
Crescent: Taming Memory Irregularities for Accelerating Deep
Point Cloud Analytics

Yu Feng
University of Rochester
Rochester, NY, USA

yfeng28@ur.rochester.edu

Gunnar Hammonds
University of Rochester
Rochester, NY, USA

ghammon5@u.rochester.edu

Yiming Gan
University of Rochester
Rochester, NY, USA

ygan10@ur.rochester.edu

Yuhao Zhu
University of Rochester
Rochester, NY, USA
yzhu@rochester.edu

ABSTRACT

3D perception in point clouds presents exciting opportunities to
transform the perception ability of future intelligent machines.
Point cloud algorithms, however, are plagued by irregular mem-
ory accesses, leading to massive inefficiencies in the memory sub-
system, which bottlenecks the overall efficiency.

This paper proposesCrescent, an algorithm-hardware co-design
system that tames the irregularities in deep point cloud analytics
while achieving high accuracy. To that end, we introduce two ap-
proximation techniques, approximate neighbor search and selec-
tively bank conflict elision, that “regularize” the DRAM and SRAM
memory accesses. Doing so, however, necessarily introduces accu-
racy loss, which we mitigate by a new network training procedure
that integrates approximation into the network training process. In
essence, our training procedure trains models that are conditioned
upon a specific approximate setting and, thus, retain a high accu-
racy. Experiments show that Crescent doubles the performance
and halves the energy consumption compared to an optimized base-
line accelerator with < 1% accuracy loss. The code of our paper is
available at: https://github.com/horizon-research/crescent.

CCS CONCEPTS

• Computer systems organization→ Neural networks; Sys-
tem on a chip; Special purpose systems.

KEYWORDS

point cloud, accelerators, DNN, irregular memory accesses
ACM Reference Format:

Yu Feng, Gunnar Hammonds, Yiming Gan, and Yuhao Zhu. 2022. Crescent:
Taming Memory Irregularities for Accelerating Deep Point Cloud Analytics.
In The 49th Annual International Symposium on Computer Architecture (ISCA
’22), June 18–22, 2022, New York, NY, USA.ACM,NewYork, NY, USA, 13 pages.
https://doi.org/10.1145/3470496.3527395

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’22, June 18–22, 2022, New York, NY, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8610-4/22/06. . . $15.00
https://doi.org/10.1145/3470496.3527395

1 INTRODUCTION

Recent years have seen an explosive rise of intelligent machines that
can perceive, process, and understand visual data. 3D visual data,
a.k.a., point clouds, have become increasingly important. Prime
examples include localization and mapping in autonomous vehi-
cles [35, 62] and robotics [52], object detection in Augmented and
Virtual reality [56, 72], air pollutants detection [17], and geo-spatial
mapping in cultural heritage preservation [7, 25, 58].

Despite much algorithmic development, point cloud networks
are inefficient to execute on today’s hardware architectures (e.g.,
GPUs, deep learning/stencil accelerators), most of which are de-
signed and optimized for regular 2D perception domains such as
video and image processing [27, 46]. Point cloud algorithms, how-
ever, exhibit highly irregular computation and memory behaviors
and, thus, are ill-suited for architectures built for regular kernels.

The irregularity stems from the fact that memory accesses, which
dominate the overall execution efficiency, are input-dependent. As
a result, point cloud algorithms exhibit excessive and random (as
opposed to streaming) DRAM accesses as well as frequent SRAM
bank conflicts that stall the datapath. Many mature optimizations
such as tiling, double-buffering, static data layout that are com-
monly applied to regular kernels such as conventional Deep Neural
Networks (DNNs) are either ineffective or not applicable at all.

This paper proposesCrescent, an algorithm-hardware co-designed
system aiming to tame the irregularities in point cloud algorithms.
We start by understanding the sources of memory inefficiency in
point cloud algorithms (Sec. 2), which points to two main sources.
First, point cloud algorithms spend a significant amount of time (up
to 80%) [18] in explicit neighbor searches, which exhibit statically-
unknown memory access patterns. Second, the irregular neighbor
search necessitates that any subsequent operations must explicitly
aggregate data points through irregular gather operations instead
of simply indexing the memory as in conventional DNNs.

Our key idea is to impose structures on memory accesses. We
propose an approximate neighbor search algorithm (Sec. 3) that
turns irregular DRAM accesses into streaming accesses. While there
are search algorithms that preserve streaming accesses, they often
do so at a cost of increasing the search work and/or redundant
DRAM accesses by resorting to exhaustive search [44, 66]. We use
a different strategy: we use an irregular tree-based algorithm to
reduce the search work, and selectively elide on-chip bank conflicts

https://github.com/horizon-research/crescent
https://doi.org/10.1145/3470496.3527395
https://doi.org/10.1145/3470496.3527395

ISCA ’22, June 18–22, 2022, New York, NY, USA Yu Feng, Gunnar Hammonds, Yiming Gan, and Yuhao Zhu

to tame the irregularities stemmed from tree traversals (Sec. 4). This
strategy reduces the search work and DRAM traffic by over 40%.

Our techniques are inexact by nature. Without care, applying
them during inference leads to drastic network accuracy loss. To
retain accuracy, we propose approximation-aware training (Sec. 5).
Specifically, we integrate the approximation operations into train-
ing bymodeling hardware behaviors (e.g., bank conflicts) at training
time. We show that training with a generic hardware model is usu-
ally sufficient, which allows us to avoid tightly coupling training
with a particular hardware configuration.

Our training procedure yields models that provide accuracy-vs-
performance trade-offs at inference time without re-training. This
is achieved without increasing the network size or inference over-
head. The key is to train a network by sampling not only the input
distribution (as with conventional DNN training) but also the distri-
bution of a set of approximation knobs that dictate the accuracy-vs-
performance trade-off. In this way, the model’s inference is condi-
tioned upon a specific approximate setting h, naturally presenting
a different accuracy-vs-performance trade-off for a given h.

We implement the Crescent hardware in a 16nm process node
and evaluate it on a set of popular point cloud models. We show that
the optimizations introduced in Crescent require virtually zero
hardware cost and, meanwhile, provide on average 1.9 × speedup
(up to 3.1 ×) and 1.5 × energy reduction (up to 4.2 ×) compared
to an optimized baseline point cloud accelerator without our opti-
mizations. Notably, the performance and energy gains are achieved
with less than 1.0% accuracy loss.

In summary, this paper makes the following contributions.

• We introduce an approximate neighbor search algorithm
and its co-designed hardware, which guarantees completely
streaming DRAM accesses while reducing the DRAM traffic
in point cloud DNNs.

• We introduce selectively bank conflict, a lightweight mech-
anism that avoids datapath stalls from bank conflicts and
reduces SRAM traffic in point cloud networks.

• We propose a network training procedure that integrates
the approximate neighbor search and selective bank conflict
into training to mitigate the accuracy loss while providing a
flexible accuracy-vs-performance trade-off at inference time.

• We show that our optimizations collectively achieve 1.9 ×
speedup and 1.5 × energy reduction for a set of popular
point cloud networks compared to a baseline accelerator
while sacrificing less than 1% accuracy.

The rest of this paper is organized as follows. We first character-
ize the memory inefficiencies, both in DRAM and on-chip SRAM,
of today’s point cloud networks (Sec. 2). We then introduce two
techniques to tame the memory inefficiencies: approximate neigh-
bor search that guarantees fully streaming DRAM accesses (Sec. 3)
and selectively bank conflict elision, which streamlines on-chip
memory accesses (Sec. 4). We then introduce a neural network
training procedure that integrates both approximate techniques
into the training process to mitigate the accuracy loss (Sec. 5). Af-
ter describing the experimental setup (Sec. 6), we demonstrate the
efficiency of Crescent (Sec. 7). We then discuss Crescent in the
broad literature (Sec. 8) before concluding the paper (Sec. 9).

P1

P2

P0

P3

P5

P6 P7

P4
P9

P11

P10P8

Input Point Cloud Output Point Cloud

N

Neighbor
Search

F

Feature
ComputationNeighbor

Index Matrix

P1 {P0, P3, P4, …}
P2 {P0, P2, P3, …}

……

Fig. 1: A typical layer in a point cloud neural network, which

has two main stages: neighbor search and feature computa-

tion. Neighbor search in itself is highly irregular as it requires

tree traversal and is input-dependent. The feature computa-

tion requires irregular memory accesses because the input

data are from the neighbor search results.

2 MOTIVATION

We first briefly describe the scope of deep point cloud algorithms
that this paper targets, and describe the two main algorithmic
stages, neighbor search and feature computation, in these algo-
rithms (Sec. 2.1). We then quantify the memory inefficiencies in
both the neighbor search stage (Sec. 2.2) and the feature computa-
tion stage (Sec. 2.3).

2.1 Background: Deep Point Cloud Analytics

A point cloud is a collection of points, each of which is represented
by the [x, y, z] coordinates in the 3D space. Point cloud data are
becoming ever more relevant mainly because of two trends: 1) the
prevalence of convenient point cloud acquisition devices, e.g., stereo
cameras [39] and LiDAR [55], and 2) the emergence of deep learning
algorithms that can effectively extract semantics information from
point clouds. Today, deep point cloudmodels are routinely deployed
in real-world systems such as Waymo’s self-driving cars [8] and
Google’s Augmented Reality toolkit [1].

We focus on algorithms that directly operate on raw points,
which is by far the most common form of deep point cloud analytics.
We refer interested readers to Guo et al. [26] for a comprehensive
survey on deep learning for point clouds.

KeyOperations Generally, a point cloudDNN can be abstracted
as two stages, as shown in Fig. 1. Each input point undergoes a
neighbor search process. The neighbor search results are stored in a
matrix, where each row stores the neighbor indices of a point in the
input. The feature computation stage aggregates the neighbors of a
point, on which a transformation, usually a Multilayer Perceptron
(MLP), is applied, to generate a new output point.

Both stages are important to optimize. A recent study on five
popular point cloud networks shows that the execution time ratio
of the two stages varies between 1:4 to 4:1 [18], suggesting that
neither stage universally dominates.

