comparing to BwAb, because it hides,
rather than reducing, the amount of compute.

Finally, Hybrid provides a design point that balances effi-
ciency with accuracy by combining cumulative thresholds and
absolute thresholds. It leads to 1.7× latency overhead and 1.4×
energy overhead on AlexNet, and the overheads are 47.3× and
36.1× on ResNet18, respectively.

1.00

0.95

0.90

0.85

0.80

A
cc
ur
ac
y

Bw
Cu
Bw
AbFw

Ab
Hyb

ridDF
L
DF
MDF

H

PTOLEMY DeepFense

(a) Accuracy.

1

4

16

La
te

nc
y

O
ve

rh
ea

d

1

4

16E
nergy O

verhead

BwCu
BwAb

FwAb
HybridDFL

DFMDFH

 PTOLEMY DeepFense

(b) Latency and energy.

Fig. 12: DeepFense comparison.

VII-D. DeepFense Comparison

We compare against the three default DeepFense variants,
which differ in the number of redundant networks: 1 in DFL, 8
in DFM, and 16 in DFH. DeepFense is originally implemented
on FPGA/GPUs; we perform a best-effort reimplementation on
our hardware substrate for a fair comparison.

Fig. 12a shows the accuracy comparison between Ptolemy
and DeepFense using ResNet18 on CIFAR-10. All Ptolemy
variants achieve significantly higher detection accuracy over
DeepFense. Specifically, FwAb, which has the lowest accuracy
among all Ptolemy variants, outperforms DFH, which is the
most accurate setup of DeepFense, by 0.11 on average.

Fig. 12b shows the latency and energy of Ptolemy and
DeepFense variants normalized to usual inference. With higher
accuracy, BwAb and FwAb are also faster and consume less
energy compared to all three DeepFense variants. For in-
stance, FwAb reduces latency and energy overhead by 89.0%
and 59.0%, respectively, compared with DFL, the most light
version of DeepFense. The better efficiency of Ptolemy over
DeepFense indicates the effectiveness of exploiting the runtime
behaviors of DNN inferences.

VII-E. Defending Against Adaptive Attacks

Adaptive attacks refer to attacks that have complete knowl-
edge of how a defense mechanism works and attempt to
defeat that specific defense [11], [65]. We perform a best-effort
construction of adaptive attacks against Ptolemy, and show
that Ptolemy can effectively defend against adaptive attacks.

Constructing the Attacks To attempt to defeat Ptolemy,
we force an adversarial sample to have the same activation
path as a benign input. However, since our path construction
requires ranking/thresholding, which are non-differentiable, we
opt for a differentiable approximation–a common practice in
adversarial ML [6], [65]. We experiment with several heuris-
tics, and find that the most effective one is to force all the
activations of an adversary to be the same as a benign input,
i.e., a sufficient but not necessary condition.

Specifically, to generate an adversarial sample from an input
x that has a true class c, we first randomly choose a benign
input xt of target class t from the training dataset, where
c , t. We then add noise δx to x to generate xa such that
xa’s activations are as close to that of xt as possible. This is
achieved by minimizing the L2 loss

∑
i ‖zi(x +δx)− zi(xt)‖22 as

the objective function, where zi(?) denotes the activations of ?
at layer i. To strengthen the attack, we choose five different xt
of different classes to generate five different xa, and select the

1.0
0.8
0.6
0.4
0.2
0.0

A
cc

ur
ac

y

BwCu FwAb

 AT1 BIM
 AT2 CWL2
 AT3 DeepFool
 AT8 FGSM

 JSMA

Fig. 13: Detection accuracy of Ptolemy on various adaptive
attacks (AT) compared to the five existing attacks.

xa with the smallest loss. We use projected gradient descent
(PGD) [42] as the optimization method.

Results Ptolemy detects these adaptive adversarial sam-
ples, even though they are generated specifically to “fool”
Ptolemy by having activation paths that are similar to their
benign counterparts. Using AlexNet on ImageNet as an exam-
ple, Fig. 13 shows the detection accuracy of BwCU and FwAb
on the adaptive attacks (AT). ATn denotes that activations of
the last n layers are considered in the loss function when
generating adversarial samples. Since AlexNet has 8 layers,
AT8 is the strongest adaptive attack. The detection accuracies
on existing attacks are shown as for comparison.

