
Energy-Efficient Video Processing for Virtual Reality
Yue Leng

∗

UIUC

yueleng2@illinois.edu

Chi-Chun Chen
∗

University of Rochester

cchen120@ur.rochester.edu

Qiuyue Sun

University of Rochester

qsun15@u.rochester.edu

Jian Huang

UIUC

jianh@illinois.edu

Yuhao Zhu

University of Rochester

yzhu@rochester.edu

Abstract

Virtual reality (VR) has huge potential to enable radically new

applications, behind which spherical panoramic video processing is

one of the backbone techniques. However, current VR systems reuse

the techniques designed for processing conventional planar videos,

resulting in significant energy inefficiencies. Our characterizations

show that operations that are unique to processing 360° VR content

constitute 40% of the total processing energy consumption.

We present EVR, an end-to-end system for energy-efficient VR

video processing. EVR recognizes that the major contributor to

the VR tax is the projective transformation (PT) operations. EVR

mitigates the overhead of PT through two key techniques: semantic-

aware streaming (SAS) on the server and hardware-accelerated

rendering (HAR) on the client device. EVR uses SAS to reduce the

chances of executing projective transformation on VR devices by

pre-rendering 360° frames in the cloud. Different from conventional

pre-rendering techniques, SAS exploits the key semantic informa-

tion inherent in VR content that is previously ignored. Comple-

mentary to SAS, HAR mitigates the energy overhead of on-device

rendering through a new hardware accelerator that is specialized

for projective transformation. We implement an EVR prototype on

an Amazon AWS server instance and a NVIDA Jetson TX2 board

combined with a Xilinx Zynq-7000 FPGA. Real system measure-

ments show that EVR reduces the energy of VR rendering by up to

58%, which translates to up to 42% energy saving for VR devices.

CCS Concepts

•Hardware→Hardware accelerators;Emerging architectures;

Platform power issues.

Keywords

virtual reality, video processing, hardware accelerator, projective

transformation, pre-rendering, energy efficiency

∗
Yue Leng and Chi-Chun Chen are co-primary authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6669-4/19/06. . . $15.00

https://doi.org/10.1145/3307650.3322264

ACM Reference Format:

Yue Leng, Chi-Chun Chen, Qiuyue Sun, Jian Huang, and Yuhao Zhu. 2019.

Energy-Efficient Video Processing for Virtual Reality. In The 46th Annual
International Symposium on Computer Architecture (ISCA ’19), June 22–26,
2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/

10.1145/3307650.3322264

1 Introduction

Virtual Reality (VR) has profound social impact in transformative

ways. For instance, immersive VR experience is shown to reduce

patient pain [8]more effectively than traditionalmedical treatments,

and is seen as a promising solution to the opioid epidemic [15].

One of the key use-cases of VR is 360° video processing. Unlike

conventional planar videos, 360° videos embed panoramic views

of the scene. As users change the viewing angle, the VR device

renders different parts of the scene, mostly on a head-mounted

display (HMD), providing an immersive experience. 360° videos

have gained tremendous momentum recently with the sales of

360° cameras expected to grow by 1500% in a few years [69], new

compression standard being discussed and established [11], and

companies such as YouTube and Facebook heavily investing on it.

A major challenge in VR video processing today is the excessive

power consumption of VR devices. Our measurements show that

rendering 720p VR videos in 30 frames per second (FPS) consistently

consumes about 5W of power, which is twice as much power than

rendering conventional planar videos and exceeds the Thermal

Design Point (TDP) of typical mobile devices [32]. The device power

requirement will only grow as users demand higher frame-rate

and resolution, presenting a practical challenge to the energy-and-

thermal constrained mobile VR devices.

The excessive device power is mainly attributed to the funda-

mental mis-match between today’s VR system design philosophy

and the nature of VR videos. Today’s VR video systems are designed

to reuse well-established techniques designed for conventional pla-

nar videos [19, 30, 37]. This strategy accelerates the deployment

of VR videos, but causes significant energy overhead. More specifi-

cally, VR videos are streamed and processed as conventional planar

videos. As a result, once on-device, each VR frame goes through a

sequence of spherical-planar projective transformations (PT) that

correctly render a user’s current viewing area on the display. The PT

operations are pure overhead uniquely associated with processing

VR videos – operations that we dub “VR tax.” Our characterizations

show that “VR tax” is responsible for about 40% of the processing

energy consumption, a lucrative target for optimizations.

This paper proposes EVR, an end-to-end energy-efficient VR

system. It consists of two complementary optimization primitives:

https://doi.org/10.1145/3307650.3322264
https://doi.org/10.1145/3307650.3322264
https://doi.org/10.1145/3307650.3322264


ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Yue Leng, Chi-Chun Chen, Qiuyue Sun, Jian Huang, and Yuhao Zhu

semantic-aware streaming and hardware-accelerated rendering.

EVR synergistically combines the two techniques and achieves

significant energy reduction for VR devices.

Specifically, semantic-aware streaming (SAS) removes the VR-

induced operations from VR devices as much as possible. This

is achieved by tasking the streaming server with the projective

transformation operations. Effectively, the streaming server pre-

renders the pixels falling within the user’s viewing area and stream

only those pixels. In this way, the VR video can be directly displayed

on-device in the same way as a conventional planar video, greatly

reducing the overall energy consumption.

Although pre-rendering has been exploited in various contexts [1,

23, 47], pre-rendering VR content poses unique challenges. Specifi-

cally, it requires us to predict user’s viewing area in every frame.

Ideally, we should do so without incurring extra client overhead.

Recent work that uses machine learning techniques on the VR de-

vice to predict user’s head orientation [58, 63] potentially increases

the device power. Instead, we propose an effective and lightweight

prediction solution. We observe that user’s viewing area can be

accurately predicted by object semantics information inherent in

VR content that is previously unrecoginized. Specifically, our char-

acteristic study of VR video workloads reveals that VR users in the

steady state tend to track the same set of objects across frames.

Thus, we propose a first-order viewing area predictor based on

object trajectories within a VR video.

An important implication of semantic-aware prediction is that it

might mis-predict in scenarios where user do not track objects, in

which cases rendering VR videos on-device is inevitable.We observe

that the major inefficiency in on-device VR video rendering is that

VR rendering systems cast the PT operations as a texture mapping

problem, which is then delegated to GPUs to maximize the reuse of

the existing hardware. Although well-optimized for generic texture

mapping, GPUs incur high energy overhead for the specific texture

mapping instance of VR projective transformations.

To mitigate the energy overhead of on-device rendering, we

propose hardware-accelerated rendering (HAR), which incorpo-

rates a new hardware accelerator specialized for PT. The hardware

accelerator exploits the unique compute characteristics of PT to

significantly reduce the energy consumption of VR video rendering,

while maintaining just enough configurability to adapt to different

transformation methods for ensuring general applicability [25].

Building on top of the two optimizing primitives – semantic-

aware streaming and hardware-accelerated rendering, we design

EVR, an end-to-end VR video system that optimizes for energy-

efficiency. EVR includes a cloud component and a client component.

The cloud component extracts object semantics from VR videos

upon ingestion, and pre-renders a set of miniature videos that con-

tain only the user viewing areas and that could be directly rendered

as planar videos by leveraging the powerful computating resources

on the cloud. The client component retrieves the miniature video

with object semantics, and leverages the specialized accelerator for

energy-efficient on-device rendering if the original full video is re-

quired. For VR applications whose content comes from panoramic

videos available on the VR devices, the HAR can accelerate the

video rendering with lower energy overhead.

We implement EVR in a prototype system, where the cloud ser-

vice is hosted on an AWS instance while the client is deployed

Projective
Transformation

Rendering

Projection
(e.g, Cubemap

Equirectangular)

Capture

Reverse-
projectionProjection

Camera 
Rig

Display
Processing

HMD
Head

Orientation

Encode/
Decode

View Area 
Selection

Figure 1: Illustration of today’s VR video system.

on a customize platform that combines the NVIDIA TX2 and Xil-

inx Zynq-7000 development boards which can represent a typical

VR client device. We evaluate EVR on a wide variety of VR use-

cases. Based on real system measurements on varius real-world VR

datasets, EVR reduces the energy of VR rendering by up to 58%,

which translates to up to 42% device-level energy savings. Overall,

this paper makes the following contributions:

• We provide a detailed power characterization of VR client devices

and show that projective transformation is a significant source of

the energy overhead uniquely introduced by VR video processing.

• We quantitatively demonstrate, based on the characteristic study

of various VR video workloads, that VR users’ viewing behaviors

strongly correlate with visual object movements in VR content.

• We propose semantic-aware streaming that extracts visual object

semantics from VR content and pre-renders VR content in the

server to save energy for client devices.

• We design a hardware accelerator specialized for energy-efficient

on-device VR video rendering.

• We design and implement EVR, which combines semantic-aware

streaming and hardware-accelerated rendering. Measurements

on a real-world cloud-client setup demonstrates significant re-

ductions in VR device energy consumption.

The rest of this paper is organized as follows. § 2 discusses

the background of 360° video rendering. § 3 presents our power

characterization of VR devices. We present the overview of EVR

in § 4. The designs of EVR’s core components SAS and HAR are

detailed in § 5 and § 6, respectively. We describe the implementation

of EVR in § 7 and evaluate in § 8. We discuss the related work in § 9

and conclude in § 10.

2 VR Video System Background

Different from conventional planar video content, 360° VR content

provides an immersive experience by encoding panoramic views

in video frames. This section defines the scope of VR system that

we study in this paper, and introduce the necessary background.

VRSystemOverview.AVR system involves two distinct stages:

capture and rendering. Figure 1 illustrates a typical VR system today.