2.2 Memory Inefficiencies in Neighbor Search

Neighbor search in low-dimensional space (e.g., 3D) commonly uses
the K-d tree [14], which recursively subdivides the search space
into two half-spaces using axis-aligned planes. The sub-spaces are
organized as a tree, and neighbor search becomes a tree traversal
problem. Compared to exhaustive search, the space subdivision
strategy ismore efficient as it prunes the search space: if the distance

Crescent: Taming Memory Irregularities for Accelerating Deep Point Cloud Analytics ISCA ’22, June 18–22, 2022, New York, NY, USA

PointNet++ (c)

PointNet++ (s)
DensePoint

F-PointNet
0

20
40
60
80

100

N
on

-s
tre

am
in

g
(%

) 99.95 99.95 99.93 99.54

Fig. 2: Percentage of non-

continuous DRAM accesses.

PointNet++ (c)

PointNet++ (s)
DensePoint

F-PointNet
0

5

10

15

20

E
xt

ra
 D

R
A

M
 T

ra
ffi

c

50
60
70
80
90
100

C
ac

he
 M

is
s

R
at

e
(%

)Traffic $ Miss

Fig. 3: Ratio of actual DRAM

traffic vs. the theoretical min-

imum and cache miss rate in

neighbor search.

of a query Q and the boundary of a subspace S is greater than the
search radius, all the points in S can be skipped.

While K-d tree search is inherently parallel (as different search
queries are independent), tree traversals are hardware unfriendly.
In particular, the memory access patterns are known only at run
time, leading to massive inefficiencies in both DRAM and SRAM
accesses, which we quantify below.

DRAM DRAM access inefficiency in neighbor search is mani-
fested in two ways: non-streaming accesses and redundant accesses.
The DRAM accesses are non-streaming because the inputs (points)
are arbitrarily distributed in the search space. If two queries being
processed in parallel are spatially far-apart, they will likely exercise
different parts of the K-d tree that are non-contiguous in memory.
Even within the same query, tree nodes consecutively accessed
during traversals are likely non-continuous in memory due to the
control-flow heavy nature of tree traversal. Fig. 2 shows the per-
centage of non-continuous DRAM accesses across four popular
point cloud DNNs (see Sec. 6 for a comprehensive experimental
setup). Almost all DRAM accesses are non-continuous.

The non-streaming nature coupled with large point cloud data
size leads to redundant DRAM accesses. For instance, in the popular
KITTI dataset [20], the total points and queries in a typical scene
alone can be over tens of MBs (not considering the network weights,
activations, etc.), larger than what a mobile SoC can accommodate.
Thus, points are loaded on-chip in chunks (analogous to tiling in
conventional DNNs). Since not all data in each chunk will be used
when they are loaded due to the non-streaming access pattern, a
great amount of DRAM accesses are wasted.

Fig. 3 quantifies the excessive DRAMaccesses and cachemiss rate
in neighbor search. The left 𝑦-axis shows the ratio of the amount
of DRAM requests (in bytes) to the actual data theoretically needed
by the algorithm (i.e., reading each query and search point once).
The data are obtained by simulating an unrealistic 10 MB fully-
associated cache running a neighbor search on a typical KITTI-
constructed scene with about 1.2 million points. Even with this
unrealistic SRAM structure, searches in many models have about
10× more DRAM traffic than what is strictly required. Realistic mo-
bile accelerators would allocate an even smaller buffer for neighbor
search to accommodate other data structures such as DNN weights
and activations. The right𝑦-axis quantifies the corresponding cache
miss rates, which are over 85%.

SRAM The on-chip memory accesses in K-d tree search are also
inefficient because of the frequent bank conflicts. In regular kernels
such as stencil pipelines [46, 61] where the memory access pattern
is statically known, one could carefully interleave data in the SRAM

2 4 8 16 32
Banks

0
20
40
60
80

100

B
an

k
co

nf
lic

t
ra

te
 (%

)

Fig. 4: Neighbor search bank

conflict rate in Pointnet++(c)

vs. the number of banks, as-

suming 8 concurrent queries.

PointNet++ (c)

PointNet++ (s)
DensePoint

F-PointNet
0

20
40
60
80

100

B
an

k
co

nf
lic

t
ra

te
 (%

)

54.04 54.04 57.27

38.43

Fig. 5: SRAM bank conflict

rate in aggregation, assum-

ing 16 banks and 16 concur-

rent memory requests.

banks to avoid bank conflicts [33, 71]. In contrast, on-chip memory
accesses in neighbor search are input-dependent and, thus, bank
conflicts are inevitable.

Fig. 4 quantifies the bank conflicts by showing the percentage of
SRAM accesses that are bank-conflicted and how the percentage
varies with the number of banks. We assume an unrealistically
large 10 MB buffer and 8 concurrent SRAM requests. With 4 banks
the bank conflict rate is 26.9%. The bank conflict rate is reduced
to 2.1% only when the number of banks quadruples the number of
simultaneous requests.

Using a heavily-banked SRAM design is highly undesirable. A
large number of banks requires a more costly crossbar design [9, 24],
as the crossbar area grows quadratically with the number of banks.
Using an Armmemory compiler [3], we find that the crossbar area is
twice as much as the memory arrays under a 32-bank configuration.
In addition, a higher bank count also reduces the memory array
size, which increases the per-bank overhead (peripheral circuits,
BIST, redundancy) [60].

2.3 Memory Inefficiencies in Feature

Computation

Unlike neighbor search, the DRAM accesses in the feature computa-
tion stage are completely streaming. The on-chip memory accesses,
however, are met with frequent bank conflicts.

Feature computation is broken down into two steps: 1) aggregate
the neighbors for each input point p𝑖 using the neighbor indices
generated in the neighbor search stage, and 2) compute an output
point p𝑜 from each p𝑖 by applying a function, usually a MLP, to the
neighbors of p𝑖 . Step 2 is accelerated on today’s DNN accelerators.

Step 1 is analogous to fetching data from the input feature map in
a conventional DNN. However, conventional DNNs access consec-
utive feature map elements with statically-known patterns. There-
fore, a compiler lays out data in the SRAM such that a simple
single-bank, single-port memory array (using wide words) could
serve memory requests from tens or hundreds of PEs in one cycle
without stalling the PEs [2, 32, 71].

However, point cloud networks access non-consecutive memory
in this step, because the neighbors of a point can be arbitrary.
Therefore, the SRAM serving points are usually banked. Worse, the
access pattern is statically-unknown, as it depends on the neighbor
search results, which, in turn, depend on the inputs. Therefore,
bank conflicts are inevitable.

ISCA ’22, June 18–22, 2022, New York, NY, USA Yu Feng, Gunnar Hammonds, Yiming Gan, and Yuhao Zhu

Legend

Q0 Q1 Q2

Q3 Q2 Q0… Q7 Q4… Q8 Q6 Q5… Q9 Q1…

Q9……

Queries

Sub-tree leaf nodes

S0 S1 S2 S3

S0 Top-tree leaf nodes; a.k.a. sub-tree root nodes

… Query queue; private to each sub-tree

Top-tree nodes

Fig. 6: The two-level tree data structure of our neighbor

search algorithm. In the first stage, queries traverse the top-

tree and are assigned to a particular sub-tree in the end. In

the second stage, queries search neighbors in their assigned

sub-tree, and backtracking is limited to within the sub-tree.

Fig. 5 quantifies the severity of bank conflicts in point aggrega-
tion by showing the percentage of SRAM accesses that are bank-
conflicted in aggregating the points. We assume a 16-bank SRAM
design with a total size of 64 KB. Across the four models, the bank
conflict rate is at least 38.43% and can be as high as 57.27%. Increas-
ing the number of banks is undesirable as it requires a more costly
crossbar and/or a higher per-bank overhead due to the smaller
memory arrays [60].

3 FULLY-STREAMING NEIGHBOR SEARCH

ALGORITHM

We introduce our neighbor search algorithm and explain how it
fundamentally improves the DRAM access efficiency by allowing
completely streaming memory accesses (Sec. 3.1). We then describe
the co-designed neighbor search hardware (Sec. 3.2). Finally, we
discuss the key knob in our algorithm that dictates the accuracy-
vs-performance trade-off (Sec. 3.3).

3.1 Algorithm

Our algorithm splits the K-d tree into a top tree and a set of sub-
trees. Each top-tree leaf node is also the root node of a sub-tree.
The search is then naturally divided into two stages: a top-tree
search stage and a sub-tree search stage. The two stages themselves
are massively parallel but are serialized with each other. Fig. 6
illustrates the idea.

In the first stage, all the queries search the top-tree (a binary
search tree) until they reach the leaf nodes of the top-tree, at which
point the queries are assigned to the corresponding sub-trees. Con-
ceptually, each sub-tree has a queue that stores all the incoming
queries. At the end of the first stage, queries in the sub-tree queues
are written back to the memory in preparation for the second stage.
In actual hardware, a queue has a fixed size. Thus, the store back to
the memory is phased, as we will discuss later.

Once all the queries finish the first stage, the algorithm enters the
second stage, where queries in each sub-tree are searched against

the corresponding tree. For each sub-tree, the search process is
exactly the same as that in the top-tree with a critical difference:
queries are allowed to backtrack when they reach a leaf node of
the sub-tree. This is necessary for a query to find all its neighbors.

However, we limit the backtracking to the sub-tree. The intuition
is that nodes in other sub-trees are naturally far away from the
query and thus are less likely to be neighbors. Architecturally, this
ensures that each sub-tree and each query is loaded to SRAM once
— at a cost of accuracy loss. We will discuss the accuracy implication
of this design decision in Sec. 3.3 and how to mitigate the accuracy
loss through approximation-aware network training in Sec. 5.

3.2 Hardware Design

The hardware designed to exploit the algorithm is shown in Fig. 7.
The search is carried out by a set of PEs, each of which can execute
a query independently. The PEs access data from the on-chip SRAM
that stores various data structures. The SRAM interfaces with the
DRAM through a DMA, as all DRAM accesses are streaming.

SRAM The SRAM is split into two global buffers and two local
buffers. The global tree buffer and query buffer are accessed by all
the PEs. Each PE is also equipped with a local result buffer and a
local stack buffer private to each query.

The global tree buffer is accessed by the PEs simultaneously. To
sustain a high read bandwidth, the tree buffer is heavily banked.
Unlike in regular kernels, bank conflicts here could not be avoided
by optimizing the data layout in the banks, because the access
pattern of the PEs is known only at run time. We will show in Sec. 4
how to mitigate the performance impact of bank conflicts.

