
ImaGen: A General Framework for Generating Memory- and
Power-Efficient Image Processing Accelerators

Nisarg Ujjainkar

nujjaink@ur.rochester.edu

University of Rochester

Rochester, NY, USA

Jingwen Leng

Shanghai Jiaotong University

Shanghai, China

leng-jw@sjtu.edu.cn

Yuhao Zhu

University of Rochester

Rochester, NY, USA

yzhu@rochester.edu

ABSTRACT

Image processing algorithms are prime targets for hardware accel-

eration as they are commonly used in resource- and power-limited

applications. Today’s image processing accelerator designs make

rigid assumptions about the algorithm structures and/or on-chip

memory resources. As a result, they either have narrow applicability

or result in inefficient designs.

This paper presents a compiler framework that automatically

generates memory- and power-efficient image processing accel-

erators. We allow programmers to describe generic image pro-

cessing algorithms (in a domain specific language) and specify

on-chip memory structures available. Our framework then formu-

lates a constrained optimization problem that minimizes on-chip

memory usage while maintaining theoretical maximum through-

put. The key challenge we address is to analytically express the

throughput bottleneck, on-chip memory contention, to enable a

lightweight compilation. FPGA prototyping and ASIC synthesis

show that, compared to existing approaches, accelerators gener-

ated by our framework reduce the on-chip memory usage and/or

power consumption by double digits. ImaGen code is available at:

https://github.com/horizon-research/imagen.

CCS CONCEPTS

• Computer systems organization → Architectures; • Hard-

ware→ Power and energy.

KEYWORDS

Accelerator, Line Buffer, Image Processing, Constrained Optimiza-

tion, Synthesis, Compiler

ACM Reference Format:

Nisarg Ujjainkar, Jingwen Leng, and Yuhao Zhu. 2023. ImaGen: A General

Framework for Generating Memory- and Power-Efficient Image Processing

Accelerators. In Proceedings of the 50th Annual International Symposium on
Computer Architecture (ISCA ’23), June 17–21, 2023, Orlando, FL, USA. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3579371.3589076

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0095-8/23/06. . . $15.00

https://doi.org/10.1145/3579371.3589076

1 INTRODUCTION

Image processing has become ever more important with a plethora

of emerging visual computing domains such as Augmented/Virtual

Reality, computational photography, and smart cameras. These

application domains all present stringent resource and power con-

straints, leading to many research efforts in building specialized

accelerators for image processing [6, 12, 17, 30, 31, 35]. Manually

building accelerators, however, is not only time-consuming, error-

prone, but also relies heavily on empirical heuristics that do not

always deliver optimal designs.

A recent trend is automatically generating accelerators from

high-level algorithm descriptions [7, 16, 38]. Prior approaches to

generating image processing accelerators either have narrow ap-

plicability or yield inefficient designs — for two main reasons

(Sec. 3). First, they optimize for simple, single-consumer algorithms

where each producer stage has only one consumer. When facing

multiple-consumer algorithms such as unsharp filtering [16] and

denoising [7], they either have to artificially transform the multiple-

consumer algorithm to a single-consumer arrangement, which in-

creases the on-chip memory usage, or increase the total on-chip

memory accesses, which increases the power consumption.

Second, there is a large, algorithm-dependent trade-off space

between on-chip memory requirement and power consumption

that prior work fails to explore. This is because prior work assumes

one single memory structure and, critically, use the same memory

structure for all algorithms and for all stages in an algorithm. For

instance, FixyNN [38] could generate designs using only single-port

SRAMs, and SODA [7] could generate designs using only FIFOs

(dual-port SRAMs). The actual design space is much larger: given an

algorithm with N stages andM memory structures, there areMN

design points, each providing a unique power-vs-area trade-off.

This paper proposes a compiler framework that generatesmemory-

and power-efficient accelerators (in the form of synthesizable RTL)

for image processing (Sec. 4). Instead of artificially restricting al-

gorithm and/or on-chip memory structures, we allow specifying

generic algorithms and memory configurations (in terms of size and

number of ports). Given the algorithm and hardware specifications,

our compiler formulates a constrained optimization problem that,

while maintaining theoretically maximum throughput, minimizes

the on-chip memory usage and reduces total power consumption.

A key challenge we address is to generate accelerators that con-

sistently deliver theoretically maximum throughput (frame rate)

for every frame; after all, saving on-chip area and power consump-

tion is of little use when an image processing accelerator has a

low frame rate. The central difficulty is to analytically express the

throughput bottleneck, i.e., on-chip memory contention, which

https://github.com/horizon-research/imagen
https://doi.org/10.1145/3579371.3589076
https://doi.org/10.1145/3579371.3589076

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Nisarg Ujjainkar, Jingwen Leng, and Yuhao Zhu

involves set counting and is incompatible with numerical optimiza-

tions. We leverage the data access pattern of stencil operations to

transform set counting into equivalent, arithmetic operations that

are amenable to numerical optimizations (Sec. 5).

Building on top of the optimization formulation, we propose

to judiciously coalesce multiple lines in a line buffer into a single

memory block to further reduce on-chip memory consumption.

We show that this technique amounts to a static rewriting of the

algorithm Directed Acyclic Graph (DAG) and is naturally integrated

into our compiler framework (Sec. 6).

We show that our optimization problem is an Integer Linear

Programming (ILP), which has efficient solvers. As a result, our

compiler is lightweight; it generates synthesizable RTL for common

image processing algorithms inmilliseconds.We use our framework

to generate a wide variety of image processing accelerators, which

we evaluate using both an ASIC flow and a Xilinx Spartan-7 FPGA

board. Across different input sizes, accelerators generated by our

framework reduce on-chip memory usage and power by up to 86.0%

and 62.9%, respectively, when compared to designs generated by

prior methods, including Darkroom [16], SODA [7], FixyNN [38].

We use our framework to perform a Design Space Exploration

(DSE) that explores diverse memory configurations to generate

Pareto-optimal designs. We show that the area-vs-power trade-off

varies with algorithms, an algorithm-specific design space explo-

ration that our framework uniquely enables.

In summary, this paper makes the following contributions:

• We propose a compiler framework that generates memory-

and power-efficient image processing accelerators given

generic algorithm and on-chip memory specifications. The

accelerators guarantee theoretically maximum throughput

through constrained optimization.

• We propose a line-coalescing algorithm that coalesces multi-

ple line-buffer lines into one memory block to further reduce

on-chip memory usages.

• Accelerators generated by our compiler consume less on-

chip memory and power compared to those generated using

existing tools. Our compiler is integrated into a DSE process,

which reveals algorithmic-dependent area-vs-power trade-

offs that prior tools are unable to explore.

2 BACKGROUND

Image processing pipelines consist of computation stages that op-

erate on regular 2D pixel arrays. Each stage performs a stencil

operation, which operates on a window of input pixels to generate

an output pixel. The stencil window moves in a raster scan order.

An end-to-end algorithm usually cascades multiple stages. Each

stage generates an intermediate 2D image read by (potentially mul-

tiple) consumer(s). Common image processing algorithms include

in-camera image signal processing [16] and High Dynamic Range

imaging using burst photography [15].

Scope. Our goal is not a generic stencil accelerator that runs
multiple algorithms. Rather, we focus on accelerators that are spe-

cialized for a given algorithm. This is common in both 1) FPGA-

based acceleration systems, where the FPGA can be re-programmed

for a given algorithm, and 2) low-power ASICs as demonstrated

in Image Signal Processors in modern cameras (e.g., Arm Mali [3]

K2K1

K0 K1 K2LBK1LBK0

Line buffer

b1

b2

b3

3x3 Shift Register Array

c1c2c3c4c5c6c7c8

Ibuff Obuff

(a) Cycle t.

K2K1
b1

b2

b3

c1c2c3c4c5c6c7c8

(b) Cycle t+1.

K2K1
b1

b2

b3

c1c2c3c4c5c6c7c8

(c) Cycle t+2.

K2K1
b1

b2

b3

c1c2c3c4c5c6c7c8

(d) Cycle t+7.

Fig. 1: A line-buffered accelerator. Every stage has a dedi-

cated line buffer (and the associated shift register array) to

write to. We use the line buffer after stage K1 to illustrate

the line-buffering operations. The line buffer stores three-

pixel rows, each stored in a two-port SRAM. As the producer

writes the second element in b3, pixels in column c1 are

moved to the shift register array. After three cycles the shift

register array contains the data from a 3 × 3 stencil window

and K2 starts. WhenK1 finishes writing to b3, it writes to b1,
since pixels there will no longer be needed by the consumer.

and Qualcomm Spectra [4]), embedded computer vision proces-

sors [11, 24, 38, 40], and robotics accelerators [25, 32, 34], where

extreme efficiency requires algorithm-specific accelerators.