VR videos are captured by special cameras [4, 21], which generate

360° images that are best presented in the spherical format. The

spherical images are then projected to planar frames through one

of the spherical-to-planar projections such as the equirectangular

projection [27]. The planar video is either directly live-streamed to



Energy-Efficient Video Processing for Virtual Reality ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Encoded 
Video

Video 
Codec

D
R
AM

So
C

Images

GPU Display 
Processor

OpenGL ES 
Texture

Inertial Measurement 
Unit (IMU)

(Head-Mounted) 
Display

Network Interface /
Local Storage

Frame 
Buffer

Zero
Copy

I/O

Figure 2: System architecture of a typical VR client device.

client devices for rendering (e.g., broadcasting a sports event) [61],

or published to a content provider such as YouTube or Facebook

and then streamed to client devices upon requests. Alternatively,

the streamed videos can also be persisted in the local storage on a

client device for future playback.

This paper focuses on client-side VR content rendering, i.e., after

a VR video is captured, because rendering directly impacts VR

devices’ energy-efficiency. Capturing VR content requires hardware

and software different from rendering, and is an active research area

on its own. We refer interested readers to § 9 for more discussions.

Client-Side Rendering. In conventional planar video render-

ing, each frame could be directly displayed once decoded. However,

each VR frame must go through a set of projective transformation

(PT) operations before displayed on the HMD.

We demonstrate the procedure of PT in Figure 1. Conceptually,

PT works as follows. A planar VR frame is first reversely projected

back to the spherical format, from which the client player generates

a spherical region that corresponds to the user’s current viewing

angle, which is dictated by the head orientation. The spherical

region is then projected to the planar format again for display. It

is worth emphasizing that in the context of 360° video rendering

only rotational head motion is considered, and translational motion

is not. This is different from other VR use-cases such as gaming

where both rotational and translation movements are captured.

The reason that the PT operations are required at the rendering

time is because 360° frames, after being captured, are projected from

the spherical format to the planar format. The spherical-to-planar

(S2P) projection might initially seem wasteful since VR clients have

to perform a reverse projection (i.e., PT). In practice, however, S2P

allows the compression and streaming techniques that have been

well-optimized for planar videos to be used. This design strategy

accelerates the adoption of VR videos, but significantly increases

the VR device’s compute overhead as quantified later.

It is worth noting that the size of the current viewing area is

typically much smaller than the full sphere. Specifically, the viewing

area size is characterized by an HMD’s field-of-view (FOV), which

captures the degrees of horizontal and vertical viewing angles.

For instance, under an FOV of 120° × 90°, the viewing area is one-

sixth of the full sphere. Off-the-shelf VR delivery systems stream

entire frames because the user viewing area is typically unknown

beforehand, leading to wasted resources. Recent proposals use view-

guided streaming [26, 29] to predict user headmovement and reduce

the resolution of out-of-sight areas in a frame. These approaches,

5

4

3

2

1

0P
ow

er
 C

on
su

m
pt

io
n 

(W
)

Elep
ha

nt
Pari

s RS
NYC

Rhin
o

 TDP (3.5 W)

Display    Network   Storage
Memory   Compute

(a) Power distribution across the ma-

jor components in a VR device.

60

50

40

30

20

10

0

N
or

m
. E

ne
rg

y 
(%

)

Elep
ha

nt
Pari

s RS
NYC

Rhin
o

 Memory  Compute

(b) Contribution of the PToperations

to the compute and memory energy.

Figure 3: Power and energy characterizations of VR device.

however, do not optimize energy consumptions because they still

require the PT operations on VR client devices.

VR Device Hardware Architecture. VR devices fall into two

categories: ones that are tetheredwith a base computing device such

as a smartphone (e.g., Samsung Gear VR, Google Daydream), and

standalone un-tethered devices with the computing device built-in

(e.g., Oculus Go). Albeit the difference, the hardware architectures in

both cases are similar because they both perform similar tasks and

conform to similar form factors. Ourwork focuses on the underlying

hardware and does not depend on a particular VR headset.

We show the block diagram of a typical hardware architecture

of a VR headset in Figure 2. Central to the hardware is the Systems-

on-a-chip (SoC), which interacts with I/O devices and the DRAM.

The SoC includes three main Intellectual Property (IP) blocks key

to VR video processing: Video Codec, GPU, and Display Processor,

among which GPU is the major power consumer.

In conventional planar video rendering, the GPU can be bypassed.

That is, video frames once decoded can be directly passed to the

Display Processor, which performs necessary pixel manipulations

(e.g., color-space conversion, rotation), and scans out the pixels to

the display [2]. However, the GPU is crucial to rendering VR videos

because the PT operations are executed on the GPU [19, 30, 37]. In

fact, 360° rendering is a key workload that GPU IP vendors today

tune their implementations for [19].

The rationale behind tasking the GPU with PT operations is

that the latter can be naturally casted as texture mapping [38, 39],

which is inherently supported bymodern GPUs through the Texture

Mapping Unit (TMU). Effectively, a planar frame is treated as a

texture map, which is mapped to the spherical geometry by the

client software (mostly an OpenGL ES program) and gets sampled

according to the user head orientation provided by the IMU.

3 Energy Characterizations

Rendering VR videos consumes excessive power on the VR device,

which is particularly problematic as VR devices are energy and

thermal constrained. This section characterizes the energy con-

sumption of VR devices. Although there are many prior studies

that focused on energy measurement of mobile devices such as

smartphones and smartwatches, this is the first such study that



ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Yue Leng, Chi-Chun Chen, Qiuyue Sun, Jian Huang, and Yuhao Zhu

SAS (Sec. 5)
FOV Video Store

VR (Video) 
Content

Object
Detection & 
Clustering

FOV Video
GenerationFOV

Video 1
FOV

Video n

Cloud 
Control

FOV 
Checker

Client
Control

EVR Server

…
…

EVR Client

Display

Regular
VR Video

Processing
Regular

VR Video
Local 

Storage
VR Video

Online Streaming Control Flow
Online Streaming Data Flow

Offline Playback Data Flow
Live Streaming Data Flow

Mapping

Filtering

Perspective 
Update

HAR (Sec. 6)

FOV 
miss

FOV Hit

Figure 4: EVR overview. EVR consists of two synergistic components: SAS and HAR. Key augmentations to the existing VR

system are shaded. EVR supports all three major VR use-cases: online streaming, live streaming, and offline playback.

specifically focuses on VR devices. We show that the energy profiles

between VR devices and traditional mobile devices are different.

We conduct studies on a recently published VR video dataset,

which consists of head movement traces from 59 real users viewing

different 360° VR videos on YouTube [25]. We replay the traces to

mimic realistic VR viewing behaviors. We assemble a custom VR

device based on the NVIDIA Jetson TX2 development board [9,

13] in order to conduct fine-grained power measurements on the

hardware, which are infeasible in off-the-shelf VR devices. We refer

readers to § 8.1 for a complete experimental setup.

Power and Energy Distribution. We breakdown the device

power consumption into five major components: display, network

(WiFi), storage (eMMC), memory (DRAM), and compute (SoC). The

storage system is involved mainly for temporary caching. We show

the power distribution across the five components for the five VR

video workloads in Figure 3a. The power consumption is averaged

across the entire viewing period. Thus, the power consumption of

each component is proportional to its energy consumption.

We make two important observations. First, the device consis-

tently draws a power consumption of about 5W across all five VR

videos. As a comparison, the Thermal Design Point (TDP) of a mo-

bile device, i.e., the power that the cooling system is designed to

sustainably dissipate, is around 3.5 W [32], clearly indicating the

need to reduce power consumption.

Second, unlike traditional smartphone and smartwatch appli-

cations where network, display, and storage consume significant

energy [24, 41, 50, 67], the energy consumptions of the three com-

ponents in a VR device are relatively insignificant, contributing to

only about 9%, 7%, and 4% of the total energy consumption, respec-

tively. This indicates that optimizing network, display, and storage

would lead to marginal energy reductions. More lucrative energy

reductions come from optimizing compute and memory.

Contribution of VR Operations. We further find that energy

consumed by executing operations that are uniquely associated

with processing VR videos constitutes a significant portion of the

compute and memory energy. Such operations mainly consist of

PT operations as described in § 2. We show the energy contribution

of the PT operations to the total compute and memory energy as

a stacked bar chart in Figure 3b. On average, projective transfor-

mation contributes to about 40% of the total compute and memory

energy, and is up to 53% in the case of video Rhino. The PT opera-

tions exercise the SoC more than the DRAM as is evident in their

higher contributions to compute energy than memory energy.

Overall, our results show that the projective transformations

would be an ideal candidate for energy optimizations.

4 EVR Overview

The goal of EVR is to reduce energy consumption of VR devices by

optimizing the core components that contribute to the “VR tax.” We

present an end-to-end energy-efficient VR systemwith optimization

techniques distributed across the cloud server and the VR client

device as shown in Figure 4.

We first propose Semantic-Aware Streaming (SAS, § 5), which

pre-renders the VR video in the cloud and thus avoids the energy-

intensive PT operations on VR devices. SAS is developed upon an

intuitive observation that VR users tend to track the same set of

objects across frames. Thus, VR videos can be pre-rendered in the

cloud by tracking object trajectories.

SAS would ideally remove the PT operations from the VR client

completely. This, however, is almost impossible for two reasons.

First, it is hard to continuously predict a user’s viewing area in

practice. Although users tend to track objects in stable states as

confirmed by our study in § 5.1, they could also randomly orient

the heads to explore the scene, resulting in mispredictions. Second,

there are key VR use-cases where the VR videos do not go through

a cloud server (e.g., offline playback), and thus cannot leverage SAS.