PE Design The PE design follows the algorithm of how a query
traverses the K-d tree to search for its neighbors. As shown in the
left blown-up panel on Fig. 7, a PE is pipelined into five stages,
starting from reading the top of the traversal stack (RS) to fetch the
next tree node to visit (FN), followed by calculating the distance
between the query and the three node (CD), storing results (SR) is
a neighbor is found, and ended with updating the stack (US). The
pipeline stalls only when the FN stage meets a bank conflict when
reading the global tree buffer.

Hardware Reuse Due to the uniform traversal-based search
in both top- and sub-tree searches, the hardware is reused in both
phases. For instance, the PEs are designed with the generic traversal
logic that is agnostic to what the search tree is and what the queries
are. The US stage is skipped/bypassed in the top-tree search where
no backtracking takes place (i.e., no update to the query stack).

The SRAM is also reused between the two phases. Specifically,
the PE-local result buffer is re-purposed between storing the sub-
tree queues in the top-tree search phase and storing the neighbor
results in the sub-tree search phase. The global tree buffer is re-
purposed between storing the top-tree and storing the sub-tree. Dur-
ing top-tree search, whenever a result buffer is full all the queries
assigned to that queue (thus far) are streamed back to the DRAM.

3.3 Accuracy and Performance Trade-off

A key parameter that governs our algorithm is the top-tree height
(TTH). TTH must be set to ensure both the top-tree and the sub-
trees can be held in the on-chip SRAM. At the same time, TTH

Crescent: Taming Memory Irregularities for Accelerating Deep Point Cloud Analytics ISCA ’22, June 18–22, 2022, New York, NY, USA

Global SRAM

Working
Buffer

DRAMPE
Tree Buffer (B-banked)

Filling
Buffer

Query Buffer
(double-buffered)

Bank 0

B …PE

PE

Pr
oc

es
si

ng
El

em
en

t (
PE

)

Re
ad

 S
ta

ck
 (R

S)

Fe
tc

h
N

od
e

(F
N

)

C
al

c.
 D

is
t.

(C
D)

St
or

e
Re

su
lt

(S
R)

Sn

S1

S0

……

Top Tree

Sub-Tree 0

Original Queries
(arbitrary ordered)

Queries After
Top-Tree Search

Sub-Tree 1

Sub-Tree n
…

Tree Nodes

Stack Buffer
U

pd
at

e
St

ac
k

(U
S)

……

From Tree
Buffer

Q0 Q1 Q2 Q3

Qn

……

Q0Q2Q3

Q4Q7

…

Query

From Query
Buffer

PE

✔ Streaming read
in top-tree search

✔ Streaming write in
top-tree search.

✔ Streaming read in
sub-tree search.

✔ Streaming read in
top/sub-tree search.

Result Buffer

Bypass

Fig. 7: Neighbor search hardware engine, which enables a fully-streaming access to DRAM. The same hardware is used for both

top-tree search and for the sub-tree searches, simplifying the hardware design.

0 2 4 6 8 10
Top Tree Height

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
. #

 o
f

N
od

es
 V

is
ite

d

Fig. 8: Number of tree nodes

visited per query reduces as

the top-tree height increases.

2 4 6 8 10 12
Bank Conflict Elision

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
. #

 o
f

N
od

es
 S

ki
pp

ed

Fig. 9: Number of tree nodes

skipped per query reduces as

the elision height increases.

also dictates the performance-vs-accuracy trade-off. We explore
the implication of TTH in this section.

First, the top-tree height is dictated by the tree buffer size. We
require that the entirety of the top-tree or a sub-tree, while is
being searched, is completely stored in the tree buffer. This ensures
that the PE pipeline does not stall because the required data are
off-chip. Thus, the top-tree height ℎ𝑡 must be within the range
[H + 1 − log2 (S + 1), log2 (S + 1)] to satisfy the following two
inequalities, where H is the total K-d tree height and S is the total
tree buffer size:

2ℎ𝑡 − 1 ≤ S (1)

2H−ℎ𝑡+1 − 1 ≤ S (2)

Given that a TTH is within the permissible range, a shorter
top-tree increases the neighbor search accuracy at a cost of more
computation, and vice versa. This can be explained by a first-order
analytical model, where the total number of nodes a query accesses
is proportional to the sum of:

(i) the number of nodes visited during forward traversal from
the root node of the top-tree to a leaf node of the sub-tree,

(ii) the number of nodes visited during sub-tree backtracking.

The cost of (i) is constant, as it depends only on the total tree
height. The cost of (ii) inversely depends on the TTH: a taller top-
tree translates to visiting fewer nodes in the sub-tree backtracking,
reducing the cost of (ii) and, by extension, the total cost. Fig. 8
quantifies how the total number of nodes accessed per query (𝑦-
axis) varies with the TTH (𝑥-axis) using the average statistics of
PointNet++(c) on the KITTI dataset. As the TTH increases to 10,
only 2% of the tree nodes are accessed by a query. Visiting fewer
nodes improves the search speed but also degrades the accuracy.

An assumptionwemake, as with Tigris [66] and QuickNN [44], is
that a sub-tree can be stored completely on-chip. This is a reasonable
assumption: a typical 10 MB point cloud using a 5-level top-tree
would result in a sub-tree size of 640 KB, smaller than a typical on-
chip buffer size found in mobile SoCs. In case of excessively large
point clouds, Crescent can in theory recursively split a sub-tree;
we do not observe this need in common datasets.

3.4 Efficiency Discussion

The split-tree algorithm enables completely streaming DRAM ac-
cesses. The panel on the right of Fig. 7 shows how the different
data structures are laid out in the DRAM and how they are ac-
cessed in a streaming fashion. Converting random DRAM accesses
to streaming accesses reduces the DRAM energy [6, 19], and en-
ables double-buffering, which improves performance because: 1)
off-chip data accesses are overlapped with computation, and 2) data
needed by the datapath are readily available on-chip without stall.

Compared to prior neighbor search algorithms that also enable
streaming accesses such as Tigris [66] and QuickNN [44], we reduce
both the search load and DRAM traffic. We qualitatively discuss it
here, and quantify the gains in Sec. 7.5.

First, Tigris and QuickNN use exhaustive search in the sub-trees,
whereas we retain K-d tree search in the sub-trees and thereby
reduce the total search load. Retaining K-d tree search is not an
obvious design decision, as it introduces irregular on-chip memory
accesses in the form of bank conflicts, which prior work aims to
avoid at a cost of more search work.

Our strategy is different: we reduce the search work by retaining
K-d tree search and mitigate the resulting irregular on-chip memory
accesses through inference-training co-design. Specifically, we will
show a selective bank conflict elision scheme to significantly reduce
bank conflicts (Sec. 4), which, when coupled with an approximation-
aware training procedure (Sec. 5), retains the application accuracy.

Second, we reduce the amount of DRAM accesses compared to
Tigris and QuickNN, both of which load (and reload) a sub-tree
from DRAM whenever the corresponding query buffer is full. We
instead first stage all the queries to a sub-tree in DRAM and then
process them in a batch, thus loading each sub-tree exactly once.

4 SELECTIVE BANK CONFLICT ELISION

This section addresses inefficiencies pertaining to on-chip memory
accesses. We first describe our main idea of selectively eliding bank
conflicts (Sec. 4.1). We then discuss how point cloud algorithms

ISCA ’22, June 18–22, 2022, New York, NY, USA Yu Feng, Gunnar Hammonds, Yiming Gan, and Yuhao Zhu

proceed when bank conflicts are elided (Sec. 4.2) and the hardware
support (Sec. 4.3). Finally, we identify the key knobs that dictate
the accuracy-vs-performance trade-off (Sec. 4.4).

4.1 Main Idea

A key requirement of the SRAM design is to feed data required by
the PEs without stalling them. Such a requirement is easy to meet
in conventional DNNs or other regular kernels, where data access
patterns are statically known and thus SRAM data layout can be
statically optimized accordingly [71]. The on-chip memory access
patterns in point cloud algorithms, however, are only dynamically
known, introducing SRAM bank conflicts that are detrimental to
overall performance.

Motivated by the error-tolerance nature of neural networks, our
idea is to dynamically and selectively ignore bank conflicts when
appropriate. That is, when multiple memory requests fall in the
same bank, instead of serializing the accesses we allow only one
request to access the SRAM; other requests return immediately
without stalling. While conceptually simple, actually realizing this
idea requires answering three questions:

(1) What happens when a bank conflict occurs? That is, how
should the algorithm proceed without the correct data?

(2) How to support bank conflict elision in hardware?
(3) When is it appropriate to elide bank conflicts without accu-

racy drop?
The answers to these questions depend on where a bank conflict

takes place in the algorithm, because different memory accesses re-
quest data of different significance. Both neighbor search stage and
feature computation introduce bank conflicts. In neighbor search,
bank conflicts are caused by accessing the tree buffer; all other ac-
cesses are regular. In feature computation, aggregating neighbors of
a point as inputs to the MLP causes bank conflicts; SRAM accesses
incurred during MLP are regular. We now elaborate how the three
questions above are addressed in both stages.

4.2 How Algorithms Proceed with Bank

Conflicts Elision

Feature Computation To aggregate neighbors, SRAM accesses
aremade to retrieve neighbors of a point. Thus, ignoring a conflicted
access essentially ignores a point’s neighbor, in which case we must
fill in the missing neighbors, as the subsequent MLP anticipates an
input matrix of a given size (decided at the training time).

To meet the size requirement, we propose to simply reuse the
point returned from the request that is allowed to access the bank.
The intuition is that concurrent accesses, say 𝐴 and 𝐵, are guaran-
teed to be requesting neighbors of the same point 𝑃 [18]. Reusing
the returned data from 𝐴 for 𝐵 is equivalent to replicating one of
𝑃 ’s neighbors. This replication strategy is commonly done in point
cloud network design to meet the size requirement in case a neigh-
bor search does not return enough neighbors [48, 49]. Our design
essentially performs this replication in hardware, implicitly.

