
A Systematic Methodology for Characterizing
Scalability of DNN Accelerators using SCALE-Sim

Ananda Samajdar∗ Jan Moritz Joseph∗† Yuhao Zhu‡ Paul Whatmough§ Matthew Mattina§ Tushar Krishna∗

∗Georgia Tech
Atlanta, GA, USA

†Otto-von-Guericke Univ.
Magdeburg, Germany

‡Univ. of Rochester
Rochester, NY, USA

§ARM ML Research Lab
Boston, MA, USA

∗anandsamajdar@gatech.edu

Abstract—The compute demand for deep learning workloads
is well known and is a prime motivator for powerful parallel
computing platforms such as GPUs or dedicated hardware
accelerators. The massive inherent parallelism of these workloads
enables us to extract more performance by simply provisioning
more compute hardware for a given task. This strategy can
be directly exploited to build higher-performing hardware for
DNN workloads, by incorporating as many parallel compute
units as possible in a single system. This strategy is referred
to as scaling up. Alternatively, it’s feasible to arrange multiple
hardware systems to work on a single problem to exploit the
given parallelism, or in other words, scaling out. As DNN based
solutions become increasingly prevalent, so does the demand for
computation, making the scaling choice (scale-up vs scale-out)
critical.

To study this design-space, this work makes two major
contributions. (i) We describe a cycle-accurate simulator called
SCALE-SIM for DNN inference on systolic arrays, which we use
to model both scale-up and scale-out systems, modeling on-chip
memory access, runtime, and DRAM bandwidth requirements
for a given workload. (ii) We also present an analytical model to
estimate the optimal scale-up vs scale-out ratio given hardware
constraints (e.g, TOPS and DRAM bandwidth) for a given
workload. We observe that judicious choice of scaling can lead
to performance improvements as high as 50× per layer, within
the available DRAM bandwidth. This work demonstrates and
analyzes the trade-off space for performance, DRAM bandwidth
and energy, and identifies sweet spots for various workloads and
hardware configurations.

I. INTRODUCTION

In recent years, the urgent compute demands stemming
from Deep Neural Network (DNN) workloads have rein-
vigorated research into computer architecture, systems and
high performance software design. The raw parallelism and
reuse opportunities have spring-boarded devices like GPUs,
which formerly were considered special purpose into ubiquity.
This trend has also engendered a whole breed of hardware
accelerators, which are aimed at squeezing out extremely high
performance within commodity power and area budgets, owing
to their custom design [28], [29], [32].

Nonetheless, within the field of deep learning, the hunger
to consume more compute power seems insatiable. As the
machine learning community develops deep learning based
solutions for newer more complex problems, the DNN models

SCALE-SIM was developed jointly at ARM Research, Boston and Georgia
Tech. Download link: https://github.com/ARM-software/SCALE-Sim

become larger and more compute intensive. Furthermore,
DNN-based methods are now being deployed to an ever
increasing suite of applications, which means that the fre-
quency of encountering a DNN-based workload is increasing
as well [5], [23]. For computer architecture, this trend simply
translates into the need to create more powerful and efficient
hardware, or in other words to scale the performance of the
hardware system.

The fundamental approaches to building efficient DNN
accelerators have become fairly standard: since the majority
of computation is some form of matrix-matrix multiplication1,
DNN accelerators typically employ a regular array of multiply-
accumulate (MAC) units to compute these efficiently by lever-
aging data reuse within the array. The current differences seen
across published accelerator microarchitectures today mainly
lie in the memory hierarchy [12], [16]–[18], [20] and dataflow
strategies [4] employed.

The optimal approach to scalability, however, remains
an open question. Extracting higher performance essentially
translates into allocating more parallel compute for a given
workload. One way of achieving this is by creating a mono-
lithic array with a large number of MAC units. The Google
TPU [12] is an example of such a design. This approach
is known as Scale-UP. Alternatively, the effect of scaling
can also be achieved by allocating multiple such units to
collaboratively work on a given problem, or in other words
by Scale-OUT. Microsoft’s Brainwave [7] is an instance of
such a design. In fact, scale-out need not be across separate
chips; NVIDIA’s approach of a multitude of loosely coupled
tensor cores [1] across SMs can also be viewed as an instance
of scale-out. Both approaches involve a number of trade-offs.
While a monolithic scale-up design provides the opportunity
to exploit reuse, hence avoiding costly off-chip accesses,
the operand reuse opportunities are of course finite, which
ultimately limits utilization. On the other hand, a scale-out
design may provides more mapping flexibility to maximize
hardware utilization may additionally also be cheaper to design
and (re-)configure.

In this paper, we analyze, identify, and quantify the compo-
nents of this trade-off space to provide a systematic approach

1In this case matrix-matrix multiplication also encompasses the degenerate
cases of matrix-vector and vector-vector products, where one or both operand
matrices have dimension equal to one.

Last Level Cache
In

te
rru

pt

co
nt

ro
lle

r

Core 3

Core 1

Core 2

Core 0

Scratchpad
Mem

DRAM (Main Memory)Memory Controller

DMA
Engine

Memory
mapped register

System Interconnect

Main Processor Systolic CNN Accelerator

Interrupt

Fig. 1: Schematic showing the integration model of accelerator in a
systems context
for making scaling decisions. To enable this study, we de-
velop a cycle accurate simulator for DNN accelerators called
SystoliC AcceLErator SIMulator (SCALE-SIM) [24], which
models compute performance, on-chip and off-chip memory
accesses, and interface bandwidth information for a given
neural network. SCALE-SIM implements two elements: (i)
a compute unit based around a systolic array parameterized
by size and aspect ratio, and (ii) a simple accelerator memory
system with three double buffered SRAM memories of user
specified sizes, which buffers the matrices for two operands
and one result. The inputs to the tool are the layer dimen-
sions of a given neural network workload, and the hardware
architecture parameters. SCALE-SIM can model both scale-
up (one partition) and scale-out (multiple partition) instances.

To allow for fast design space exploration and rapid iden-
tification of design insights, we augment the simulator with
an analytical model that captures the first-order execution
time of a single systolic array. Unlike SCALE-SIM, the
analytical model does not consider cycle by cycle accesses
and bandwidth demands due to limited memory sizes. Instead,
it captures the first-order performance, and thus helps prune
the search space. As we will describe in Section III, we use
this model to determine the most performant configuration for
both monolithic (scale-up) and partitioned (scale-out) systems
for a given workload.