Under such circumstances, on-device rendering is inevitable.

Thus, we propose Hardware-Accelerated Rendering (HAR, § 6),

which provides specialized hardware support for energy-efficient

PT operations. HAR exploits the unique compute and data access

patterns of the PT algorithm while adapting to different algorithm

variants. It thus strikes a balance between efficiency and flexibility.

SAS and HAR have different trade-offs. On one hand, HAR is

applicable regardless where the VR videos are from, but does not

completely remove the overhead of the PT operation. SAS poten-

tially removes the PT operation altogether, but relies on that the

VR video is published to a cloud server first. We now present SAS

and HAR separately and describe how they are synergistically in-

tegrated. We then evaluate different variants of EVR that make



Energy-Efficient Video Processing for Virtual Reality ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

100
80
60
40

C
ov

er
ag

e 
(%

)

1 2 3 4 5 6 7 8
# of Identified Objects

(a) Elephant

100
80
60
40

1 2 3 4 5 6 7 8 9 10 11 12 13
# of Identified Objects

(b) Paris

100
80
60
40

1 2 3 4 5 6 7 8 9 10 11
# Identified Objects

(c) Rhino

100
80
60
40

1 2 3
# Identified Objects

(d) RS

100
80
60
40

1 2 3 4 5
# Identified Objects

(e) Timelapse

Figure 5: Each <x ,y> point represents the percentage of frames (y) in which at least one of the x identified/detected objects

appears in users’ viewing area. Results indicate that users’ attention centers around visual objects in VR content.

different uses of the two techniques. We show that combining the

two, when applicable, achieves the best energy-efficiency.

5 Semantics-Aware Streaming

SAS pre-renders VR videos in the cloud in order to avoid the energy-

intensive PT operations on the VR device. Pre-rendering requires

predicting users’ viewing area at every frame. This section presents

a server-only solution that has little cost to the client devices.

We first use a real VR user dataset study to show that exploiting

VR content semantics, especially visual object, offers an opportunity

for pre-rendering VR videos in the cloud (§ 5.1). We then provide an

SAS overview and describe its design principles (§ 5.2). After that,

we discuss the detailed cloud architecture (§ 5.3) and the necessary

support on the client (§ 5.4).

5.1 Object-Oriented Viewing Behaviors

Our key idea is to leverage video-inherent semantic information

that is largely ignored by today’s VR servers. SAS specifically fo-

cuses on one particular form of semantic information: visual object.

We show that users tend to focus on objects in VR content, and

object trajectories provide a proxy for predicting user viewing areas.

We leverage a recently published VR video dataset [25], which

consists of head movement traces from 59 real users viewing dif-

ferent 360° VR videos on YouTube. We annotate the objects in the

dataset and quantify the correlation between users’ viewing area

and the visual objects in the VR content in Figure 5.

We reach two key conclusions. First, users tend to pay attention

to objects in VR videos. Even if only one object is detected in the

video, users’ viewing areas cover that single object in at least 60%,

up to 80% (RS), of the frames. As the number of detected objects

increases, the percentage of frames in which users focus on the

detected objects increases to at least 80%, and reaches almost 100%

in cases of Elephant, Paris, and Rhino. This indicates that frame

areas that contain visual objects are likely to be watched by end-

users, and thus pre-rendering and streaming those frame areas will

likely satisfy users’ needs.

We further confirm that users track the same set of objects across

frame rather than frequently switching objects. Specifically, we

measure the time durations during which users keep tracking the

movement of the same object, and show the results in Figure 6 as a

cumulative distribution plot. Each <x ,y> point in the figure denotes

the percentage of time (y) during which users track an object for at

least a particular time duration (x ). On average, users spend about

47% of time tracking an object for at least 5 seconds.

Second, the near 100% frame coverage in many videos as the

number of identified objects increases indicates that the server can

100
80
60
40
20
0

C
um

ul
at

iv
e 

Ti
m

e
D

is
tri

bu
tio

n 
(%

)

5+ 4 3 2 1 0
Tracking Duration (s)

 Paris         RS       Timelapse
 Rhino        Elephant

Figure 6: Cumulative distribution of tracking durations.

effectively predict user viewing area solely based on the visual

objects without sophisticated client-side mechanisms such as using

machine learning models to predict users’ head movement [36, 58].

This observation frees the resource-constrained VR clients from

performing additional work and simplifies the client design.

5.2 SAS Framework Overview

SAS has two major components: (1) a static and offline analysis

component that extracts objects from the VR video upon ingestion

and generates a set of FOV videos that could be directly visualized

once on a VR device; (2) a dynamic and runtime serving component

that streams FOV videos on demand to the VR device.

The static component generates FOV videos, each of which cor-

responds to the trajectory of a group of objects. Critically, the static

component converts each FOV video frame from the spherical for-

mat to the planar format such that it could be directly visualized

once on a client device, bypassing the energy-intensive projective

transformation operations.

The dynamic component, at runtime, streams FOV videos to

the client. We augment the new FOV video with metadata that

corresponds to the head orientation for each frame. Once the FOV

video together with its associated metadata is on the client side and

before a FOV frame is sent to the display, the VR client compares the

desired viewing area indicated by the head motion sensor with the

metadata associated with the frame. If the two match, i.e., a FOV-hit,
the client directly visualizes the frame on the display, bypassing the

PT operations. Otherwise, the client system requests the original

video segment from the cloud, essentially falling back to the normal

VR rendering mode. We expect that the former case is common

for many videos according to our study in § 5.1, thus significantly

reducing client energy consumption.

5.3 Cloud Service Architecture

§ 5.1 confirms that users tend to track object movement. In addition,

they tend to track not one object, but most often a group of objects.



ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Yue Leng, Chi-Chun Chen, Qiuyue Sun, Jian Huang, and Yuhao Zhu

FOV Video 2

FOV Video 1
Frame 1 (Key Frame)

Cluster 1

b

d

a

Cluster 2

c

e g

f

Frame n (Tracking Frame)

Cluster 1

b

d

a

Cluster 2

c

e g

f

Temporal 
Segment

t

… …

FOV Frame
t

FOV Frame
t

Original
VR Video

Original
Frames

t t

Figure 7: FOV video creation. a - g represent objects.

This motivates the fundamental idea behind the cloud architecture

design: extract object information and group objects into different

clusters. Each cluster contains a unique set of objects that users

tend to watch together. By tracking the cluster of objects across

frames, we can capture the general pattern of user’s viewing areas.

FOV Video. We present the overview of how a VR video is

processed in a cloud server in Figure 7. We first decompose the

video into multiple t-second temporal segments. We categorize the

frames of each video segment into two types: key frame and tracking
frame. A key frame is always the first frame of a segment, it is a

frame in which objects are explicitly detected and clustered. Objects

within the same cluster are then tracked across subsequent tracking

frames, effectively creating a trajectory of the object cluster.

For each cluster, the VR server creates a FOV video where each

frame contains the object cluster and has a size that matches the

end-user’s FOV on the client device. The FOV frame is converted

from the spherical format to the planar format that can be directly

rendered on the VR device.

Temporal Segmentation. The size of the temporal segment

determines the granularity of FOV videos. In one extreme design,

one could create a FOV video for the entire video. This design would

lead to high video compression rate [22], but is less flexible in that

any single FOV-miss would lead to the re-streaming of the entire

original video. Thus, we divide the original video into segments,

each of which has its own FOV videos. In this way, only one segment

of the original video needs to be transmitted upon a FOV-miss. We

statically set the segment length to 30 frames, which roughly match

the Group of Pictures (GOP) size in video compression [62].

SAS Store. The FOV videos is stored in the log-structured man-

ner. We place the associated metadata in a separate log rather than

mixing them with frame data. This allows us to decouple the meta-

data with video encoding, and thus simplifies the system design.

The server pre-renders the FOV videos statically, but this incurs

storage overhead. An alternative would be to generate FOV videos

on-demand when receiving user requests. We argue that sacrificing

storage for lower latency is a desirable trade-off as the cloud storage

becomes cheaper (less than $0.05 per GB for cloud storage [7]) while

users demand higher viewing experience. The storage overhead is

further amortized across all the end users. The exact overhead is

determined by the number of FOV videos created, which in turn

affects the FOV hit rate and thus the client-side energy savings. We

will show in § 8.2 that SAS incurs modest storage overhead with

significant energy savings.

Handling Client Requests. The SAS server differentiates be-

tween two types of client requests: requests for FOV videos and

requests for the original video. The former is made at the beginning

of each video segment when the client decides what object cluster

the user is most likely interested in, and then the server delivers

the corresponding FOV video. The latter is made when a FOV-miss

happens, upon which the server serves the original segment.

5.4 Client Support for SAS

On the VR client, for each (FOV) frame that will be rendered, the

playback application checks the real-time head pose and compares

it against the associated metadata of the frame. If the desired FOV

indicated by the current head pose is covered by the corresponding

FOV frame (FOV-hit), the FOV frame can be directly rendered

on the display. Otherwise (FOV-miss), the client will request the

original video segment that contains the correct frame. It might

initially seem to be wasteful to stream an entire segment although

only the missing frames are needed. However, this strategy is more

bandwidth-friendly because video compression rate is much higher

than image compression rate [22]. As we will show in § 8.2, the

buffering time to request a full segment is low and has insignificant

impact on the overall user-experience.

6 Hardware Accelerated Rendering

SAS pre-renders VR content on the server to minimize the energy

consumption on client devices. However, on-device rendering is

still necessary either when users do not track objects or when the

VR content does not go through a VR server (e.g., offline playback).