Neighbor Search The situation is slightly different for neighbor
search, where bank conflicts happen when the PEs access the tree
nodes during tree traversal. One could use the same replication
strategy used in the feature computation stage: if accesses 𝐴1 from
PE 1 and 𝐴2 from PE 2 conflict on the same bank, reuse the data

Bank Conflict
DetectionAN

D

Bank 0 Bank 1 Bank 2 Bank 3

MUX

Arbitration
& Crossbar

(Only the
relevant part)

Port 0 Port 1

Conflict?

Elide?

[1:0]

M
U

X

Data

Mode

[1:0]

Fig. 10: Supporting bank conflict elision is trivial in hardware,

as many existing hardware structures can be reused. The

shaded/colored components are the augmentation, which is

required for each SRAM port. Only the relevant part of the

hardware is shown for simplicity. The Mode signal selects
between the neighbor search mode and the feature compu-

tation mode. The AND gate lowers the Conflict signal when

bank conflict elision is enabled in the neighbor search stage.

returned from 𝐴1 for 𝐴2. However, this could lead to side effects
such as program crash, redundant computation, and infinite loop.
For instance, when the node returned from 𝐴1 is in the part of the
tree that PE 2 has already visited, pushing 𝐴1 onto PE 2’s stack
leads to an infinite loop or, at least, redundant traversals.

Our design simply ignores the conflicted accesses. Upon a con-
flict, the FN stage in a PE skips the rest three pipeline stages, and
reads the next item on the stack. This is indicated by the “bypass”
signal in the PE architecture shown in Fig. 7. Algorithmically, this
is equivalent to skipping all the nodes beneath the lost node during
tree traversal. This strategy omits potential neighbors but guaran-
tees that the traversal terminates.

A potential optimization that we leave for future work is to
check whether the node returned from 𝐴1, the request allowed
to access the SRAM, is below beneath the node (in the tree) that
would have been returned from 𝐴2 if the bank conflict were to be
observed; if so, using 𝐴1 to continue the search in 𝑃2 is guaranteed
to terminate without side effects. Doing so would skip fewer nodes
and potentially increase the accuracy.

4.3 Hardware Support

Eliding bank conflicts is virtually free to implement in hardware
by using many existing structures in banked SRAM design. As an
example, Fig. 10 shows a simple banked SRAM with 2 ports and 4
banks. The key to a banked SRAM is the arbitration and crossbar
logic, which detects bank conflicts and routes data from a bank
to the right port (a MUX here). For simplicity, we show only the
relevant hardware and assume a low-order interleaving, i.e., the
two least significant bits in the address select a bank.

Assume both accesses from the two ports fall into Bank 0, and
Port 0 is allowed access. In the baseline SRAM, the MUX before
Port 1 would select data returned from Bank 0, but this data will be
ignored because the bank conflict detection logic would raise the
Conflict signal, indicating to Port 1 that a bank conflict occurs and
the memory request is to be issued again. But, critically, the data

Crescent: Taming Memory Irregularities for Accelerating Deep Point Cloud Analytics ISCA ’22, June 18–22, 2022, New York, NY, USA

returned from Bank 0 is exactly what Port 1 needs in the feature
computation stage under bank conflict elision. We simply lower
the Conflict signal in this case, which is accomplished by ANDing
the output of bank conflict detection and the negation of the Elide
signal, which indicates whether bank conflict elision is enabled.

The Mode signal operates a MUX to select between the neighbor
search mode and the feature computation mode. In neighbor search,
the original bank conflict signal is used, except the PE will not re-
issue the memory request; instead, the PE simply continues the
search with the next item on the stack.

4.4 When to Elide Bank Conflicts?

Eliding bank conflicts returns incorrect data to the PEs and, thus,
hurts accuracy. We find that eliding bank conflicts in feature com-
putation leads to little to none accuracy loss whereas eliding bank
conflicts during neighbor search, without care, has significant accu-
racy implications (Sec. 7.3). This is because in feature computation
the data that would have been returned (if bank conflicts were
observed) are replaced with the data returned from the conflicting
access; in neighbor search, however, eliding bank conflicts directly
skips all the computations associated with that node altogether. We
thus focus on the neighbor search stage here.

Intuitively, the accuracy loss is smaller when ignoring a memory
access made to a lower level tree node, as fewer tree nodes would
be skipped later in the traversal. Fig. 9 shows how the percentage of
skipped tree nodes (𝑦-axis) varies with the tree level below which
bank conflicts are elided (𝑥-axis). The statistics are averaged across
all the queries of PointNet++(c) on the ModelNet dataset, where the
total tree height is 14. When bank-conflicted accesses below level
2 are ignored, almost 100% of the tree nodes are skipped, which
degrades the model accuracy to almost zero (not shown). When the
elision level is 12, only 10% of the tree nodes are skipped.

Skipping more nodes degrades accuracy but increases the search
speed. Therefore, a natural knob that controls the trade-off of
accuracy-vs-performance is the elision height ℎ𝑒 , which is defined
as the tree level beneath which all conflicted memory accesses are
ignored. Sec. 5 will show how incorporating ℎ𝑒 into model training
can minimize the accuracy loss while providing the accuracy-vs-
performance trade-off without retraining.

5 APPROXIMATION-AWARE NETWORK

TRAINING

Our neighbor search algorithm and bank conflict elision, if applied
directly on a trained point cloud DNN at inference-time, will de-
crease the accuracy sharply (Sec. 7.1). This is because the original
network is not trained with the various approximation techniques
in mind. To mitigate the accuracy drop, we propose a modified
network training procedure that mitigates the accuracy loss.

The goal here is to learn a DNN that retains a high accuracy under
approximation compared to the baseline network. In particular,
we consider two approximation knobs: the top-tree height ℎ𝑡 and
the elision height ℎ𝑒 . Briefly, a larger ℎ𝑡 decreases accuracy but
increases the performance; conversely, a larger ℎ𝑒 increases the
accuracy at a cost of a lower performance.

A straightforward idea is to integrate h =< ℎ𝑡 , ℎ𝑒 > as part of
the inference such that the DNN is trained for a particular h. In

Feature Computation
Neighbor
Search Aggregate MLP

input x

…… MLP Loss

Bank Conflict Modelhe

ht{h

Gradient
flow

Fig. 11: Training a point cloud network with approximate

neighbor search and bank conflict elision. Note that the train-

ing is end-to-end differentiable as in conventional DNN train-

ing. The non-differentiable parts, neighbor search and aggre-

gation, do not participate in the gradient flow.

essence, this is similar to fine-tuning a compressed model to regain
the accuracy, where a network learns to adjust its weights given
the approximation introduced by a particular compression setting.

While one could train a dedicated model for each possible h and
build an ensemble, that would increase the training overhead and
deployment complexity. Instead, we propose to learn one model
that adapts to different h. Mathematically, we aim to learn a DNN
distribution 𝑓 (·, h;𝜃) ∼ 𝐹 such that different DNNs sampled from
the distribution 𝐹 share the same model parameter 𝜃 and provide
similar accuracy given an input h (along with the input point cloud).

To that end, our training procedure augments the conventional
training with one simple extension: conventional training samples
input data; our training also randomly samples an h for each input.
During the forward propagation, h is used to modulate the neighbor
search and bank conflict elision. In this way, the model parameter
𝜃 is trained to accommodate the approximations introduced during
the forward inference. The training flow is shown in Fig. 11.

In order to replay the same inference-time approximation during
training, we integrate a hardware simulator for modeling the bank
conflict. The bank conflict model is called by both neighbor search
and feature computation (the aggregation operation) , as Fig. 11
shows. The bank conflict simulator takes in two parameters: 1)
ℎ𝑒 , which indicates the tree level below which bank conflicts are
elided, and 2) the hardware banking configuration (e.g., number
of banks, bank size). We find that training with the exact banking
configuration on the inference hardware yields higher accuracy,
but absent an exact hardware configuration training with a generic
banking configuration provides noticeable benefits, too (Sec. 7.3).

Finally, note that neighbor search and aggregation do not partic-
ipate in gradient descent; they simply construct inputs to the MLP
layers. Thus, the model is end-to-end differentiable even though
neighbor search and aggregation are not.

6 EXPERIMENTAL SETUP

Architecture Design Fig. 12 shows the overall point cloud accel-
erator, which includes three main components: a neighbor search
engine as described in Sec. 3.2, a neighbor aggregation unit, which
uses the design proposed in Mesorasi [18], and a DNN accelerator
for executing the MLPs. Without losing generality, we assume a
systolic-array-based DNN accelerator, which is configured to have
a 16 × 16MAC array, where each MAC unit mimics the design of
that in the TPU [31].

ISCA ’22, June 18–22, 2022, New York, NY, USA Yu Feng, Gunnar Hammonds, Yiming Gan, and Yuhao Zhu

Point Cloud DNN Accelerator

Systolic MAC
Unit Array

Neighbor
Aggregation

Logic

Neighbor
Search
Buffers

Neighbor
Index Buffer

Neighbor
Search
Engine

Point Buffer

Global
Buffer

(Weights/
FMaps)

BN/ReLU/
Maxpooling

DMA

DRAM

Input Point
Cloud

MLP
Kernels &

Activations

Neighbor
Index Matrix

Fig. 12: Overall architecture of the point cloud DNN accel-

erator, which includes three main components: a Neighbor

Search Engine, an Aggregation Unit, and a systolic array for

executing the MLPs in feature computation. The Neighbor

Search Buffers include all the buffers shown in Fig. 7.

Table 1: Evaluation models.

Application

Domains

Algorithm Dataset

Classification PointNet++ (c)
DensePoint ModelNet40

Segmentation PointNet++ (s) ShapeNet
Detection F-PointNet KITTI

The on-chip SRAM is partitioned to serve different purposes.
The global buffer serves the weight and activations for the systolic
array. It is configured to be 1.5 MB in size. The Point Buffer is a
64 KB 16-banked buffer serving points during aggregation. The
Neighbor Index Buffer is sized at 12 KB with a single bank. The
Tree buffer and the Query buffer are sized at 6 KB and 3 KB with 4
banks and 1 bank, respectively. These two buffers support selective
bank elision as described in Sec. 4.3. The neighbor search engine
has 4 PEs, each with a dedicated result buffer and a stack buffer,
which are sized at 1.5 KB and 256 B, respectively.