Image Processing Accelerators. Fig. 1 shows a typical image

processing accelerator using a simple pipeline as an example. Each

algorithm stage is mapped to a dedicated hardware stage. The input

and output stages (K0 and K2 here) interface with input/output

buffers that communicate with off-chip memory. As extensively

ImaGen: A General Framework for Generating Memory- and Power-Efficient Image Processing Accelerators ISCA ’23, June 17–21, 2023, Orlando, FL, USA

studied before, those buffers are usually doubled buffered with high

access bandwidth, and are not the focus of this paper.
Stages communicate intermediate data through another set of on-

chip buffers, which make up the majority of the on-chip memory

usage. In particular, each producer stage has a dedicated buffer

to write its intermediate data to; all its consumers read from that

buffer. This is consistent with all image processing accelerator

designs [5, 7, 16, 38].

Ideally, all the inter-stage data communication traffic should

be fulfilled entire on-chip; otherwise, off-chip memory accesses

would stall the pipeline, which requires complicated hardware logic

for dynamic scheduling, introduces non-deterministic frame rates,

compromises peak throughput, and consumes high power. A naive

approach is to buffer all the intermediate data between stages on-

chip. This comes with two downsides. First, the intermediate data

could be large in size and exceeds a typical on-chip memory capac-

ity. For instance, each 1080p image passed around between stages

consume 6 MB of data. Second, it artificially forces the consumer

to wait until the producer finishes generating an entire image.

Line Buffer. A common strategy to address these issues is to

use a special on-chip buffer structure called “line buffer”. The key

observation is that each pipeline stage, at any time, operates only on

data in a small, local window. Therefore, a consumer stage can start

as soon as the data in a stencil window is available, essentially con-

suming pixels incrementally as they are generated by the producer.

A pixel in the buffer can be over-written when it is no longer needed

by the consumer (i.e., the stencil window has gone completely past

the pixel), reducing the on-chip memory requirement.

Consider the producer-consumer pair K1 and K2 in Fig. 1, where

K2 operates on a 3×3 stencil window from the output ofK1 in every
cycle. To support this data communication pattern, the hardware

uses a line buffer that stores three rows of pixels generated by K1;
the line buffer is connected to a 3 × 3 shift register array, which

holds the data in a stencil window and is read by K2.
The producer starts writing from the first row, one pixel at a

cycle. As soon as the producer finishes producing two rows plus

one element (Fig. 1a), the consumer can move the first column of

pixels (c1 here) from the line buffer to the shift register array. In the

next cycle (Fig. 1b), as the producer writes to the third element of

b3, pixels in column c2 are moved to the shift register array. After

three cycles (Fig. 1c), the shift register array contains the data from

a stencil window, at which point K2 can start to produce its output.

OnceK1 finishes writing to b3, it will write to, instead of a new row,

the first row in the line buffer (b1), overwriting data in b1, because
pixels there are no longer needed by the consumer (Fig. 1d). As a

result, the line buffer has to store only three rows of pixels.

Implementation. In the actual hardware implementation of a

line buffer, one would use 3 separate SRAMs, each storing one row

of pixels. At any give cycle, all three SRAMs are being read from and

there is one SRAM that is also being written to. The SRAM being

written to will rotate. As a result, all the SRAMs must have at least

two ports in this example. Note that when an image row is larger

than SRAM block size, the row can be split into multiple SRAM

blocks without changing the operating principle of line buffers.

K0 K1K2

b1

b2

b3

c1c2c3c4c5c6c7c8

Fig. 2: Illustration of a line buffer with multiple consumers.

K0 is the producer who is writing to cell c4 in block b3.
K1 and K2 are consumers that are reading columns c3 and

c1 respectively. Each line is in an SRAM block. Assuming

the common setting where each SRAM has two ports, the

pipeline stalls since b3 has to serve three accesses.

Table 1: Priorworkmakes rigid assumptions about themem-

ory structures, which leads to sub-optimal designs, and/or

applies to only specific forms of algorithms.

Darkroom [16] FixyNN [38] SODA [7] Ours

On-chip memory

assumption

Dual port Single port

Dual port

(FIFO)

Generic

Algorithm

applicability

Single consumer Single consumer Generic Generic

3 MOTIVATION

Accelerator design decisions must be made according to the specific

algorithm pipeline and the memory resources available. Prior work

makes rigid assumptions about the algorithm structures and/or

memory resources available. As a result, they either have narrow

applicability or result in inefficient designs. We summarize prior

work in Tbl. 1 and elaborate next.

3.1 Algorithmic Limitations

The basic design in Sec. 2 assumes dual-port SRAMs and “single-

consumer” pipelines, where each producer has only one consumer.

Multiple-consumer pipelines such as unsharp mask [16] and de-

noise2D [7], where multiples consumers read the output from a

producer, challenge the simple design. With multiple consumers,

one line is accessed by multiple hardware stages. As a result, there

could be more accesses to an SRAM block than there are ports,

leading to pipeline stalls.

Consider the algorithm in Fig. 1, where K0 has two consumers

K1 and K2. The line buffer after K0 is simultaneously accessed

by three stages (the producer K0 and the two consumers). Fig. 2

shows a naive line buffer design, where K0 is writing to (b3, c4),
and K1 and K2 are reading columns c3 and c1, respectively. As a
result, three different stages are accessing the block b3. If there
are only two ports in each SRAM block, b3 will not be able to

handle all three accesses. Simply increasing the number of SRAM

ports is area-inefficient as SRAM area increases quadratically with

the number of ports [37]. Prior work attempts to support multi-

consumer pipelines in primarily two ways, each coming with its

own downsides, which we explain next.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Nisarg Ujjainkar, Jingwen Leng, and Yuhao Zhu

K0 K1 K2 K0
K1

K2
K11

Linearized AlgorithmOriginal Algorithm

Linearization

Fig. 3: An example of algorithm linearization. We need an

additional line buffer after K11. Note that even though K1
and K11 are both consumers of K0, they consume data in ex-

actly the same pattern and act effectively as one consumer.

K0

K1

(a) An FIFO implementation to support a single consumer (K1)

K0

K1

K2

(b) An FIFO implementation to support multiple consumers (K1 and K2).

Fig. 4: Line buffer implementation using FIFO. Figure (a)

shows the single consumer case and (b) shows a multiple

consumer case, assuming each memory block has two ports.

In the multiple consumer case, to accommodate both con-

sumers each FIFO is split into two smaller FIFOs. A FIFO is

usually implemented as a dual-port SRAM block. The line

being written to by the producer usually holds only a few

elements (2 here) and, thus, can be implemented as a shift

register using DFFs to save on-chip memory usage.

Algorithm linearization. One can transform an algorithm

that has multiple-consumer stages into another functionally identi-

cal algorithm with only single-consumer stages, a process dubbed

“linearization” by Darkroom [16].

We use Fig. 3 to illustrate linearization. To linearize the pipeline,

we add a dummy stage K11 between K0 and K2. Each cycle, K11
reads data from K0 in exactly the same pattern as K1 but performs

no computation on the data. Essentially, the sole purpose of K11 is
to simply relay data from K0 to K2. As a result, K2 reads data from
K11 instead of directly reading from K0. Critically, even though K0
still has two consumes K1 and K11, the two consumers read data

from K0 in exactly the same pattern every cycle, so they effectively

act as a single consumer without requiring additional memory port.

The downside of this approach is that the linearized algorithm

increases on-chip memory usage than the original algorithm, be-

cause each dummy stage requires a dedicated line buffer. In this

case, the additional line buffer associated with K11 buffers the same

data that K1 does and is redundant.

Splitting line buffer. Alternatively, one can split a line buffer

that has multiple consumers into several smaller line buffers, each

serving only one consumer. An implication of this approach is that

data from one line buffer must be transferred to another, which

requires each line buffer to be realized as a FIFO. This approach is

exemplified by SODA [7] and line-buffered designs from Xilinx [5].

Fig. 4a shows FIFO-based line buffer implementation when there

is only a single consumer. Usually a FIFO is implemented using a

dual-port SRAM/BRAM block. Therefore, every cycle there is one

read and one write access to every memory block. When two con-

sumers are trying to access the line buffer, each FIFO must be split

into two FIFOs, each in a separate memory block, to accommodate

both accesses; this is illustrated in Fig. 4b. Note that if a FIFO be-

comes very small (e.g., a few elements), which is typically the case

for the line that the producer is writing to, it can be implemented

as a shift register using DFFs to reduce memory usage.

The downside of FIFOs is high energy consumption, because the

nature of FIFO dictates that every cycle there would always be two
accesses to each SRAMblock, whereas in the classic implementation

only one of three lines have to serve two accesses; other lines have

only one access each cycle. In our FPGA measurement (see Sec. 7

for details), BRAMs with two accesses per cycle consume about

35% more power than BRAMs with only one access per cycle.

3.2 Hardware Limitations

A fundamental limitation of prior approaches is that they use the

same form of memory for all the algorithms and for all the line
buffers in an algorithm, e.g., dual-port SRAM in Darkroom [16] or

single-port SRAM in FixyNN [38]. The actual design space, how-

ever, is much larger. For an algorithm with N stages where a line

buffer hasM implementation options, there areMN
design points.