Thus, it is critical to provide energy-efficient on-device rendering

for EVR to be a general solution for VR video processing.

To this end, this section describes a hardware accelerator for

efficient on-device rendering (HAR). The accelerator specifically

targets the energy-intensive PT operations, which contribute to

40% of the compute and memory overhead of VR devices. We first

provide an overview of the PT algorithm and explain why it is an

ideal target for hardware acceleration (§ 6.1). We then describe the

accelerator design (§ 6.2) and explain the design decisions (§ 6.3).

6.1 Algorithm Overview

Algorithmic Workflow. PT operation calculates the pixel values

of the FOV frames (for display on the HMD) from the full frames

in the input VR video. PT achieves so by mapping each FOV frame

pixel to one pixel or a combination of different pixels in the cor-

responding input frame from the VR video. Formally, to calculate

each pixel P (i, j) of the FOV frame, the PT algorithm goes through

three processing stages: perspective update, mapping, and filtering.
The perspective update stage calculates the (x ,y, z) coordinates of
the point P

′
on the sphere that corresponds to P. The mapping stage

then calculates the (u,v) coordinates of the point P′′ in the input

frame that is projected from P
′
. Finally, the filtering stage uses (u,v)

to sample the input frame to obtain the pixel value for P (i, j). PT
iterates the same processing for all the pixels in the FOV frame.



Energy-Efficient Video Processing for Virtual Reality ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

PTU

Encoded 
Video

D
R
AM Images Frame 

Buffer

Video 
CodecSo

C

PTE Display 
Processor

M
AC

M
AC

32b

Bilinear 
Filtering

Mapping

Init. RM D2R

Nearest
Neighbor

IBUF
Legend

PTU: Projective Transformation Unit
D2R: Degree to Radian
RM: Rotation Matrices
ERP: Equirectangular Projection
CMP: CubeMap Projection
I/OBUF: Input/Output Buffer
S-MEM: Sample Memory
P-MEM: Pixel Memory

8x 32b

2x 32b

3x 32b

OBUF

Projective Transformation 
Engine (PTE)

PTU PTU

D
M

A

……

S-MEMP-MEM

C
onfig.

8x 32b

Full Frame FOV Frame

Four-Way
MAC Unit

To S-MEM

From P-MEM
& Config. Reg

Figure 8: Overview of the augmented hardware architecture.

C2S

LSerp LSeac

C2F

LScmp

(x, y, z)

(u, v)

Projection

Projection

θ, φ

i, j, idx

Figure 9: The mapping engine.

In today’s VR client, PT is implemented as a texture mapping [38]
task that is well-supported on modern (mobile) GPUs through the

specialized Texture Mapping Units (TMU). Essentially, the input

planar frame is treated as a texture that gets mapped to the sphere,

on which the region that corresponds to user’s current viewing

area is projected to the two-dimensional space for display. This

strategy eases development by reusing existing hardware (GPU)

and software (OpenGL), but also introduces large overhead that

constitutes about 40% of the VR processing energy (Figure 3b).

Specifically, GPUs provide hardware support to generic texture

mapping that is unnecessary for PT. For instance, GPUs use dedi-

cated cache memories to store texture data so as to efficiently sup-

port different data access patterns on the texture map [31]. However,

input frames are accessed in a deterministic pattern in PT, and thus

can be more efficiently managed by a scratchpad memory with

lower energy. In addition, using the GPU for PT also necessarily

invokes the entire software stack (application library, runtime, OS

driver, etc.) that exacerbates the energy overhead.

Algorithmic Characteristics. PT algorithm exhibits three key

characteristics that are amenable to hardware acceleration.

First, PT is massively parallel at the pixel level. Each pixel goes

through the exact processing sequence, and the output is purely a

function of the (i, j) coordinates of the pixel. This makes hardware

parallelization and pipelining easier using classic techniques [48].

Second, the PT algorithm is compute-intensive. For each pixel,

the algorithm takes in eight parameters such as the FOV size, HMD

resolution, and head orientation, each of which is aligned to 32 bits,

and returns a 24-bit RGB pixel value. The perspective update and

mapping steps do not access frame pixel data, while the filtering step

accesses only a few adjacent pixels, similar to a stencil operation.

Overall, PT has high arithmetic intensity and strong data locality.

Finally, PT, just like texture mapping, is inherently inexact due to

the filtering that reconstructs a pixel value from nearby pixels [66].

For this reason, most of the operations in the entire algorithm can

be carried out in fixed-point arithmetics with little loss of user

experience while making efficient use of hardware resources.

6.2 Hardware Architecture

We propose a new hardware accelerator, Projective Transformation

Engine (PTE), that performs efficient projective transformations.

We design the PTE as an SoC IP block that replaces the GPU and

collaborates with other IPs such as the Video Codec and Display

Processor for VR video rendering. Figure 8 shows how PTE fits

into a complete VR hardware architecture. The PTE takes in frames

that are decoded from the video codec, and produces FOV frames

to the frame buffer for display. If a frame is already prepared by

the cloud server as a projected FOV frame, the PTE sends it to the

frame buffer directly; otherwise the input frame goes through the

PTE’s datapath to generate the FOV frame. The GPU can remain

idle during VR video playback to save power.

The bulk of the PTE is a set of Projective Transformation Units

(PTU) that exploit the pixel-level parallelism. The Pixel Memory

(P-MEM) holds the pixel data for the incoming input frame, and

the Sample Memory (S-MEM) holds the pixel data for the FOV

frame that is to be sent to the frame buffer. The PTE uses DMA to

transfer the input and FOV frame data. The PTE also provides a

set of memory-mapped registers for configuration purposes. The

configurability allows the PTE adapt to different popular projection

methods and VR device parameters such as FOV size and display

resolution. The configurability ensures PTE’s flexibility without the

overhead of general-purpose programmability that GPUs introduce.

Accelerator Memory. The P-MEM and S-MEM must be prop-

erly sized to minimize the DRAM traffic. Holding the entire input

frame and FOV frame would require the P-MEM and S-MEM to

match the video resolution (e.g., 4K) and display resolution (e.g.,

1440p) respectively, requiring tens of MBs on-chip memories that

are prohibitively large in practice. Interestingly, we find that the fil-

tering step (the only step in the PT algorithm that access pixel data)

operates much like a stencil operation that possess two properties.

First, PT accesses only a block of adjacent pixels for each input.

Second, the accessed pixel blocks tend to overlap between adjacent

inputs. Thus, the P-MEM and S-MEM are designed to hold several



ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Yue Leng, Chi-Chun Chen, Qiuyue Sun, Jian Huang, and Yuhao Zhu

+
x-1 >>

-1k

idx[0]

out

i

OR
AND

idx[1] idx[2]

0

Figure 10: The mapping engine’s C2F logic.

line of pixels in the input and FOV frame, which is similar to the

line-buffer used in Image Signal Processor (ISP) designs [40].

PTU Microarchitecture. The PTU executes the PT algorithm

for each pixel in the FOV frame to calculate its value. The microar-

chitecture of the PTU consists of three main parts that correspond

to the three stages in the algorithm. The PTU is fully pipelined to

accept a new pixel every cycle.

The perspective updatemodule takes the current head orientation

and, for each pixel P in the FOV frame, finds a point P
′
on the

sphere that corresponds to P. Computationally, this step is an affine

transformation that multiplies the coordinate vector of P with two

3 × 3 rotation matrices preceded by a few pre-processing steps

such as translating the angular form of the head orientation to

cartesian coordinates. The rotation matrices are sparse by nature.

In the hardware, the perspective update module is implemented by

a four-way fixed-point MAC unit that uniquely suits the sparsity.

The mapping module maps the spherical point P
′
to a point P

′′

in the input frame, essentially projecting P
′
to P

′′
according to the

particular projection method in which the VR video is originally cre-

ated (Figure 1). Our current design supports three commonly-used

projection methods: Equirectangular Projection (ERP), CubeMap

Projection (CMP) [18], and Equi-Angular Cubemap (EAC) [3]. The

former directly maps a point on a sphere to a rectangular frame ac-

cording to its latitude and longitude; the latter two deform a sphere

into a cube, whose six faces get unfolded and laid flat. The three

projection methods have different trade-offs that are beyond the

scope of this paper [27], but are widely used in different scenarios,

and thus must be efficiently supported in the PTU.

Our key architectural observation is that the three projection

methods share similar building blocks, which exposes an opportu-

nity for a modular hardware design that can be easily configured to

support any given method. Equ. 1 - Equ. 3 show the computation

structures of the three methods and their modularities. Specifically,

both ERP and EAC require Cartesian-to-Spherical transformation

(C2S); both EAC and CMP require Cube-to-Frame transformation

(C2F ); they all require a different linear scaling (LS). Figure 9 illus-
trates the hardware design of the mapping hardware where C2S
and C2F are reused across projection methods.

ERP : C2S ◦ LSerp (1)

EAC : C2S ◦ LSeac ◦C2F (2)

CMP : LScmp ◦C2F (3)

10-5
10-4
10-3
10-2
10-1
100
101

E
rr

or

5040302010
Percentage of Integer Bits (%)

Acceptable Error

Our Design
[28, 10]

24 28 32 40 48 56 64Bitwidth

Figure 11: The pixel error rate of the FOV frame changes

with fixed-point representations.

The computation of the mapping engine is simple, especially when

using a fixed-point implementation. To illustrate its complexity, Fig-

ure 10 shows theC2F logic in the mapping engine. The critical path

is dominated by the multipler.

The filtering module indexes into the input frame using takes

the coordinates of P
′′
, and assigns the returned pixel value to P.

