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Abstract

Estimating depth from stereo vision cameras, i.e., "depth from
stereo", is critical to emerging intelligent applications deployed in
energy- and performance-constrained devices, such as augmented
reality headsets and mobile autonomous robots. While existing
stereo vision systems make trade-offs between accuracy, perfor-
mance and energy-efficiency, we describe ASV, an accelerated
stereo vision system that simultaneously improves both perfor-
mance and energy-efficiency while achieving high accuracy.

The key to ASV is to exploit unique characteristics inherent to
stereo vision, and apply stereo-specific optimizations, both algorith-
mically and computationally. We make two contributions. Firstly,
we propose a new stereo algorithm, invariant-based stereo match-
ing (ISM), that achieves significant speedup while retaining high
accuracy. The algorithm combines classic “hand-crafted” stereo
algorithms with recent developments in Deep Neural Networks
(DNNs), by leveraging the correspondence invariant unique to stereo
vision systems. Secondly, we observe that the bottleneck of the ISM
algorithm is the DNN inference, and in particular the deconvolu-
tion operations that introduce massive compute-inefficiencies. We
propose a set of software optimizations that mitigate these ineffi-
ciencies. We show that with less than 0.5% hardware area overhead,
these algorithmic and computational optimizations can be effec-
tively integrated within a conventional DNN accelerator. Overall,
ASV achieves 5× speedup and 85% energy saving with 0.02% accu-
racy loss compared to today’s DNN-based stereo vision systems.

CCS Concepts

• Human-centered computing → Mobile computing; Mobile
devices; • Hardware → Hardware accelerators; • Computing

methodologies→ Computer vision tasks.
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1 Introduction

The demand for intelligent applications running on a diverse range
of mobile and embedded platforms, such as micro-robots, aug-
mented reality headsets, and smart-city sensor nodes, shows no
sign of slowing down. A key primitive in these applications is es-
timating depth information from the environment, which in turn
serves as the building block for extracting higher-level semantics.
For instance, depth information enables a mobile robot to detect
and manipulate objects that are in close proximity.

Among numerous depth sensing techniques, we focus on stereo
camera systems, which estimate depth from a pair of horizon-
tally displaced cameras that capture two different views of the
scene, mimicking the human binocular vision. Compared to other
depth sensing techniques such as LiDAR and structured-light sen-
sors [65, 67], stereo vision systems are much cheaper, consume less
power, and are physically more compact [3]. In response to the
rising significance of stereo vision, recent mobile vision platforms
integrate specialized stereo vision accelerators, such as the Stereo
Depth Block in the Movidius Enhanced Vision Accelerator Suite [5]
and the Stereo & Optical Flow Engine (SOFE) in the Nvidia Xavier
mobile Systems-on-a-chip (SoC) [9].

Stereo vision algorithms presented to date broadly define a fron-
tier in the accuracy-efficiency design space. Fig. 1 compares the
frame rate and accuracy for four well-known classic stereo al-
gorithms that use “hand-crafted” features, including GCSF [15],
SGBN [33], HH [33], and ELAS [26], as well as four state-of-the-art
DNNs solutions [16, 37, 48, 59]. The DNN data is characterized on
both a Pascal mobile GPU [8] (“-GPU” suffix), as well as on a DNN
accelerator [57] (“-Acc” suffix). In using low-dimensional “hand-
crafted” features, classic algorithms lead to high error rates (x-axis),
but are compute efficient, mostly operating at close to real-time
(e.g., 30 FPS, y-axis). In contrast, DNNs models achieve very low
error rates, but require 2–5 orders of magnitude more arithmetic
operations, resulting in much lower frame rates.

This paper presentsASV, an accelerated stereo vision system that
operates in real-time while achieving DNN comparable accuracy.

https://doi.org/10.1145/3352460.3358253
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Fig. 1:ASV demonstrates both real-time (30 FPS) frame rates

and DNN-like accuracy for stereo vision.

While today’s vision accelerators are primarily built for monocular
vision tasks, ASV exploits unique characteristics of stereo vision,
and applies stereo-specific optimizations, both algorithmic and
computational. Critically, we show that with careful algorithmic
choices, these stereo-specific optimizations can largely be imple-
mented on the same computer architecture as conventional DNN
accelerators with a set of basic, yet principled, hardware extensions,
which widens the applicability of this work.

At the core of ASV is a new low-latency, high-accuracy stereo
vision algorithm. We exploit the temporal invariance introduced
by stereo cameras: a single physical point projects to a unique pair
of pixels on the left and right image planes; although the pixel
locations move over time, their corresponding geometric relation-
ship is fixed. Our algorithm, ISM, uses compute-intensive DNNs
to extract pixel correspondences from a small set of key frames.
The correspondences are then propagated as initial estimates for
subsequent non-key frames, where we make use of cheaper, classic
algorithms. By combining learnt features from DNNs, and classic
algorithms that explicitly model the physical world, ISM achieves
high accuracy while reducing the compute cost.

While our ISM algorithm reduces the compute overhead, DNNs
remain critical, as they generate the initial estimate of the corre-
spondence information. We observe that stereo DNNs make heavy
use of the deconvolution operation1 that exposes specific kernel
sparsity, making conventional DNN accelerators inefficient. While
prior work proposed specialized hardware to exploit deconvolution
sparsity [60, 76], we demonstrate that static software optimizations
achieve better results without unnecessary hardware modifications.

Our approach is to transform an inherently sparse deconvolution
layer into a sequence of dense convolutions, which can then be
executed by canonical DNN accelerators. More importantly, this
transformation uniquely exposes a new data reuse opportunity:
inter-layer activation reuse (ILAR), which does not exist in conven-
tional DNNs. While exhaustive search has been previously used
to optimize data reuse patterns, it does not scale to optimizing de-
convolution, because the transformation increases the layer count
by up to 8×, and ILAR adds another search dimension. Instead, we
propose a constrained-optimization formulation, and demonstrate
an efficient solver using dynamic programming.

We implement a software/hardware co-designed prototype of
ASV. The hardware builds on top of a conventional systolic DNN

1Deconvolution in deep learning is an incredibly unfortunate misnomer that should
really be called “transposed convolution.”

accelerator [36] implemented in 16nm technology. The ASV hard-
ware minimally extends the baseline accelerator with less than 0.5%
area overhead. The software integrates the ISM algorithm and the
deconvolution optimizations.

We evaluate ASV on a set of standard stereo vision benchmarks.
Compared to the DNN baseline, ASV achieves 5× speedup and
85% energy saving with 0.02% accuracy loss. We also demonstrate
the general applicability of software deconvolution, by applying
it to Generative Adversarial Networks (GANs), which also make
heavy use of deconvolutions. Under the same compute and memory
resource constraints, we achieve 1.4 × speedup over a purpose-built
deconvolution accelerator, due to the unique ILAR that we exploit.

To our best knowledge, this is the first paper that demonstrates
a cost-effective stereo vision system. Using a software-hardware
co-design approach, we show that carefully designed software op-
timizations achieve significant performance and energy improve-
ments with simple, principled changes to existing DNN accelerators,
which widens the applicability of our work. More specifically:
• We propose the first stereo vision algorithm, ISM, that ex-
ploits temporal invariance in stereo imaging to improve the
performance with minimal accuracy loss;
• Wepropose the first static optimization framework for decon-
volution, a key operation in stereo DNNs, which eliminates
the sparsity-induced compute inefficiencies in deconvolution
layers without hardware changes;
• We are the first to identify inter-layer activation reuse in
deconvolution, a unique data reuse opportunity exposed by
our transformation framework, and which we exploit using
an efficient constrained optimizer.
• We co-design the hardware with the proposed software op-
timizations to achieve fast, low-power stereo vision with
minimal changes to existing DNN accelerators.