Navigating a large design space governed by memory resources is

especially important in ASIC designs, where, unlike FPGAs where

memory resources are fixed, one has the flexibility to customize

memories (e.g., size and ports) given area and/or power targets.

Critically, there exists a power-vs-area trade-off when navigating

such a large design space. For instance, increasing the number of

memory ports increases the per-SRAM area and power consump-

tion but also reduces the number of SRAM blocks needed. As we

will show in Sec. 8.5, the exact Pareto-optimal frontier varies across

algorithms, a design space exploration that is not possible with

existing approaches.

Finally, it is worth noting that prior approaches could not gener-

ate any hardware design at all when the available memory resource

does not meet their requirement. For instance, the FIFO approach

by SODA [7] assumes dual-port memories. It thus does not work

when only single-port memories are available, further highlighting

the need to consider arbitrary memory configurations, which our

framework offers.

4 FRAMEWORK OVERVIEW

Fig. 5 shows the overall workflow of our framework, which takes an

image processing pipeline described in a Domain Specific Language

(DSL) and the description of available memory resources (i.e., sizes

and number of ports) and generates synthesizable Verilog code.

Front End. Literature is rich with DSLs that express image

processing pipelines [16, 29], which is not the focus of this paper.
For simplicity, we use a DSL similar to Darkroom [16]. The code

ImaGen: A General Framework for Generating Memory- and Power-Efficient Image Processing Accelerators ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Compiler Framework

Front End

Optimizer

RTL Code Gen

Line Coalescing

Constraint
Formulation

ILP Solver

DAG

On-chip Memory
Specification

Algorithm
Description

Rewritten DAG

Constraints

Pipeline
Schedule

Line Buffer
Config.

RTL

D
es

ig
n

Sp
ac

e
Ex

pl
or

at
io

n

Fig. 5: Compiler framework, which generates synthesizable

Verilog code given an image processing algorithm and on-

chip memory specifications. The framework can be inte-

grated into a DSE tool to generate Pareto-optimal designs.

below shows the algorithm in Fig. 1. Each stage is defined inside

the im block. input and output denote input and output stages

of the pipeline, for which off-chip memory accesses are permitted.

The front-end parses an algorithm to a DAG as the intermediate

representation. Each DAG node is a pipeline stage, and each edge

connects a producer-consumer pair. The stencil window sizes are

encoded in DAG nodes.

input K0;
//K1 reads 3x3 window from K0

K1 = im(x,y)K0(x-1,y-1)+...+K0(x+1,y+1) end

//K2 reads 3x3 window from K1 and 2x2 window from K0

output K2 = im(x,y)K0(x,y)+...+K0(x+1,y+1)+

 K1(x-1,y-1)+...+K1(x+1,y+1) end

Optimizer. The core contribution of our work is the optimizer,

which takes a DAG and the memory resource specifications to

generate accelerator pipeline schedule and on-chip memory con-

figurations, which are then used in generating synthesizable RTL

code for by the code generator.

The optimizer forms a constrained optimization problem that

minimizes the on-chip memory usage (Sec. 5). Unlike conventional

line buffer synthesizers [7, 16, 38], the compiler exploits opportuni-

ties to coalesce image rows into the same buffer through a simple

DAG re-writing, further reducing on-chip memory usage (Sec. 6).

RTL Code Generation. Given the pipeline schedule and the

line buffer configuration, the code generator generates synthesiz-

able RTL. The generated code has compute units that execute the

stencil operations, memory blocks that implement line buffers, and

control logic to sequence the hardware.

It is worth noting that the code geeneration is largely a mechan-
ical translation of arithmetic operations in each pipeline stage to

RTL code and, thus, is not a contribution of this paper. In fact, any

Table 2: List of symbols used in our formulation. Subscripts

i, j,p, c are used in denoting pipeline stages; p and c, in

particular, denote a producer and consumer, respectively.

Blackboard-bold symbols N,C,A denote sets.

Symbols Meaning

N Total number of stages in the pipeline

LBi Size of the line buffer associated with stage i

Si Start cycle of a stage i

Ni Set of stages accessing the line buffer of stage i

SHi Stencil height of stage i1

Bl,t Total number of accesses to a line l at cycle t

P Number of SRAM ports

W Width of the input image to each stage
2

Cp Set of consumer stages of a producer stage p

Ai,t Set of lines stage i is accessing at cycle t3

Li,t The first line that a stage i is accessing at cycle t

existing HLS tool (e.g., Vivado HLS) can be used for code genera-

tion: one can use our optimizer to generate the optimal line buffer

configuration, which is then used in the HLS code to annotate the

memory sizes. To our best knowledge, today’s HLS tools such as

Vivado HLS require programmers to explicitly specify line buffer

sizes, which our optimizer automatically generates.

5 GENERATING LINE-BUFFERED PIPELINES

We first describe the intuition behind our general idea (Sec. 5.1),

followed by a rigorous optimization formulation (Sec. 5.2). We then

discuss how on-chip memory contention, the key to our optimiza-

tion formulation, is modeled (Sec. 5.3), followed by a technique to

eliminate redundant hardware constraints (Sec. 5.4). In the end, we

show that our formulation amounts of an ILP problem (Sec. 5.5).

5.1 General Idea and Intuition

Objective. Our goal is to minimize the total on-chip memory size

while maintaining the theoretically maximum throughput, which is

quantified by the number of pixels generated per cycle. The theoreti-

cally maximum throughput is fundamentally limited by the amount

of functional units the hardware can afford to have. Like virtually

all prior work [7, 16, 38], we assume that the theoretically maxi-

mum throughput is one pixel per cycle. Improving the throughput

simply amounts to increasing the compute resources, which is not
the focus of this paper. Note, however, that the one-pixel-per-cycle

assumption is reasonable for real-world applications. Assuming a

1
A consumer stage can access data frommultiple producers and, thus, can havemultiple

stencil heights. We omit the producer stage from the symbol for simplicity, but the

producer stage is evident in each context where hi appears.
2
Our current system, as is, can deal with stages without padding, in which case the

input image size is different across stages and is trivially calculated given the stencil

window size. For the simplicity of the exposition we assume padding and use the same

W in the paper.

3
Similar to SHi , Ai,t here is tied to a particular producer of i , which could have

multiple producers. The producer is omitted in the symbol for simplicity, but should

be evident given the context.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Nisarg Ujjainkar, Jingwen Leng, and Yuhao Zhu

100 MHz clock frequency, producing one pixel per cycle is equiva-

lent to providing a 50 frames per second (FPS) frame rate for 1080p
images, sufficient for real-time operations.

We emphasize that the accelerator must consistently deliver the

prescribed throughput across frames. It is unacceptable if some

frames are lower that others even if the average frame rate is desir-

able, because a varying frame rate presents a sluggish user experi-

ence. To ensure a consistent throughput, the accelerator pipeline

must not stall (once a pipeline starts it never stalls until all the input

pixels finish), which translates to meeting three requirements:

R1 Data dependency (causality): any pixel, before can be read by a
consumer, must already be generated by the producer and is available
in the line buffer ;

R2 No intermediate off-chip memory access: a pixel is evicted from
a line buffer only when it is no longer needed by any of its consumers
(to avoid DRAM accesses later);

R3 No on-chip memory access stall: at any cycle, the number of ac-
cesses to any on-chip memory block must be no more than the number
of ports.

Solution Intuition. Intuitively, a generic solution to meeting

bothmemory requirements is to delay the start of certain consumers.

For instance, when two consumers of the same producer are allowed

to start at the same cycle, each memory block has to serve two

simultaneous read accesses. Now if one consumer is delayed byW
cycles whereW is the width of an image, the two consumers will be

reading from two different memory blocks (image rows), avoiding

memory-port contention. Delaying the start of a consumer also

providing more time for the producer to generate intermediate data.

Delaying consumers, however, increases the line buffer size,

because an element is evicted from the line buffer only when it is no

longer needed by any consumer; delaying a consumer would mean

that data will have to stay in the line buffer for longer, increasing

the line buffer size. Thus, the central challenge is how to optimally

shift: how to schedule different pipeline stages to minimize total

line buffer size while meeting the data and hardware constraints.

5.2 Optimization Formulation

Formally, the job of our hardware generator can be described in a

constrained optimization formulation:

min

ϕ
LB(ϕ) =

N−1∑
i=0

LBi (ϕ),

where ϕ = {Si }, i ∈ [0, 1, · · · ,N − 1] (1a)

s .t . ∀(p, c) Sc − Sp ≥ (SHc − 1) ×W + 1, (1b)

∀l∀t Bl,t (ϕ) ≤ P . (1c)

Optimization Objective. Equ. 1a states the optimization objec-

tive. ϕ, the schedule, denotes the collection of the start cycles of all

the stages {Si } (i is an integer between 0 and N − 1, where N is the

number of pipeline stages). LB(ϕ) denotes the total line buffer size,
which is the sum of the N individual line buffer sizes. Recall from

Fig. 1 that each stage is associated with a line buffer, so the number

of line buffers is the same as the number of pipeline stages, N .