Experimental Methodology We synthesize, place, and route
the datapath of the neighbor search engine, the systolic array, and
the aggregation unit using an EDA flow consisting of Synopsys
and Cadence tools with the TSMC 16 nm FinFET technology. The
SRAMs are generated using the Arm Artisan memory compiler.
Power is estimated using Synopsys PrimeTimePX by annotating
the switching activity. We then build a cycle-accurate simulator of
the architecture with the latency of each component parameterized
from the post-synthesis results of the RTL design.

The DRAM is modeled after Micron 16 Gb LPDDR3-1600 (4
channels) according to its datasheet [5]. The DRAM energy is ob-
tained using Micron System Power Calculators [6]. On average,
the energy ratio between a random DRAM access and a streaming
DRAM access is about 3:1, and the energy ratio between a random
DRAM access and an SRAM access is about 25:1, both matching
prior work [19, 67].

Software Setup Tbl. 1 lists the four point cloud networks used in
the evaluation. To show the general applicability of our design, the
models cover a wide range of common point cloud tasks including
classification, segmentation, and detection. For classification, we
evaluate the classic PointNet++(c) [49] and DensePoint [37] on the
ModelNet40 dataset [65]. We use the overall accuracy as accuracy

metric. For segmentation, we evaluate PointNet++(s) [49] on the
ShapeNet dataset [15]. The metric used in segmentation is the
standard Intersection-over-Unit (mIoU) accuracy. For detection, we
evaluate F-PointNet [47] on the KITTI dataset [20] and report the
geometric mean of the IoU metric on the car class.

To obtain more competitive baselines and to ensure that the
improvements from Crescent are not due to the inefficiencies of
the network implementation, we use the versions of these mod-
els optimized by Feng et al. [18], which removes redundant MLP
computations and on average achieves 1.6× speedup over the cor-
responding author-released implementations.

Baseline We compare against three baselines:

• GPU: the mobile Pascal GPU on Nvidia’s Jetson TX2 devel-
opment board [4].

• Tigris+GPU: this baseline executes the neighbor search on
Tigris [66], a recent neighbor search accelerator that does not
perform approximate eighbor search and selectively bank
conflict elision, and executes the feature computation on the
mobile Pascal GPU.

• Mesorasi, a prior point cloud network accelerator [18] that
uses Tigris [66] for neighbor search and executes the feature
computation on a dedicated systolic-array without selec-
tively bank conflict elision. The exact same systolic array
configuration is used in Crescent with the exception that
Crescent performs selective bank conflict elision.

Area Overhead Our accelerator has a total area of 1.55mm2, in
which the Crescent-specific portion is almost negligible. The only
hardware extension is one that selectively elides the bank conflict
(Fig. 10), which requires an additional MUX and an AND gate for
each port of the SRAM.

Traininig Overhead Our approximation-aware training in-
creases the training time by 38%. The main overhead is to simulate
bank conflicts, which currently is a multi-threaded CPU implemen-
tation. Using a random h does not further increase the training
overhead, since we still perform one search per inference. Note that
the training overhead is amortized across all subsequent inferences.

Variants We evaluate two variants of Crescent to decouple
the contribution of the two optimizations:

• ANS performs approximate neighbor search but does not
elide bank conflicts.

• ANS+BCE performs approximate neighbor search while also
eliding bank conflicts in neighbor search and aggregation.

7 EVALUATION

We first show that Crescent achieves similar accuracy as the base-
line (Sec. 7.1) but delivers significant speedups and energy reduc-
tions (Sec. 7.2). We then provide a detailed analysis of our training
procedure and understand how its effectiveness varies with respect
to different algorithmic and hardware configurations (Sec. 7.3). We
perform sensitivity study to understand Crescent’s performance
and energy savings vary under different settings (Sec. 7.4). Finally,
we provide an quantative comparison with prior neighbor search
accelerators (Sec. 7.5).

Crescent: Taming Memory Irregularities for Accelerating Deep Point Cloud Analytics ISCA ’22, June 18–22, 2022, New York, NY, USA

PointNet++ (c)
PointNet++ (s)

DensePoint
F-PointNet

40

60

80

100

A
cc

ur
ac

y
(%

)

89.7 84.1 84.7 81.8
89.2 84.3 84.4 81.7

88.8 84.1 84.1 81.5

59.2 54.3 57.4
43.7

Baseline
ANS w/ retraining

ANS+BCE w/ retraining
ANS+BCE w/o retraining

Fig. 13: Accuracy comparison between the baseline models,

ANS+BCE without re-training, ANS with re-training under

ℎ𝑡 = 4, and ANS+BCE with re-training under ℎ𝑡 = 4 and

ℎ𝑒 = 12.

7.1 Accuracy

We find that directly applying Crescent optimizations without
retraining significantly degrades the model accuracy. Integrating
approximation into the training process elevates the accuracy to the
baseline level. Fig. 13 compares the model accuracy between four
schemes: 1) the baseline models, 2) ANS+BCE without re-training,
3) ANS+BCE with re-training, and 4) ANS with re-training. In this
specific case, each re-trained model is trained specifically for the
approximate setting where ℎ𝑡 = 4 and/or ℎ𝑒 = 12.

Directly applying the two optimizations at inference time de-
grades the accuracy between 27.3% to 40.5%, making the models
practically useless. Re-training regains the accuracy with an ac-
curacy drop of at most 0.9% (PointNet++(c)). In PointNet++(s),
re-training completely recovers the accuracy loss introduced in
approximation. The fact that we can almost completely recover
the accuracy loss with ANS+BCE, the most aggressive approxima-
tion setting, shows the effectiveness of our approximation-aware
training. The accuracy of ANS alone is slightly higher than that of
ANS+BCE, as the latter applies two approximations whereas the
former applies only one.

7.2 Performance and Energy

Using the re-trained ANS and ANS+BCE model shown in Fig. 13,
we compare Crescent’s performance and energy consumption
over the baseline accelerator, shown in Fig. 14.

Speedup Fig. 14a shows the speedup of ANS and ANS+BCE
against the three baselines; all data are normalized to Mesorasi.
Among the three baselines, Tigris+GPU and GPU are much slower
than Mesorasi, because the latter accelerates feature computation
on a systolic array.

Overall, ANS and ANS+BCE achieve a 1.7× and 1.9× speedup,
respectively, over Mesorasi. Comparing the speed of ANS+BCE
and ANS shows that approximation neighbor search contributes
more to the speedup than bank conflict elision. The speedups on
DensePoint are the highest (2.8× and 3.1×, respectively) because
DensePoint’s time is dominated by neighbor search (81%) whereas
neighbor search takes “only” about 55% of the time in other models.

To understand the sources of speedup, Fig. 15a and Fig. 15b
show the speedup of ANS+BCE on neighbor search and on the
aggregation operation in feature computation, respectively. On
average, ANS+BCE achieves a 4.9× speedup on neighbor search
and a 2.1× speedup on aggregation.

Energy Savings Fig. 14b shows the energy consumption of
ANS and ANS+BCE normalized to Mesorasi. On average, ANS

PointNet++ (c)

PointNet++ (s)
DensePoint

F-PointNet
AVG.

0

1

2

S
pe

ed
up 2.8 3.1

ANS
ANS+BCE

Mesorasi
Tigris+GPU

GPU

(a) Speedup. Higher is better.

PointNet++ (c)

PointNet++ (s)
DensePoint

F-PointNet
AVG.

10
-2

10
-1

10
0

10
1

10
2

N
or

n.
 E

ne
rg

y

ANS
ANS+BCE

Mesorasi
Tigris+GPU

GPU

(b) Normalized energy. Lower is better.

Fig. 14: End-to-end speedup and normalized energy of ANS

and ANS+BCE over the baseline.

Po
in

tN
et

++
 (c

)
Po

in
tN

et
++

 (s
)

De
ns

eP
oi

nt
F-

Po
in

tN
et

AV
G

.
 0

2
4
6
8

10

S
pe

ed
up

0
20
40
60
80
100

E
ne

rg
y

R
ed

uc
tio

n
(%

)

Speedup Energy

(a)Neighbor search.

Po
in

tN
et

++
 (c

)
Po

in
tN

et
++

 (s
)

De
ns

eP
oi

nt
F-

Po
in

tN
et

AV
G

.
 0

2
4
6
8

10

S
pe

ed
up

0
20
40
60
80
100

E
ne

rg
y

R
ed

uc
tio

n
(%

)

Speedup Energy

(b)Aggregation.

Fig. 15: Speedup and energy savings ofANS+BCE on neighbor

search and aggregation alone.

and ANS+BCE saves 33% and 36% of the total energy, respectively.
The energy saving is mainly contributed by approximate neighbor
search rather than bank conflict elision, because the former opti-
mizes the DRAM traffic, which contributes more to the energy than
the SRAM traffic, which the latter optimizes for. DensePoint, again,
has the highest energy saving because it is dominated by neighbor
search. As a comparison, Tigris+GPU and GPU consume 25× and
38× more energy, respectively, compared toMesorasi.

Fig. 15a and Fig. 15b on the right 𝑦-axes show the energy savings
on neighbor search and aggregation. DensePoint’s savings on these
two operations in isolation are on par with other networks, confirm-
ing that its significant end-to-end savings are primarily attributed
to the dominance of neighbor search in its execution time.

Tease Apart Contributions To understand the sources of en-
ergy savings, Fig. 16 decouples the memory energy savings into
four components: converting random DRAM accesses to stream-
ing accesses, DRAM traffic reduction, SRAM traffic reduction in
neighbor search, and SRAM traffic reduction from aggregation. The
former two are from our neighbor search algorithm, and the latter
two are from bank conflict elision.

Generally, themain energy saving contributor is the SRAM traffic
reduction in neighbor search, which frequently accesses the Tree

ISCA ’22, June 18–22, 2022, New York, NY, USA Yu Feng, Gunnar Hammonds, Yiming Gan, and Yuhao Zhu

PointNet++(c)

PointNet++(s)
DensePoint

F-PointNet
0

20
40
60
80

100

S
av

in
g

C
on

tri
bu

tio
n

(%
)

DRAM Traffic Reduction
DRAM Streaming
SRAM Neighbor Search
SRAM Aggregation

Fig. 16: Memory energy sav-

ing contribution.