Using SCALE-SIM augmented with analytical models, we
systematically explore the design space of DNN accelerators,
focusing on understanding the trade-off of scale-up versus
scaling-out configurations in Section IV. We find that the
fundamental trade-off is between performance and DRAM
bandwidth demands. Finally, we propose a heuristic-driven
approach that efficiently identifies the optimal scaling strat-
egy, along with the design configuration within a particular
scaling strategy, for a given set of workloads. In summary the
following are the main contributions of this paper:

1) We develop SCALE-SIM, a cycle accurate, configurable
systolic array based DNN accelerator simulator;

2) We develop an analytical model for compute the runtime
of DNNs on a systolic array, and using this to determine
the optimal size, aspect ratio and number of partitions
for achieving the best performance for a given workload;

Filter SRAM
(Double buffered)

IFMAP SRAM
(Double buffered)

OFMAP SRAM
(Double buffered)

SRAM Read

SRAM
Read

SRAM Write

Accelerator
Interface

SCALE-Sim

SRAM R/W
DRAM R/W

Conv1,
Conv2,
FC1,…

Cycle accurate
traces

Cycles,
Bandwidth,
Utilization

etc.

Parameter

Array Height

IFMAP SRAM

Filter SRAM

OFRAM SRAM

Value

32

1024

32

1024

128

Array Width

Dataflow WS
Simulation
Summary

Config file

DNN Topology file

Fig. 2: Schematic depicting the inputs needed and the outputs
generated by SCALE-SIM

3) We present an in-depth study of the trade-off space
pertaining to scaling decisions in DNN acceleration.

II. SCALE-SIM: SYSTOLIC ACCELERATOR SIMULATOR

SCALE-SIM is a cycle-accurate behavioural simulator that
provides a publicly available open-source modeling infrastruc-
ture for array-based DNN accelerators. SCALE-SIM enables
designers to quickly iterate over and validate their upcoming
designs with respect to the various optimization goals for
their respective implementation points. In this section, we first
provide some background on systolic arrays and second, we
describe our modeling methodology.

A. Background: Systolic Arrays and Dataflows
Systolic arrays are a class of simple, elegant and energy-

efficient architectures for accelerating general matrix multipli-
cation (GEMM) operations in hardware. They appear in many
academic and commercial DNN accelerator designs [2], [12],
[14]. An overview of system integration is shown in Figure 1

Compute. The compute microarchitecture comprises sev-
eral Multiply-and-Accumulate (MAC) units (also known as
Processing Elements, or PEs), connected in a tightly coupled
two dimensional mesh. Data is fed from the edges from
SRAMs, which then propagates to the elements within the
same row (column) via unidirectional neighbour-to-neighbour
links. Each MAC unit stores the incoming data in the current
cycle in an internal register and then forwards the same
data to the outgoing link in the next cycle. This store and
forward behavior results in significant savings in SRAM read
bandwidth and can very effectively exploit reuse opportunities
provided by convolution/GEMM operations, making it a popu-
lar choice for accelerator design. Note that this data movement
and operand reuse is achieved: (1) without generating or
communicating any address data, and (2) only using hard-
wired local register-to-register inter-PE links, without any
interconnect logic or global wires. For these two reasons, the
systolic array is extremely energy and area efficient.

Memory. Systolic Arrays are typically fed by local linearly-
addressed SRAMs on the two edges of the array, with outputs
collected along a third edge. These local SRAMs are often
double buffered and are backed by the next level of the
memory hierarchy.

a3 b3 c3 d3 e3
j3
o3
t3
y3

a2 b2 c2 d2 e2
j2
o2
t2
y2

a1 b1 c1 d1 e1
f1 g1 h1 i1 j1
k1 l1 m1 n1 o1
p1 q1 r1 s1 t1
u1 v1 w1 x1 y1

A3 B3
D3 E3

C3
F3

G3 H3 I3

A2 B2
D2 E2

C2
F2

G2 H2 I2

A1 B1
D1 E1

C1
F1

G1 H1 I1

A3 B3
D3 E3

C3
F3

G3 H3 I3

A2 B2
D2 E2

C2
F2

G2 H2 I2

A1 B1
D1 E1

C1
F1

G1 H1 I1

A3 B3
D3 E3

C3
F3

G3 H3 I3

A2 B2
D2 E2

C2
F2

G2 H2 I2

A1 B1
D1 E1

C1
F1

G1 H1 I1

A3 B3
D3 E3

C3
F3

G3 H3 I3

A2 B2
D2 E2

C2
F2

G2 H2 I2

A1 B1
D1 E1

C1
F1

G1 H1 I1

Input Feature Map

Weights

a1b1m3 f1g1… c1

A1
B1
C1
D1

I3…

E1

8 cols

8
rows

A1
B1
C1
D1

I3…

E1

A1
B1
C1
D1

I3…

E1

A1
B1

I3…

b1c1n3 g1h1… d1

c1d1o1 h1i1… e1

a1x3 g1…

(a)

I3 I3 I3 I3

I2 I2 I2 I2

I1 I1 I1 I1

A1 A1 A1 A1

Pre fill weights

a1

m1

…

m2

m3

b1

n1

…

n2

n3

c1

o1

…

o2

o3

f1

r1

…

r2

r3

m1

y1

…

y2

y3

…

Unrolled convolution windows

time

(b)

m3 n3 o3 y3

m2 n2 o2 y2

m1 n1 o1 y1

a1 b1 c1 m1

Pre fill inputs

A1

I1

…
I2

I3

A1

I1
…

I2

I3

A1

I1
…

I2

I3

A1

I1

…

I2

I3

…

Unrolled Weight Matrices

time

(c)

Fig. 3: Schematic showing the mapping in various dataflows (a) Output stationary; (b) Weight stationary; (c) Input stationary

Data Reuse. A typical convolution can be viewed as a small
filter kernel being slid over a given input matrix, with each
overlap generating one output pixel. When the convolution
operation is formulated as successive dot-product operations,
three reuse patterns are immediately evident:
• Each convolution window uses the same filter matrix, to

generate pixels corresponding to a given output channel.
• The adjacent convolution windows share portions of

the input matrix if the stride is smaller than window
dimension.

• To generate a output pixel in different output channels,
different filter matrices use the same convolution window.

These reuses can be exploited via the dataflow or mapping of
the DNN over the array.

Dataflow. There are three distinct strategies of mapping
compute or dataflows onto the systolic array named Output
Stationary (OS), Weight Stationary (WS), and Input Station-
ary (IS) [4] as shown in Figure 3. The “stationarity” of a
given dataflow is determined by the tensor whose element
is not moved (i.e. stationary) for the maximum duration of
time throughout the computation. Although many different
dataflows exist for spatial arrays, we only consider true systolic
dataflows that only use local communication.

The OS dataflow depicted in Figure 3(a), therefore refers
to the mapping where each MAC units is responsible for
all the computations required for a OFMAP pixel. All the
required operands are fed from the edges of the array, which
are distributed to the MAC processing elements (PE) using
internal links to the arrays. The partial sums are generated
and reduced within each MAC unit. Once all the MAC units in
the array complete the generation of output pixels assigned to
itself, the peer to peer links are used to transfer the data out of
the array. No computation takes place in the array during this
movement. An alternative high performance implementation
using a separate data plane to move generated output is also
possible, however, it is costly to implement.