The size of each line buffer is dictated by the start cycles of

the producer stage and the consumer stages. For instance, given a

producer-consumer pair (p, c) in the pipeline and their start cycles

Sp and Sc , there is a (Sc −Sp)-cycle delay between the consumer and

the producer. According to R2 above, the line buffer must have

the ability to buffer at least (Sc − Sp) pixels before the consumer

starts, because each pixel can be removed from the line buffer only

after it has been consumed.

Considering that there could be multiple consumers of the same

producer and any element can be removed from the line buffer only

after the last consumer finishes reading it, the line buffer size of a

particular stage p is:

LBp =

⌈
max

{
Sc − Sp

}
W

⌉
×W , ∀c ∈ Cp , (2)

where c is one of p’s consumers, denoted by Cp . The ceiling opera-

tion is to enforce that a line buffer always stores multiples of a line

and, thus, the actual line buffer size must be multiples ofW , where

W is the image width.

Data Dependency. Equ. 1b states the data dependency require-

ment R1 : an element must be in the line buffer before it can be read

by its consumer(s). Due to the nature of stencil computations, the

data a consumer reads might span multiple image rows. Therefore,

a consumer must wait before the line buffer has certain number

of pixels. For instance, if we have a consumer whose stencil size

is 3 × 3, the consumer must wait until the line buffer contains two

full rows of pixels and one pixel from the third row (see Fig. 1a).

Generally, for any producer-consumer pair (p, c), the consumer

start cycle must be delayed (SHc − 1) ×W + 1 cycles after the

producer has started, where SHc is the height of the stencil window

read by the consumer.

Equ. 1c states the on-chip memory constraint R3 , which is far

more complicated to express, which we discuss next.

5.3 Modeling On-chip Memory Contention

Equ. 1c states that Bl,t , the number of accesses to any line l in the

line buffer at any given cycle t , must be no more than the number

of ports (P) of the SRAM block that contains line l4. The key is to

mathematically express Bl,t . To that end, we first express the set
of lines that a stage accesses at each cycle.

Consider a pipeline stage i accessing a line buffer at cycle t . The
first line accessed by stage i at t , denoted by Li,t , is:

Li,t =

⌈
t − Si
W

⌉
. (3)

Thus, the Access Set of stage i , i.e., the set of lines that stage i
accesses, at cycle t is5:

Ai,t =
{
Li,t , Li,t + 1, · · · , Li,t + SHi − 1

}
. (4)

To satisfy the hardware constraint, no line can belong to the

intersection of more than P sets. This is equivalent to saying that

4
In theory P should be represented as Pl to indicate that each SRAM could have a

different number of ports. For simplicity purpose we assume that all the SRAMs in the

hardware have the same number of ports. Our formulation, nevertheless, can be easily

extended to support different port counts.

5
A subtlety here is that the stencil height for the stage that writes to the line buffer is

always 1.

ImaGen: A General Framework for Generating Memory- and Power-Efficient Image Processing Accelerators ISCA ’23, June 17–21, 2023, Orlando, FL, USA

K0 K1

b1

b2

b3

LBK0

LBK1 K2

Fig. 6: Example illustrating how to calculate Access Sets. At

the current cycle t shown in the figure, K0’s Access Set is

A0,t=(b3), K1’s Access Set is A1,t=(b1,b2,b3), and K2’s Access
Set is A2,t=(b1,b2). Assuming each line stores in a dual-port

SRAM, the hardware constraint would beA0,t∩A1,t∩A2,t = ∅

(Equ. 6), which after constraint pruning is reduced to A0,t ∩

A2,t = ∅ (Sec. 5.4).

the intersection of any (P + 1)-combination is always an empty set.

Hence, the hardware constraint at each stage i can be expressed

mathematically as:

∀t ∀T ∈

(
Ni

P + 1

) ⋂
i ∈T

Ai,t = ∅, (5)

where

(Ni
P+1

)
denotes the set of all (P +1)-combinations ofNi , which

itself is the set of all the stages that access the line buffer of stage i .
To concretize Equ. 5, consider the example in Fig. 6, where the

line buffer LBK0 is accessed by one producer (K0) and two con-

sumers (K1 and K2). Assuming the SRAM has two ports, a common

configuration in SRAM/BRAM blocks, the hardware constraint for

LBK0 is expressed as:

∀t A0,t ∩ A1,t ∩ A2,t = ∅ (6)

whereA0,t ,A1,t , andA2,t are the Access Sets of stages K0, K1, and
K2, respectively, at cycle t .

To enforce this constraint, one would enforce any of the follow-

ing three constraints, the intuition being if the intersection of any

two sets is empty the intersection of all three sets is necessarily

empty:

∀t A0,t ∩ A1,t = ∅, (7a)

∀t A0,t ∩ A2,t = ∅, (7b)

∀t A1,t ∩ A2,t = ∅. (7c)

Equ. 7a – Equ. 7c involve calculating set intersections (or, equiv-

alently, counting), not amenable to usual numerical optimizations.

We must transform them to equivalent numerical expressions.

Without losing generality, consider the constraint ∀t Ai,t ∩

Aj,t = ∅. Enforcing it is equivalent to enforcing that the last line

written by si (at any cycle t) must be above the first line read by sj .
That is:

∀t Li,t + SHi − 1 < Lj,t , (8)

which, after applying Equ. 3, becomes:

∀t
⌈
t − Si
W

⌉
+ SHi − 1 <

⌈
t − Sj

W

⌉
. (9)

Equ. 9 depends on t , which does not have an upper bound. There-
fore, t must be eliminated for the constraint to be usable. Our strat-

egy is to (somehow) remove the ceiling operator (⌈ ⌉), which would

allow t to be canceled out from both sides of Equ. 9. To that end,

observe that:

x ≤ ⌈x⌉ < x + 1, (10)

from which we can derive:

⌈
t − Si
W

⌉
<

(
t − Si
W

)
+ 1, and(

t − Sj

W

)
≤

⌈
t − Sj

W

⌉
. (11)

Combining Equ. 11 with Equ. 9, we can transform Equ. 9 into

the following constraint:

∀t
(
t − Si
W

)
+ 1 + SHi − 1 ≤

(
t − Sj

W

)
≡ Si − Sj ≥W × SHi . (12)

Equ. 12 is now independent of t . Note that Equ. 12 is a stricter
constraint than Equ. 9

6
, which means the solutions obtained with

Equ. 12 is a subset of those obtained with Equ. 9, sacrificing the

solution optimality. The desirable trade-off, however, is that the

constraint is independent of t . Equ. 12 is then applied to re-write

Equ. 7a, Equ. 7b, and Equ. 7c.

5.4 Constraint Pruning

One potential issue is that the constraints in Equ. 7a, Equ. 7b, and

Equ. 7c are to be “OR-ed”; that is, only one of the three constraints

needs to be satisfied. Normally, this would require us to formulate

three different sub-optimization problems, each of which considers

one of the constraints individually. When a pipeline has multiple

stages, each of which has constraints that are to be “OR-ed”, the

total number of sub-problems grows combinatorially.

To reduce the optimization time, we observe that constraints

in Equ. 7a, Equ. 7b, and Equ. 7c are not mutually exclusive, which

allows us to prune some of them. We use the example in Fig. 6 to

provide the intuition of constraint pruning, and then discuss how

it is extended to general cases.

An Example. Observe that the constraint in Equ. 7b is more

relaxed than that of Equ. 7a and Equ. 7c. That is, if Equ. 7a (or

Equ. 7c) holds, Equ. 7b necessarily holds:

∀t A0,t ∩ A1,t = ∅ =⇒ ∀t A0,t ∩ A2,t = ∅, (13a)

∀t A1,t ∩ A2,t = ∅ =⇒ ∀t A0,t ∩ A2,t = ∅ (13b)

where A =⇒ B reads “A implies B.”
Intuitively, Equ. 13a holds because stage K2 data-depends on

stage K1, which implies that K2 must start after K1. Therefore, at
any time the first line K2 writes to must be below the first line K1
writes to (Equ. 14a), which in turn must be below the last line K0
writes to (Equ. 14b) given ∀t A0,t ∩A1,t = ∅. Therefore, transitivity

dictates that the first line K2 writes to is below the last line K0

6
The proof is a simple application of the transitivity of the “less than” (<) relation,
which we omit here due to space limit.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Nisarg Ujjainkar, Jingwen Leng, and Yuhao Zhu

K2K1
0,0
1,0
2,0

b1
b2
b3

(a) Without line coalescing.

K1
0,01,0

2,0

K22 K21

K21

K22
b1

b2

(b) With line coalescing.