If P
′′
happens to map to an integer pixel in the input frame, the

pixel value at the location of P
′′
can simply be assigned to P. Oth-

erwise, the hardware will reconstruct the pixel value using pixels

adjacent to P
′′
by applying a so called filtering function. Our PTU

design supports two classic filtering functions: nearest neighbor

and bilinear interpolation.

6.3 Design Decisions

SoC Integration.We design the PTE as a standalone IP block in

order to enable modularity and ease distribution. Alternatively, we

envision that the PTE logic could be tightly integrated into either

the Video Codec or Display Processor. Indeed, many new designs of

the Display Processor have started integrating functionalities that

used to be executed in GPUs such as color space conversion [2].

Such a tight integration would let the Display Processor directly

perform PT operations before scanning out the frame to the display,

and thus reduces the memory traffic induced by writing the FOV

frames from the PTE to the frame buffer. However, our principal

idea of bypassing the GPU as well as the PTE microarchitecture are

still fundamental to such a design.

Optimization Choices.Our design goal is to reduce the energy

consumption rather than improving the frame rate (i.e., throughput)

as today’s VR devices are mostly able to render VR videos in real-

time (30 FPS). We thus do not pursue architectural optimizations

that improve throughput beyond real-time at the cost of energy

overhead. For instance, the perspective update module in the PTU

does not batch the vector-matrix multiplications of different pix-

els as matrix-matrix multiplications because the latter improves

performance at the cost of more hardware resources and energy.

Fixed-Point Computation.We also quantitatively determine

the bitwidth used for the fixed-point computations in PTE. Figure 11

shows how the average pixel error changes with the total bitwidth

and the percentage used for the integer part. We confirm that an

average pixel error below 10
−3

is visually indifferentiable. Thus,

we choose a 28-bit representation with 10 bits for the integer part

(denoted as [28, 10] in Figure 11). Other designs either waste energy

or exceed the error threshold.



Energy-Efficient Video Processing for Virtual Reality ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

7 Implementation

Our prototypical implementation of EVR is distributed across a VR

content server (§ 7.1) and a playback client (§ 7.2).

7.1 Cloud Server Implementation

The server is hosted on an Amazon EC2 t2.micro instance with the

videos, including the original VR videos and FOV videos, stored on

an S3 instance in the Standard Storage class.

We use a convolutional neural network, YOLOv2 [60], for object

detection for its superior accuracy in the VR server. The server uses

the classic k-means algorithm [34] for object clustering based on

the intuition that users tend to watch objects that are close to each

other. Future explorations could exploit clustering techniques that

leverage even richer object semantics such as object category.

7.2 Client Implementation

The EVR client has two responsibilities: interacting with the server

to participate in semantic-aware streaming and performing hardware-

accelerated rendering. The client is implemented on a customize

platform to emulate a hypothetical VR device augmented with the

PTE accelerator. The platform combines an NVidia Jetson TX2 de-

velopment board [9] with a Xilinx Zynq-7000 SoC ZC706 board [20].

The TX2 board contains a state-of-the-art Tegra X2mobile SoC [13].

TX2 is used in contemporary VR systems, including ones from

Magic Leap [10] and GameFace [14]. In addition, many VR devices

such as Samsung Gear VR and Oculus Go use smartphone-grade

SoCs such as Qualcomm Snapdragon 821, which have the capabili-

ties similar to TX2. TX2 also allows us to conduct component-wise

power measurement, which is not obtainable from off-the-shelf VR

devices. The client player leverages TX2’s hardware-accelerated

Video Codec through the GStreamer framework [6, 57].

The Zynq board let us prototype the PTE accelerator that would

not be feasible on TX2 alone. We do not prototype the whole sys-

tem on the Zynq board because it lacks efficient CPU/GPU/video

Codec that a typical VR device possesses. We implement the PTE

accelerator in RTL, and layout the design targeting the 28 nm FPGA

fabric on the Xilinx Zynq-7000 SoC ZC706 board. The available

resources allows us to instantiate 2 PTUs with P-MEM and S-MEM

sized at 512 KB and 256 KB, respectively.

Post-layout results show that the PTE accelerator can operate at

100 MHz and consumes 194 mW of power, indicating one order of

magnitude power reduction compared to a typical mobile GPU. The

PTU is fully pipelined to accept a new pixel every cycle. Operating

at 100 MHz, the PTE delivers 50 FPS, sufficient for real-time VR.

The performance and power results reported should be seen as

lower-bounds as an ASIC flow would yield better energy-efficiency.

8 Evaluation

We first introduce the evaluation methodology (§ 8.1). We then

evaluate EVR over three key VR use-cases: online streaming (§ 8.2),

live streaming (§ 8.3), and offline playback (§ 8.4).We then show that

EVR out-performs an alternative design that directly predicts head

motion on-device (§ 8.5). Finally, we show the general applicability

of the PTE hardware beyond 360° video rendering (§ 8.6).

8.1 Evaluation Methodology

Usage Scenarios.We evaluate three EVR variants, each applies to

a different use-case, to demonstrate EVR’s effectiveness and general

applicability. The three variants are:

• S: leverages SAS without HAR.
• H: uses HAR without SAS.

• S+H: combines the two techniques.

The three settings are evaluated under three VR use-cases:

• Online-Streaming: The VR content is streamed from a VR server

and played back on the VR client device. All three settings above

apply to this use-case.

• Live-Streaming: The VR content is streamed from a capture de-

vice to the VR client device (e.g., broadcasting a sports event). Al-

though VR videos still go through a content server (e.g., YouTube)

in live-streaming, the server does not perform sophisticated pro-

cessing due to the real-time constraints [54]. Therefore, SAS is

not available, and only the setting H is applicable.

• Offline-Playback: The VR content is played back from the local

storage on the VR client. Only the setting H applies.

Energy Evaluation Framework.Our energy evaluation frame-

work considers the five important components of a VR device: net-

work, display, storage, memory, and compute. The network, mem-

ory, and compute power can be directly measured from the TX2

board through the on-board Texas Instruments INA 3221 voltage

monitor IC. We also use a 2560×1440 AMOLED display that is used

in Samsung Gear VR and its power is measured in our evaluation.

We estimate the storage energy using an empirical eMMC energy

model [41] driven by the storage traffic traces.

The total energy consumption of the five components is reported

for S. To evaluate the energy consumption of H and S+H, we replace
the GPU power consumed during projection transformation with

the post-layout FPGA power.

Baseline.We compare against a baseline that is implemented on

the TX2 board and that does not use SAS and HAR. The baseline is

able to deliver a real-time (30 FPS basis) user-experience. Our goal

is to show that EVR can effectively reduce the energy consumption

with little loss of user-experience.

Benchmark. To faithfully represent real VR user behaviors, we

use a recently published VR video dataset [25], which consists of

head movement traces from 59 real users viewing different 360° VR

videos on YouTube. The videos have a 4K (3840 × 2160) resolution,

which is regarded as providing an immersive VR experience. The

dataset is collected using the Razer Open Source Virtual Reality

(OSVR) HDK2 HMD with an FOV of 110° × 110° [16], and records

users’ real-time head movement traces. We replay the traces to

emulate readings from the IMU sensor and thereby mimic realistic

VR viewing behaviors. This trace-driven methodology ensures the

reproducibility of our results.

8.2 Online-Streaming Use-case Evaluation

Energy Reductions.We quantify the energy saving of the three

EVR variants over the baseline in Figure 12. The left y-axis shows
the compute (SoC) energy savings and the right y-axis shows the
device-level energy savings.



ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Yue Leng, Chi-Chun Chen, Qiuyue Sun, Jian Huang, and Yuhao Zhu

60

40

20

0

C
om

pu
te

 E
ne

rg
y

S
av

in
g(

%
) 

60

40

20

0

Total E
nergy S

aving (%
)

Rhino Timelapse RS Paris Elephant

 S
 H
 S+H

Figure 12: Normalized energy consumption across different

EVR variants. S+H delivers the highest energy savings.

On average, S and H achieve 22% and 38% compute energy savings.

S+H combines SAS and HAR and delivers an average 41%, and up to

58%, energy saving. The compute energy savings across applications

are directly proportional to the PT operation’s contributions to the

processing energy as shown in Figure 3b. For instance, Paris and
Elephant have lower energy savings because their PT operations

contribute less to the total compute energy consumptions.

The trend is similar for the total device energy savings. S+H
achieves on average 29% and up to 42% energy reduction. The

energy reduction increases the VR viewing time, and also reduces

the heat dissipation and thus provides a better viewing experience.

User Experience Impact. We quantify user experience both

quantitatively and qualitatively. Quantitatively, we evaluate the

percentage of FPS degradation introduced by EVR compared to the

baseline. Figure 13 shows that the FPS drop rate averaged across

59 users is only about 1%. Lee et al., reported that a 5% FPS drop

is unlikely to affect user perception [47]. We assessed qualitative

user experience and confirmed that the FPS drop is visually indis-

tinguishable and that EVR delivers smooth user experiences.

The FPS drops come from FOV misses introduced by SAS. Our

profiling shows that SAS introduces an average FOV-miss rate of

7.7% when streaming the VR videos used in our evaluation. Specifi-

cally, the FOV-miss rate ranges from 5.3% for Timelapse to 12.0%

for RS. Under theWiFi environment (with an effective bandwidth of

300 Mbps) where our experiments are conducted, every re-buffering

of a missed segment pauses rendering for at most 8 milliseconds.