The remainder of the paper is organized as follows. Sec. 2 gives an
overview of necessary background. Sec. 3 introduces our invariant-
based stereo matching algorithm. Sec. 4 describes the software
optimizations for efficient implementation of the deconvolution op-
eration. Sec. 5 presents the design of ASV, including both software
and hardware considerations. Sec. 6 and Sec. 7 are experimental
methodology and results, respectively. Sec. 8 positions ASV in the
context of related work, and Sec. 9 concludes the paper.

2 Background

We first describe the scope of our work: vision-based systems that
extract 3D information from 2D stereo images (Sec. 2.1). We then
introduce the necessary background of stereo vision algorithms,
including both classic hand-crafted algorithms and contemporary
stereo DNNs (Sec. 2.2).

2.1 Depth Sensing

There are two essential methods to extract depth information: pas-
sive sensing and active sensing. Passive sensing techniques observe
the environment, primarily through cameras, and infer depth using
computer vision algorithms. In contrast, active sensing techniques
transmit signals and analyze the response to calculate depth; exam-
ples include structured light [65] and LiDAR [67].
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Fig. 2: “Depth from stereo” illustration: given an image

pair, stereo matching algorithms first generate the disparity

map (b), from which depth is then calculated through trian-
gulation (a). Triangulation is computationally trivial; this

paper focuses on optimizing stereo matching algorithms.

This paper focuses on camera-based passive sensing. Compared
to alternatives such as LiDAR, cameras are much cheaper and less
bulky [3]. As a result, camera-based depth sensing is widely adopted
in systems such as autonomous vehicles and AR headsets. Accord-
ing to Allied Market Research, the adoption of stereo cameras is
expected to grow 60.4% by 2020 [1]. The recent industry trend of in-
tegrating dedicated stereo vision accelerators into mobile SoCs (e.g.,
Movidius [5] and Nvidia [9]) further underlines the significance of
stereo vision for depth sensing.

2.2 Depth From Stereo

Triangulation The key idea behind stereo depth estimation is that
a single physical scene point projects to a unique pair of pixels, via
two observing cameras; the horizontal displacement between the
two pixels captured on the left and right image planes is inversely
proportional to the distance of the point from the observer (i.e.,
the depth). Fig. 2a illustrates this process, where the scene point is
captured at position x l and xr on the left and right image planes,
respectively. Using similar triangles, the depth D is calculated by:

D = Bf /Z , (1)

where f is the focal length of the cameras, B is the distance be-
tween the two camera lenses, and Z is the disparity xr − x l , i.e.,
the horizontal displacement between the two corresponding pix-
els in the left and right images. This process is widely known as
triangulation [30, 61].

Stereo Matching and Disparity Map Since both B and f are
camera intrinsic parameters, the key to triangulation is to calcu-
late the disparity Z . Given the left (reference) image and the right
(matching) image, we must find the pixels in each image that are
the projections of the same physical point, a process also known as
stereo matching. In the end, stereo matching generates a “disparity
map”, whose <x ,y> coordinates are taken to be coincident with the
pixel coordinates of the reference image. Fig. 2b shows one such
example, in which the correspondence between a pixel <x l ,yl> in
the left image and a pixel <xr ,yr> in the right image is given by:

xr = x l + D<x l ,yl>, yr = yl , (2)
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where D<x l ,yl> denotes the pixel value at <x l ,yl> in the disparity
map. Note that the compute cost of triangulation is trivial (Equ. 1),
and thus we focus on stereo matching.

Stereo matching algorithms consist of three stages [13, 58]: Fea-
ture Extraction (FE), Matching Optimization (MO), and Disparity
Refinement (DR). Both conventional algorithms [13, 33, 58, 63] and
DNN-based algorithms [16, 37, 48, 59, 63] follow this processing
pipeline, but differ in their implementations. Conventional methods
extract hand-crafted features (e.g., SIFT [43], HOG [20], or plain
pixel values) in the FE stage, search the feature space of both images
to find the matching pixels in the MO stage, and improve the dis-
parity resolution in the DR stage using techniques such as iterative
gradient descent [62]. DNNs, in contrast, implement each stage
using a set of learnt parameters.

Deconvolution in Stereo DNNs Stereo matching DNNs im-
plement FE and MO stages as convolution layers. The DR stage
fundamentally requires deconvolution (a.k.a. transposed convolu-
tion) layers [53]. Deconvolution layers generate large activation
maps from small input feature maps, essentially up-sampling the
input. The up-sampling in DR is critical to compensate the down-
sampling in FE and MO that scale down the input images to extract
high-level features.

To illustrate the importance of deconvolution in stereo vision, Fig. 3
shows the time distribution of four state-of-the-art stereo matching
DNNs across the three stages. The convolution and deconvolution
layers combined account for over 99% of the execution time, from
which 38.2% is attributed to the deconvolution layers.

High Accuracy Stereo Matching Stereo matching is critical
because it generates the disparity, from which depth is estimated
(Equ. 1). Using the industry-standard Bumblebee2 stereo camera [2]
as an example (B is 120mm, f is 2.5mm, and pixel size is 7.4 µm),
Fig. 4 shows how the depth estimation error (y-axis) varies with
the disparity error in pixels (x-axis). Different curves correspond
to objects at different distances. We find that even two tenths of a
pixel error in stereo matching can result in a depth estimation error
of 0.5m–5m, which could be catastrophic at the application level.

While existing stereo matching systems achieve high accuracy
at the expense of high compute cost, ASV achieves DNN-level
accuracy with significantly less compute.



3 Invariant-based Stereo Matching

This section introduces our new invariant-based stereo matching
algorithm (ISM). The key idea of ISM is to exploit the correspondence
invariant between the stereo images over time. After introducing
the high-level concept (Sec. 3.1), we then describe the detailed
algorithm (Sec. 3.2), and discuss important algorithmic design deci-
sions (Sec. 3.3). We make the implementation of ISM available at:
https://github.com/horizon-research/ism-algorithm.

3.1 Overview

Stereo matching produces a disparity map (Fig. 2b), from which
depth information is easily obtained through triangulation (Fig. 2a).
Classic stereo matching algorithms generate the disparity map by
matching pixels/features in the left (reference) frame with pixel-
s/features in the right (matching) frame, typically by searching in a
finite window. However, the accuracy of search-based algorithms is
sensitive to the heuristics used in the search, such as feature selec-
tion, search window size, matching criterion, etc. In contrast, DNN
approaches largely avoid heuristics and instead directly learn the
matching pairs. Unfortunately, DNNs come at the cost of a massive
increase in compute requirement.

Instead of the binary choice between DNNs and conventional
search-based algorithms, we use DNNs to guide the search process
of classic methods. The key observation is that two matched pixels,
one from the left image and the other from the right image, corre-
spond to the same point in the physical world. While the locations
of the two pixels move from frame to frame, they are always projec-
tions of the same scene point, and therefore are always a matched
pair in any frame. In other words, the geometric correspondence
relationship between two matched pixels is invariant.

Our new stereo matching algorithm, ISM, exploits this corre-
spondence invariant by operating in two modes. It obtains stereo
correspondences on “key frames” through accurate but compute-
intensive DNNs. The correspondences are then propagated to sub-
sequent non-key frames as good initial guesses to guide the cheaper
search-based methods. By combining learnt correspondences with
search-based methods that explicitly model the physical world, ISM
reduces the total compute cost while retaining DNN-like accuracy.

3.2 Algorithm

We illustrate ISM in Fig. 5. ISM consists of four main components.
ISM runs DNN inferences ( 1 ) on key frames to obtain pixel corre-
spondences, which are used to guide feature matching on non-key
frames ( 2 , 3 , and 4 ).