The WS dataflow on the other hand uses a different strategy
as shown in Figure 3(b). The elements of the filter matrix
are pre-filled and stored into each PE prior to the start of
computation, such that all the elements of a given filter are

allocated along a column. The elements of the IFMAP matrix
are then streamed in through the left edge of the array, and
each PE generates one partial sum every cycle. The generated
partial sums are then reduced across the rows, along each
column in parallel to generated one OFMAP pixel (or reduced
sum) per column.

The IS dataflow is similar to WS, with the difference being
in the order of mapping. Instead of pre-filling the array with
elements of the filter matrix, elements of the IFMAP matrix
are stored in each PE, such that each column has the IFMAP
elements needed to generate a given OFMAP pixel. Figure 3(c)
depicts the mapping. We describe these dataflows in more
detail in Section III-B.

B. System Integration

We consider the typical offload model of accelerator inte-
gration in SCALE-SIM. We attach the DNN accelerator to the
system interconnect, using a slave interface on the accelerator,
as illustrated in Figure 1. The CPU is the bus master which
interacts with the accelerator by writing task descriptors to
memory-mapped registers inside the accelerator. When a task
is offloaded to the accelerator, the CPU master can context
switch to progress other jobs, while the accelerator wakes up
and starts computing, independently generating its memory
requests and side channel signals. When the computation has
finished, the accelerator notifies the CPU, which accesses the
results from the accelerator internal memory.

Thus, the cost on the system performance for integrat-
ing an accelerator is the extra accesses on the system bus,
which could be modelled as interface bandwidth requirement.
SCALE-SIM allows for modeling the main memory behavior
by generating accurate read and write bandwidths at the
interface, which can then be fed into a DRAM simulator e.g.,
DRAM-Sim2 [22].

C. Implementation

Internally, SCALE-SIM takes an inside-out implementation
approach. Specifically, the simulator assumes that the acceler-
ator is always compute bound and the PEs are always used to
the maximum possible utilization - as dictated by the dataflow

0

50

100

150

200

250

300

4x4 8x8
16x1

6
20x2

0
32x3

2
40x4

0
50x5

0
64x6

4
70x7

0
80x8

0
90x9

0

Ac
ce

le
ra

to
r C

yc
le

s SCALE-Sim RTL

Fig. 4: Figure depicting the cycles obtained by RTL implementa-
tion and SCALE-Sim simulation for varying array sizes under full
utilization
in use. With this implementation model, the simulation in
SCALE-SIM takes place in following steps.
• SCALE-SIM generates cycle accurate read addresses for

elements required to be fed on the top and left edges
of the array such that the PE array never stalls. These
addresses are effectively the SRAM read traffic for filter
and input matrices, as dictated by the dataflow. Given the
reduction takes a deterministic number of cycles after the
data has been fed in, SCALE-SIM generates an output
trace for the output matrix, which essentially constitutes
the SRAM write traffic.

• SCALE-SIM parses the generated traffic traces, to de-
termine total runtime for compute and data transfer to
and from SRAM. The data transfer time is essentially the
cycle count of the last output trace entry. The SRAM trace
also depicts the number of rows and columns that have
valid mapping in each cycle. This information couples
with the dataflow is used to determine the utilization of
the array, every cycle.

• In SCALE-SIM the elements of both the input operand
matrices, and the generated elements of the output matrix
is serviced by dedicated SRAM buffers backed via a
double buffered mechanism, as shown in Figure 2. As
the sizes of these buffers are known from user inputs,
SCALE-SIM parses the SRAM traces and determines the
time available to fill these buffers such that no SRAM
request is a miss. Using this interfaces SCALE-SIM
generates a series of prefetch requests to SRAM which
we call the DRAM trace.

• The DRAM traces are the used to estimate the interface
bandwidth requirements for the given workload and the
provided architecture configuration.

• The trace data generated at the SRAM and the interface
level is further parsed to determine the total on-chip and
off-chip requests, compute efficiency, and other high level
metrics.

D. Validation of the tool

We validated SCALE-SIM against an RTL implementation
of a systolic array. Figure 4 depicts the cycles obtained when
matrix multiplications are performed on varying arrays sizes
(X-axis) under full utilization with OS dataflow, from RTL
implementation and SCALE-SIM simulations. As depicted by

TABLE I: SCALE-SIM config description
Parameter Description
ArrayHeight Number of rows of the MAC systolic array
ArrayWidth Number of columns of the MAC systolic array
IfmapSRAMSz Size of the working set SRAM for IFMAP in KBytes
FilterSRAMSz Size of the working set SRAM for filters in KBytes
OfmapSRAMSz Size of the working set SRAM for OFMAP in KBytes
IfmapOffset Offset to the generated addresses for IFMAP px
FilterOffset Offset to the generated addresses for filter px
OfmapOffset Offset to the generated addresses for OFMAP px
DataFlow Dataflow for this run. Legal values are ’os’,’ws’, and ’is’
Topology Path to the topology file

TABLE II: SCALE-SIM Topology file description
Parameter Description
Layer Name User defined tag
IFMAP Height Dimension of IFMAP matrix
IFMAP Width Dimension of IFMAP matrix
Filter Height Dimension of one Filter matrix
Filter Width Dimension of one Filter matrix
Channels Number of Input channels
Num Filter Number of Filter matrices. This is also the number of

OFMAP channels
Strides Strides in convolution

the figure the cycle counts obtained by both the methods are
in good agreement.

E. User Interface

Figure 2 depicts the inputs files used by the simulator, the
outputs that are generated. SCALE-SIM takes two files as
input from the user: one is a hardware configuration, and
the other is a neural network topology for the workload. The
configuration file contains the user specification for architec-
tural parameters, like the array size, the memory size, and the
path to the topology file. Table I depicts the complete list of
parameters, which are mostly self-explainatory. For layers such
as fully-connected (i.e. matrix-vector), the input parameters
correspond to convolutions where the size of the filters are
same as that of the IFMAP.

The topology file contains the layer topology dimensions
for each of the layers in the given neural network workload.
This is a comma-separated value (CSV) file, with each row
listing all the required hyper-parameters for a given layer –
Table II gives the complete list of all the entries in a given row.
SCALE-SIM parses the topology file one line at a time and
simulates the execution of the layer. This is a natural approach
for traditional neural networks which are primarily composed
of a single path. However, modern DNNs often contain “cells”
that are composed of multiple convolution layers in parallel
[10]. SCALE-SIM serializes the execution of such layers in
the same order in which they are listed in the topology file.

SCALE-SIM generates two types of outputs. First is the
cycle accurate traces for SRAM and DRAM reads and writes.
The traces are also CSV files, which list the cycle and the
addresses of data transferred in a given cycle. The other type
of output files are reports with aggregated metrics obtained
by parsing information from the traces. These include cycle
counts, utilization, bandwidth requirements, total data transfers
etc. The trace-based methodology is very easy to debug and
highly-extensible to new analyses and architectures.