PointNet++ (c)

PointNet++ (s)

DensePoint

F-PointNet
0

10
20
30
40
50

B
an

k
C

on
fli

ct
R

ed
uc

tio
n

(%
)

0
20
40
60
80
100

Tr
ee

 N
od

e
A

cc
es

s
R

ed
uc

tio
n

(%
)

Conflict Access

Fig. 17: Tree node access sav-

ing and bank conflict reduc-

tion of ANS+BCE

0 2 4 6 8 10 12
Top Tree Height

80

85

90

95

100

A
cc

ur
ac

y
(%

)

Fig. 18: Accuracy of ded-

icated PointNet++(c) mod-

els under different top-tree

heights (ℎ𝑡).

4 6 8 10 12 14
Bank Conflict Elision

80

85

90

95

100

A
cc

ur
ac

y
(%

)

Fig. 19: Accuracy of dedicated

PointNet++(c) models under

different elision heights (ℎ𝑒).

Buffer. While the DRAM savings are relatively smaller, we expect
the DRAM savings will become more significant in the future as
the point clouds grow in size.

We quantify the impact of selective bank conflict elision (BCE) in
Fig. 17, where we show the reduction in bank conflicts (left 𝑦-axis)
and, as a result, the reduction in the number of tree nodes visited
(right 𝑦-axis). The results are obtained by comparing ANS+BCE
with ANS. Overall, BCE avoids over 45% of bank conflicts and
reduces 50% of tree node accesses in neighbor search. This result
explains the 1.9× speedup overMesorasi by ANS+BCE.

7.3 Understanding the Training Procedure

We use PointNet++(c) as a representative model to drive the analy-
ses in this section. The conclusions generally hold.

Dedicated Models We first evaluate the accuracy of models
trained with dedicated approximation settings.

Fig. 18 shows the accuracy of PointNet++(c) trained under dif-
ferent top-tree heights (ℎ𝑡) and then inferenced under the same ℎ𝑡 .
The setting ℎ𝑡 being 0 is the baseline model with exact search. As
the ℎ𝑡 increases, the accuracy decreases. This is because a larger
ℎ𝑡 reduces the search space and, thus, it is less likely to find the
exact neighbors for each query. The accuracy is acceptable initially,
dropping from 89.6% to 88.8% as ℎ𝑡 increase from 0 to 4. Beyond
4, the accuracy drop becomes more significant. As the top-tree
height reaches 12, the accuracy is only 84.4%. As we will shown
later, however, a higher ℎ𝑡 leads to a higher speedup, providing a
large trade-off space.

Fig. 19 performs a similar study while varying the elision height
ℎ𝑒 . Each marker in the figure represents a dedicated ANS+BCE
model trained with different ℎ𝑒 ranging from 4 to 14; ℎ𝑡 in this
example is fixed at 4. As ℎ𝑒 increases, the accuracy increases. This
is because a higher elision height skips fewer tree nodes during

0 1 2 3 4 5 6
Top Tree Height

75

80

85

90

95

A
cc

ur
ac

y
(%

)

Mixed ht=1 ht=6

Fig. 20: Accuracy compar-

ison of different training

schemes.

2 4 8 16 32
Bank

80

85

90

95

100

A
cc

ur
ac

y
(%

)

Fig. 21: Sensitivity of bank

conflict simulation in train-

ing.

tree traversal, leading to a better search result. At a ℎ𝑒 of 12, the
accuracy loss is only 0.8%. The accuracy loss is over 5% when ℎ𝑒
reduces to 4, essentially ignoring almost all nodes in the sub-tree.

Mixed Training We now evaluate how a model trained by sam-
pling different approximation settings adapts to different approx-
imation levels at inference time. Fig. 20 compares three schemes:
1) a model trained with ℎ𝑡 = 1, 2) a model trained with ℎ𝑒 = 6,
and 3) a model trained by random sampling ℎ𝑡 between 1 and 6 for
each input (“Mixed” in the figure). We show their accuracy under
different inference-time ℎ𝑡 .

When a dedicated model is trained with ℎ𝑡 = 1, the accuracy
significantly drops when the inference-time ℎ𝑡 is greater than 1.
This is not surprising: a model trained with little approximation in
mind does not perform well when inference performs aggressive
approximation. When a dedicated model is trained with ℎ𝑡 = 6,
however, it performs reasonablywell across differentℎ𝑡 at inference-
time, even for ℎ𝑡 settings that are not seen in the training time.

The mixed model consistently provides higher or similar ac-
curacy compare the dedicated ℎ𝑡 = 1 model. Compared to the
dedicated ℎ𝑡 = 6 model, the mixed model is significantly better
when higher accuracy is required (i.e., ℎ𝑡 ≤ 3). The accuracy is
only noticeably worse than the dedicated ℎ𝑡 = 6 model when the
inference-time ℎ𝑡 is 6, which is what the dedicated ℎ𝑡 = 6 model is
trained to do well on. The mixed model is favorable when accuracy
requirement is high, which is arguably more important than the
low-accuracy regime.

Bank Conflict Simulation In order to integrate bank conflict
elision into training, we simulate the bank conflicts in the forward
propagation process during training. However, at training time
the exact banking configuration of the target hardware might be
unknown. Fig. 21 show the accuracy of training a model assuming
4 banks in the SRAM while inferencing under different numbers of
banks. The accuracy beyond 8 is largely stable; the accuracy has
about 2% drop when inferencing on a 2-banked SRAM.

BCE in Aggregation vs. Neighbor Search We perform bank
conflict elision in both neighbor search and in feature aggregation.
We find that the overall accuracy is insensitive to bank conflict eli-
sion in aggregation even without re-training. Across five networks,
directly applying bank conflict elision in aggregation alone (while
turning off other approximations) results in at most 0.3% accuracy
loss. In contrast, accuracy typically drops by double digits if bank
conflict elision is applied in neighbor search without re-training.
As discussed in Sec. 4.4, this is because in the latter case eliding
bank conflicts completely skips subsequent search operations.

Crescent: Taming Memory Irregularities for Accelerating Deep Point Cloud Analytics ISCA ’22, June 18–22, 2022, New York, NY, USA

2 4 8 16 32
#PE

2

4

8

16

32

#B
an

k

2.1 1.8 1.7 1.7 1.7

2.1 1.7 1.5 1.4 1.4

2.0 1.6 1.4 1.3 1.2

2.0 1.6 1.4 1.2 1.1

2.0 1.6 1.4 1.2 1.1
1.05
1.20
1.35
1.50
1.65
1.80
1.95
2.10
2.25
2.40

S
peedup

(a) Speedup sensitivity.

2 4 8 16 32
#PE

2

4

8

16

32

#B
an

k

0.74 0.72 0.71 0.71 0.71

0.74 0.73 0.72 0.71 0.71

0.75 0.74 0.73 0.72 0.72

0.75 0.74 0.74 0.73 0.72

0.75 0.75 0.74 0.74 0.73
0.702
0.708
0.714
0.720
0.726
0.732
0.738
0.744
0.750

N
orm

. E
nergy

(b) Energy sensitivity.

Fig. 22: Sensitivity of speedup and (normalized) energy to

hardware configuration (PE and bank counts) on Point-

Net++(c).

1.0 1.2 1.4 1.6 1.8 2.0
Speedup

80

85

90

95

100

A
cc

ur
ac

y
(%

)

<10,14>

<2,12>

<1,12>

(a) Speedup-vs-accuracy trade-off.

0.6 0.7 0.8 0.9 1.0
Norm. Energy

80

85

90

95

100

A
cc

ur
ac

y
(%

)

<10,14> <2,12>

<1,12>

(b) Energy-vs-accuracy trade-off.

Fig. 23: Accuracy vs. performance vs. energy trade-off on

PointNet++(c) under different < ℎ𝑡 , ℎ𝑒 > combinations.

7.4 Sensitivity Study

Hardware Configuration Fig. 22a and Fig. 22b show how Cres-
cent’s speedup and energy vary, respectively, as the numbers of
PEs and the number of Tree Buffer banks vary. The energy is nor-
malized to the corresponding baseline.

Naturally, the speedup is higher on less-capable baselines and
diminishes on more capable baselines (e.g. 32 PEs and 32 banks),
because performance optimizations are less important when the
hardware is faster to begin with. Note, however, that a 16-bank
memory introduces large cross-bar overhead and is generally im-
practical for mobile-grade accelerators [9, 71].

The significant energy saving is consistent across different hard-
ware configurations. Even with a 32 PE 32 bank configuration,
Crescent still saves about 27% energy on PointNet++(c). This is
because the energy is roughly proportional to the amount of work
done. Changing the hardware configuration does not affect the bulk
of the work needed to be done.

ApproximationDegrees Fig. 23a and Fig. 23b show the accuracy-
vs-speedup and accuracy-vs-energy trade-offs, respectively, with
different ℎ𝑡 and ℎ𝑒 combinations, which dictate different approxi-
mation strengths. The data are reported from PointNet++(c), but
the trend generally holds. Overall, varying ℎ𝑡 from 0 to 12 and ℎ𝑒
from 4 to 14 provide a trade-off space of about 5% accuracy range,
2.0 × performance range, and 1.5 × energy range.

7.5 Comparison with Prior Neighbor Search

Accelerators

QuickNN [44] and Tigris [66] are two recent neighbor search ac-
celerators that both use a split-tree data structure. As discussed in
Sec. 3.4, Crescent reduces both the search load and DRAM traffic.

PointNet++ (c)

PointNet++ (s)

DensePoint

F-PointNet
AVG.

0

20

40

60

80

Tr
ee

 N
od

e
V

is
ite

d
R

ed
uc

tio
n

(%
)

32.33 32.33

54.28
45.09 41.01

(a) Reduction in total tree nodes

visited from Tigris [66].

PointNet++ (c)

PointNet++ (s)

DensePoint

F-PointNet
AVG.

0

20

40

60

80

D
R

A
M

 A
cc

es
s

R
ed

uc
tio

n
(%

)

61.27 61.27
50.77

19.58

48.23

(b)DRAM access (in Bytes) reduc-

tion from QuickNN [44].

Fig. 24: Comparison with prior neighbor search accelerators.

Fig. 24a shows that the K-d tree-based search reduces the total num-
ber of tree nodes visited by 41% compared to exhaustive search. This
explains the one order of magnitude performance improvement
over the Tigris-based accelerator shown in Sec. 7.2.