1 DNN InferenceAssuming the left and right frames at timestep
t are regarded as key frames, ISM performs DNN inference to gen-
erate a disparity map for the left image, in which each pixel value
represents the disparity (i.e., Z in Fig. 2a) of each pixel in the left
frame. In conventional DNN approaches, this disparity map is used
only for triangulation (not shown in the figure) to estimate depth,
and is discarded after the depth map is generated.

2 Reconstruct Correspondences Instead of discarding the
disparity map, ISM uses it to identify the correspondences in the
left and right frames. As per the definition of disparity (Equ. 2),
every <xt ,yt> pixel in the disparity map with the value D<x,y>

t
indicates that the <xt ,yt> pixel in the left frame (PLt ) and the <xt +
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D
<x,y>
t ,yt> pixel in the right frame (PRt ) form a correspondence

pair. By iterating through all the pixels in the disparity map, ISM
identifies all the correspondence pairs in the left and right frames
at timestep t .

3 Propagate Correspondences A new pair of frames arrives
at the next timestep (t + 1). ISM exploits a well-known observation
that pixels in consecutive video frames are highly-correlated in
time. For instance, PLt has moved to PLt+1, and PRt has moved to
PRt+1. Critically, since P

L
t and PRt are a correspondence pair projected

from a scene point, PLt+1 and PRt+1 must correspond to the same
point, and hence highly likely to also be a correspondence pair at
timestep (t + 1).

The exact coordinates of PLt+1 and P
R
t+1 can be obtained through

a motion estimation (ME) algorithm. For each pixel in the left
(right) frame, the ME algorithm generates a motion vector ∆PL

(t+1,t )
(∆PR
(t+1,t )), representing the displacement between the pixel in

frame t and frame (t + 1). Thus:

PLt+1 = PLt + ∆PL
(t+1,t )

PRt+1 = PRt+1 + ∆PR
(t+1,t )

4 Refine Correspondences Given the correspondence pairs
(e.g., PLt+1 and PRt+1) at timestep (t + 1), ISM then calculates the
disparity map at (t + 1). If the motion estimation from t to (t + 1)
is precise, the propagated correspondence pairs at (t + 1) are also
precise. Accordingly, the disparity map could be simply obtained by
calculating the horizontal offsets between all the correspondence
pairs. For instance, given the correspondence pair PLt+1 and P

R
t+1, the

disparity at <x lt+1,y
l
t+1> in the disparity map would be xrt+1 −x

l
t+1.

In reality, motion estimation is imperfect due to various visual
artifacts such as occlusion and fast motion [42]. Thus, the corre-
spondences propagated from t are a noisy estimate of the true
correspondences at (t + 1). To further refine the estimate of (t + 1)
in ISM, we use classic correspondence search, and initializes the
search window with the propagated correspondences. This allows
ISM to avoid compute-intensive DNNs on non-key frames without
sacrificing accuracy.

https://github.com/horizon-research/ism-algorithm


3.3 Algorithmic Design Decisions

Computing non-key frames requires reconstructing, propagating,
and refining correspondences. Reconstructing correspondences has
little overhead. The cost of propagating correspondences is dom-
inated by motion estimation, and the cost of refining correspon-
dences is dominated by the correspondence search. Thus, we must
carefully choose the motion estimation and correspondence search
algorithms such that the compute cost is much lower than DNNs
with little accuracy loss. We discuss algorithmic choices below.

Motion Estimation The literature is rich with motion estima-
tion algorithms, which differ in the coverage and densities of esti-
mated motion. The disparity map in stereo matching should ide-
ally be calculated on a per-pixel basis across the frame, so as to
enable fine-grained depth estimation. This requirement rules out
many classic motion estimation algorithms such as block matching
(BM) [35], and sparse optical flow [34, 45]. BM estimates motion at
the granularity of a block of pixels, and thus does not provide the
pixel-level motion that stereo vision requires. Sparse optical flow
algorithms such as Lucas-Kanade [45] and Horn-Schunck [34] only
provide pixel-level motion for feature points such as corners, and
do not cover all the frame pixels.

Instead, we use a dense optical flow algorithm, specifically the
Farneback algorithm [21, 22], for motion estimation. Farneback
generates per-pixel motion for all the pixels, and is computationally
efficient. 99% of the compute in Farneback is due to three operations:
Gaussian blur, “Compute Flow”, and “Matrix Update”. Gaussian blur
is inherently a convolution operation that convolves a Guassian
kernel (2D matrix) with the image. The latter two are point-wise
operations that resemble the activation function in DNNs. Thus,
motion estimation in the ISM algorithm can be computed using a
DNN accelerator to simplify the hardware design.

Correspondence Search ISM performs correspondence search
to refine the initial correspondence estimation propagated through
motion. Correspondence search algorithms have been well-studied
in the classic computer vision literature [13, 58], and generally
fall into two categories: local methods and global methods. At the
cost of higher compute demand, global methods provide higher
accuracy by minimizing the pixel motion inconsistencies across the
entire image. However, with the initial correspondences propagated
through key-frames, we find that local methods suffice.

In particular, we leverage the block matching algorithm [35]
for local correspondence search. For each pixel in the left image
(e.g., PLt+1 in Fig. 5), ISM uses the block of pixels surrounding it
to search in a 1D window in the right image in order to find the
closest match. The search window is centered around the initial
correspondence estimation (e.g., PRt+1 in Fig. 5). We use the sum
of absolute differences (SAD) cost function. The horizontal offset
between the two matched blocks is the disparity for PLt+1.

Similar to optical flow, the block matching algorithm has a
“convolution-like” structure [55]; the block in the left image is equiv-
alent to a kernel, and the search window in the right image is equiv-
alent to the input image. The only difference is that block matching
computes the SAD between the input feature map and the kernel
(
∑N
i=1 |ai − bi |) as opposed to the dot product in canonical convo-

lution (
∑N
i=1 aibi ). Thus, the correspondence search can share the

same architecture as DNNs and optical flow.

Compute Cost Due to our algorithmic choices, computation on
non-key frames is much cheaper than key-frames. For instance, for
a typical qHD frame (960 × 540), computating a non-key frame re-
quires about 87 million operations while stereo DNN inference (key
frame) requires about 102×–104×more arithmetic operations. Thus,
ISM leads to significant performance and energy improvements by
avoiding DNN inference altogether in non-key frames.

4 Deconvolution Optimizations

While the ISM algorithm removes DNN inference in non-key frames,
DNNs remain critical for generating initial key frame correspon-
dences. This section describes optimizations for stereo DNNs, in
particular the dominant deconvolution layers. We propose novel
software-only optimizations that mitigate the compute overheads
in deconvolution (Sec. 4.1), while capturing unique data reuse op-
portunities (Sec. 4.2).

Wemake our optimization framework publicly available at: https:
//github.com/horizon-research/systolic-array-dataflow-optimizer.
It targets the systolic-array accelerator architecture, supports the
deconvolution optimization described here, and applies tiling opti-
mizations to minimize the inference latency and/or DRAM traffic.

4.1 Deconvolution Transformation

Deconvolution layers on average contribute to 38.2% (50% max)
of the total MACs in stereo DNNs (Fig. 3). Due to the inherent
sparsity of deconvolution, a naive mapping to hardware results
in over 75% of redundant computations due to one or more zero
operands. Deconvolution is also used in Generative Adversarial
Networks (GANs), and recent studies have proposed specialized
hardware specifically for deconvolution [60, 76]. In contrast to pre-
vious studies, we propose a purely algorithmic transformation that
eliminates inefficiencies due to sparsity. We show that an inher-
ently sparse deconvolution layer can be translated to a series of
dense convolutions, which then effectively map on to existing DNN
accelerators. We next explain the inefficiencies in deconvolution,
and then describe our algorithmic transformations.