Filter

SC

T

IFMAP

T

SR

OFMAPSR

SC

(a) Output stationary dataflow.

Filter

SC

SR

IFMAP

T

SR

OFMAPT

SC

(b) Weight stationary dataflow.

IFMAP

SC

SR

Filter

T

SR

OFMAPT

SC

(c) Input stationary dataflow.
Fig. 5: Data Flow Mapping.

TABLE III: Spatio-Temporal Allocation of DNN Dimensions
Spatial Rows
(SR)

Spatial Columns
(SC)

Temporal (T)

Output Stationary Nofmap Nfilter Wconv

Weight Stationary Wconv Nfilter Nofmap

Input Stationary Wconv Nofmap Nfilter

Nfilter : Number of convolution filters
Nofmap: Number of OFMAP pixels generated by filter
Wconv : Number of partial sums generated per output pixels

III. ANALYTICAL MODEL FOR RUNTIME

In SCALE-SIM, all the simulated metrics including runtime
are determined at the end of a round of simulation. However
running simulation for all possible data points in a large
search space is expensive and sometimes unnecessary. In this
section we describe an effective analytical model for runtime,
which accounts for the data movement patterns simulated by
SCALE-SIM. Please note however, the analytical model does
not model the memory accesses and bandwidth demand arising
due to limited memory which is captured by SCALE-SIM. We
use this model to estimate costs and prune the search space
for the subsequent scalability study described in Section IV.

A. Mapping across Space and Time

In dense DNN computations, running different types of
layers generalize to matrix-matrix multiplications of different
sizes. For systolic arrays, we consider the operand matrices
of dimensions SR × T and T × SC respectively, where SR

and SC are the spatial dimensions along which computation
is mapped, and T is the corresponding temporal dimension.
These matrices are obtained by projecting the original operand
matrices into the available spatio-temporal dimensions. For
example, for multiplying matrices of size M ×K and K×N ,
the dimension M is mapped to SR, dimension N is mapped
to SC and the dimension K to T .

Figure 5 illustrates the mapping of a 2D convolution onto
the three dataflows. Figure 5a shows the mapping correspond-
ing to output stationary (OS) dataflow. The first operand
matrix, with size SR × T , is a rearranged input feature map
(IFMAP) matrix. Each row consists of elements corresponding
to one convolution window, while the number of rows is the
number of OFMAP pixels generated per filter. The second

operand matrix contains unrolled filter elements, with each
filter unrolled along each column, resulting in a T×SC matrix.

Figure 5b and Figure 5c depict the mapping for other
two dataflows; Weight Stationary (WS) and Input Stationary
(IS). For WS, the number of convolution windows maps to
SR, while SC is equal to the number of filters. As seen
in Section II the partial sums for each OFMAP pixel are
generated every subsequent cycle making the mapping along
the temporal dimension T equal to the number of OFMAP
pixels generated. In the IS dataflow however, the order and
direction of feeding the IFMAP matrix and the filter matrices
are interchanged. This implies that the mapping along the SR

and SC dimensions for this dataflow is the same size as the
convolution window and number of OFMAP pixels generated
per filters respectively. While the temporal dimension T maps
the number of filters. Table III summarizes these dimensions.

B. Runtime for Scale-Up

With the above abstraction of mapping in place, it is feasible
to model the runtime for various dataflows, under the assump-
tion of either a restricted or unrestricted number of compute
elements. In our discussions we will only use multiply-and-
accumulate (MAC) units as the compute elements within the
systolic array.

1) Runtime with unlimited MAC units: Given an unlimited
amount of MAC units, the fastest execution for any dataflow is
achieved using the maximal array size of SR×SC . However,
note that even though all the multiplication operations are
done in one cycle, the runtime needs to account for both the
store and forward nature of the array, and the existence of the
temporal dimension T (> 0).

Figure 6 shows the steps followed for moving data in the
three dataflows introduced in Section II. Figure 6a depicts
the steps when implementing the OS dataflow. As mentioned
before the IFMAP matrix is fed from the left while the filter
elements are pushed in from the top edge. To account for the
store and forward nature of the arrays and match the data
arrival time at all the PEs, the data distribution is skewed;
the PE at the top left corner of the array receives both the
operands at the first cycle, the PEs in the next column and
next row get their operands in the next cycles, their neighbours

TFilter

SR

IFMAP

OFMAP

1 : SC−1

2 : SR−1

3 : T 4 : SR

(a) Output stationary runtime.

Filter
IFMAP

OFMAP

1 : SR

2 : SC−1

4
:
S
R
−
1

3 : T

(b) Weight stationary runtime.

IFMAP

Filter

OFMAP

1 : SR

2 : SC−1

4
:
S
R
−
1

3 : T

(c) Input stationary runtime.
Fig. 6: Schematic depicting steps to model runtime for dataflows in systolic array.

in the cycle after that and so on. The PE at the bottom right
corner of the array (marked in blue), is the last to receive
the operand data. It is easy to see that the cycle at which
the first operands arrive at this PE is SR + SC − 2 (adding
steps 1 , 2 and 3). In this dataflow, each PE receives two
operands per cycle and generates one OFMAP pixel value by
in-place accumulation. It takes T cycles to generate on output,
which is equal to the number of elements in a convolution
window. The generated outputs are taken out from the bottom
edge of the array. While it is possible to take out the output
along other edges as well, using the bottom edge is the fastest
alternative. The time required to completely drain the array of
the generated output is SR cycles after the PE at the right most
corner has finished computation (step 4). Therefore, the total
time taken for entire computation is,

τscaleup min = 2SR + SC + T − 2 (1)

In Figure 6b we perform the same analysis for WS dataflow.
Here, the filter matrix is fed into the array from the top and is
kept alive untill the computations involving these operands are
complete. Skewing is not needed as no computation is taking
place while the filters are being fed. This takes SR cycles (step

1). Once the filter elements are in place, the elements of the
IFMAP matrix are fed from the left edge of the array. Each PE
reads the IFMAP operand, multiplies it with the stored weight
and forwards the partial sum to the PE in the neighbouring row
for reduction. The first data arrives at the last row after SC−1
cycles (step 2). The IFMAP matrix is fed in one column at
a time, therefore every column in the systolic array receives
T operands, one each cycle, corresponding to the number of
columns in the IFMAP matrix (step 3). Furthermore, for all
the partial sums generated reduction occurs across the rows,
for each column. After the top row receives and operand
from the IFMAP, it takes SR − 1 cycles to reduce (step 4).
Therefore the array is drained out of all partial sums, after
reduction happens in the rightmost column. The total runtime
therefore is,

τscaleup min = 2SR + SC + T − 2

Using similar analysis and Figure 5c, we can show that the
above expression holds true for the IS dataflow as well. Thus
Equation 1 captures the runtime for all the dataflows in a
systolic array when the number of MAC units is infinitely large

2) Runtime with limited MAC units: Having a large enough
systolic array which can map all the compute at once is often
not practically feasible. Due to the large amount of compu-
tation compared to hardware compute units, it is necessary
to tile the workload into chunks. We term this practice as
folding where each of these chunks are called a fold2. Folds
can be generated by slicing the compute along the SR and SC

dimensions. When using a R × C array, the number of fold
along rows (FR) and columns (FC) are determined as follows.