QuickNN, similar toCrescent, also presents a completely stream-
ing DRAM accesses — at the expense of redundant DRAM accesses,
since each sub-tree is potentially loaded onto the accelerator multi-
ple times. Comparing to a QuickNN implementation with the same
PE configuration, Fig. 24b shows that Crescent reduces the total
DRAM accesses by 48%.

Finally, we target DNN-based algorithms and, thus, can mitigate
the potential accuracy loss through end-to-end network training,
which is not available to QuickNN and Tigris; both target a non-
DNN algorithm (point cloud registration).

8 RELATEDWORK

Deep Learning for Point Clouds Point cloud algorithms are
increasingly moving toward DNNs, which has spurred recent in-
terests in accelerating point cloud networks [18, 29, 36]. Point
cloud DNNs mainly come in two forms: one that operates on raw
points [37, 48, 49, 59, 70], and the other that first voxelizes points
and operates on voxels, which are grid-aligned points [16, 22]. The
former requires explicitly neighbor search whereas the latter ac-
cesses neighbors through simple indexing. It is unclear whether
future point cloud algorithms will definitively favor one form over
the other. Crescent focuses on optimizing point-based algorithms,
whose flexibility and compact data representation are shown to be
critical in many application domains [26], such as object detection,
localization (SLAM), segmentation, and classification.

PointAcc [36], Point-X [69], and Mesorasi [18] are all recent
point cloud accelerators. They are fundamentally orthogonal to our
work in that they focus on accelerating the feature computation in
point cloud DNNs. For instance, Point-X and Mesorasi exploit the
spatial locality and computation redundancy, respectively. All three
use brute-force neighbor search and, thus, can directly benefit from
the optimizations (approximate neighbor search and selective bank
conflict elision) proposed in this paper. We show 1.9 × speedup and
36% energy reduction over Mesorasi in Sec. 7.2.

Neighbor Search This paper targets neighbor search in low-
dimensional space (2/3D), which is a fundamental building block in
many computational science and engineering fields, where physical
objects naturally lie in 2/3D space, such as computational fluid
dynamics [30], computer graphics [68], and vision [38, 66]. Prior
work has explored both algorithmic and hardware solutions to

ISCA ’22, June 18–22, 2022, New York, NY, USA Yu Feng, Gunnar Hammonds, Yiming Gan, and Yuhao Zhu

accelerate neighbor search [11, 21, 28, 34, 44, 50, 63, 66], many
of which are approximate in their nature [12, 23, 28, 40, 41, 45].
We provide a quantitative comparison with QuickNN [44] and
Tigris [66], two most relevant accelerators in Sec. 7.5.

Optimizing Irregular Memory Accesses Recent work has
made significant strides in domain-agnostic prefetching for irregu-
lar applications [10, 43, 57]. Our split-tree structure can be seen as
an application-specific prefetcher and achieves “perfect prefetching”
in that 1) off-chip data accesses are overlapped with computation, 2)
data needed by the accelerator are readily available on-chip without
stall, and 3) no redundant DRAM accesses are needed.

Our split-tree structure also serves as an irregular tiling strategy,
akin to propagation blocking for graph algorithms [13], but the
decision as to which partition (sub-tree) a point is stored is based
on the geometric position of a point.

Approximation Techniques Our approximation techniques
exploit the inexact nature of DNNs. Selective bank conflict elision
can be seen as a form of value approximation, bearing similarity
to such approximation in general-purpose processors [42, 51, 53,
54, 64]. However, different from prior systems where the accuracy
control is empirical, we integrate approximation into the training
process; this allows us to provide statistical accuracy guarantees.

9 CONCLUSION

The mismatch between 3D perception algorithms and today’s hard-
ware designed and optimized for 2D perception will only increase
in the future, where 3D perception applications are expected to
be much more compute- and memory-intensive while at the same
time being deployed in more resource-constrained platforms such
as micro aerial vehicles.

The mismatch between 3D perception algorithms and today’s
hardware designed and optimized for 2D perception will only in-
crease in the future.Crescent demonstrates an algorithm-hardware
collaborative approach toward taming the irregularities in point
cloud algorithms. The key idea behind Crescent is to intention-
ally introduce approximations at both the algorithm and the hard-
ware level to reduce memory inefficiencies (e.g., converting ran-
dom DRAM accesses to streaming accesses, selectively eliding
SRAM bank conflicts), and the mitigate the accuracy loss through
approximate-aware network retraining.

10 ACKNOWLEDGEMENTS

We thank the anonymous reviewers from ISCA 2022 for their valu-
able feedback. The work was supported, in part, by NSF under
grants #2044963 and #2126642.

REFERENCES

[1] “ARCore,” https://developers.google.com/ar.
[2] “ARM’s First Generation ML Processor, HotChips 30.” [Online]. Avail-

able: https://www.hotchips.org/hc30/2conf/2.07_ARM_ML_Processor_HC30_
ARM_2018_08_17.pdf

[3] “Artisan Memory Compilers,” https://developer.arm.com/ip-products/physical-
ip/embedded-memory.

[4] “Jetson TX2 Module,” https://developer.nvidia.com/embedded/jetson-tx2.
[5] “Micron 178-Ball, Single-Channel Mobile LPDDR3 SDRAM Features.”

[Online]. Available: https://www.micron.com/-/media/client/global/documents/
products/data-sheet/dram/mobile-dram/low-power-dram/lpddr3/178b_8-
16gb_2c0f_mobile_lpddr3.pdf

[6] “Micron System Power Calculators.” [Online]. Available: https://
www.micron.com/support/tools-and-utilities/power-calc

[7] “OpenHeritage 3D dataset,” https://www.openheritage3d.org.
[8] “Waymo Offers a Peek Into the Huge Trove of Data Collected by Its Self-

Driving Cars,” https://spectrum.ieee.org/cars-that-think/transportation/self-
driving/waymo-opens-up-part-of-its-humongous-selfdriving-database.

[9] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “Garnet: A detailed on-chip net-
work model inside a full-system simulator,” in 2009 IEEE international symposium
on performance analysis of systems and software. IEEE, 2009, pp. 33–42.

[10] S. Ainsworth and T. M. Jones, “An event-triggered programmable prefetcher for
irregular workloads,” ACM Sigplan Notices, vol. 53, no. 2, pp. 578–592, 2018.

[11] M. Aly, M. Munich, and P. Perona, “Distributed kd-trees for retrieval from very
large image collections,” in Proceedings of the British machine vision conference
(BMVC), vol. 17, 2011.

[12] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An optimal
algorithm for approximate nearest neighbor searching fixed dimensions,” Journal
of the ACM (JACM), vol. 45, no. 6, pp. 891–923, 1998.

[13] S. Beamer, K. Asanović, and D. Patterson, “Reducing pagerank communication
via propagation blocking,” in 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2017, pp. 820–831.

[14] J. L. Bentley, “Multidimensional binary search trees used for associative searching,”
Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[15] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese,
M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu, “ShapeNet: An Information-Rich
3D Model Repository,” Stanford University — Princeton University — Toyota
Technological Institute at Chicago, Tech. Rep. arXiv:1512.03012 [cs.GR], 2015.

[16] C. Choy, J. Gwak, and S. Savarese, “4d spatio-temporal convnets: Minkowski
convolutional neural networks,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 3075–3084.

[17] L. Comba, A. Biglia, D. R. Aimonino, and P. Gay, “Unsupervised detection of
vineyards by 3d point-cloud uav photogrammetry for precision agriculture,”
Computers and electronics in agriculture, vol. 155, pp. 84–95, 2018.

[18] Y. Feng, B. Tian, T. Xu, P. Whatmough, and Y. Zhu, “Mesorasi: Architecture
support for point cloud analytics via delayed-aggregation,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 2020,
pp. 1037–1050.

[19] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris: Scalable and
efficient neural network acceleration with 3d memory,” in Proceedings of the
22nd ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, 2017.

[20] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving?
the kitti vision benchmark suite,” in Proceedings of the 25th IEEE Conference on
Computer Vision and Pattern Recognition, 2012.

[21] F. Gieseke, J. Heinermann, C. Oancea, and C. Igel, “Buffer kd trees: processing
massive nearest neighbor queries on gpus,” in International Conference onMachine
Learning. PMLR, 2014, pp. 172–180.

[22] B. Graham, M. Engelcke, and L. Van Der Maaten, “3d semantic segmentation with
submanifold sparse convolutional networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 9224–9232.

[23] M. Greenspan and M. Yurick, “Approximate kd tree search for efficient icp,” in
Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM
2003. Proceedings. IEEE, 2003, pp. 442–448.

[24] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Kilo-noc: a heterogeneous
network-on-chip architecture for scalability and service guarantees,” in 2011 38th
Annual International Symposium on Computer Architecture (ISCA). IEEE, 2011,
pp. 401–412.

[25] P. Guerrero, Y. Kleiman, M. Ovsjanikov, and N. J. Mitra, “Pcpnet learning local
shape properties from raw point clouds,” in Computer Graphics Forum, vol. 37,
no. 2. Wiley Online Library, 2018, pp. 75–85.

[26] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep learning for
3d point clouds: A survey,” IEEE transactions on pattern analysis and machine
intelligence, 2020.

[27] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell, A. Vasi-
lyev, M. Horowitz, and P. Hanrahan, “Darkroom: Compiling high-level image
processing code into hardware pipelines,” 2014.

[28] S. Heinzle, G. Guennebaud, M. Botsch, and M. H. Gross, “A hardware process-
ing unit for point sets,” in Acm Siggraph/eurographics Symposium on Graphics
Hardware, 2008.

[29] B. Hyun, J. Lee, and M. Rhu, “Characterization and analysis of deep learning for
3d point cloud analytics,” IEEE Computer Architecture Letters, vol. 20, no. 2, pp.
106–109, 2021.