Standard Deconvolution The standard process (Fig. 6) decon-
volves a 3x3 input feature map (ifmap) with a 3x3 kernel. The ifmap
is first upsampled with zero padding, before being convolved with
the 3x3 kernel to generate an output feature map (ofmap). Note
that the upsampling step essentially performs disparity refinement,
which is fundamental to general stereo DNNs, rather than being spe-
cific to a particular network (Sec. 2.2). The zeros in the upsampled
ifmap leads to redundant computation and memory traffic.

A key characteristic of deconvolution is that different elements
in the ofmap are calculated in different “patterns.” Consider the first
2 × 2 outputs in the ofmap: (1, 1), (1, 2), (2, 1), and (2, 2). Each of
the four outputs is generated using a different set of elements from
the kernel. For instance, (1, 1) requires only e while (1, 2) requires
d and f . Critically, there are only four different patterns, which
are repeated across the ofmap. Pixels (4, 4) and (2, 2) are calculated
using the same elements from the kernel, as are (1, 1) and (5, 5), (1,
2) and (5, 4), as well as (2, 1) and (4, 5). Due to the various patterns
needed to generate different output elements, deconvolution is
clearly an “irregular” operation. Prior work [76] exploits the four

https://github.com/horizon-research/systolic-array-dataflow-optimizer
https://github.com/horizon-research/systolic-array-dataflow-optimizer


ofmap = ifmap      kernel

(1,1) = A*e
(1,2) = A*d + B*f
(2,1) = A*b + D*h
(2,2) = A*a + B*c + D*g + E*iA B C

D E F

G H I

Upsample
(zero-

padding)

ifmap

a b c

d e f

g h i

kernel

Convolve
(no padding)

1,3 1,41,21,1

2,3 2,42,22,1

3,3 3,43,23,1

4,3 4,44,24,1

1,5

2,5

3,5

4,5

5,3 5,45,25,1 5,5

ofmap

e

d f

b

h

a c

g i

Four sub-kernels

1

2

3

4

A B C

D E F

G H I

a b c

d e f

g h i

kernel

Decompose A B C

D E F

G H I

ifmap

Convolve

2,42,2

4,44,2

1,31,1

3,33,1

1,5

3,5

5,35,1 5,5

1,41,2

3,43,2

5,45,2

2,32,1

4,34,1

2,5

4,5

Gather

Four sub-ofmaps

Standard 
Deconvolution

Our Algorithm

(4, 4) = E*a + F*c + H*g + I*i
(4, 5) = F*b + I*h
(5, 4) = H*d + I*f
(5, 5) = I*e

⊛ ifmap1 ⊛ ifmap2 ⊛ ifmap3 ⊛ ifmap4

⊛

⟨

Fig. 6: Translating deconvolution into multiple convolutions. Standard deconvolution first upsamples the ifmap before con-

volving with the kernel. Note that this example assumes the upsampled ifmap is not further padded before the convolution,

i.e., a 7 × 7 ifmap results in a 5 × 5 ofmap. Our translation algorithm holds regardless of padding.

unique computation patterns by augmenting a conventional DNN
accelerator with custom hardware units.

Deconvolution Transformation In contrast, we find that ex-
isting DNN accelerators already provide the necessary architectural
substrate to efficiently execute the four different patterns. The key
is to recognize that the four computation patterns are essentially
four different convolutions, each convolving the original ifmapwith
a distinct kernel that is part of the original kernel. For instance, (2,
2), (2, 4), (4, 2), and (4, 4) are generated by convolving

[ a c
д i

]
with

ifmap. More generally, the deconvolution in Fig. 6 is calculated as:
a b c
d e f
д h i

 ⊛̂ I = G(
[
e
]
⊛ I ,

[
d f

]
⊛ I ,

[
b
h

]
⊛ I ,

[
a c
д i

]
⊛ I )

where ⊛̂ denotes the deconvolution operation, ⊛ denotes the stan-
dard convolution operation, I is the ifmap, and G is a gather opera-
tion to assemble the ofmap from the results of the four convolutions.
G is simply implemented as a set of load operations to the on-chip
buffer. Essentially, our algorithm decomposes the original 3 × 3
kernel into four sub-kernels, each requiring a smaller dense convo-
lution with the original ifmap, which can be executed efficiently
on a conventional DNN accelerator.

This transformation generalizes to kernel shapes other than
3 × 3. Formally, a 2D kernel K with a dimension KH × KW will be
decomposed into four sub-kernels (S0, S1, S2, S3):

S
(i, j)
0 = K (2i,2j) i ∈ [0, ⌈KH /2⌉), j ∈ [0, ⌈KW /2⌉)

S
(i, j)
1 = K (2i+1,2j) i ∈ [0, ⌊KH /2⌋), j ∈ [0, ⌈KW /2⌉)

S
(i, j)
2 = K (2i,2j+1) i ∈ [0, ⌈KH /2⌉), j ∈ [0, ⌊KW /2⌋)

S
(i, j)
3 = K (2i+1,2j+1) i ∈ [0, ⌊KH /2⌋), j ∈ [0, ⌊KW /2⌋)

where S(i, j)∗ is the element (i, j) in a particular sub-kernel, andK (∗,∗)

is an element in the original kernel K . For instance, S(i, j)0 = K (2i,2j)

means that element (i, j) in the first sub-kernel comes from element
(2i, 2j) in the original kernel. The boundary condition of each case
denotes the dimension of the corresponding sub-kernel (notice the
different floor and ceiling functions in each). Hence, decomposing
a 3 × 3 kernel results in four sub-kernels of shapes 2 × 2, 1 × 2,
2× 1, and 1× 1, confirming the specific example above. The general
formulation of the deconvolution transformation with an arbitrary
N-dimensional kernel is described in Appendix A.

4.2 Exploiting Inter-Layer Activation Reuse

A beneficial trait of our transformation is that each sub-convolution
reads the same ifmap, which inmodern DNNs does not fit in on-chip
buffers and must spill to main memory. In contrast, our transfor-
mation can uniquely exploit inter-layer activation reuse because
each sub-convolution layer shares the same ifmap. The challenge
is to systematically maximize the reuse exploited across the entire
network while minimizing the inference latency.

We primarily consider loop tiling, which is known to be critical
to exploiting data reuse in DNNs [52, 74]. Prior work in DNN tiling
predominately searches for the tiling strategy in a brute-force man-
ner [32, 46]. However, brute-force search does not scale to stereo
DNNs for two reasons. First, our translation scheme significantly
increases the number of layers, each of which must be individu-
ally searched. For instance in the example of Fig. 6, the number
of layers quadruples; a 3D kernel could increase layers by 8×. Sec-
ond, exploiting the inter-layer ifmap reuse adds another scheduling
dimension, further increasing the search space.

Instead of a search, we formulate the reuse optimization as a
constrained optimization problem, minimizing layer latency while



4,1 4,3 4,44,2 4,5

1,1

2,1

3,1

5,1

4,4

1,4

2,4

3,4

5,4

4,34,24,1 4,5

A B C

D E F

G H I

A B C

D E F

G H I

A B C

D E F

G H I

A B C
D E F
G H I

e d f b
h

a c
g ie d f

b
h

a c
g i

1,31,21,1

2,32,22,1

3,33,23,1

1,5

2,5

3,5

5,35,25,1 5,5

channel 1

1,3 1,41,2

2,3 2,42,2

3,3 3,43,2

1,5

2,5

3,5

5,3 5,45,2 5,5

⊛

sub-kernelsifmap
channel 2

ofmap

W

H

C1 = 1 C2 = 2 C3 = 1 C4 = 2

=

Fig. 7: Tiling in a translated deconvolutionwith a 3×3 kernel
split into four sub-kernels. With a tiling strategyW = 2,H =
2,C1 = 1,C2 = 2,C3 = 1,C4 = 1, only the shaded elements

are loaded into the buffer. The ofmap elements generated in

this round (shaded) are also stored in the buffer.

satisfying hardware resource constraints. Our optimization can be
efficiently solved using a greedy algorithm.