Bandwidth Savings. Although the goal of EVR is not to save

bandwidth, EVR does reduce the network bandwidth requirement

through SAS, which transmits only the pixels that fall within user’s

sight. The right y-axis of Figure 13 quantifies the bandwidth saving

of S+H compared to the baseline system that always streams full

frames. EVR reduces the bandwidth requirement by up to 34%

and 28% on average. We expect that combining head movement

prediction [36, 58] with SAS would further improve the bandwidth

efficiency, which we wish to develop as future work.

Storage Overhead. EVR introduces storage overhead by stor-

ing FOV videos. The exact storage overhead depends on the “object

utilization”, which denotes the percentage of objects used for creat-

ing FOV videos, which in turn affects energy savings. Using more

objects to create FOV videos leads to more FOV hits and thus more

energy savings, but also incurs higher storage overhead as more

FOV videos must be stored.

We quantify the storage-energy trade-off by varying the object

utilization from 25%, 50%, 75%, to 100%. Figure 14 illustrates the

results where the x-axis shows the storage overhead normalized to

2.0

1.5

1.0

0.5

0.0

FP
S

 D
ro

p 
(%

) 

40

30

20

10

0

B
andw

idth S
avings (%

) 
Rhin

o

Tim
ela

ps
e RS

Pari
s

Elep
ha

nt

Figure 13: FPS drop and

bandwidth reduction.

45

40

35

30

25

20

15

10

E
ne

rg
y 

S
av

in
gs

 (%
)

0.5 1 2 4 8

Norm. Storage Overhead (logscale)

Rhino

TimelapseRS

Elephant

Paris

Figure 14: Storage overhead

and energy saving trade-off.

60
50
40
30
20
10

0

C
om

pu
te

 E
ne

rg
y

S
av

in
gs

 (%
) 

60

40

20

0

Total E
nergy S

avings (%
)Rhino Timelapse RS Paris Elephant

Live-Stream
Offline-Playback

Figure 15: Compute and total energy savings of H in the

offline-playback and live-stream use-cases.

the original VR video sizes under the four utilizations, and the y-
axis shows the energy savings of S+H. At an 100% object utilization,

the average storage overhead is 4.2×, Paris and Timelapse have
the lowest and highest overhead of 2.0× and 7.6×, respectively. We

note that the storage overhead incurs little extra monetary cost

for streaming service providers given that the cloud storage has

become as cheap as $0.05 per GB [7]. Specifically, the extra storage

incurs on average $0.02 cost per video. This cost will be further

amortized across millions of users that stream the video, and is

negligible compared to the over $150 custom acquisition cost that

video companies already pay [12].

As the object utilization decreases to 25%, the storage overhead

and the energy savings also decrease. At a 25% object utilization,

EVR incurs an average storage overhead of only 1.1×, but still

delivers an average 24% energy saving. This shows that the object

utilization is a powerful knob for storage-energy trade-off.

8.3 Live-Streaming Use-case Evaluation

We now evaluate EVR on the live-stream scenario to mimic live

broadcasting, in which only H applies. Figure 15 shows the en-

ergy saving of H over the baseline. Using hardware-accelerated

rendering, H achieves 38% compute energy savings (left y-axis) and
21% device energy savings (right y-axis). Comparing against the

online-streaming use-case, live-streaming has lower energy savings

because live-streaming can not take advantage of semantic-aware

streaming due to its real-time requirements.

8.4 Offline-Playback Use-case Evaluation

We also evaluate the efficiency of the hardware-accelerated ren-

dering with offline-playback cases. We show the energy saving

of H over the baseline in Figure 15. The compute energy saving

(left y-axis) is similar to the live-stream, but the device energy



Energy-Efficient Video Processing for Virtual Reality ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

60

40

20

0E
ne

rg
y 

S
av

in
g 

(%
)

Rhino Timelapse RS Paris Elephant

 S+H  Perfect HMP  Perfect HMP w/ No Overhead

Figure 16: Energy savings of S+H compared against the

scheme that uses on-device head motion prediction (HMP).

saving (right y-axis) is slightly higher (23% vs. 21%) because offline-

playback does not consume network energy, and thus compute

energy saving contributes more to the total device energy saving.

8.5 SAS vs. Client Head Motion Prediction

The SAS uses object semantics to track user viewing areas without

requiring client support, which reduces the energy consumption of

the client device. An alternative would be to predict head motion

directly on the client device. This does not require cloud servers to

track object trajectories, but it could incur computation overhead

on the client device due to the running of prediction models.

To compare with this alternative, we integrate a recently pro-

posed deep neural network (DNN)-based head movement predictor

(HMP) [56] into SAS. Since the original DNN is not trained on our

dataset, we assume that the prediction network has a perfect (100%)
prediction accuracy. We also generously assume that the server pre-

renders all the FOV videos that correspond to all the possible head

orientations. Thus, the FOV videos can be directly streamed and

rendered without PT operations. To ensure a low compute overhead

for the DNN prediction, we assume that the client device’s SoC

employs a dedicated DNN accelerator. We model the accelerator

using a cycle-accurate DNN simulator SCALESim [64]. We assume

a 24 × 24 systolic array operating at 1 GHz to represent a typical

mobile DNN accelerator [72].

We show the device-level energy comparison in Figure 16. Our

EVR design saves more energy than the system with a perfect on-

device head motion prediction (29% vs. 26%). This is because the

predictor introduces high on-device energy overhead. That said,

we believe the HMP overhead will decrease with both algorithmic

and architectural innovations, and EVR can readily leverage it. We

build an ideal EVR, in which SAS uses a HMP that has a perfect

prediction with no overhead. As shown in Figure 16, EVR with this

ideal predictor can improve the average energy saving to 39%.

8.6 General Applicability of PTE Hardware

Fundamentally, the proposed PTE hardware is specialized for PT

operations, which is critical to all use-cases that involve panoramic

content. 360° video rendering is just one of them. To demonstrate

the general applicability of PTE, we evaluate another use-case:

360° video quality assessment on content servers. This use-case

quantifies the visual quality of 360° content in real-time to avoid

processing low-quality content. The quality assessor first performs

a sequence of PT operations to project the content to viewers’

perspective, and calculates metrics such as Peak Signal to Noise

Ratio and Structural Similarity Index to assess the video quality.

50
40
30
20
10
0

E
ne

rg
y 

R
ed

uc
tio

n 
(%

)

960 x 1080 1080 x 1200 1280 x 1440 1440 x 1600

ERP
CMP
EAC

Figure 17: Energy reductions of using PTE over a GPU-based

baseline for real-time 360° video quality assessment.

We compare the energy consumption of 360° video quality as-

sessment between an optimized GPU-based system and a PTE-

augmented system. The GPU baseline is implemented according to

a recently proposed quality assessment pipeline [68]. The results

are shown in Figure 17. We vary the output resolution to show the

sensitivity. We find that the PTE achieves up to 40% energy reduc-

tion. The reduction decreases as the resolution increases because

the GPU better amortizes the cost over more pixel processings.

9 Related Work

VR Energy Optimizations. While there exists abundant prior

work on optimizing the energy consumption of smartphones [24,

42, 67, 71] and werables [33, 41, 50, 52, 65], VR devices receive lit-

tle attention. Our characterizations show a different power profile

from conventional mobile devices. Specifically, display, network,

and storage consume little power. Thus, EVR specifically targets re-

ducing the compute energy rather than the other components [45].

Remote-rendering has been exploited in the context of gam-

ing [47, 51] by dynamically offloading the rendering tasks to a

remote server and applying optimizations to hide the network la-

tency. In contrast, EVR pre-renders VR content statically without

dynamic offloading. Boos et al. [23] proposes to pre-render all possi-

ble images in a VR game to save energy. In contrast, EVR leverages

the inherent object semantics to selectively pre-render only part of

VR videos. LightDB [35] introduces a VR video database manage-

ment system based on a new representation of VR content. LightDB

accelerates various DB queries on the VR videos while EVR focuses

on reducing energy consumption of video rendering.

VR Bandwidth Optimizations. The vast majority of today’s

VR systems focus on optimizing network bandwidth requirement.

Most notably, researchers have started taking into account user

viewing area and investigating view-guided optimizations [26, 27,

29, 37]. They share the same key idea: divide a frame into tiles

and use non-uniform image resolutions across tiles according to

users’ sight. For instance, Haynes et al. [36] and Zare et al. [70]

both propose to predict user head movement and thereby reducing

the resolution of out-of-sight tiles. Similarly, Khiem et al. [44, 59]

proposes to predict users’ Region-of-Interest (ROI) and streams the

ROIs with high resolution. Qian et al. [58], Fan et al. [28], and Liu

et al. [53] propose to stream only the user’s viewing tiles.

The SAS part of EVR can also be categorized as an view-guided

approach. However, SAS is fundamentally an energy optimization
rather than a bandwidth optimization, and thus offers energy advan-

tages. Specifically, most of existing view-guided streaming schemes



ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Yue Leng, Chi-Chun Chen, Qiuyue Sun, Jian Huang, and Yuhao Zhu

require transferring the whole area of the frames. Thus, the power-

hungry PT operation is still a necessary step on the VR device. In

contrast, EVR reduces the device energy by providing specialized

hardware for the PT operation and/or pre-executing the PT step

in the cloud. Leng et al. [49] presents semantics-aware streaming

while our work integrates SAS with HAR.

VR Capturing. VR content is created by special capturing de-

vices such as omnidirectional cameras [21, 43] or multi-camera

rigs [4]. Google [5], Facebook [4], and Samsung [17] have all re-

leased hardware and software to streamline the VR video capturing

process. Konrad et al. proposes a system that natively generates

spherical VR videos while bypassing most of the compute-intensive

processing in conventional VR capture systems [46]. Mazumdar

et al. proposes specialized hardware to accelerate the compute-

intensive bilateral solver during VR capturing [55]. They also find

that using carefully-tuned fixed-point implementations greatly re-

duces resource utilization with little loss of quality.