FR = dSR/Re, FC = dSC/Ce (2)

Figure 7 illustrates this.
Analysis similar to Section III-B1 can be used to express the

time taken in each of these folds as is given by the following
equation, for all dataflows.

τF = 2R+ C + T − 2 (3)

Where R and C are the rows and columns of the systolic
array and T is the temporal dimensions. The total runtime can
therefore be expressed from Equation 2 and Equation 3 as
following.

τscaleup = (2R+ C + T − 2)dSR/RedSC/Ce (4)

The above equation provides us with the insights on the
factors affecting runtime. For a given workload and array
configuration, choice of dataflow assigns the values for SR,
SC and T respectively, which could be selected to minimize
τ . On the other hand if the workload and dataflow is fixed, for
a given number of MAC units, the optimal values of R and
C could be determined to reduce the runtime as well.

Equation 4 can be used to determine the optimal config-
uration for a given matrix by implementing search over the
possible R and C values. For workloads with multiple matrix
operations, this model can be used as a cost model as depicted
later in Section IV-B.

C. Optimal Partitioning for Scale-Out

In our previous analysis we have only considered a single
array to study the affect of micro-architectural and design
parameters on runtime. Instead of creating a single monolithic
architecture with multiple PEs (i.e., scale-up), an alternative

2This is often also known as tiling

R

C

T

SC

Filter
T

SR
IFMAP

R

CdSR

R e

dSC

C e

OFMAP

Fig. 7: Scale Up

R

C

T

SC

Filter
T

SR IFMAP

OFMAP

S′R

P
R
=

2

S′C
PC = 2

Fig. 8: Scale Out
design choice is to employ multiple units of systolic arrays,
each responsible for one partition of the output feature map,
to increase the available parallelism (i.e., scale-out) In this
section we will model the runtime of such systems.

The scaled out configuration introduces another set of
parameters, as shown in Figure 8. Unlike in scale-up where
all the MAC units are arranged in a R × C array, in scaled-
out configuration, the MAC PEs are grouped into PR × PC

systolic arrays, each with a PE array of R× C.
Using this approach for a given number of partitions P =

PR×PC , the effective workload mapped for computation over
each partition can be determined by,

S′R = dSR/PRe, S′C = dSC/PCe (5)

Within each array, we can use Equation 4 to decide the
optimal aspect ratio (R × C) for running the partitioned
workload. Since the individual partitions execute in parallel,
the total runtime of the scaled-out system is simply the runtime
of the slowest cluster which can be determined by Equation 4
and Equation 5

τscaleout = (2R+ C + T − 2)dS′R/RedS′C/Ce (6)

IV. ANALYSIS OF SCALING

The primary aim of scaling a hardware accelerator, is to
improve the runtime of a given workload. Since there are
many ways of scaling a system, the first natural question to
ask is whether any one of the methods proves beneficial over
the others. To answer this question, we computed runtime
using the analytical model described in Section III, when using
different configurations of monolithic vs scaled out arrays,
given the same budget for MAC units. For workloads in
our experiments, we used the convolution layers in Resnet50
CNN [10] and a few representative layers from widely used
contemporary natural language processing models: GNMT
[30], DeepSpeech2 [3], Transformer [26], and neural collabo-
rative filtering [11]. The matrix dimensions corresponding to
these workloads are detailed in Table IV

Search Space for Scale-up and Scale-out. Figure 9(a)
provides the glimpse of the search space associated with the
problem at hand. Each marker in the figure depicts a design

0%

20%

40%

60%

80%

100%

100

1000

10000

8x2048

16x1024

32x512

64x256

128x128

256x64

512x32

1024x1
6

2048x8

Ar
ra

y
Ut

ili
za

tio
n

%

ArrayHeight x ArrayWidth (RxC)

Runtime

0%
20%
40%
60%
80%
100%

100

1000

10000

8x512

16x256

32x128
64x64

128x32

256x16
512x8

Ru
nt

im
e

(K
 C

yc
le

s)
ArrayHeight x ArrayWidth (RxC)

ArrayUtilization
(a)

(b) (c)

Fig. 9: (a) The search space of all possible scale-up (monolithic)
and scale-out (partitioned) configurations, with different array sizes;
the color represents runtime for TF0 layer of the Transformer model,
normalized to max runtime across configurations for a given array
size. The variation in runtime and array utilization for all scaled-up
configurations when running TF0 layer for (b) 214 MACs, (c) 216

MACs.

TABLE IV: Matrix dimensions of our language model work-
loads. mapped to SR, SC , and T

Name SR T SC

GNMT0 128 4096 2048
GNMT1 320 4096 3072
GNMT2 1632 1024 36548
GNMT3 2048 32 4096
DB0 1024 50000 16
DB1 35 2560 4096
TF0 31999 84 1024
TF1 84 4096 1024
NCF0 2048 128 1
NCF1 256 2048 256

point for corresponding to five different compute capabilities
denoted by number of MAC units. On the x axis we have
all possible dimensions for a systolic array with these mac
units. The y axis represents the partitioned configurations when
scaling out. We limit the smallest systolic dimensions to 8x8
to ensure we have a reasonable size arrays per partition when
scaling out. The color of each point denotes the normalized
stall free run time when TF0 is run using OS dataflow. Run
times are normalized to the highest runtime among all the
configurations for a fixed number of MAC units.

Effect of Aspect Ratio on Scale-up Array. From this
chart we can get a first order estimate of runtime variation
between partitioned and monolithic configurations. We observe
that the highers runtimes are usually located near the points
corresponding to y value of 1× 1, which represent the mono-

0.1

1

10

100

Conv1 CB2a_1 CB2s IB5c_3 FC6

Re
la

tiv
e

Ru
nt

im
e

(S
ca

le
 U

P
: S

ca
le

 O
U

T)

Resnet50 Layers

256 1024 4096 16384 65536

(a) (b)

0.1

1

10

100

GNMT0 GNMT3 DB0 TF0 NCF0

Re
la

tiv
e

Ru
nt

im
e

(S
ca

le
 U

P
: S

ca
le

 O
U

T)

Language model layers

256 1024 4096 16384 65536

Fig. 10: Ratio of no stall runtimes obtained in best scaled-up array
configuration vs best scaled-out (partitioned) configuration for a few
layers in (a) Resnet50 and (b) Language models, for different MAC
units
lithic configurations. Figure 9(b-c) depicts the various aspect
ratio (Row:Column) configurations for monolithic arrays with
4096 and 16384 MAC units respectively. The first observation
is that, the difference in runtime for optimum configuration
and others can vary by several orders of magnitude even
when the workload is the same, depending on the size of the
array. In fact, with larger arrays this difference is exacerbated.
Second, the aspect ratio of the optimal configuration is not
the same at different performance points, necessitating the
need to have a framework to examine various configurations.
When considering the array utilization, another interesting
trend arises. For configurations with low array utilization, the
runtime of the layer is high, which is expected. Also, runtime
generally drops with array utilization. Interestingly, when the
array dimensions become significantly rectangular, the effect
of utilization is less pronounced. In these configurations even
though a high utilization is achieved, the improvement in
runtime is minimal. This is due to the fact that the time to
fill in and take out the data starts dominating, as captured in
Equation 3.