Fig. 7: Illustration of line coalescing optimization. Figure (a) shows the implementation with line combination and (b) shows

that with line combination, assuming each memory block has two ports. In line combination, we place two consecutive lines

in the same memory block. Effectively, the consumer stage K2 in the DAG is replaced with two “virtual” stages, K21 and K22,
each of which has a stencil height of 2 and 1, respectively.

writes to (Equ. 14c), hence ∀t A0,t ∩ A2,t = ∅.

First(A2,t) > First(A1,t), (14a)

First(A1,t) > Last(A0,t) (14b)

=⇒ First(A2,t) > Last(A0,t) (14c)

The validity of Equ. 13b can be similarly reasoned about using

the fact that K1 data-depends on K0.
In general, given two constraints A and B that are to be “OR-

ed”, if A is more relaxed than B, it is safe to eliminate B without

sacrificing optimality, because any solution that satisfies B must

also satisfy A. Therefore, in the example above we could eliminate

constraints in Equ. 7a and Equ. 7c.

Generalization. The example above shows that data depen-

dency is key in eliminating redundant constraints. In particular,

data dependencies allow us to form partial orders ≼ between stages.

If there is a path in the DAG from stage i to stage j, i.e., stage j
(directly or indirectly) depends on stage i , we have a partial order
i ≼ j. Reflectivity holds for partial order relation: i ≼ i . We have

the following theorem.

Theorem. Given two generic constraints C1 and C2:

C1 : ∀t Ax,t ∩ Ay,t = ∅ (15)

C2 : ∀t Az,t ∩ Aw,t = ∅ (16)

C1 is more relaxed than C2 (i.e., C2 implies C1) if x ≼ z,w ≼ y, and
SHx ≤ SHz .

Proof.x ≼ z leads to Equ. 17a, which combinedwith SHx ≤ SHz
gives Equ. 17b;w ≼ y gives Equ. 17c;C2 gives Equ. 17d; transitivity

thus yields Equ. 17e, which leads to C1. Thus, C2 implies C1 and

can be eliminated given C1.

First(Ax,t) < First(Az,t), (17a)

Last(Ax,t) < Last(Az,t), (17b)

First(Aw,t) < First(Ay,t), (17c)

Last(Az,t) < First(Aw,t), (17d)

=⇒ Last(Ax,t) < First(Ay,t) (17e)

The theorem is a pruning rule: we examine each pair of con-

straints and eliminate the stricter one, if it exists, using the pruning

rule. Note that given two constraints it is possible that one can not
make a judgment as to which is more relax/stricter, because there

might not always be a partial order between two stages in a DAG.

5.5 Problem Structure and Solver

The optimization problem we formulate is an Integer Linear Pro-

gramming problem: the optimization variables are the start cycles

of each stage—all integers; the objective function (Equ. 1a) and the

constraints (Equ. 1b and Equ. 12) are all linear. Note that the ceil-

ing operations in the sub-terms of the objective function (Equ. 2)

can be removed without compromising the solution optimality,

because minimizing f (⌈x⌉) is equivalent to minimizing f (x) given
f is monotonically increasingly

7
. The ILP formulation let us use

well-established solvers to quickly derive optimal line buffer de-

signs.

6 LINE-COALESCING OPTIMIZATION

So far, we have assumed that each memory (e.g., SRAM/BRAM)

block contains one line. It is possible, however, that the capacity of

a memory block is large enough to hold multiple lines, in which

case combining multiple lines into one single memory block would

further reduce the memory requirement. The challenge is how to

generate the line-buffered pipeline under line coalescing. We show

that our optimization formulation above can be naturally extended

to support optimal line coalescing.

Consider the example in Fig. 7, where there are two stages, a

producerK1 and a consumerK2; the consumer operates on a stencil

height of 3. Assume for now that each memory block has two ports.

Fig. 7a and Fig. 7b show the line buffer implementation without and

with line coalescing, respectively. Since each memory block has two

ports, we could coalesce up to two lines into one memory block,

which is shown in Fig. 7b. The three elements that K2 accesses

are now spread across two, rather than three, memory blocks, as

elements (0, 0) and (1, 0) are in the same memory block.

To express the line-coalesced pipeline to the optimizer, our ob-

servation is that line coalescing is equivalent to a transformation

of the DAG, where the original stage K2 is replaced with two new

“virtual” stages K21 and K22. In this example, b1 is accessed simul-

taneously by the two virtual stages, whereas b2 is accessed by only

K21 (along with the producer K1). Thus, the virtual stage K21 now
has an effective stencil height of 2, and the virtual stage K22 has an

7
More rigorously, we have: argmin f (x) ∈ argmin f (⌈x ⌉). That is, the solution that

minimizes f (x) is necessarily a solution that minimizes f (⌈x ⌉) for any monotonically

increasing function f . To prove this, let x0 = argmin f (x); then ∀x f (x) ≥ f (x0),
so ∀x x ≥ x0 (since f is monotonically increasing). Thus, ∀x ⌈x ⌉ ≥ ⌈x0 ⌉, which
means ∀x f (⌈x ⌉) ≥ f (⌈x0 ⌉), i.e., x0 ∈ argmin f (⌈x ⌉).

ImaGen: A General Framework for Generating Memory- and Power-Efficient Image Processing Accelerators ISCA ’23, June 17–21, 2023, Orlando, FL, USA

effective stencil height of 1. Both virtual stages inherit the producer

and consumers of the original stage K2.
We can generalize line coalescing to memory blocks with P ports,

where we can coalesce at most P lines in one block and replace the

original consumer stage with P virtual stages. This transformation

can be done offline, since it depends only on the algorithm DAG and

stencil sizes. Algo. 1 describes the general transformation algorithm.

Algorithm 1: Line coalescing algorithm through DAG

rewriting. Notation: P is the number of ports, SHi is the

stencil height read by stage i .

Data: The original DAG

Result: The transformed DAG

i = input node of the original DAG;

while i is not an empty node do
if i is not the input node then

K = min(P , SHi);

split i into K virtual stages;

for each virtual stage v split from i do
set v’s producer to i’s producer;

set v’s consumers to i’s consumers;

end

end

i = next node through breath-first search;

end

return the new DAG;

From the optimizer’s perspective, the transformed DAG is noth-

ing more than another pipeline except all the virtual stages be-

longing to the same physical stage must share the same start cycle,

because logically they must act synchronously. Using the optimiza-

tion formulation in Equ. 1, the optimizer generates the optimal

start cycles for every stage in the new DAG. One special care the

code generator takes is that virtual stages that belong to the same

physical stage read from a different, but offline-determined offset.

For instance in Fig. 7, K22 will always read from an offset ofW
(image width) from b1, where K21 and K1 have an offset of 0.

Remarks. We note that the line coalescing optimization is

fundamentally incompatible with the FIFO-based approach [7] or

designs that assume single-port memories [38]—simply observe the

data access behaviors in Fig. 7b.

Line coalescing benefits both an FPGA and an ASIC backend.

On FPGAs, BRAM block sizes are fixed on any particular board;

forcing each block to hold only one line could result in internal

fragmentation of BRAM blocks. ASICs designers could customize

the memory for an algorithm; they could properly size the memory

blocks to permit line coalescing to reduce the overall area (Sec. 8.5).

7 EXPERIMENTAL METHODOLOGY

Compiler Implementation. We implement our compiler in Python

with about 1,500 lines of code. We use Google’s optimization library

“or-tools” [2] for solving the ILP problem.

Hardware Platform. We evaluate both an ASIC flow and an

FPGA flow.We use a Xilinx Spartan-7 FPGA board (xa7s100fgga488-

2I) for evaluation. The board has 120 BRAM blocks and each block

Table 3: Evaluation algorithms. -s or -m indicates if an al-

gorithm has only single-consumer stages or has at least

one multiple-consumer stage, respectively. The last column

shows the number of multiple-consumer (MC) stages.

Algorithm Description # Stages # of MC Stages

Canny-s

Canny edge detection

9 0

Canny-m 10 1

Harris-s

Harris corner detection

7 0

Harris-m 7 1

Unsharp-m Unsharp masking 5 1

Xcorr-m Cross correlation 3 1

Denoise-m Image denoise 5 2

is of size 36 Kbits. Each block can be configured as either a single-

port or a dual-port memory block. We assume SRAM blocks are

available at 64 KB for line buffers in the ASIC backend. We evaluate

two image resolutions: 320p (480 × 320) and 1080p (1920 × 1080).

The SRAM and BRAM block sizes make sure line coalescing applies

to 320p but not 1080p, since the block size is not large enough to

hold multiple rows in an 1080p image.

For the FPGA backend the generated Verilog code goes through

the FPGA synthesis and layout flow using Vivado Design Suite

2021.1. We use Vivado’s resource monitor to report the BRAM us-

age. The FPGA communicates with the host through AXI DMA.