Architectural AssumptionsWe first describe the underlying
architecture that the optimization formulation assumes. Overall, we
make standard assumptions that generally hold across the vast ma-
jority of current DNN accelerators. Sec. 5.2 describes the hardware
architecture in detail.

We assume a systolic array accelerator. Each Processing Element
(PE) performs one MAC operation per cycle [36, 57]. Systolic arrays
use a very efficient neighbor-to-neighbor communication mech-
anism, particularly well suited to convolution. Alternatively, our
formulation could also be extended to support spatial arrays [18],
which offer more flexible control at higher hardware cost.

We assume that the accelerator has a unified on-chip buffer
(scratchpad) for the ifmap, kernels, and ofmap. This buffer is gen-
erally too small to hold all the data for a whole layer. Therefore,
the ofmap is computed in multiple rounds. Only part of the ifmap
and the kernels are stored in the buffer each round. The optimal
scheduling of partial ifmap and kernels in the buffer for each round
is critical to maximizing reuse.

The buffer is evenly split into working and filling sections for
double-buffering. While the PE array is computing the current
round using data in the working buffer, the data for the next round
is pre-fetched to the filling buffer. The next round starts only when
the filling buffer is full. This design choice guarantees that any data
access by the PEs will hit in the buffer without stalling the PE array.

Optimization Formulation We follow a layer-wise execution
model, in which a layer only starts after the previous layer finishes.
Therefore, minimizing the total latency is equivalent to minimizing
the latency of each individual layer. We describe how the latency of
a deconvolution layer is formulated and optimized. Our formulation
can be easily extended to support a convolution layer, which can
be regarded as a special case of deconvolution without ILAR.

The optimization objective is to minimize the deconvolution
layer’s latency given hardware resource constraints. Note that since
a deconvolution is translated to a set of convolutions, it is the
cumulative latency of these sub-convolutions that is of interest.
The optimization problem is formulated as follows:

min L(Θ,ϕ) (3)
s .t . R(Θ) ≤ R∗ (4)

where Θ denotes a particular hardware configuration, and R(·) is
the configuration’s hardware resources, which must not exceed
the specified resource budget R∗. We consider three main types of

hardware resources: 1) PE array size, 2) on-chip buffer size, and 3)
off-chip memory bandwidth.

Latency L(·) is affected by both the hardware configuration (Θ)
and the tiling schedule (ϕ). The optimal tiling is determined by the
following variables: 1) the dimension of the ifmap tile to be loaded
into the buffer (W and H ), and 2) the number of filters in each
sub-kernel k to be loaded into the buffer (Ck ). Critically, Ck can
be different for each sub-kernel. Fig. 7 illustrates these optimization
variables, with an example where part of the ifmap is convolved
with certain filters of the four sub-kernels to generate a partial
ofmap. The vector −→C denotes the collection of all Ck .

With double buffering, a layer L’s latency is the cumulative
latency across all N rounds. The latency of each round (l i ) is de-
termined by the maximum value between the memory access time
(l im ) and the compute time (l ic ) of the round:

L(Θ,ϕ) =
N∑
i=1

l i (Θ,ϕ), l i (Θ,ϕ) = max(l ic , l
i
m ) (5)

With double-buffering, l ic is determined by two sets of parame-

ters: 1)W i ,H i , and
−→
Ci , which decide the total compute demand, and

2) the PE array size, A∗, which decides the compute capability. l ic is
the cumulative latency of processing each individual sub-kernel:

l ic =

|
−→
C i |∑
k=1

⌈
W i
k × H

i
k × I ×C

i
k × H

i ×W i

A∗

⌉
(6)

where |
−→
Ci | denotes the total number of sub-kernels in round i ,W i

and H i are the dimensions of the ifmap tile loaded into the buffer
in round i ,W i

k and H i
k are the dimensions of sub-kernel k in round

i2, Cik denotes the number of filters in sub-kernel k loaded into
the buffer in round i , and I is the number of input channels. The
ceil operator indicates that the next sub-kernel can not start until
the previous sub-kernel is finished even if the PE array is under-
utilized. This is because only one sub-kernel can be calculated on
the systolic array at a time as sub-kernels vary in their shapes.

The memory access time, l im , is determined by the available
memory bandwidth, B∗, and the amount of data that needs to be
transferred to/from DRAM each round, which in turn depends on
the reuse order: whether the ifmap tile or the sub-kernels remain in
the buffer across consecutive rounds. A binary variable β denotes
this reuse order, and l im becomes:

l im = β × l im:W + (1 − β) × l
i
m:In , β ∈ {0, 1} (7)

where l im:In is the memory access latency if the ifmap remains in
the buffer, and l im:W denotes the memory latency if the sub-kernels
remain in the buffer. Specifically:

l im:W = (∆IF
i +

|
−→
C i |∑
k=1

∆OF ik ) ×
1
B∗

(8)

l im:In =
|
−→
C i |∑
k=1
(∆W i

k + ∆OF
i
k ) ×

1
B∗

(9)

2The sub-kernels’ dimensions do not change across rounds. Given a k ,W i
k and H i

k
are constants for any i . For the consistency of the notations, we still useW i

k and H i
k .
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where the terms with prefix ∆ denote the amount of data that needs
to be loaded from DRAM. Depending on the reuse order, either the
ifmap elements (∆IF i ), or the sub-kernels (∆W i

k ) are loaded. The
newly computed ofmap elements (∆OF ik ) are always stored back
to DRAM. Note that ∆W i

k , ∆IF
i , and ∆OF ik are all deterministic

functions of W i
k , H

i
k , W

i , H i , and |
−→
Ci |. We omit them here for

brevity, and describe their exact expressions in Appendix B.
The on-chip buffer capacity (Bu f ∗) imposes the constraint:

∆IF i +

|
−→
C i |∑
k=0
(∆OF ik + ∆W

i
k ) ≤ Bu f ∗ (10)

Finally, Cik and N must satisfy:

∀k ∈ {1, 2, ..., |−→C |},C =
N∑
i=1

Cik (11)

where C denotes the number of output channels of a layer, which
is a constant invariant to k and i .

Overall, this formulation minimizes the latency L with respect
toW i , H i , and Cik (i ∈ {1, 2, ...,N }, k ∈ {1, 2, ..., |−→C |}), under the
hardware resource constraints A∗, B∗, and Bu f ∗.

Efficient Solver The above constrained-optimization problem
has non-convex objective and constraints, and thus has no closed-
form solutions. To derive a solution efficiently, we convert this
problem to a Knapsack-like structure, where each filter in each
sub-kernel is an item, the size of each filter is the weight, and the
number of MAC operations associated with each filter is the value.

To solve the Knapsack problem, we use a simple greedy heuristic
that prioritizes filters from large sub-kernels with standard dynamic
programming. In contrast to the classic 0/1 Knapsack problem, our
problem formulation requires us to consume all the items, since all
the filters in each sub-kernel are required to finish a convolution.
We therefore iteratively apply the greedy solver until all the items
are used. The solver is executed offline, and finishes within one
second on an Intel Core i5-7500 CPU.

5 The ASV System

Building on top of the ISM algorithm and the deconvolution opti-
mizations, this section presents the software and hardware system
of ASV. Fig. 8 gives a high-level system overview of ASV. We
first present the software system (Sec. 5.1), and then discuss the
architecture design decisions (Sec. 5.2).

5.1 Software System

The goal of the software system in ASV is to map the ISM algo-
rithm to the underlying hardware. The static mapping is done
offline. There are three components in the ISM algorithm to map:
stereo matching DNN, motion estimation, and local correspon-
dence search. We rely on the user to supply a particular stereo
DNN depending on their accuracy needs. Motion estimation and
correspondence search are implemented using optical flow (OF)
and block matching (BM), respectively, as described in Sec. 3.3. We
now describe how each component is processed by the software.