Overall, the detection accuracy decreases as more layers
are considered in generating the adaptive attacks, i.e., attacks
become more effective. When only the first three layers are
considered by the adaptive attack, the adversaries are more
easily detected by Ptolemy than existing attacks. The detection
accuracies on adaptive attacks are lower than those on non-
adaptive attacks, confirming that adaptive attacks are more
effective, matching the intuition [11].

Validating and Analyzing the Attacks Our adaptive
attack does not bound perturbation, i.e., is an unbounded
attack. Following the guideline in Carlini et al. [11] that
“The correct metric for evaluating unbounded attacks is the
distortion required to generate an adversarial example, not the
success rate (which should always be 100%)”, we verify the
validity of our adaptive attack in two ways. First, we verify
that the constructed attacks do reach 100% success rate; the
average distortion, measured in Mean Square Error (MSE), is
0.007, and the maximum MSE 0.035.

Second, we show how the detection accuracy of Ptolemy
is impacted by the distortion rate introduced in the adaptive
adversarial examples. The data is shown in Fig. 14, where
every < x, y> point denotes the average detection accuracy (y)
for all the adaptive attacks whose distortions (MSE) is lower
than or equal to a certain value (x). We find that overall the
detection accuracy drops slightly as the distortion increases—
an expected trend—although the trend is not strong, which is
likely because the absolute distortion is too low (a desirable
property) to demonstrate strong correlation with accuracy.
We do verify that when the distortion is large enough to
completely transform an image from one class to another,
the detection accuracy would drop to 0, but at that point the
input could not be considered an adversarial attack since the
transformed image does not look like the original image.

We also investigate how the detection accuracy is impacted

0.90

0.85

0.80

0.75

0.70

A
cc

ur
ac

y

35302520151050
Distortion/Perturbation (x10-3 MSE)

Fig. 14: Detection accuracy
of adaptive adversarial inputs
under different distortions.

1.00

0.95

0.90

0.85

0.80

A
cc

ur
ac

y

0.300.200.100.00
Path Similarity

Fig. 15: Detection accuracy
of adaptive attacks under dif-
ferent path similarities.

by the path similarities between the original class and the
target class. We show the results in Fig. 15, where every < x,
y > point denotes the average detection accuracy (y) for all
the adaptive adversarial inputs whose path similarity between
the original class and the target class is lower than or equal
to a certain value (x). While the path similarity between the
original class and the target class has a wide range (0.0 –
0.34), the detection accuracy does not correlate strongly with
the path similarity. This is a desirable property, as it suggests
that Ptolemy is not more vulnerable when the attacker simply
targets a similar class when generating the attacks.

Discussion The way we construct the adaptive attack
is by approximating the hard path objective (i.e., forcing
an adversarial sample to have the same activation path as a
benign input) using a differentiable objective that constrains
the individual activations. This relaxation let us formulate
adversarial attack generation as an optimization problem that
could be solved using effective optimization methods (e.g.,
PGD). If one were to force a hard constraint on the activation
path, the objective function would not be differentiable.

In that case, a naive approach to generate adaptive attacks
would be to exhaustively search all the possible perturbations.
But without guidance such search would be prohibitively
expensive (e.g., (256340,000 for an 8-bit color depth, 200×200
resolution RGB image). We did try the exhaustive search
method in a limited form, which generated results that add
so much perturbation so that the resulted images do not look
like the original images at all.

An interesting direction would be to investigate intelligent
search heuristics (e.g., simulated annealing) to find pertur-
bations that meets the hard path constraint while fooling
Ptolemy. We leave this to future work.

VII-F. Early-Termination and Late-Start
The Ptolemy framework allows programmers to flexi-

bly select which layers to extract important neurons from
(Sec. III-C). To trade accuracy for performance, programmers
could start extracting important neurons later in forward
extraction algorithms (as illustrated in Fig. 6), or terminate
extraction earlier in backward extraction algorithms.