Through DMA, we first load the input image to the BRAM from

the host memory. The frame rate reported (1 pixel per cycle) is

the throughput after the accelerator has started, i.e., steady-state

throughput. For each design, we perform post-implementation func-

tional simulation to obtain the switching activity, which is then

used by Vivado’s power analysis tool to obtain power consumption.

For the ASIC backendwe build a cycle-level simulator to simulate

the line-buffered pipelines. We use the open-source memory com-

piler OpenRAM[14] with FreePDK45 [1] to estimate the per-access

SRAM power, which is then combined with the number of accesses

given by our simulator to estimate the total memory power.

Since the goal of this paper is to reduce on-chip memory size

and energy, we primarily report results related to the on-chip mem-

ory but will also show savings for the entire accelerator. Note

that the memory area dominates the accelerator area, so the mem-

ory area/power savings are expected to translate to similar total

area/power savings. In the ASIC backend, the SRAM area con-

tributes to, on average, 79.8% and 92.7% of the total accelerator area

across all algorithms on 320p and 1080p images, respectively. The

reason memory area dominates is that there are very few PEs in

line-buffered accelerators: to execute a 3×3 convolution, regardless

of the input, we require only 3 × 3 MAC units (see Fig. 1). The total

area, on average, is 0.65mm2
and 1.84mm2

, for the two resolutions,

respectively, and the total average power is 72.9mW and 98.3mW ,

for the two resolutions, respectively.

Algorithms. Weevaluate common image processing algorithms

listed in Tbl. 3, where each algorithm either ends with an “-s”, indi-
cating it has only single-consumer stages or with an “-m”, indicating

it has at least one multiple-consumer stage. Both Canny and Harris
has two versions depending on the implementation details.

Baselines and Variants. We compare with three common line-

buffered image processing accelerators.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Nisarg Ujjainkar, Jingwen Leng, and Yuhao Zhu

• FixyNN [38], which is based on the same design described

in Sec. 2 but uses only single-port SRAMs.

• SODA [7], which uses FIFO to implement line buffers and

splits FIFOs to support multiple-consumer stages (Sec. 3).

The FIFOs are implemented using dual-port SRAMs (rather

than shift registers).

• Darkroom [16], which linearizesmultiple-consumer pipelines

(Sec. 3) and uses two-port SRAMs.

We consider two variants of our framework: Ours and Ours+LC.

The latter adds line-coalescing to the former.

8 EVALUATION RESULTS

We first show that our compiler maintains the theoretical maximum

throughput (Sec. 8.1) and is fast to execute (Sec. 8.2). We then

show that the hardware generated by our framework consumes

less memory resource (Sec. 8.3) and lower power (Sec. 8.4) compared

to existing methods. Finally, we show that our framework can help

customize memory modules for individual algorithms (Sec. 8.5).

8.1 Throughput and Latency

Across all algorithms, hardware generated by our compiler main-

tains a constant throughput of one pixel per cycle, the target laid

out and justified in Sec. 5.1. Ours increases the average end-to-end

latency by only 0.01% over Darkroom and SODA. Thus, the memory

and power savings shown later come with no speed degradation.

8.2 Compilation Speed

On average, our compiler takes 14.5 ms to generate the Verilog

code across all the algorithms. For multiple-consumer algorithms,

constraint pruning (Sec. 5.4) speeds up the compilation time by

4× on average. This is achieved by pruning redundant constraints

that would have led to many sub-optimization problems. Compared

to Darkroom’s linearization compiler, our compiler, on an aver-

age, compiles 37.4% faster. This is because linearization adds adds

dummy stages, which adds more constraints to the ILP.

Scalability. We also sweep across different pipelines of varying

length from 9 to 60. In each algorithm a third of the stages had

multiple consumers. It took 8.7 ms for our compiler to compile 9

stage pipeline and 8.1 s to compile the 60 stage pipeline, showing

the scalability of our compiler.

8.3 On-Chip Memory Requirement Reduction

Accelerators generated by our framework reduce the on-chip mem-

ory size significantly. Fig. 8a compares the SRAM size of the hard-

ware generated by our framework and the three baselines on 320p
images. Averaging over all the algorithms, Ours reduces the SRAM

size by 28.0% and 10.2% compared to FixyNN and Darkroom, respec-

tively. After the line-coalescing optimization is applied, the SRAM

savings over the baselines increase to 86.0% and 56.8%, respectively.

The SRAM saving onmultiple-consumer algorithms is noticeably

higher than that on single-consumer algorithms, highlighting the

benefits of our framework on the former. On multiple-consumer al-

gorithms, algorithm linearization adds dummy stages and increases

line buffer size. FixyNN always has a higher SRAM requirement

than Ours, even on single-consumer algorithms, because it uses

only single-port memory blocks, where no two stages are allowed

Canny-s
Canny-m Harris-s

Harris-m
Unsharp-m Xcorr-m

Denoise-m Average
0

100
200
300
400
500
600

SR
AM

 S
iz

e
(K

B)

FixyNN Darkroom SODA Ours Ours+LC

(a) SRAM size.

Canny-s
Canny-m Harris-s

Harris-m
Unsharp-m Xcorr-m

Denoise-mAverage
0

20
40
60
80

100
120

Po
w

er
 (m

W
)

FixyNN Darkroom SODA Ours Ours+LC

(b) Power consumption.

Fig. 8: SRAM and power comparison on 320p images.

Canny-s
Canny-m Harris-s

Harris-m
Unsharp-mXcorr-m

Denoise-mAverage
0

200
400
600
800

1000
1200

SR
AM

 S
iz

e
(K

B)

FixyNN Darkroom SODA Ours

(a) SRAM size.

Canny-s
Canny-m Harris-s

Harris-m
Unsharp-m Xcorr-m

Denoise-mAverage
0

50

100

150

200

Po
w

er
 (m

W
)

FixyNN Darkroom SODA Ours

(b) Power consumption.

Fig. 9: SRAM and power consumption comparison on 1080p
images. Note that Ours+LC is not shown, since the SRAM

size is not large enough to hold more than one lines.

to overlap. The SRAM saving is particularly significant on Xcorr-m.

This is because when linearizing Xcorr-m, one of the stages that

are replicated operates on a tall stencil window (18×1); replicating

that stage adds a lot of additional SRAM blocks.

The SRAM requirement of Ours is 31.0% higher than SODA,

because SODA, being a FIFO-based approach, is able to implement

the last line in the line buffer (the line being written to by the

producer) as DFFs (Fig. 4a). With line coalescing, Ours+LC reduces

the SRAM requirement by 28.5% compared to SODA.

ImaGen: A General Framework for Generating Memory- and Power-Efficient Image Processing Accelerators ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Fig. 9a shows that the SRAM saving trend on 1080p inputs is

similar to that on 320p inputs, except that the line coalescing op-

timization could not be applied to 1080p images, since the SRAM

block size is not large enough to hold more than one line, as dis-

cussed in Sec. 7.

Accelerator Results. Memory area dominates the accelerator

area, as discussed in Sec. 7. Thus, the memory size saving translates

to similar total accelerator area saving. For instance, compared to

FixyNN and Darkroom on 320p images, Ours+LC saving the total

area by 51.2% and 41.9%, respectively. The savings are 27.9% and

12.9% on 1080p images.

FPGA Results. Due to the space limit we summarize the main

results from the FPGA implementation. On 1080p images, Ours

reduces the BRAM size by 28.1% and 10.2% compared to FixyNN and

Darkroom, respectively, and increase the BRAMusage by 22.8% over

SODA, for the same reason described above. On our FPGA, Ours

uses 37.5% of the BRAM blocks as opposed to 41.8% by Darkroom.

Multiple Algorithms. Our goal is not a generic stencil acceler-
ator that runs multiple algorithms. Rather, we focus on accelerators

that are specialized for a given algorithm. Nevertheless, by reducing

memory usage our compiler can also help generic stencil acceler-

ators that has one single memory system — by accommodating

more algorithms simultaneously. For instance, on our FPGA with

120 BRAM blocks, FixyNN and Darkroom could not simultane-

ously execute all six algorithms even in the 320p resolution because

of the BRAM constraint. With Ours+LC, however, the FPGA can

accommodate all six algorithms using only 84 BRAM blocks.

8.4 Power Consumption Reduction

We also generate accelerators that consume lower memory power

compared to all baselines. Fig. 8b compares the power consumption

on 320p images. On average, Ours consumes 7.8%, 13.8%, and 56.0%

less power than FixyNN, Darkroom, and SODA respectively. Line

coalescing does not change the power by much, since the total

memory accesses remain roughly the same. The power savings

over Darkroom and FixyNN come from the SRAM size reduction.

For instance, while FixyNN, which uses only single-port memories,

has lower per-access power, using single-port memories results in

more SRAMs, increasing the total power.

It is interesting to observe that Ours has lower power compared

to SODA even though Ours require more SRAM arrays than SODA

(Fig. 8a). This is because SODA uses FIFOs, which have to serve two

accesses every cycle. In our design, all but one SRAM array serve

only one access per cycle, leading to an overall power reduction. The

power saving of Ours+LC over SODA comes from both reducing

the SRAM requirement and avoiding power-hungry FIFOs.