Orthogonal to the capturing systems, EVR instead focuses on

VR playback because it significantly impacts the VR device energy.

Thus far, VR content capture and playback are considered as two

separate processes and are optimized in isolation. To the best of our

knowledge, none of the existing off-the-shelf VR playback systems

uses customized hardware for 360° video streaming. We believe

that co-designing capture and playback systems might bring even

greater benefits. For instance, it would be interesting to study how

the capturing system can encode semantics information in the VR

content and thus simplify the design of the VR playback systems.

We would like to explore this as the future work.

10 Conclusion

The rapid growth of 360° content is fueling the adoption of VR. Soon

360° content will soon be consumed just any other media. However,

processing 360° content introduces significant energy-inefficiencies

to today’s mobile systems. The fundamental reason is that today’s

mobile SoCs are tuned for conventional planar video processing.

We re-examine video processing in light of this paradigm shift, and

discover that the key toward energy-efficient VR video processing

is to collaboratively co-optimize the cloud server with the device

hardware architecture. We hope our work serves the first step in a

promising new direction of research.

Acknowledgments

We would like to thank the anonymous reviewers for their helpful

comments and feedback.

References

[1] Amazon Silk.

https://docs.aws.amazon.com/silk/latest/developerguide/introduction.html.

[2] ARM Mali Display Processors.

https://developer.arm.com/products/graphics-and-multimedia/mali-display-

processors.

[3] Bringing pixels front and center in vr video.

https://blog.google/products/google-vr/bringing-pixels-front-and-center-vr-
video/.

[4] Facebook Surround 360.

https://facebook360.fb.com/facebook-surround-360/.

[5] Google Jump VR.

https://vr.google.com/jump/.

[6] GStreamer.

https://gstreamer.freedesktop.org/.
[7] Hard Drive Cost Per Gigabyte.

https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/.

[8] Hospital-wide access to virtual reality alleviates pain and anxiety for pediatric

patients.

http://www.stanfordchildrens.org/en/about/news/releases/2017/virtual-
reality-alleviates-pain-anxiety.

[9] Jetson TX2 Module.

http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html.

[10] Magic Leap One Powered by Nvidia Tegra TX2.

https://www.tomshardware.com/news/magic-leap-tegra-specs-

release, 37443.html.

[11] N16886, Joint Call for Evidence on Video Compression with Capability beyond

HEVC.

https://mpeg.chiariglione.org/standards/exploration/future-video-coding/
n16886-joint-call-evidence-video-compression-capability.

[12] Netflix’s 8.3 Million New Subscribers Didn’t Come Cheap.

https://www.fool.com/investing/2018/01/23/netflixs-83-million-new-

subscribers-didnt-come-che.aspx.
[13] Nvidia’s Jetson TX2 Powers GameFace Labs’ Standalone VR Headset.

https://gstreamer.freedesktop.org://www.tomshardware.com/news/

gameface-labs-standalone-steamvr-headset, 37112.html.

[14] Nvidia’s Jetson TX2 Powers GameFace Labs’ Standalone VR Headset.

https://www.tomshardware.com/news/gameface-labs-standalone-steamvr-

headset, 37112.html.

[15] Opioids haven’t solved chronic pain. maybe virtual reality can.

https://www.wired.com/story/opioids-havent-solved-chronic-pain-maybe-

virtual-reality-can/.

[16] Razer OSVR HDK2.

https://versus.com/en/htc-vive-vs-razer-osvr-hdk2.

[17] Samsung Project Beyond.

http://thinktankteam.info/beyond/.
[18] Under the hood: Building 360 video.

https://code.facebook.com/posts/1638767863078802.

[19] White Paper: 360-Degree Video Rendering.

https://community.arm.com/graphics/b/blog/posts/white-paper-360-degree-

video-rendering.

[20] Xilinx Zynq-7000 SoC ZC702 Evaluation Kit.

https://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html.

[21] Robert Anderson, David Gallup, Jonathan T Barron, Janne Kontkanen, Noah

Snavely, Carlos Hernández, Sameer Agarwal, and Steven M Seitz. Jump: virtual

reality video. ACM Transactions on Graphics (TOG), 35(6):198, 2016.
[22] AXIS Communications. An explanation of video compression techniques. White

Paper.

[23] Kevin Boos, David Chu, and Eduardo Cuervo. Flashback: Immersive virtual

reality on mobile devices via rendering memoization. In Proceedings of the 14th
Annual International Conference on Mobile Systems, Applications, and Services
(MobiSys’16), pages 291–304. ACM, 2016.

[24] Xiaomeng Chen, Ning Ding, Abhilash Jindal, Y Charlie Hu, Maruti Gupta, and

Rath Vannithamby. Smartphone energy drain in the wild: Analysis and im-

plications. ACM SIGMETRICS Performance Evaluation Review, 43(1):151–164,
2015.

[25] Xavier Corbillon, Francesca De Simone, and Gwendal Simon. 360-degree video

head movement dataset. In Proceedings of the 8th ACM on Multimedia Systems
Conference, pages 199–204. ACM, 2017.

[26] Lucia D’Acunto, Jorrit van den Berg, Emmanuel Thomas, and Omar Niamut.

Using mpeg dash srd for zoomable and navigable video. In Proceedings of the 7th
International Conference on Multimedia Systems, page 34. ACM, 2016.

[27] Tarek El-Ganainy and Mohamed Hefeeda. Streaming virtual reality content.

arXiv preprint arXiv:1612.08350, 2016.
[28] Ching-Ling Fan, Jean Lee, Wen-Chih Lo, Chun-Ying Huang, Kuan-Ta Chen, and

Cheng-Hsin Hsu. Fixation prediction for 360 video streaming in head-mounted

virtual reality. In Proceedings of the 27th Workshop on Network and Operating
Systems Support for Digital Audio and Video, pages 67–72. ACM, 2017.

[29] Vamsidhar Reddy Gaddam, Michael Riegler, Ragnhild Eg, Carsten Griwodz, and

Pål Halvorsen. Tiling in interactive panoramic video: Approaches and evaluation.

IEEE Transactions on Multimedia, 18(9):1819–1831, 2016.
[30] Mario Graf, Christian Timmerer, and Christopher Mueller. Towards bandwidth

efficient adaptive streaming of omnidirectional video over http: Design, imple-

mentation, and evaluation. In Proceedings of the 8th ACM on Multimedia Systems
Conference, pages 261–271. ACM, 2017.

[31] Ziyad S Hakura and Anoop Gupta. The design and analysis of a cache architecture

for texture mapping. ACM SIGARCH Computer Architecture News, 25(2):108–120,
1997.

[32] Matthew Halpern, Yuhao Zhu, and Vijay Janapa Reddi. Mobile CPU’s Rise to

Power: Quantifying the Impact of Generational Mobile CPU Design Trends on

https://docs.aws.amazon.com/silk/latest/developerguide/introduction.html
https://developer.arm.com/products/graphics-and-multimedia/mali-display-processors
https://developer.arm.com/products/graphics-and-multimedia/mali-display-processors
https://blog.google/products/google-vr/bringing-pixels-front-and-center-vr-video/
https://blog.google/products/google-vr/bringing-pixels-front-and-center-vr-video/
https://facebook360.fb.com/facebook-surround-360/
https://vr.google.com/jump/
https://gstreamer.freedesktop.org/
https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/
http://www.stanfordchildrens.org/en/about/news/releases/2017/virtual-reality-alleviates-pain-anxiety
http://www.stanfordchildrens.org/en/about/news/releases/2017/virtual-reality-alleviates-pain-anxiety
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
https://www.tomshardware.com/news/magic-leap-tegra-specs-release,37443.html
https://www.tomshardware.com/news/magic-leap-tegra-specs-release,37443.html
https://mpeg.chiariglione.org/standards/exploration/future-video-coding/n16886-joint-call-evidence-video-compression-capability
https://mpeg.chiariglione.org/standards/exploration/future-video-coding/n16886-joint-call-evidence-video-compression-capability
https://www.fool.com/investing/2018/01/23/netflixs-83-million-new-subscribers-didnt-come-che.aspx
https://www.fool.com/investing/2018/01/23/netflixs-83-million-new-subscribers-didnt-come-che.aspx
https://gstreamer.freedesktop.org://www.tomshardware.com/news/gameface-labs-standalone-steamvr-headset,37112.html
https://gstreamer.freedesktop.org://www.tomshardware.com/news/gameface-labs-standalone-steamvr-headset,37112.html
https://www.tomshardware.com/news/gameface-labs-standalone-steamvr-headset,37112.html
https://www.tomshardware.com/news/gameface-labs-standalone-steamvr-headset,37112.html
https://www.wired.com/story/opioids-havent-solved-chronic-pain-maybe-virtual-reality-can/
https://www.wired.com/story/opioids-havent-solved-chronic-pain-maybe-virtual-reality-can/
https://versus.com/en/htc-vive-vs-razer-osvr-hdk2
http://thinktankteam.info/beyond/
https://code.facebook.com/posts/1638767863078802
https://community.arm.com/graphics/b/blog/posts/white-paper-360-degree-video-rendering
https://community.arm.com/graphics/b/blog/posts/white-paper-360-degree-video-rendering
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html


Energy-Efficient Video Processing for Virtual Reality ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Performance, Energy, and User Satisfaction. In Proc. of HPCA, 2016.
[33] MyungJoo Ham, Inki Dae, and Chanwoo Choi. Lpd: Low power display mecha-

nism for mobile and wearable devices. In USENIX Annual Technical Conference,
2015.