Early-Termination We use BwCu to showcase the trade-
off that early-termination in backward extraction offers. For
simplicity, we show only the results on AlexNet; ResNet18 has
similar trends. Fig. 16a shows how accuracy (y-axis) varies as
the termination layer (x-axis) varies from 8 (the last layer) to 1
(the first layer). As AlexNet has 8 layers in total, terminating

0.95

0.89

0.83

0.77

A
cc

ur
ac

y

8 7 6 5 4 3 2 1
Termination Layer

(a) Accuracy.

1

4

16

 N
or

m
. L

at
en

cy

8 7 6 5 4 3 2 1
Termination Layer

1

2

4

8

 N
orm

. E
nergy

(b) Latency and energy.

Fig. 16: Accuracy, latency, and energy consumption under
different termination layer in BwCu.

0.95

0.89

0.83

0.77

A
cc

ur
ac

y

8 7 6 5 4 3 2 1
Start Layer

(a) Accuracy.

1.04

1.03

1.02

1.01

1.00 N
or

m
. L

at
en

cy 1.20

1.15

1.10

1.05

1.00

 N
orm

. E
nergy8 7 6 5 4 3 2 1

Start Layer

(b) Latency and energy.

Fig. 17: Accuracy, latency, and energy consumption under
different start layer in FwAb.

at layer 8 means extracting important neurons from only one
layer. As extraction terminates later (further to the right on
x-axis), more important neurons are captured and thus the
accuracy increases. The accuracy increase eventually plateaus
beyond layer 6, indicating marginal return of investment to
extract more layers.

Fig. 16b shows how the latency and energy consumption
varies with the termination layer. With virtually the same
accuracy, extracting all the layers (i.e., terminating at layer 1)
leads to 11.2× higher latency and 6.6× more energy compared
to extracting only 3 layers (i.e., terminating after layer 6),
which introduces only 1.1× and 1.1× latency and energy
overhead over normal inference, respectively.

Late-Start We use FwAb as an example to demonstrate the
trade-off that late-start provides to forward extraction-based
methods. Fig. 17a and Fig. 17b show how the accuracy and
latency/energy vary with the start layer, respectively.

Similar to early-termination, the accuracy increases as more
layers are extracted, i.e., start earlier (further to the right).
Interestingly, starting later does not help reduce the latency.
This is because extraction latency is largely hidden behind
the inference latency. However, starting later does reduce the
energy consumption by 8.4% because less work is done.

VII-G. Sensitivity and Scalability Studies

We show how Ptolemy’s performance varies with different
hardware resource provisions in the path constructor. We
report only the results of BwCu on AlexNet due to limited
space. Fig. 18a shows how the latency and energy consumption
(normalized to DNN inference) vary with the number of merge
tree length (the number of partially sorted sequences that are
merged simultaneously). As the merge tree length increases,
the latency reduces (from 31.0× to 12.3×), but the power
consumption stays virtually the same. This is because a 16-
length merge tree contributes to only 2% of the total power.

1

4

16

64
 N

or
m

. L
at

en
cy

1

2

4 N
orm

. P
ow

er4 8 16 32
Merge Tree Length

Design Choice

(a) Merge tree length.

16
14
12
10
8N

or
m

. L
at

en
cy 8

6
4
2
0

 N
orm

. P
ow

er2 4 8 16
Number of Sort Units

Design Choice

(b) Number of sort unit.

Fig. 18: Performance vary with hardware resource.

Fig. 18b shows how the latency and power consumption
vary with the number of sort units. We find out latency de-
creases only marginally with more sort units, because sorting
is memory-bound and thus increasing computing units has a
marginal impact. The power consumption, however, increases
significantly, because the sort unit contributes significantly
(33.4%) to the overall power in our design.

While our original DNN accelerator uses 16-bit precision,
we also evaluate our system under a 8-bit design. The area
overhead increases from 5.2% to 5.5%. For AlexNet, the 8-bit
design has 2.1% latency overhead and 33.0% energy overhead
using FwAb, comparable with 2.1% and 16.0% overhead of the
original design. We also increase the MAC array size from
20×20 to 32×32. The area overhead increases from 5.2% to
6.4%. AlexNet has 4.4% latency overhead and 16.4% energy
overhead using FwAb, comparable with the 2.1% and 16.0%
in the original design.