Fig. 9b compares the power consumption using 1080p images.

Ours consumes 7.8%, 13.8%, and 56.0% less power than FixyNN,

Darkroom, and SODA, respectively. Again, even though Ours uses

more SRAM than SODA, it has lower power consumption because

it avoids power-hungry FIFOs.

Accelerator Results. Memory power savings translate to simi-

lar accelerator-level savings. On 320p images Ours consumes 11.7%

and 15.2% less power compared to Darkroom and SODA, respec-

tively; on 1080p images the savings are 11.9% and 18.3%.

0.56 0.59 0.62 0.64
Area (mm2)

21.67

28.02

34.37

40.72

Po
we

r (
m

W
)

p1
p2

p3

p4

(a) Canny-m.

0.35 0.39 0.43 0.46
Area (mm2)

15.17

19.11

23.05

26.99

Po
we

r (
m

W
)

p1

p2

(b) Denoise-m.

Fig. 10: Representative power-vs-area trade-offs under 320p
for Canny-m and Denoise-m. For each algorithm, we sweep

thememory configuration for each stage and generate a cor-

responding optimal design. Each stage is allowed to use ei-

ther double-port memory (DP) or DP with line coalescing

(DPLC). The Pareto-optimal designs vary with algorithms.

FPGA Results. The power saving trend on the FPGA is similar.

On 1080p inputs, Ours consumes 19.7%, 5.8%, and 17.7% less power

than FixyNN, Darkroom, and SODA, respectively. The FPGA power

saving is lower, because FPGAs consume non-trivial static power.

8.5 Design Space Exploration

Evaluation so far assumes that one type of line buffer is used for

all the stages in all algorithms, which is the only option in prior

work [7, 16, 38]. Since our framework permits specifying arbitrary

memory configurations, it can be used (by ASIC designers) to create

custom memory modules to explore the power-vs-area trade-off in

an algorithm-specific manner. Specifically, we allow each line buffer

in an algorithm to be implemented as either a double-port memory

(DP) or DP with line coalescing (DPLC). For each algorithm, we

then sweep all the possiblememory configuration combinations and

generate the corresponding optimal design for each combination.

For example, if there are four stages in an algorithm, we would end

up with 16 different designs.

We observe that the Pareto-optimal designs vary with algorithm.

Using 320p as an example, Fig. 10a shows the power-vs-area com-

parison for Canny-m, where there are three Pareto-optimal designs.

P1 uses the DP configuration for all the stages; in P2, one stage

uses the DPLC configuration, and in P3 two stages use the DPLC

configuration. In contrast, Fig. 10b shows another trade-off pattern

possessed by Denoise-m, where there are only two Pareto optimal

configurations. In this case, P1 uses only DP for all the stages and

P2 uses only DPLC for all the stages.

We particularly note that forCanny-m the design that uses DPLC

for all stages is P4 in Fig. 10a, which is far worse than the three

Pareto-optimal designs of Canny-m. DPLC reduces the number

of SRAM arrays and the total area, but the per access power also

increases. Thus, the total power depends on the total memory ac-

cesses, which is necessarily algorithm-specific, an exploration that

is uniquely enabled by our tool.

9 RELATEDWORK

Agile accelerator design has received considerable attention. A

recent theme is languages that close the gap between high-level

algorithm semantics and hardware design [20, 21, 26, 33]. These

languages allow high-level descriptions of an algorithm and expose

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Nisarg Ujjainkar, Jingwen Leng, and Yuhao Zhu

the hardware as a set of primitive components. Our work focuses

on one particular kind of algorithm domain (image processing),

and one particular aspect of hardware components: line-buffered

on-chip memory.

Dahlia [26] uses a type system to reject programs that could

have unpredictable behaviors in hardware — memory contention

being one of them. Our work encodes memory-port contention as

a constraint and generates (resource-optimal) hardware that avoids

contention. Aetherling [8] is a DSL that compiles high-level im-

age processing algorithms to hardware with the focus of exploring

resource-vs-throughput trade-offs. It does not guarantee minimiz-

ingmemory resource consumption, which we do. HeteroHalide [22]

and HeteroCL [21] synthesize hardware accelerators and rely on

SODA [7] to generate the on-chip memory system. HalideHLS [28]

generates accelerators for image processing algorithms, but rely

on the user to optimize the on-chip memory. DSAGEN [36] anno-

tates algorithms using pragmas and automatically searches a large

architecture design space for a range of algorithms.

An orthogonal effort is mapping/scheduling an algorithm onto

a fixed hardware substrate. Prior work uses constrained optimiza-

tion methods [11, 19, 27], targeting mostly deep learing workloads.

They leverage the fact that the accelerator design space can usually

be parameterized and behaviors of algorithms of interest can be

mechanically modeled, two traits that our work leverages, too.

10 CONCLUSION AND FUTUREWORK

This paper presents a framework that automatically synthesizes

accelerators for image processing. The key is an optimization for-

mulation that permits expressing memory contention as a generic

constraint. The explicit memory-constrained optimization allows us

to avoid manual heuristics and customize designs in an application-

specific way. We show that accelerators generated by our frame-

work reduce on-chip memory usage and power by up to 86.0% and

62.9%, respectively, when compared to state-of-the-art methods.

We demonstrate our framework on image processing because it

is central to emerging applications such as autonomous machines.

Fundamentally, however, our framework is not limited to image

processing; rather, it generalizes to all stencil algorithms, which are

central to scientific computing, many of which operate on generic

meshes rather than images [18]. Our main technical novelty, i.e.,

expressing on-chip memory contention in a way that is amenable

to numerical optimization, generalizes to any regular algorithm

accessing arbitrary on-chip memories, not just line buffers.

Interesting lines of future work include automatically synthesiz-

ing sparse image processing accelerators [13, 23] and accelerators

that operate on irregular visual data such as meshes and point

clouds [9, 10, 39]. These are application domains where accelera-

tors are almost exclusively manually designed.

11 ACKNOWLEDGEMENTS

We thank the anonymous reviewers from HPCA 2023 and ISCA

2023 for their valuable feedback. Jingwen Leng and Yuhao Zhu are

the corresponding co-authors. The work was supported, in part, by

NSF under grants #2044963 and #2126642.

REFERENCES

[1] [n. d.]. FreePDK45. https://eda.ncsu.edu/freepdk/freepdk45/.

[2] [n. d.]. Google OR-Tools. https://developers.google.com/optimization.

[3] [n. d.]. Mali-C55. https://developer.arm.com/Processors/Mali-C55.

[4] [n. d.]. Snapdragon Makes Significant Leap for Mobile Cameras with

Qualcomm Spectra Image Signal Processor and Snapdragon Sight.

https://futurumresearch.com/snapdragon-makes-significant-leap-for-mobile-

cameras-with-qualcomm-spectra-image-signal-processor-and-snapdragon-

sight/.

[5] Daniele Bagni, Pari Kannan, and Stephen Neuendorffer. 2017. Demystifying the

Lucas-Kanade optical flow algorithm with Vivado HLS. Tech. note XAPP1300.
Xilinx (2017).

[6] Nanchini Chandramoorthy, Giuseppe Tagliavini, Kevin Irick, Antonio Pullini,

Siddharth Advani, Sulaiman Al Habsi, Matthew Cotter, John Sampson, Vijaykr-

ishnan Narayanan, and Luca Benini. 2015. Exploring Architectural Heterogeneity

in Intelligent Vision Systems. In Proc. of HPCA.
[7] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. 2018. SODA: Stencil with

optimized dataflow architecture. In 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 1–8.

[8] David Durst, Matthew Feldman, Dillon Huff, David Akeley, Ross Daly,

Gilbert Louis Bernstein, Marco Patrignani, Kayvon Fatahalian, and Pat Han-

rahan. 2020. Type-directed scheduling of streaming accelerators. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation. 408–422.

[9] Yu Feng, Gunnar Hammonds, Yiming Gan, and Yuhao Zhu. 2022. Crescent:

taming memory irregularities for accelerating deep point cloud analytics. In

Proceedings of the 49th Annual International Symposium on Computer Architecture.
962–977.

[10] Yu Feng, Boyuan Tian, Tiancheng Xu, Paul Whatmough, and Yuhao Zhu. 2020.

Mesorasi: Architecture support for point cloud analytics via delayed-aggregation.

In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 1037–1050.

[11] Yu Feng, Paul Whatmough, and Yuhao Zhu. 2019. Asv: Accelerated stereo vision

system. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture. 643–656.

[12] Yiming Gan, Yu Bo, Boyuan Tian, Leimeng Xu, Wei Hu, Shaoshan Liu, Qiang

Liu, Yanjun Zhang, Jie Tang, and Yuhao Zhu. 2021. Eudoxus: Characterizing

and accelerating localization in autonomous machines industry track paper. In

2021 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 827–840.