Comparison of Best Runtime. Moving to the points
up along the y-axis in Figure 9(a) show almost monotonic
improvement in performance, depicting that partitioning is
always beneficial. To further investigate this trend in Figure 10
we plot the stall free runtimes corresponding to the fastest
scaled out (monolithic) configuration normalized to the low-
est runtime achieved among all the scaled-out (partitioned)
configurations using equal MAC units. Figure 10(a) plots the
rations for first and last five convolution and fully connected
layers of Resnet50 CNN for different number of MAC units. It
can be observed that monolithic configurations are sometimes
significantly slower (25x for CB2a 1 layer) that partitioned
configurations, and never faster that the corresponding parti-
tioned configuration. Moreover, for a given layer, the relative
slowdown tends to amplify when the hardware is scaled. This
trend is also replicated in language models, which predomi-
nantly use fully connected layers as seen in Figure 10(b). Here
for 65536 MAC units the best monolithic configuration is 50x
slower than the best partitioned configurations.

Note that since the runtimes involved in the above charts are
stall free, the memory is not involved in slowdown. Therefore,
the root cause of this slowdown can be understood by a closer
look into the analytical model. First we should remember that
in both monolithic and partitioned configurations the amount

of serial computation is equal assuming all the MACs are
utilized, or in other words the number of folds are equal.
However from Equation 4 we can see that the runtime per
fold is directly proportional to the array dimensions. Which
explains the trend that the partitioned configurations are always
faster. Furthermore, the difference in runtime per layer is
amplified if the number of folds are high, even when both the
arrays are fully utilized and the difference comes from data
loading and unloading times. Also, utilizing the entire array
in a monolithic configuration, howsoever flexible, is often not
possible, as we can notice in Figure 9(b-c), which limits the
amount of available compute resources and thus, contributes
further to the relative slowdown.

A. Cost of scaling out

Observations from the experiments in the previous section
seem to suggest that scaling out is the best strategy to achieve
the optimal runtime. However this choice involves paying
additional costs as we discuss below.

The immediate cost of a partitioned design is the loss of
spatial reuse. In a big systolic array any element read from
the memory is used by processing elements along a row or
column by forwarding it on the internal links of the array.
Dividing up the array into smaller parts reduces the number of
rows, or columns, or both, resulting in drastic reduction of this
reuse opportunity. This is then reflected in terms of number
of SRAM reads, data replication, and the input bandwidth
(BW) demand from the DRAM. The loss of reuse within the
array over short wires also leads to longer traversals over an
on-chip/off-chip network (depending on the location of the
partitions) to distribute data to the different partitions and
collecting outputs - which in turn can affect overall energy.

Runtime vs. DRAM BW Requirement. In Figure 11 we
plot the DRAM BW requirement and runtime for layer CBa 3
in Resnet-50 and layer TF0 in Transformer, as a function of
number of partitions, for given number of MAC units. For
all the three cases a total of 512KB of SRAM is allocated
for IFMAP buffer, 512KB for Filter buffer, and 256 KB for
OFMAP buffer. This memory is evenly distributed among the
partitions in case of scaling out. The BW numbers are obtained
from our cycle accurate simulator when running the output
stationary dataflow. As the number of partitions increase, the
runtime goes down, however, BW requirements also rise due to
loss of reuse originally provisioned by the internal wires, and
increased replication of the data among the partitions, bringing
down the effective memory capacity. The sweet spot lies at the
intersection of runtime and bandwidth curves. When scaling to
higher number of MAC units, it is interesting to note that the
BW requirement is often higher than traditional DRAM BW.
For instance, for both Resnet and Transformer layers with 218

MAC units, about 10 KB/cycle of DRAM bandwidth is needed
for stall free operation at the sweet spot.

Energy Consumption. In Figure 12 we study the effect
of scaling out on energy. Figure 12(a) depicts the energy
consumption to run layer CBa 3 of Resnet50 as the number
of partitions are increased for various MAC unit (barring the

0
0.5
1
1.5
2
2.5

0

5000

10000

15000

1 2 4 8 16 32 64 128 256

DR
AM

 B
W

 R
eq

ui
re

m
en

t
(K

By
te

s /
 C

yc
le

)

Ru
nt

im
e

(C
yc

le
s)

Number of Partitions

Cycles DRAM BW Requirement

0

5

10

15

0

2000

4000

6000

8000

1 2 4 8 16 32 64 12
8

25
6

51
2 DR

AM
 B

W
 re

qu
ire

m
en

t
(K

By
te

s/
Cy

cle
)

Ru
nt

im
e

(C
yc

le
s)

Number of Partitions

Cycles DRAM BW Requirement

(a) (b) (c)

(d) (e) (f)

0
10
20
30
40
50

0

1000

2000

3000

4000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48 DR

AM
 B

W
 re

qu
ire

m
en

t
(K

By
te

s /
 C

yc
le

)

Ru
nt

im
e

(C
yc

le
s)

Number of Partitions

Cycles DRAM BW Requirement

0
10
20
30
40
50
60

0

20
40

60

80
100

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48 DR

AM
 B

W
 R

eq
ui

re
m

en
t

(K
By

te
s/

Cy
cle

)

Ru
nt

im
e

(K
 C

yc
le

s)

Num Partitions

0
2
4
6
8
10
12

0

50

100

150

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24 DR

AM
 B

W
 R

eq
ui

re
m

en
t

(K
By

te
s/

Cy
cle

)

Ru
nt

im
e

(K
 C

yc
le

s)

Num Partitions

0

0.5

1

1.5

2

2.5

0

100

200

300

400

1 2 4 8 16 32 64 128 256 DR
AM

 B
W

 R
eq

ui
re

m
en

t
(K

By
te

s/
Cy

cle
)

Ru
nt

im
e

(K
 C

yc
le

s)

Num Partitions

Fig. 11: Trends for best possible stall free runtime and DRAM bandwidth requirements when the number of partitions are increased from
monolithic array in CBa 3 layer in Resnet50 for (a) 218 MAC units, (b) 216 MAC units, and (c) 214 MAC units; and TF0 layer in Transformer
for (d) 218 MAC units, (e) 216 MAC units, and (f) 214 MAC units