VII-H. Large Model Evaluation
On VGG16 [55] and Inception-V4 [62], the average inter-

class path similarity on ImageNet is only 41.5% and 28.8%,
respectively, indicating that important neurons exist and class
paths are unique in these models.

We also applied our detection scheme to DenseNet [30],
and achieved 100% detection accuracy with 0% false positive
rate (FPR), higher than the previously best accuracy at 96%
with 3.8% FPR [41]. We use the detection accuracy and false
positive rate instead of AUC in order to directly compare
with the referenced method. We also evaluated ResNet50 on
ImageNet using BwCu. The accuracy is 0.900, which is more
accurate than EP [52] (0.898).

VIII. Related Work and Discussion
Different mechanisms to counter adversarial attacks have

been explored. One major class is to boost the DNN robustness
at the training time through adversarial retraining [9], [22],
[44], [23], which incorporates adversarial samples into the
training data. However, adversarial retraining does not have the
detection capability at inference time. It also requires accesses
to the retraining data, which Ptolemy does not. Ptolemy can
also be integrated with adversarial retraining.

Detection mechanisms have also been extensively explored,
ranging from using modular redundancies (e.g., input trans-
formation [10], [24], [64], multiple models [54], and weights
randomization [18], [70]), to cascading a dedicated DNN to
detect adversaries [41], [40], [21], [43]. Wang et al. [68]
proposes to spatially share the DNN accelerator resources

between the original network and the detection network.
Ptolemy differs from them in two ways. First, we show that
using path as an explicit representation of the input, Ptolemy
can use a simple random forest classifier to detect adversarial
inputs rather than complicated DNNs. Coupled with other
performance optimizations, Ptolemy provides very low (2%)
overhead to enable detection at inference-time while others
introduce several folds higher overhead. Second, Ptolemy pro-
vides an algorithm design framework that allows programmers
to make trade-offs between detection efficiency and accuracy.

Carlini et al. [11] provides a checklist of best practices in
evaluating defense mechanisms of adversarial attacks. This
paper exercises the following red teaming:
• Stated the threat model: attackers know everything

(model, inputs, defense).
• Performed adaptive attacks (Sec. VII-E).
• Reported clean model accuracy (Sec. VI-A).
• Performed basic sanity checks (iterative attacks perform

better than single-step attacks; increasing the perturbation
budget strictly increases attack success rate; with “high”
distortion, model accuracy reaches random guessing.).

• Analyzed success vs. distortion (perturbation) for our
adaptive attack (Sec. VII-E).

• Showed that adaptive attacks are better (harder to be
detected) than non-adaptive ones (Fig. 13).

• Showed attack hyper-parameters with the released code.
• Applied both non-adaptive attacks (covering all three

types of input perturbation measures (L0, L2, and L∞))
and adaptive attacks (Sec. VI-A).

• For non-differentiable components (in adaptive attacks),
applied differentiable techniques (Sec. VII-E).

• Verified that the attacks have converged under the selected
hyper-parameters.

IX. Conclusion
Deep-learning driven applications are cultivating Software

2.0, an exciting software paradigm that is not robust to input
perturbations. The robustness issue is further exacerbated
by the lack of explainability in deep learning. Adversarial
attacks exploit the robustness vulnerability, and represents one
important instance of AI safety as AI techniques penetrate into
mission-critical systems [71], [73].

Ptolemy enables efficient and accurate adversarial detection
at inference-time. The key is to exploit the program execution
behaviors of DNN inference that are largely ignored before.
We demonstrate a careful co-design of algorithmic framework,
compiler optimizations, and hardware architecture. The con-
cepts of important neuron and activation path complement
existing explainable ML efforts [3], [26], [8], [8], [58], and
could shed new light on interpreting DNNs.

X. Acknowledgement
We thank the anonymous reviewers from ISCA 2020 and

MICRO 2020 and the shepherd from MICRO for their valuable
feedback and/or guidance. Jingwen Leng and Minyi Guo are
the corresponding authors of the paper.