[30] M. Ihmsen, N. Akinci, M. Becker, andM. Teschner, “A parallel sph implementation
on multi-core cpus,” in Computer Graphics Forum, vol. 30, no. 1. Wiley Online
Library, 2011, pp. 99–112.

https://developers.google.com/ar
https://www.hotchips.org/hc30/2conf/2.07_ARM_ML_Processor_HC30_ARM_2018_08_17.pdf
https://www.hotchips.org/hc30/2conf/2.07_ARM_ML_Processor_HC30_ARM_2018_08_17.pdf
https://developer.arm.com/ip-products/physical-ip/embedded-memory
https://developer.arm.com/ip-products/physical-ip/embedded-memory
https://developer.nvidia.com/embedded/jetson-tx2
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/mobile-dram/low-power-dram/lpddr3/178b_8-16gb_2c0f_mobile_lpddr3.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/mobile-dram/low-power-dram/lpddr3/178b_8-16gb_2c0f_mobile_lpddr3.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/mobile-dram/low-power-dram/lpddr3/178b_8-16gb_2c0f_mobile_lpddr3.pdf
https://www.micron.com/support/tools-and-utilities/power-calc
https://www.micron.com/support/tools-and-utilities/power-calc
https://www.openheritage3d.org
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/waymo-opens-up-part-of-its-humongous-selfdriving-database
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/waymo-opens-up-part-of-its-humongous-selfdriving-database

Crescent: Taming Memory Irregularities for Accelerating Deep Point Cloud Analytics ISCA ’22, June 18–22, 2022, New York, NY, USA

[31] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark, J. Coriell,
M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland,
R. Hagmann, R. C. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law,
D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony,
K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov,
M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon,
“In-Datacenter Performance Analysis of a Tensor Processing Unit,” in Proc. of
ISCA, 2017.

[32] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter performance analysis of a
tensor processing unit,” in 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture, 2017.

[33] D. B. Kirk and W. H. Wen-Mei, Programming massively parallel processors: a
hands-on approach. Morgan kaufmann, 2016.

[34] T. Kuhara, T. Miyajima, M. Yoshimi, and H. Amano, An FPGA Acceleration for the
Kd-tree Search in Photon Mapping, 2013.

[35] M. Liang, B. Yang, S. Wang, and R. Urtasun, “Deep continuous fusion for multi-
sensor 3d object detection,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 641–656.

[36] Y. Lin, Z. Zhang, H. Tang, H. Wang, and S. Han, “Pointacc: Efficient point cloud
accelerator,” in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, 2021, pp. 449–461.

[37] Y. Liu, B. Fan, G. Meng, J. Lu, S. Xiang, and C. Pan, “Densepoint: Learning densely
contextual representation for efficient point cloud processing,” in Proceedings of
the 14th IEEE International Conference on Computer Vision, 2019.

[38] Y. Lu, Y. Zhu, and G. Lu, “3d sceneflownet: Self-supervised 3d scene flow es-
timation based on graph cnn,” in 2021 IEEE International Conference on Image
Processing (ICIP). IEEE, 2021, pp. 3647–3651.

[39] B. D. Lucas and T. Kanade, “An iterative image registration technique with an
application to stereo vision,” in Proceedings of the 7th International Joint Conference
on Artificial Intelligence, 1981.

[40] V. C. Ma and M. D. McCool, “Low latency photon mapping using block hashing,”
in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware. Eurographics Association, 2002, pp. 89–99.

[41] L. Miclet and M. Dabouz, “Approximative fast nearest-neighbour recognition,”
Pattern Recognition Letters, vol. 1, no. 5-6, pp. 277–285, 1983.

[42] J. S. Miguel, J. Albericio, A. Moshovos, and N. E. Jerger, “Doppelgänger: a cache
for approximate computing,” in Proceedings of the 48th International Symposium
on Microarchitecture, 2015, pp. 50–61.

[43] A. Naithani, S. Ainsworth, T. M. Jones, and L. Eeckhout, “Vector runahead,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 2021, pp. 195–208.

[44] R. Pinkham, S. Zeng, and Z. Zhang, “Quicknn: Memory and performance opti-
mization of kd tree based nearest neighbor search for 3d point clouds,” in 2020
IEEE International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2020, pp. 180–192.

[45] T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen, and P. Hanrahan, “Photon
mapping on programmable graphics hardware,” in ACM SIGGRAPH 2005 Courses.
ACM, 2005, p. 258.

[46] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis, and M. A.
Horowitz, “Convolution engine: balancing efficiency & flexibility in specialized
computing,” ACM SIGARCH Computer Architecture News, vol. 41, no. 3, pp. 24–35,
2013.

[47] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum pointnets for 3d object
detection from rgb-d data,” in Proceedings of the 31st IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 918–927.

[48] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets
for 3d classification and segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 652–660.

[49] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature
learning on point sets in a metric space,” in Advances in neural information
processing systems, 2017, pp. 5099–5108.

[50] D. Qiu, S. May, and A. Nüchter, “Gpu-accelerated nearest neighbor search for
3d registration,” in Proceedings of the 9th International Conference on Computer
Vision Systems, 2009.

[51] P. V. Rengasamy, A. Sivasubramaniam, M. T. Kandemir, and C. R. Das, “Exploiting
staleness for approximating loads on cmps,” in 2015 International Conference on
Parallel Architecture and Compilation (PACT). IEEE, 2015, pp. 343–354.

[52] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, “Towards 3d point
cloud based object maps for household environments,” Robotics and Autonomous
Systems, vol. 56, no. 11, pp. 927–941, 2008.

[53] J. San Miguel, J. Albericio, N. E. Jerger, and A. Jaleel, “The bunker cache for spatio-
value approximation,” in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2016, pp. 1–12.

[54] J. San Miguel, M. Badr, and N. E. Jerger, “Load value approximation,” in 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture. IEEE, 2014,
pp. 127–139.

[55] B. Schwarz, “Lidar: Mapping the world in 3d,” Nature Photonics, vol. 4, no. 7, p.
429, 2010.

[56] J. D. Stets, Y. Sun, W. Corning, and S. W. Greenwald, “Visualization and labeling
of point clouds in virtual reality,” in SIGGRAPH Asia 2017 Posters. ACM, 2017,
p. 31.

[57] N. Talati, K. May, A. Behroozi, Y. Yang, K. Kaszyk, C. Vasiladiotis, T. Verma,
L. Li, B. Nguyen, J. Sun et al., “Prodigy: Improving the memory latency of data-
indirect irregular workloads using hardware-software co-design,” in 2021 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 2021, pp. 654–667.

[58] G. Vosselman, S. Dijkman et al., “3d building model reconstruction from point
clouds and ground plans,” International archives of photogrammetry remote sensing
and spatial information sciences, vol. 34, no. 3/W4, pp. 37–44, 2001.

[59] Y.Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic
graph cnn for learning on point clouds,” ACM Transactions on Graphics (TOG),
vol. 38, no. 5, pp. 1–12, 2019.

[60] N. H. Weste and D. Harris, CMOS VLSI design: a circuits and systems perspective.
Pearson Education India, 2015.

[61] P. N. Whatmough, C. Zhou, P. Hansen, S. K. Venkataramanaiah, J.-s. Seo, and
M. Mattina, “Fixynn: Efficient hardware for mobile computer vision via transfer
learning,” arXiv preprint arXiv:1902.11128, 2019.

[62] M. Whitty, S. Cossell, K. S. Dang, J. Guivant, and J. Katupitiya, “Autonomous
navigation using a real-time 3d point cloud,” in 2010 Australasian Conference on
Robotics and Automation, 2010.

[63] F. Winterstein, S. Bayliss, and G. A. Constantinides, “Fpga-based k-means clus-
tering using tree-based data structures,” in International Conference on Field
Programmable Logic & Applications, 2013.

[64] D. Wong, N. S. Kim, and M. Annavaram, “Approximating warps with intra-
warp operand value similarity,” in 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2016, pp. 176–187.

[65] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets:
A deep representation for volumetric shapes,” in Proceedings of the 28th IEEE
conference on computer vision and pattern recognition, 2015.

[66] T. Xu, B. Tian, and Y. Zhu, “Tigris: Architecture and algorithms for 3d percep-
tion in point clouds,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, pp. 629–642.

[67] A. Yazdanbakhsh, K. Samadi, N. S. Kim, and H. Esmaeilzadeh, “Ganax: A unified
mimd-simd acceleration for generative adversarial networks,” in Proceedings of
the 45th ACM/IEEE Annual International Symposium on Computer Architecture,
2018.

[68] W. Yifan, F. Serena, S. Wu, C. Öztireli, and O. Sorkine-Hornung, “Differentiable
surface splatting for point-based geometry processing,” ACM Transactions on
Graphics (TOG), vol. 38, no. 6, pp. 1–14, 2019.

[69] J.-F. Zhang and Z. Zhang, “Point-x: A spatial-locality-aware architecture for
energy-efficient graph-based point-cloud deep learning,” in MICRO-54: 54th An-
nual IEEE/ACM International Symposium on Microarchitecture, 2021, pp. 1078–
1090.

[70] K. Zhang, M. Hao, J. Wang, C. W. de Silva, and C. Fu, “Linked dynamic graph
cnn: Learning on point cloud via linking hierarchical features,” arXiv preprint
arXiv:1904.10014, 2019.

[71] Y. Zhou, M. Yang, C. Guo, J. Leng, Y. Liang, Q. Chen, M. Guo, and Y. Zhu, “Char-
acterizing and demystifying the implicit convolution algorithm on commercial
matrix-multiplication accelerators,” in 2021 IEEE International Symposium on
Workload Characterization (IISWC). IEEE, 2021, pp. 214–225.

[72] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi, “Target-
driven visual navigation in indoor scenes using deep reinforcement learning,”
in 2017 IEEE international conference on robotics and automation (ICRA). IEEE,
2017, pp. 3357–3364.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Background: Deep Point Cloud Analytics
	2.2 Memory Inefficiencies in Neighbor Search
	2.3 Memory Inefficiencies in Feature Computation

	3 Fully-Streaming Neighbor Search Algorithm
	3.1 Algorithm
	3.2 Hardware Design
	3.3 Accuracy and Performance Trade-off
	3.4 Efficiency Discussion

	4 Selective Bank Conflict Elision
	4.1 Main Idea
	4.2 How Algorithms Proceed with Bank Conflicts Elision
	4.3 Hardware Support
	4.4 When to Elide Bank Conflicts?

	5 Approximation-Aware Network Training
	6 Experimental Setup
	7 Evaluation
	7.1 Accuracy
	7.2 Performance and Energy
	7.3 Understanding the Training Procedure
	7.4 Sensitivity Study
	7.5 Comparison with Prior Neighbor Search Accelerators

	8 Related Work
	9 Conclusion
	10 Acknowledgements
	References