0

200

400

600

800

1000

1 2 4 8 16 32 64
128

256
512

1024
2048

En
er

gy
 (u

J)

Num Partitions

262144 MAC

65536 MAC

16384 MAC

(a)

0
0.5

1
1.5

2
2.5

3
3.5

4

1 2 4 8 16 32 64
128

256
512

1024
2048

En
er

gy
 (m

J)

Num Partitions

4096 MAC

1024 MAC

256 MAC

(b)

Fig. 12: Energy consumption in running (a) Layer CBa 3 from
Resnet50 and (b) layer TB0 from Transformer, when scaling-up and
scaling out with different MAC units
energy consumption of interconnection network). Figure 12(b)
captures the same information for Layer TF0 for Transformer.
For a given workload and hardware configuration, the energy
consumption directly depends on the cycles MAC units have
been active and the number of accesses to SRAM and DRAM.
The counteracting effects of these factors can be observed in
Figure 11, therefore lays down an interesting tradeoff space.
As the figure depicts, for lower number of MAC units (256,
1024 and 4096), the configuration with minimum energy is the
monolithic configuration. However with increase in number
of MAC units, the point of minimum energy moves towards
the right of the chart, favouring more number of partitions.
On other words the energy saved in by stealing runtime from
powering the massive compute array is more significant than

the extra energy spent by the loss of reuse. Furthermore, the
bulkier the array, more the savings in compute to counteract
the losses in reuse, which explains the observed trend.

To summarize the data indicates scaling out is beneficial
for performance and with larger MAC units is more energy
efficient that scaling up. However the cost paid is the extra
bandwidth requirement to keep compute units fed, which even
at sweet spots are significantly higher than the best scaled-up
configuration for large MAC units.

B. Optimizing for multiple workloads

Any hardware accelerator should be performant for different
workloads. To find such a globally optimized hardware accel-
erator, a global cost function must be minimized. However, as
Figure 9(a) depicts even for a single workload as the global
cost function is large and discontinuous. Optimally searching
such a space for finding the global minima is out of the scope
of this paper. Instead we propose a method to find reasonable
pareto-optimal points for a given set of workloads

Considering the runtime as cost, our analytical model from
Sec. III-B and III-C or SCALE-SIM yields a runtime-optimal
configuration, ak = (S′C , S

′
R, R, C), for each individual layer

(i.e. workload wl = (SC , SR, T)). We then search among
these candidates for the globally optimized one, A. In case of
runtime, the total runtime is additive and thus it is calculated
by summing the runtimes Tr of all workloads wl for each
candidate ak:

A = argminak

∑
wl

Tr(wl, ak)

As the number of candidates is limited, exhaustive search is
feasible to find the optima.

In Figure 13 we plot the costs (runtime) of the various
candidate configurations normalized to the cost of the pareto-
optimal configuration obtained by the method mentioned
above, for layers in Resnet50 and the language models men-
tioned in Table IV. In Figure 14 the normalized costs for all

2e8 2e10 2e12 2e14 2e16

2

4

6

fastest

number of MAC units

pe
rf.

lo
ss

Resnet 50

fastest 2nd

3nd 4th
slowest

2e8 2e10 2e12 2e14 2e16

2

4

fastest

number of MAC units

pe
rf.

lo
ss

Language model layers

Fig. 13: Total runtime loss vs. best configuration for scale-
up ie. aspect ratio (R:C). Colors differentiate configurations
ordered by runtime.

2e8 2e10 2e12 2e14 2e16

2

4

6

8

fastest

number of MAC units

pe
rf.

lo
ss

Resnet 50

fastest 2nd

3nd 4th

5th slowest

2e8 2e10 2e12 2e14 2e16

2

4

6

fastest

number of MAC units

pe
rf.

lo
ss

Language model layers

Fig. 14: Total runtime loss vs. best configuration for scale-
out. ie part order (PR, PC) and aspect ratio (R:C). Colors
differentiate configurations ordered by runtime.
locally optimal candidates for scale-out is depicted. In both
these cases we observe that the pareto optimal configuration
is up to 8x faster than the locally optimal configurations.
However, the second and third best configurations are within
20% for smaller number of MAC in both scaled-up and
scaled-out configurations. However as the MACs increase
the spread of runtimes and we see about 50% increase un
rutime for second and third best configurations, while slower
configuration taking several factors more cycles to complete
than the best configuration.

V. RELATED WORK

Kwon et al. [15], propose a data centric model to de-
termine the cost of a given dataflow over user specified
accelerator configurations defined by a set of directives. This
cost model is then used to search for an optimal dataflow.
Timeloop [19] also uses a similar approach to determine the
best mapping strategy, by analytical estimation of runtime
and energy. Caffeine [31] describes analytical modelling of
roofline performance to determine the hardware configuration
for efficient FPGA-based CNN acceleration. Finally, ASV [6]
constructs analytical energy/latency models of a given DNN
and architectural configuration, while using constrained op-
timization to identify the best scheduling policy. However,
all these works only consider a design space of monolithic
accelerator configurations (scale-up).

DyHard-DNN [21] proposes the idea of morphable systolic
arrays, with circuit techniques to save power. However unlike
this work, the tradeoff space of partitioned designs is not inves-
tigated. ScaleDEEP [27] proposes a partitioned architecture,
but includes heterogeneous compute units tailored for various
types of workloads.

Tetris [8] describes a custom accelerator infrastructure,
comprised of multiple partitioned units, implemented in the

logic layer of a 3D memory. Tangram [9] extends the tiled
accelerator architecture and adds extra functionality to im-
prove compute and memory utilization by proposing custom
dataflow for inter-layer pipelining and intra-layer reuse over a
custom NoC. Moreover, the trade-off space for monolithic vs
partitioned design is not exposed and explored in these papers.

Kung et al. [13] proposed a partitioned systolic array based
solution. In this work the authors employ specialized 3D
chip fabrication, and used through-silicon vias (TSVs) to
mitigate the high memory bandwidth requirement. Simba [25]
implements a scale-out accelerator using multi-chip modules
(MCMs). The authors analyze the cost of scale-out infrastruc-
ture and propose a custom architecture comprised of MCMs
accounting for the costs.

VI. CONCLUSIONS

In this paper, we analyze the various alternative approaches
to Scale-up and Scale-out DNN accelerator designs. To con-
duct this study, we construct and describe a cycle accu-
rate DNN accelerator simulator called SCALE-SIM. The
simulation results provide memory accesses and bandwidth
requirements for various layers of CNN and natural language
processing model workloads for varying monolithic and parti-
tioned systolic array based configurations. We also present an
analytical model for performance estimation to chart and prune
the search space of optimum configurations more rapidly. Our
studies depict the inherent trade-off space for performance,
DRAM bandwidth, and energy and identifies the sweet spots
within the spaces for different workloads and performance
points. We have open sourced our tool and hope that it
benefits the community to conduct insightful studies as the
one presented in this paper.