References

[1] “15NM OPEN-CELL LIBRARY,” http://www.si2.org/open-cell-library/.
[Online]. Available: http://www.si2.org/open-cell-library/

[2] “NVIDIA Reveals Xavier SOC Details,” https://bit.ly/2qq0TWp.
[Online]. Available: https://www.forbes.com/sites/moorinsights/2018/
08/24/nvidia-reveals-xavier-soc-details/amp/

[3] “2016–2019 Progress Report: Advancing Artificial Intelligence
R&D,” https://www.whitehouse.gov/wp-content/uploads/2019/11/
AI-Research-and-Development-Progress-Report-2016-2019.pdf, 2019.

[4] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning
in computer vision: A survey,” IEEE Access, vol. 6, pp. 14 410–14 430,
2018.

[5] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan, “Software
pipelining,” ACM Computing Surveys (CSUR), vol. 27, no. 3, pp. 367–
432, 1995.

[6] A. Athalye and N. Carlini, “On the robustness of the cvpr 2018 white-
box adversarial example defenses,” arXiv preprint arXiv:1804.03286,
2018.

[7] T. Ball and J. R. Larus, “Efficient path profiling,” in Proceedings of the
29th annual ACM/IEEE international symposium on Microarchitecture.
IEEE Computer Society, 1996, pp. 46–57.

[8] P. Biecek, “Dalex: explainers for complex predictive models in r,” The
Journal of Machine Learning Research, vol. 19, no. 1, pp. 3245–3249,
2018.

[9] J. Bradshaw, A. G. d. G. Matthews, and Z. Ghahramani, “Adversarial
examples, uncertainty, and transfer testing robustness in gaussian process
hybrid deep networks,” arXiv preprint arXiv:1707.02476, 2017.

[10] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow, “Thermometer
encoding: One hot way to resist adversarial examples,” 2018.

[11] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras,
I. Goodfellow, A. Madry, and A. Kurakin, “On evaluating adversarial
robustness,” arXiv preprint arXiv:1902.06705, 2019.

[12] N. Carlini and D. Wagner, “Adversarial examples are not easily detected:
Bypassing ten detection methods,” in Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security. ACM, 2017, pp.
3–14.

[13] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 39–57.

[14] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 39–57.

[15] P. P. Chang and W. Hwu, “Trace selection for compiling large c
application programs to microcode,” in Proceedings of the 21st annual
workshop on Microprogramming and microarchitecture. IEEE Com-
puter Society Press, 1988, pp. 21–29.

[16] R. Chen, S. Siriyal, and V. Prasanna, “Energy and memory efficient
mapping of bitonic sorting on fpga,” in Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. ACM, 2015, pp. 240–249.

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[18] G. S. Dhillon, K. Azizzadenesheli, Z. C. Lipton, J. Bernstein, J. Kossaifi,
A. Khanna, and A. Anandkumar, “Stochastic activation pruning for
robust adversarial defense,” arXiv preprint arXiv:1803.01442, 2018.

[19] R. J. Donovan, R. R. Roediger, and W. J. Schmidt, “Profile driven
optimization of frequently executed paths with inlining of code frag-
ment (one or more lines of code from a child procedure to a parent
procedure),” Jun. 6 2000, uS Patent 6,072,951.

[20] J. A. Fisher, “Trace scheduling: A technique for global microcode
compaction,” IEEE transactions on computers, no. 7, pp. 478–490, 1981.

[21] Z. Gong, W. Wang, and W.-S. Ku, “Adversarial and clean data are not
twins,” arXiv preprint arXiv:1704.04960, 2017.

[22] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[23] S. Gu and L. Rigazio, “Towards deep neural network architectures robust
to adversarial examples,” arXiv preprint arXiv:1412.5068, 2014.

[24] C. Guo, M. Rana, M. Cisse, and L. Van Der Maaten, “Counter-
ing adversarial images using input transformations,” arXiv preprint
arXiv:1711.00117, 2017.

[25] W. He, J. Wei, X. Chen, N. Carlini, and D. Song, “Adversarial example
defense: Ensembles of weak defenses are not strong,” in 11th {USENIX}
Workshop on Offensive Technologies ({WOOT} 17), 2017.