Mapping Stereo Matching DNN For the deconvolution layer,
the ASV software performs the deconvolution transformation, as
well as the data reuse optimization. For convolution layers, while
the deconvolution transformation does not apply, we apply the
data reuse optimization without ILAR. In the end, we obtain a trans-
formed stereo DNN along with an execution schedule, which are
both consumed by the hardware at runtime. The schedule includes
the tiling strategy and buffer partitioning strategy for each layer.

Mapping OF/BM The software maps the OF and BM algorithms
in ISM to a set of convolution and/or activation operations that are
directly interfaced with conventional DNN accelerators. The soft-
ware translates the BM operation to a convolution layer (Sec. 3.3),
but calculating SAD instead of dot product at each window.

The OF computations include Gaussian blur, “Compute Flow”
and “Matrix Update” operations (Sec. 3.3), shown in the top-right
box in Fig. 8. Gaussian blur is naturally expressed as a convolution
layerwith one output channel. “Compute Flow” and ”Matrix Update”
are point-wise operations expressed as special activation functions.

5.2 Hardware Architecture

Leveraging the software pass, the hardware requires only minimal,
structured augmentations on top of a conventional DNN accelerator.
We start from a baseline DNN accelerator and describe how the com-
pute, memory, and control logic is augmented with ASV-specific
architectural extensions.

Compute Our baseline DNN accelerator consists of a TPU-
like systolic PE array for convolution and a scalar unit for non-
convolution operations, e.g., activation [36]. Each PE consists of
two 16-bit input registers, a 16-bit fixed-point MAC unit with a
32-bit accumulator register, and simple trivial control logic. This is
identical to the PE in the TPU [36].

We use the systolic array as the baseline due to its efficiency in
handling convolutions. However, our software optimizations do not
depend on a particular baseline DNN architecture. Alternatives such
as more flexible spatial architectures [17, 18] are also suitable, albeit
requiring different constrained-optimization formulations to those
presented in Sec. 4.2. We will later demonstrate the effectiveness
of our deconvolution optimizations on Eyeriss [18].



ASV augments both the systolic array and the scalar unit in the
baseline architecture to support the ISM algorithm. First, each PE
is extended with the capability to accumulate absolute differences
(i.e., a ← a + |b − c |) in addition to MAC in order to support BM.
Second, we extend the scalar unit to support two additional point-
wise operations: “Compute Flow” and “Matrix Update”; both are
required by OF (as illustrated in the bottom-right box in Fig. 8).

Finally, the hardware includes a very small amount of additional
logic to support the remaining operations in the ISM algorithm that
are inefficient to map to either the systolic array or the point-wise
scalar unit. These operations are comparisons and control-flow, and
are orders of magnitude less costly in area and power compared
to the systolic array and the scalar unit. For instance, BM requires
comparing the SAD values across different matched blocks, and OF
requires checking the value boundaries during "Matrix Update".

MemoryASV uses the familiar three-levelmemory hierarchy [41].
Each PE has a small register file to exploit intra/inter-PE data reuse.
A DMA engine coordinates data transfer between the on-chip global
buffer and off-chip memory. The global buffer is temporally-shared
between key frames and non-key frames. When processing key
frames, the global buffer holds the ifmap, kernels, and ofmaps. The
exact buffer partitioning is dictated by the ASV software.

When processing non-key frames, the global buffer holds four
pieces of data: the pixels of the current and key frames, the Gaussian
kernel, the motion vectors, and the disparity maps. The frame pixels
dominate the storage requirement, but could be tiled because they
are used in Gaussian blur and BM, both of which are convolution
operations. The rest of the data cannot be tiled, and thus imposes
a minimum buffer size. Assuming qHD resolution (960 × 540), we
enforce a minimum buffer size of about 512 KB.

Control A micro-sequencer is used to coordinate the computa-
tion and memory accesses. In ASV, the sequencer also chooses key
frames. Although complex adaptive schemes are feasible [14, 78],
we found that a simple strategy to statically set the key-frame
window suffices (Sec. 7.2).

6 Evaluation Methodology

This section introduces the basic hardware and software setup (Sec. 6.1),
and outlines the evaluation plan (Sec. 6.2).

6.1 Basic Setup

Hardware ImplementationWedevelop validated RTL implemen-
tations for the ASV hardware. The hardware is based on a systolic
array architecture, consisting of 24× 24 PEs clocked at 1 GHz. Each
PE is capable of performing both the MAC and absolute difference
operations. The hardware also has a scalar unit clocked at 250 MHz,
which consists of 8 parallel lanes, each capable of performing the
ReLU activation function as well as the point-wise matrix update
and compute flow operations required by OF. The on-chip buffer
(SRAM) is 1.5 MB in size and is banked at a 128 KB granularity.
While we primarily evaluate ASV using this configuration, we will
later show sensitivity of ASV performance to different hardware
resource configurations.

The RTL is implemented using Synposys synthesis and Cadence
layout tools in TSMC 16nm FinFET technology, with SRAMs gen-
erated by an ARM compiler. Power is simulated using Synopsys
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Fig. 9: Error rate comparison between the ISM algorithm in

ASV and the DNN baselines.

PrimeTimePX, with full annotated switching activity. The off-chip
DRAM is modeled after four Micron 16 Gb LPDDR3-1600 chan-
nels [7]. Overall, the accelerator layout has a total area of 3.0mm2,
and produces a raw throughput of 1.152 Tera operations per second.

Stereo DNNs The ISM algorithm can use an arbitrary stereo
DNN. We evaluate four state-of-the-art DNNs: FlowNetC [23],
DispNet [48],GC-Net [59], and PSMNet [16], with varying accuracy–
performance trade-offs (Fig. 1).

DatasetWe evaluate ASV on two widely-used datasets: Scene-
Flow [48] and KITTI [50]. SceneFlow contains 26 pairs of synthetic
stereo videos tomimic various scenarios with different depth ranges.
KITTI contains 200 pairs of stereo frames captured from real street
views that cover varying driving scenarios and conditions.

We use the standard “three-pixel-error” accuracy metric [6, 50],
which considers a pixel’s depth to be correct if its disparity error
is less than 3 pixels compared to ground truth. We then report the
percentage of correct pixels, following the convention in the vision
and robotics literature [16, 37, 48, 59].

6.2 Evaluation Plan

Our goal is to demonstrate the effectiveness of ASV over generic
CNN accelerators that are not optimized for stereo vision workloads.
We separate the efficiency gains of the new ISM algorithm from
that of the deconvolution optimizations.

Baselines Our baseline is a generic systolic array CNN acceler-
ator, which executes stereo DNNs without any ASV optimizations.
Today’s CNN accelerators mostly statically partition the on-chip
buffer across ifmap, weights, and ofmap. To obtain a strong baseline,
we determine the partitioning strategy by exhaustively searching
all the partitions offline and use the one that achieves the lowest
latency for the entire DNN. Note that the same partition is used
for all the layers whereas our data reuse optimization generates
different partitions for different layers.

We also compare against Eyeriss [18], a DNN accelerator based
on a more flexible spatial architecture. Eyeriss performance and
energy are obtained using the public simulator [4, 24]. For a fair
comparison, we configure Eyeriss to have the same PE counts, on-
chip memory capacity, and memory bandwidth as ASV. Finally, to
establish a baseline, we also show the results of the Pascal mobile
GPU found in the 16 nm Nvidia Parker SoC hosted on the Jetson
TX2 development board [8]. We use the built-in power sensing
circuity to obtain the energy consumption.