[34] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering

algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),
28(1):100–108, 1979.

[35] Brandon Haynes, Amrita Mazumdar, Armin Alaghi, Magdalena Balazinska, Luis

Ceze, and Alvin Cheung. Lightdb: A dbms for virtual reality video. Proceedings
of the VLDB Endowment, 11(10), 2018.

[36] Brandon Haynes, Artem Minyaylov, Magdalena Balazinska, Luis Ceze, and Alvin

Cheung. Visualcloud demonstration: A dbms for virtual reality. In Proceedings of
the 2017 ACM International Conference on Management of Data, pages 1615–1618.
ACM, 2017.

[37] Jian He, Mubashir Adnan Qureshi, Lili Qiu, Jin Li, Feng Li, and Lei Han. Rubiks:

Practical 360-degree streaming for smartphones. In Proceedings of the 13th Annual
International Conference onMobile Systems, Applications, and Services (MobiSys’18),
2018.

[38] Paul S Heckbert. Survey of texture mapping. IEEE computer graphics and appli-
cations, 6(11):56–67, 1986.

[39] Paul S Heckbert. Fundamentals of texture mapping and image warping. master’s

thesis. University of California, Berkeley, 2:3, 1989.
[40] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy

Cohen, Steven Bell, Artem Vasilyev, Mark Horowitz, and Pat Hanrahan. Dark-

room: Compiling High-Level Image Processing Code into Hardware Pipelines.

In Proc. of SIGGRAPH, 2014.
[41] Jian Huang, Anirudh Badam, Ranveer Chandra, and Edmund B Nightingale.

Weardrive: Fast and energy-efficient storage for wearables. In USENIX Annual
Technical Conference, pages 613–625, 2015.

[42] Junxian Huang, Feng Qian, Alexandre Gerber, ZMorleyMao, Subhabrata Sen, and

Oliver Spatscheck. A close examination of performance and power characteristics

of 4g lte networks. In Proceedings of the 10th international conference on Mobile
systems, applications, and services, 2012.

[43] Hiroshi Ishiguro, Masashi Yamamoto, and Saburo Tsuji. Omni-directional stereo.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2):257–262,
1992.

[44] Ngo Quang Minh Khiem, Guntur Ravindra, and Wei Tsang Ooi. Adaptive encod-

ing of zoomable video streams based on user access pattern. Signal Processing:
Image Communication, 27(4):360–377, 2012.

[45] Tan Kiat Wee, Eduardo Cuervo, and Rajesh Krishna Balan. Demo: Focusvr:

Effective & usable vr display power management. In Proceedings of the 14th
Annual International Conference on Mobile Systems, Applications, and Services
Companion, pages 122–122. ACM, 2016.

[46] Robert Konrad, Donald G Dansereau, Aniq Masood, and Gordon Wetzstein.

Spinvr: towards live-streaming 3d virtual reality video. ACM Transactions on
Graphics (TOG), 36(6):209, 2017.

[47] Kyungmin Lee, David Chu, Eduardo Cuervo, Johannes Kopf, Yury Degtyarev,

Sergey Grizan, Alec Wolman, and Jason Flinn. Outatime: Using speculation to

enable low-latency continuous interaction for mobile cloud gaming. In Proceed-
ings of the 13th Annual International Conference on Mobile Systems, Applications,
and Services, pages 151–165. ACM, 2015.

[48] Charles E Leiserson and James B Saxe. Retiming synchronous circuitry. Algo-
rithmica, 6(1-6):5–35, 1991.

[49] Yue Leng, Chi-Chun Chen, Qiuyue Sun, Jian Huang, and Yuhao Zhu. Semantic-

aware virtual reality video streaming. In Proceedings of the 9th Asia-Pacific
Workshop on Systems, page 21. ACM, 2018.

[50] Jing Li, Anirudh Badam, Ranveer Chandra, Steven Swanson, Bruce LWorthington,

and Qi Zhang. On the energy overhead of mobile storage systems. In FAST, pages
105–118, 2014.

[51] Luyang Liu, Ruiguang Zhong, Wuyang Zhang, Yunxin Liu, Jiansong Zhang,

Lintao Zhang, and Marco Gruteser. Cutting the cord: Designing a high-quality

untethered vr system with low latency remote rendering. In Proceedings of the
16th Annual International Conference on Mobile Systems, Applications, and Services
(MobiSys’18), 2018.

[52] Xing Liu and Feng Qian. Poster: Measuring and optimizing android smartwatch

energy consumption: poster. In Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking, pages 421–423. ACM, 2016.

[53] Xing Liu, Qingyang Xiao, Vijay Gopalakrishnan, Bo Han, Feng Qian, and Matteo

Varvello. 360 innovations for panoramic video streaming. In Proceedings of the
16th ACM Workshop on Hot Topics in Networks, pages 50–56. ACM, 2017.

[54] Andrea Lottarini, Alex Ramirez, Joel Coburn, Martha A Kim, Parthasarathy

Ranganathan, Daniel Stodolsky, and Mark Wachsler. vbench: Benchmarking

video transcoding in the cloud. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 797–809. ACM, 2018.

[55] Amrita Mazumdar, Armin Alaghi, Jonathan T Barron, David Gallup, Luis Ceze,

Mark Oskin, and Steven M Seitz. A hardware-friendly bilateral solver for real-

time virtual reality video. In Proceedings of High Performance Graphics, page 13.
ACM, 2017.

[56] Anh Nguyen, Zhisheng Yan, and Klara Nahrstedt. Your attention is unique:

Detecting 360-degree video saliency in head-mounted display for head movement

prediction. In 2018 ACM Multimedia Conference on Multimedia Conference, pages
1190–1198. ACM, 2018.

[57] Nvidia. Accelerated GStreamer User Guide, Release 28.2.
[58] Feng Qian, Lusheng Ji, Bo Han, and Vijay Gopalakrishnan. Optimizing 360 video

delivery over cellular networks. In Proceedings of the 5th Workshop on All Things
Cellular: Operations, Applications and Challenges, pages 1–6. ACM, 2016.

[59] Ngo Quang Minh Khiem, Guntur Ravindra, Axel Carlier, and Wei Tsang Ooi.

Supporting zoomable video streams with dynamic region-of-interest cropping.

In Proceedings of the first annual ACM SIGMM conference on Multimedia systems,
pages 259–270. ACM, 2010.

[60] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger. In

arXiv:1612.08242, 2016.
[61] ABI Research. Augmented and Virtual Reality: The First Wave of 5G Killer Apps.

2017.

[62] Iain E Richardson. The H. 264 advanced video compression standard. John Wiley

& Sons, 2011.

[63] Patrice Rondao Alface, Jean-François Macq, and Nico Verzijp. Interactive omni-

directional video delivery: A bandwidth-effective approach. Bell Labs Technical
Journal, 16(4):135–147, 2012.

[64] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar

Krishna. Scale-sim: Systolic cnn accelerator. arXiv preprint arXiv:1811.02883,
2018.

[65] G Enrico Santagati and Tommaso Melodia. U-wear: Software-defined ultrasonic

networking for wearable devices. In Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services, pages 241–256. ACM,

2015.

[66] Dave Shreiner, Bill The Khronos OpenGL ARB Working Group, et al. OpenGL
programming guide: the official guide to learning OpenGL, versions 3.0 and 3.1.
Pearson Education, 2009.

[67] Narendran Thiagarajan, Gaurav Aggarwal, Angela Nicoara, Dan Boneh, and

Jatinder Pal Singh. Who killed my battery?: analyzing mobile browser energy

consumption. In Proceedings of the 21st international conference on World Wide
Web, pages 41–50. ACM, 2012.

[68] Huyen TT Tran, Cuong T Pham, Nam PhamNgoc, Anh T Pham, and Truong Cong

Thang. A study on quality metrics for 360 video communications. IEICE TRANS-
ACTIONS on Information and Systems, 101(1):28–36, 2018.

[69] Ville Ukonaho. Global 360 camera sales forecast by segment: 2016 to 2022. 2017.

[70] Alireza Zare, Alireza Aminlou, Miska M Hannuksela, and Moncef Gabbouj. Hevc-

compliant tile-based streaming of panoramic video for virtual reality applications.

In Proceedings of the 2016 ACM on Multimedia Conference, pages 601–605. ACM,

2016.

[71] Yuhao Zhu and Vijay Janapa Reddi. Webcore: Architectural support for mo-

bile web browsing. In Proceeding of the International Symposium on Computer
Architecuture, pages 541–552, 2014.

[72] Yuhao Zhu, Anand Samajdar, MatthewMattina, and PaulWhatmough. Euphrates:

Algorithm-soc co-design for energy-efficient mobile continuous vision. Proc. of
ISCA, 2018.


	Abstract
	1 Introduction
	2 VR Video System Background
	3 Energy Characterizations
	4 EVR Overview
	5 Semantics-Aware Streaming
	5.1 Object-Oriented Viewing Behaviors
	5.2 SAS Framework Overview
	5.3 Cloud Service Architecture
	5.4 Client Support for SAS

	6 Hardware Accelerated Rendering
	6.1 Algorithm Overview
	6.2 Hardware Architecture
	6.3 Design Decisions

	7 Implementation
	7.1 Cloud Server Implementation
	7.2 Client Implementation

	8 Evaluation
	8.1 Evaluation Methodology
	8.2 Online-Streaming Use-case Evaluation
	8.3 Live-Streaming Use-case Evaluation
	8.4 Offline-Playback Use-case Evaluation
	8.5 SAS vs. Client Head Motion Prediction
	8.6 General Applicability of PTE Hardware

	9 Related Work
	10 Conclusion
	References