[26] A. Holzinger, M. Plass, K. Holzinger, G. C. Crisan, C.-M. Pintea,
and V. Palade, “A glass-box interactive machine learning approach for
solving np-hard problems with the human-in-the-loop,” arXiv preprint
arXiv:1708.01104, 2017.

[27] K. Hoste and L. Eeckhout, “Cole: compiler optimization level ex-
ploration,” in Proceedings of the 6th annual IEEE/ACM international
symposium on Code generation and optimization. ACM, 2008, pp.
165–174.

[28] X. Hu, L. Liang, S. Li, L. Deng, P. Zuo, Y. Ji, X. Xie, Y. Ding, C. Liu,
T. Sherwood et al., “Deepsniffer: A dnn model extraction framework
based on learning architectural hints,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 385–399.

[29] J. Huang and C. X. Ling, “Using auc and accuracy in evaluating learning
algorithms,” IEEE Transactions on knowledge and Data Engineering,
vol. 17, no. 3, pp. 299–310, 2005.

[30] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and
K. Keutzer, “Densenet: Implementing efficient convnet descriptor pyra-
mids,” arXiv preprint arXiv:1404.1869, 2014.

[31] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2017, pp. 1–12.

[32] D. E. Knuth, Art of computer programming, volume 3: Sorting and
Searching. Addison-Wesley Professional, 2014.

[33] D. Koch and J. Torresen, “Fpgasort: A high performance sorting archi-
tecture exploiting run-time reconfiguration on fpgas for large problem
sorting,” in Proceedings of the 19th ACM/SIGDA international sympo-
sium on Field programmable gate arrays. ACM, 2011, pp. 45–54.

[34] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[36] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” arXiv preprint arXiv:1607.02533, 2016.

[37] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[38] J. Li, F. Schmidt, and Z. Kolter, “Adversarial camera stickers: A
physical camera-based attack on deep learning systems,” in International
Conference on Machine Learning, 2019, pp. 3896–3904.

[39] A. Liaw, M. Wiener et al., “Classification and regression by randomfor-
est,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[40] J. Lu, T. Issaranon, and D. Forsyth, “Safetynet: Detecting and rejecting
adversarial examples robustly,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 446–454.

[41] S. Ma and Y. Liu, “Nic: Detecting adversarial samples with neural
network invariant checking,” in Proceedings of the 26th Network and
Distributed System Security Symposium (NDSS 2019), 2019.

[42] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[43] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting
adversarial perturbations,” arXiv preprint arXiv:1702.04267, 2017.

[44] T. Miyato, A. M. Dai, and I. Goodfellow, “Adversarial train-
ing methods for semi-supervised text classification,” arXiv preprint
arXiv:1605.07725, 2016.

[45] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2574–2582.

[46] R. Mueller, J. Teubner, and G. Alonso, “Sorting networks on fpgas,” The
VLDB Journal—The International Journal on Very Large Data Bases,
vol. 21, no. 1, pp. 1–23, 2012.

[47] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
2011.

[48] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images,” in

http://www.si2.org/open-cell-library/
https://www.forbes.com/sites/moorinsights/2018/08/24/nvidia-reveals-xavier-soc-details/amp/
https://www.forbes.com/sites/moorinsights/2018/08/24/nvidia-reveals-xavier-soc-details/amp/
https://www.whitehouse.gov/wp-content/uploads/2019/11/AI-Research-and-Development-Progress-Report-2016-2019.pdf
https://www.whitehouse.gov/wp-content/uploads/2019/11/AI-Research-and-Development-Progress-Report-2016-2019.pdf

Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 427–436.

[49] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
2016 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2016, pp. 372–387.

[50] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016,
pp. 582–597.

[51] O. M. Parkhi, A. Vedaldi, A. Zisserman et al., “Deep face recognition.”
in bmvc, vol. 1, no. 3, 2015, p. 6.

[52] Y. Qiu, J. Leng, C. Guo, Q. Chen, C. Li, M. Guo, and Y. Zhu,
“Adversarial defense through network profiling based path extraction,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 4777–4786.

[53] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein, “Svcca: Singular
vector canonical correlation analysis for deep learning dynamics and
interpretability,” in Advances in Neural Information Processing Systems,
2017, pp. 6076–6085.