ASV VariantsWe present an ablation study on ASV to separate
the gains from different optimizations:



• ISM: ISM algorithm without deconv. optimizations.
• DCO: Deconv. optimizations without ISM algorithm.
• ISM+DCO: Both ISM and deconv. optimizations.

7 Evaluation

We first show that ASV adds negligible overhead to the baseline
DNN accelerator (Sec. 7.1) and introduces negligible accuracy loss
(Sec. 7.2). We then show the performance and energy improvements
of ASV (Sec. 7.3), which are robust against the underlying hardware
configuration (Sec. 7.4). ASV also out-performs Eyeriss and GPUs
(Sec. 7.5). Finally, we demonstrate the general applicability of our
deconvolution optimizations by showing that they even improve
runtime of GANs without hardware modifications (Sec. 7.6).

7.1 Hardware Overhead

Owing to the software transformations, ASV only minimally aug-
ments existing DNN accelerators. Relative to the baseline acceler-
ator, ASV extends each PE to support accumulating absolute dif-
ference. This adds 6.3% area (15.3 µm2) and 2.3% power (0.02mW)
overhead per PE. ASV also extends the scalar unit to support new
point-wise operations, with an area and power overhead of 2mm2

and 2.2mW, respectively. The overall area and power overhead
introduced by ASV are both below 0.5%.

7.2 Accuracy Results

ASV matches or even outperforms DNN accuracy. Fig. 9 shows
the accuracy of applying the ISM algorithm to stereo matching
DNNs. We use Propagation Window (PW) to denote how far in
time the correspondence invariant is propagated, which in turn
decides how often key frames are selected. With PW-2, every other
frame is selected as a key frame, and for PW-4, every fourth frame
is a key frame. Note that the KITTI dataset contains at most two
consecutive frames, and thus we evaluate only PW-2.

On both datasets, PW-2 retains the same accuracy as the stereo
DNNs. On SceneFlow, PW-4 results in only 0.02% accuracy loss. In
some cases, ISM combinedwith theDNNs can outperform theDNNs
alone. For instance, applying the ISM algorithm with FlowNetC
reduces error by 0.11% at PW-4. Overall, our experiments shows
that by leveraging the correspondence invariant over time, ISM is
able to preserve the DNN-like accuracy with cheap, classic stereo
matching algorithms. We will now show that ASV achieves high
accuracy while greatly improving the performance and energy-
efficiency of stereo vision.

7.3 Speedup and Energy Reduction

ASV significantly improves performance and energy consumption
of stereo vision. To understand the contributions of the ISM al-
gorithm and the deconvolution optimizations, Fig. 10 shows the
speedup and energy reduction of the three ASV variants (Sec. 6.2)
over the baseline, when applied to different stereo DNNs.We choose
PW-4 for the ISM algorithm. On average, combining ISM and de-
convolution optimizations (DCO) ASV achieves 4.9× speedup and
85% energy reduction. Specifically, ISM achieves, on average, 3.3×
speedup and 75% energy reduction, while DCO achieves 57% per-
formance improvement and 38% energy reduction. ISM contributes
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(b) Speedup and energy reduction on the entire network.

Fig. 11: The speedup and energy reduction of various decon-

volution optimizations. Higher is better.

more than DCO because ISM avoids DNNs in non-key frames alto-
gether by using the much cheaper BM and OF algorithms (Sec. 3.3).

Next, we dissect different optimization components within DCO
to further understand the effect of each optimization.

Deconvolution Optimizations Deconvolution optimizations
consist of two components: the deconvolution to convolution trans-
formation (DCT - Sec. 4.1) and the data-reuse optimization (Sec. 4.2).
In particular, our data-reuse formulation unifies the exploitation
of two kinds of reuse: the conventional data reuse in convolution
layers and the inter-layer activation reuse in deconvolutions that is
uniquely exposed by DCT. To clearly tease apart our contributions,
we show the results of both the conventional reuse optimization
(ConvR), which is obtained by applying our reuse optimizer (Sec. 4.2)
without exploiting inter-layer activation reuse, and the additional
effect of exploiting inter-layer activation reuse (ILAR).

Fig. 11 shows the speedup and energy reduction of DCT, ConvR,
and ILAR. Fig. 11a shows the improvements of deconvolution layers
only, and Fig. 11b shows the improvements of the entire network.
The majority of speedup is from deconvolution transformation,
which yields an average 3.9× speedup on deconvolution layers alone
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Fig. 12: Sensitivity analysis of DCO speedup and energy re-

duction with buffer size and PE array size on FlowNetC.

Speedup is normalized to the corresponding configurations,

not to a single, common baseline.

and 1.4× speedup on the entire network. On top of DCT, ConvR and
ILAR further increase speedup to 5.6× and 1.6× on deconvolution
layers alone and the entire networks, respectively.

Across different stereo DNNs, we find that 3D DNNs (GC-Net
and PSMNet) have a speedup of 7.7× on deconvolution layers,
higher than the 3.9× speedup of 2DDNNs (DispNet and FlowNetC).
The reason is twofold. First, 3D DNNs have the higher percentage
of zero-padding than 2D DNNs (8× vs. 4×), which are effectively
eliminated by our deconvolution transformation. Second, after the
deconvolution transformation the 3D DNNs have many small ker-
nels (e.g., 1×1×1), which leads to low data-reuse. Thus, reuse opti-
mizations become more critical to these networks. In contrast, most
2D stereo DNNs inherently have better data reuse with larger ker-
nels (e.g., 5×5). We also observe that ConvR and ILAR have similar
performance. This is because both optimize the data reuse to the
extent that the layer processing becomes limited by the PE size.

While ILAR is similar in speedup compared to ConvR, ILAR is
much more effective in reducing energy than ConvR. To demon-
strate this, Fig. 11 overlays the energy reductions of different DCO
variants on the right y-axis. DCO achieves 83% energy reduction
on deconvolution alone and 38% on the entire network. Specifically,
DCT reduces the deconvolution energy by 62%; ConvR and ILAR
further improve the energy reduction to 73% and 83%, respectively.

The energy saving of DCT comes from eliminating redundant
movement of padded zeros in the upsampled ifmap. ILAR achieves
additional energy reduction over ConvR by exploiting inter-layer
activation reuse, a unique reuse behavior in our transformed de-
convolution layers. 3D DNNs benefit much more from ILAR than
2D DNNs, as is evident by examining the additional energy re-
ductions of ILAR over ConvR across networks. This is because 3D
stereo DNNs have low ifmap data-reuse; ILAR uniquely exploits
inter-layer ifmap reuse, and thus reduces more memory traffics.

7.4 Sensitivity Analysis

While the speedup and energy reduction studied so far are based on
one representative baseline accelerator configuration (Sec. 6.1), we
find that our deconvolution optimization generally achieves similar
improvements on other hardware configurations with resource
provisions. In particular, we focus on two key types of hardware
resource: PE size and on-chip buffer size. For brevity we only report
results on FlowNetC [23], but the trends generally hold.
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Fig. 13: Comparison of speedup and energy reduction for

ASV, Eyeriss, and GPU. The results are normalized to Eye-

riss. We show three variants of ASV. We also apply the de-

convolution transformation to Eyeriss to obtain a stronger

baseline, hence the DCT bar of Eyeriss.

Fig. 12a and Fig. 12b show how DCO’s average speedup and
energy reduction of the entire network vary with different PE size
and buffer size combinations, respectively. Note that the results
are normalized to their corresponding hardware configurations
rather than to the baseline described in Sec. 6.1. For instance, on
the hardware with an 8×8 PE array and a 0.5 MB on-chip buffer,
DCO achieves an 1.44× speedup.