VII. ACKNOWLEDGEMENTS

We would like to express our gratitude to Abhinav Hi-
manshu, Felix Kao, Sachit Kuhar, Vineet Nadella, and Natesh
Raina for their help. Special thanks to Amrita Mathuriya for
her insightful advice on scaling discussions. We would also
like to express our gratitude the anonymous reviewers for their
insightful comments and suggestions on improving the paper.
Finally, we thank our open source contributors and users, for
their pull requests, bug reports and constructive suggestions
to improve SCALE-SIM. We look forward to keep improving
SCALE-SIM in a healthy community driven fashion.

This work was supported by NSF CRII 1755876, a Google
Faculty Award, and by a fellowship within the IFI programme
of the German Academic Exchange Service (DAAD).

REFERENCES

[1] “Nvidia tesla v100 gpu architecture,” http://images.nvidia.com/content/
volta-architecture/pdf/volta-architecture-whitepaper.pdf, 2018.

[2] “Xilinx ml suite,” https://github.com/Xilinx/ml-suite, 2018.
[3] D. Amodei et al., “Deep speech 2: End-to-end speech recognition

in english and mandarin,” in International Conference on Machine
Learning, 2016, pp. 173–182.

[4] Y.-H. Chen et al., “Eyeriss: An energy-efficient reconfigurable accelera-
tor for deep convolutional neural networks,” in International Solid-State
Circuits Conference, ser. ISSCC, 2016.

http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://github.com/Xilinx/ml-suite

[5] I. Fedorov et al., “SpArSe: Sparse Architecture Search for CNNs on
Resource-Constrained Microcontrollers,” in Advances in Neural Infor-
mation Processing Systems 32 (NeurIPS), 2019, pp. 4978–4990.

[6] Y. Feng et al., “ASV: Accelerated Stereo Vision System,” in 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2019.

[7] J. Fowers et al., “A configurable cloud-scale dnn processor for real-
time ai,” in Proceedings of the 45th Annual International Symposium
on Computer Architecture. IEEE Press, 2018, pp. 1–14.

[8] M. Gao et al., “Tetris: Scalable and efficient neural network acceleration
with 3d memory,” in ACM SIGARCH Computer Architecture News,
vol. 45, no. 1. ACM, 2017, pp. 751–764.

[9] M. Gao et al., “Tangram: Optimized coarse-grained dataflow for scalable
nn accelerators,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 807–820.

[10] K. He et al., “Deep residual learning for image recognition,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[11] X. He et al., “Neural collaborative filtering,” in Proceedings of the 26th
International Conference on World Wide Web. International World Wide
Web Conferences Steering Committee, 2017, pp. 173–182.

[12] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” CoRR, vol. abs/1704.04760, 2017. [Online]. Available:
http://arxiv.org/abs/1704.04760

[13] H. Kung et al., “Maestro: A memory-on-logic architecture for co-
ordinated parallel use of many systolic arrays,” in 2019 IEEE 30th
International Conference on Application-specific Systems, Architectures
and Processors (ASAP), vol. 2160. IEEE, 2019, pp. 42–50.

[14] H. Kung et al., “Packing sparse convolutional neural networks for
efficient systolic array implementations: Column combining under joint
optimization,” in Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and
Operating Systems. ACM, 2019, pp. 821–834.

[15] H. Kwon et al., “Understanding reuse, performance, and hardware
cost of dnn dataflows: A data-centric approach,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 2019, pp. 754–768.

[16] S. K. Lee et al., “A 16-nm Always-On DNN Processor With Adaptive
Clocking and Multi-Cycle Banked SRAMs,” IEEE Journal of Solid-State
Circuits, vol. 54, no. 7, pp. 1982–1992, July 2019.

[17] H. Li et al., “On-Chip Memory Technology Design Space Explorations
for Mobile Deep Neural Network Accelerators,” in 2019 56th ACM/IEEE
Design Automation Conference (DAC), June 2019, pp. 1–6.

[18] S. Likun Xi et al., “SMAUG: End-to-End Full-Stack Simulation
Infrastructure for Deep Learning Workloads,” arXiv e-prints, p.
arXiv:1912.04481, Dec 2019.

[19] A. Parashar et al., “Timeloop: A systematic approach to dnn accelerator
evaluation,” in 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2019, pp. 304–
315.

[20] M. Pellauer et al., “Buffets: An efficient and composable storage
idiom for explicit decoupled data orchestration,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 2019, pp.
137–151.

[21] M. Putic et al., “Dyhard-dnn: Even more dnn acceleration with dynamic
hardware reconfiguration,” in 2018 55th ACM/ESDA/IEEE Design Au-
tomation Conference (DAC). IEEE, 2018, pp. 1–6.

[22] P. Rosenfeld et al., “Dramsim2: A cycle accurate memory system
simulator,” IEEE Computer Architecture Letters, vol. 10, no. 1, pp. 16–
19, 2011.

[23] K. S et al., “Applications of Deep Neural Networks for Ultra Low Power
IoT,” in 2017 IEEE International Conference on Computer Design
(ICCD), Nov 2017, pp. 589–592.

[24] A. Samajdar et al., “Scale-sim: Systolic cnn accelerator simulator,” 2018.
[25] Y. S. Shao et al., “Simba: Scaling deep-learning inference with multi-

chip-module-based architecture,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. ACM,
2019, pp. 14–27.

[26] A. Vaswani et al., “Attention is all you need,” in Advances in Neural
Information Processing Systems, 2017, pp. 5998–6008.

[27] S. Venkataramani et al., “Scaledeep: A scalable compute architecture
for learning and evaluating deep networks,” ACM SIGARCH Computer
Architecture News, vol. 45, no. 2, pp. 13–26, 2017.

[28] P. N. Whatmough et al., “A 16nm 25mm2 SoC with a 54.5x Flexibility-
Efficiency Range from Dual-Core Arm Cortex-A53 to eFPGA and
Cache-Coherent Accelerators,” in 2019 Symposium on VLSI Circuits,
June 2019, pp. C34–C35.

[29] P. N. Whatmough et al., “FixyNN: Efficient Hardware for Mobile
Computer Vision via Transfer Learning,” in Proceedings of the 2nd
SysML Conference, Palo Alto, CA, USA, 2019.

[30] Y. Wu et al., “Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation,” arXiv preprint
arXiv:1609.08144, 2016.

[31] C. Zhang et al., “Caffeine: Towards uniformed representation and
acceleration for deep convolutional neural networks,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2018.

[32] Y. Zhu et al., “Euphrates: Algorithm-SoC Co-Design for Low-Power
Mobile Continuous Vision,” in Proc. of ISCA, 2018.

http://arxiv.org/abs/1704.04760