[54] B. D. Rouhani, M. Samragh, M. Javaheripi, T. Javidi, and F. Koushanfar,
“Deepfense: Online accelerated defense against adversarial deep learn-
ing,” in 2018 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 2018, pp. 1–8.

[55] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[56] J. Smith and R. Nair, Virtual machines: versatile platforms for systems
and processes. Elsevier, 2005.

[57] M. D. Smith, “Overcoming the challenges to feedback-directed opti-
mization (keynote talk),” in ACM SIGPLAN Notices, vol. 35, no. 7.
ACM, 2000, pp. 1–11.

[58] K. Sokol and P. A. Flach, “Glass-box: Explaining ai decisions with
counterfactual statements through conversation with a voice-enabled
virtual assistant.” in IJCAI, 2018, pp. 5868–5870.

[59] D. J. Sorin, “Fault tolerant computer architecture,” Synthesis Lectures
on Computer Architecture, vol. 4, no. 1, pp. 1–104, 2009.

[60] Y. Sun, D. Liang, X. Wang, and X. Tang, “Deepid3: Face recognition
with very deep neural networks,” arXiv preprint arXiv:1502.00873,
2015.

[71] H. Zhao, Y. Zhang, P. Meng, H. Shi, L. E. Li, T. Lou, and J. Zhao, “To-
wards safety-aware computing system design in autonomous vehicles,”
arXiv preprint arXiv:1905.08453, 2019.

[61] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[62] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-first AAAI conference on artificial intelligence, 2017.

[63] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[64] D. D. Thang and T. Matsui, “Image transformation can make neural
networks more robust against adversarial examples,” arXiv preprint
arXiv:1901.03037, 2019.

[65] F. Tramer, N. Carlini, W. Brendel, and A. Madry, “On adaptive attacks to
adversarial example defenses,” arXiv preprint arXiv:2002.08347, 2020.

[66] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble adversarial training: Attacks and defenses,”
arXiv preprint arXiv:1705.07204, 2017.

[67] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I. August,
“Compiler optimization-space exploration,” in Proceedings of the inter-
national symposium on Code generation and optimization: feedback-
directed and runtime optimization. IEEE Computer Society, 2003, pp.
204–215.

[68] X. Wang, R. Hou, B. Zhao, F. Yuan, J. Zhang, D. Meng, and
X. Qian, “Dnnguard: An elastic heterogeneous dnn accelerator archi-
tecture against adversarial attacks,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 19–34.

[69] Y. Wang, H. Su, B. Zhang, and X. Hu, “Interpret neural networks by
identifying critical data routing paths,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

[70] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille, “Mitigating adversarial
effects through randomization,” arXiv preprint arXiv:1711.01991, 2017.

[72] S. Zheng, Y. Song, T. Leung, and I. Goodfellow, “Improving the
robustness of deep neural networks via stability training,” in Proceedings
of the ieee conference on computer vision and pattern recognition, 2016,
pp. 4480–4488.

[73] Y. Zhu, V. J. Reddi, R. Adolf, S. Rama, B. Reagen, G.-Y. Wei,
and D. Brooks, “Cognitive computing safety: The new horizon for
reliability/the design and evolution of deep learning workloads,” IEEE

Micro, vol. 37, no. 1, pp. 15–21, 2017.

	Introduction
	Background
	Algorithmic Framework
	Intuition and Key Concepts
	Detection Framework and Cost Analysis
	Algorithmic Knobs and Variants
	Programming Interface

	ISA and Compiler Optimizations
	Instruction Set Architecture
	Code Generation and Optimization

	Architecture Support
	Overview
	Enhanced DNN Accelerator
	Path Constructor
	Controller

	Evaluation Methodology
	Experimental Setup
	Evaluation Plan

	Evaluation
	Overhead Analysis
	Accuracy
	Latency and Energy
	DeepFense Comparison
	Defending Against Adaptive Attacks
	Early-Termination and Late-Start
	Sensitivity and Scalability Studies
	Large Model Evaluation

	Related Work and Discussion
	Conclusion
	Acknowledgement
	References