DCO achieves speedups of 1.2× – 1.5× and energy reductions
of 25% – 35% across different hardware capabilities, demonstrating
broad applicability. In general, the performance improvement of
DCO is more pronounced with small PE arrays, where the perfor-
mance is compute-bound. As the PE size increases, the performance
becomes memory bound, such that memory bandwidth limitations
mask the benefit of data reuse. In addition, as the buffer size in-
creases, the reuse opportunities inherently exposed by the buffer
is higher, and thus data reuse optimizations become less critical,
hence the lower energy savings.

7.5 Eyeriss and GPU Comparisons

For completeness, we also compare ASV with Eyeriss [18] and
a mobile Pascal GPU [8]. Fig. 13 shows the speedup and energy
reductions of the three ASV variants, Eyeriss and GPU. Data is
normalized to Eyeriss. To obtain a stronger Eyeriss baseline, we
extended the Eyeriss simulator [4, 24] to support our deconvolu-
tion optimization. Our ILAR optimization does not apply because
Eyeriss’s spatial architecture requires a different reuse formulation
from the one presented here, which targets a systolic array.

On average, when combing DCO and ISM, ASV achieves 8.2×
speedup against Eyeriss while consuming only 16% of the energy.
DCO and ISM contribute to 38% and 74% on energy saving, respec-
tively. Critically, Eyeriss can also benefit from the deconvolution
transformation (DCT), which achieves a 1.6× speedup and 31% en-
ergy saving compared to the baseline Eyeriss. Finally, ASV is 27×
faster while consuming 15× lower energy than the GPU.

7.6 GANNX Comparison

Our deconvolution optimizations are not limited to stereo DNNs,
but also apply broadly to deconvolution. To demonstrate general
applicability, we apply the deconvolution optimizations to Gen-
erative Adversarial Networks (GANs), a class of DNNs that also
make heavy use of deconvolution layers [27]. We compare against
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Fig. 14: Speedups and energy reductions on GANs between

ASV and GANNX. Results are normalized to Eyeriss.

GANNX [76], a dedicated DNN accelerator for accelerating decon-
volution in GANs. We configure both ASV and GANNX to have the
same PE and buffer sizes. We normalize the ASV results to Eyeriss,
consistent with what GANNX reports.

Fig. 14 shows speedup and energy comparisons across the six
GANs used by GANNX. On average, ASV achieves 5.0× speedup
and 4.2× energy reduction, higher than the improvements from
GANNX (3.6× speedup and 3.2× energy reduction). The higher
gains from ASV are mainly attributed to the inter-layer activation
reuse, which is uniquely exposed by our deconvolution transforma-
tion and is unavailable in GANNX. Critically, our deconvolution
optimizations are purely software optimizations without requiring
the specialized hardware support of GANNX.

8 Related Work

Stereo Vision Accelerators Recently, commercial mobile vision
systems [77] have started integrating dedicated stereo accelera-
tors, such as the Stereo Depth Block in the Movidius Enhanced
Vision Accelerator Suite [5], and the Stereo & Optical Flow En-
gine (SOFE) in the Nvidia Xavier mobile SoC [9]. From publicly
available details, these are fixed-functioned accelerators targeting
classic stereo algorithms, similar to previous stereo vision accelera-
tors [28, 49, 64, 66, 73]. In contrast, ASV combines the efficiency of
classic stereo algorithms with the accuracy of stereo DNNs.

Motion-based Algorithms Our ISM algorithm shares a similar
key observation as some recent motion-based vision algorithms
such as EVA2 [14] and Euphrates [78], in that correlation across
frames in a video stream can be used to simplify continuous vision
tasks. Euphrates [78] focuses on computing regions-of-interest
(ROIs) in object detection and tracking tasks. In contrast, stereo
vision is concerned with the depth of the whole frame rather than
discrete ROIs. EVA2 [14] is not limited to ROIs. However, it relies on
estimating the motion of an intermediate activation’s receptive field.
In the stereo task, the receptive field of an intermediate activation
necessarily spans both the left and right images. Thus, the motion of
the receptive field would be difficult, if not impossible, to calculate.

Fundamentally, motion-based relaxations fall within the realm
of incremental computing, a general technique used in program
analysis and optimization [51, 54] and applies beyond the tempo-
ral and/or vision domain. Diffy [47] exploits the spatial similarity
across pixels in the same frame to improve DNN efficiency. Riera
et al. [56] exploit repeated ifmap elements in speech recognition.

Deconvolution Sparsity Many prior studies optimize hard-
ware to exploit sparsity in DNNs [10, 11, 29, 31, 38, 40, 68, 69, 72].
Stereo vision DNNsmake use of deconvolution layers, which expose
structured sparsity patterns. Recent work has prosed specialized
hardware specifically for exploiting sparsity in deconvolution lay-
ers [60, 76]. Our observation, however, is that mitigating sparsity-
induced efficiencies in deconvolution does not necessarily require
hardware support. We propose novel software optimizations to
eliminate the compute inefficiencies without hardware changes.

Data-ReuseOptimization Exploiting data-reuse (through tiling)
is critical to DNN efficiency [12, 18, 19, 24, 25, 32, 39, 44, 46, 52, 70,
71, 74, 75]. Orthogonal to generic data-reuse, we identify a new
reuse dimension, inter-layer activation reuse (ILAR), that is uniquely
enabled by our deconvolution transformation.

Previous DNN mapping frameworks mostly rely on exhaustive
search [32, 74, 75], which does not scale to exploiting ILAR (Sec. 4.2).
Instead, ASV uses a constrained-optimization that can solved ef-
ficiently using dynamic programming. TETRIS [24] also uses a
constrained-optimization for DNN scheduling, albeit with certain
problem-specific simplifications. However, it does not exploit ILAR.
Our formulation directly optimizes for latency rather than memory
traffic [24, 75] or resource utilization [46].

9 Conclusion

ASV simultaneously improves performance and energy-efficiency
of “depth from stereo”, while maintaining high accuracy. ASV com-
bines algorithmic and computational optimizations that leverage
characteristics unique to stereo vision. We demonstrate careful de-
sign choices that let these optimizations be integrated with existing
DNN accelerators with minor hardware extensions. As intelligent
machine perception increasingly relies on depth sensing, ASV pro-
vides a promising first step towards comprehensive system support.

Appendices

A General Deconvolution Transformation

with an N-dimensional Kernel

Here we show a general formulation for decomposing a decon-
volution kernel. A N-dimension kernel is decomposed into 2N
sub-kernels, each sub-kernel Sk can be calculated as follows:

S
(i0,i1, ...,iN−1)
k = K (2i0+δ0,2i1+δ1, ...,2iN−1+δN−1), ∀k ∈ [0, 2N − 1]
δj = (k ≫ j &1), i j ∈ [0, ⌊(|K (j) | − δj )/2⌋), ∀j ∈ [0,N − 1]

where N is the number of dimensions in the original kernel K ,
S
(i0,i1, ...,iN−1)
k is the element (i0, i1, ..., iN−1) in kth sub-kernel, and
K (∗, ...,∗) denotes an element in the original kernel K .

Our formulation essentially shows that the element (i0, i1, ..., iN−1)
in the kth sub-kernel comes from the element (2i0 + δ0, 2i1 +
δ1, ..., 2iN−1 + δN−1) in the original kernel. Each δ∗ is a binary
value calculated by: δi = (k ≫ j&1), where ≫ is the right shift
operator and & is the bitwise AND operator. The dimension of the
each sub-kernel is determined by: i j ∈ [0, ⌊(|K (j) | − δj )/2⌋), where
|K (j) | is the size of jth dimension of the original kernel.
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where Cik denotes the total number of sub-kernel k in round i;W i
k

and H i
k are the dimensions of sub-kernel k in round i .

∆IF i =W i × H i × I

whereW i and H i are the weight and height of an ifmap tile to be
loaded in round i , and I is the number of input channels.

∆OF ik =
W i × H i ×Cik

s2

where s denotes the stride of this layer.
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