[13] Cong Guo, Bo Yang Hsueh, Jingwen Leng, Yuxian Qiu, Yue Guan, Zehuan Wang,

Xiaoying Jia, Xipeng Li, Minyi Guo, and Yuhao Zhu. 2020. Accelerating sparse dnn

models without hardware-support via tile-wise sparsity. In SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, 1–15.

[14] Matthew R. Guthaus, James E. Stine, Samira Ataei, Brian Chen, Bin Wu, and

Mehedi Sarwar. 2016. OpenRAM: An open-source memory compiler. In 2016
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 1–6.
https://doi.org/10.1145/2966986.2980098

[15] Samuel W Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew Adams, Jonathan T

Barron, Florian Kainz, Jiawen Chen, and Marc Levoy. 2016. Burst photography for

high dynamic range and low-light imaging on mobile cameras. ACM Transactions
on Graphics (ToG) 35, 6 (2016), 1–12.

[16] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy

Cohen, Steven Bell, Artem Vasilyev, Mark Horowitz, and Pat Hanrahan. 2014.

Darkroom: compiling high-level image processing code into hardware pipelines.

ACM Trans. Graph. 33, 4 (2014), 144–1.
[17] James Hegarty, Ross Daly, Zachary DeVito, Jonathan Ragan-Kelley, Mark

Horowitz, and Pat Hanrahan. 2016. Rigel: Flexible Multi-Rate Image Processing

Hardware. In Proc. of SIGGRAPH.
[18] Justin Holewinski, Louis-Noël Pouchet, and Ponnuswamy Sadayappan. 2012.

High-performance code generation for stencil computations on GPU architec-

tures. In Proceedings of the 26th ACM international conference on Supercomputing.
311–320.

[19] Qijing Huang, Aravind Kalaiah, Minwoo Kang, James Demmel, Grace Dinh, John

Wawrzynek, Thomas Norell, and Yakun Sophia Shao. 2021. Cosa: Scheduling by

constrained optimization for spatial accelerators. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 554–566.

[20] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, StefanHadjis,

Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, et al.

2018. Spatial: A language and compiler for application accelerators. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 296–311.

[21] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou, Jason

Cong, and Zhiru Zhang. 2019. HeteroCL: A multi-paradigm programming in-

frastructure for software-defined reconfigurable computing. In Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
242–251.

https://eda.ncsu.edu/freepdk/freepdk45/
https://developers.google.com/optimization
https://developer.arm.com/Processors/Mali-C55
https://futurumresearch.com/snapdragon-makes-significant-leap-for-mobile-cameras-with-qualcomm-spectra-image-signal-processor-and-snapdragon-sight/
https://futurumresearch.com/snapdragon-makes-significant-leap-for-mobile-cameras-with-qualcomm-spectra-image-signal-processor-and-snapdragon-sight/
https://futurumresearch.com/snapdragon-makes-significant-leap-for-mobile-cameras-with-qualcomm-spectra-image-signal-processor-and-snapdragon-sight/
https://doi.org/10.1145/2966986.2980098

ImaGen: A General Framework for Generating Memory- and Power-Efficient Image Processing Accelerators ISCA ’23, June 17–21, 2023, Orlando, FL, USA

[22] Jiajie Li, Yuze Chi, and Jason Cong. 2020. HeteroHalide: From image process-

ing DSL to efficient FPGA acceleration. In Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 51–57.

[23] Zhi-Gang Liu, Paul N Whatmough, Yuhao Zhu, and Matthew Mattina. 2022. S2ta:

Exploiting structured sparsity for energy-efficient mobile cnn acceleration. In

2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 573–586.

[24] Mostafa Mahmoud, Bojian Zheng, Alberto Delmás Lascorz, Felix Heide, Jonathan

Assouline, Paul Boucher, Emmanuel Onzon, and Andreas Moshovos. 2017. IDEAL:

Image denoising accelerator. In 2017 50th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO). IEEE, 82–95.

[25] Sean Murray, William Floyd-Jones, Ying Qi, George Konidaris, and Daniel J Sorin.

2016. The microarchitecture of a real-time robot motion planning accelerator. In

The 49th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE
Press, 45.

[26] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer,

Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang. 2020. Predictable

accelerator design with time-sensitive affine types. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation.
393–407.

[27] Tony Nowatzki, Michael Sartin-Tarm, Lorenzo De Carli, Karthikeyan Sankar-

alingam, Cristian Estan, and Behnam Robatmili. 2013. A general constraint-

centric scheduling framework for spatial architectures. ACM SIGPLAN Notices
48, 6 (2013), 495–506.

[28] Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson, Jonathan Ragan-

Kelley, and Mark Horowitz. 2017. Programming heterogeneous systems from an

image processing DSL. ACM Transactions on Architecture and Code Optimization
(TACO) 14, 3 (2017), 1–25.

[29] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo

Durand, and Saman Amarasinghe. 2013. Halide: a language and compiler for

optimizing parallelism, locality, and recomputation in image processing pipelines.

Acm Sigplan Notices 48, 6 (2013), 519–530.
[30] Parthasarathy Ranganathan, Daniel Stodolsky, Jeff Calow, Jeremy Dorfman,

Marisabel Guevara, Clinton Wills Smullen IV, Aki Kuusela, Raghu Balasubra-

manian, Sandeep Bhatia, Prakash Chauhan, et al. 2021. Warehouse-scale video

acceleration: co-design and deployment in thewild. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and

Operating Systems. 600–615.
[31] Jason Redgrave, Albert Meixner, Nathan Goulding-Hotta, Artem Vasilyev, and

Ofer Shacham. 2018. Pixel Visual Core: Google’s Fully ProgrammableImage,

Vision, and AI Processor For Mobile Devices. In Proc. IEEE Hot Chips Symp.(HCS).
1–18.

[32] Jacob Sacks, Divya Mahajan, Richard C Lawson, and Hadi Esmaeilzadeh. 2018.

Robox: an end-to-end solution to accelerate autonomous control in robotics. In

Proceedings of the 45th Annual International Symposium on Computer Architecture.
IEEE Press, 479–490.

[33] Robert Stewart, Kirsty Duncan, Greg Michaelson, Paulo Garcia, Deepayan

Bhowmik, and AndrewWallace. 2018. RIPL: A parallel image processing language

for FPGAs. ACM Transactions on Reconfigurable Technology and Systems (TRETS)
11, 1 (2018), 1–24.

[34] Amr Suleiman, Zhengdong Zhang, Luca Carlone, Sertac Karaman, and Vivienne

Sze. 2019. Navion: A 2-mW Fully Integrated Real-Time Visual-Inertial Odometry

Accelerator for Autonomous Navigation of Nano Drones. IEEE Journal of Solid-
State Circuits 54, 4 (2019), 1106–1119.

[35] Artem Vasilyev, Nikhil Bhagdikar, Ardavan Pedram, Stephen Richardson, Shahar

Kvatinsky, and Mark Horowitz. 2016. Evaluating Programmable Architectures

for Imaging and Vision Applications. In Proc. of MICRO.
[36] Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah, and Tony

Nowatzki. 2020. Dsagen: Synthesizing programmable spatial accelerators. In

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 268–281.

[37] Neil HE Weste and David Harris. 2015. CMOS VLSI design: a circuits and systems
perspective. Pearson Education India.

[38] Paul N Whatmough, Chuteng Zhou, Patrick Hansen, Shreyas Kolala Venkatara-

manaiah, Jae-sun Seo, and Matthew Mattina. 2019. Fixynn: Efficient hardware

for mobile computer vision via transfer learning. arXiv preprint arXiv:1902.11128
(2019).

[39] Tiancheng Xu, Boyuan Tian, and Yuhao Zhu. 2019. Tigris: Architecture and

algorithms for 3d perception in point clouds. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 629–642.

[40] Yuhao Zhu, Anand Samajdar, Matthew Mattina, and Paul Whatmough. 2018.

Euphrates: Algorithm-SoC Co-Design for Low-Power Mobile Continuous Vision.

In Proceedings of the 45th ACM/IEEE Annual International Symposium on Computer
Architecture.

	Abstract
	1 Introduction
	2 Background
	3 Motivation
	3.1 Algorithmic Limitations
	3.2 Hardware Limitations

	4 Framework Overview
	5 Generating Line-Buffered Pipelines
	5.1 General Idea and Intuition
	5.2 Optimization Formulation
	5.3 Modeling On-chip Memory Contention
	5.4 Constraint Pruning
	5.5 Problem Structure and Solver

	6 Line-Coalescing Optimization
	7 Experimental Methodology
	8 Evaluation Results
	8.1 Throughput and Latency
	8.2 Compilation Speed
	8.3 On-Chip Memory Requirement Reduction
	8.4 Power Consumption Reduction
	8.5 Design Space Exploration

	9 Related Work
	10 Conclusion and Future Work
	11 Acknowledgements
	References

