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» Challenge: How to obtain the viewing area without
communicating with sensors on the client?

Field
of View

(FOV)

Projective
Transformation




L everaging Video Semantics Information

» Observations:



L everaging Video Semantics Information

» Observations:
> Users tend to track objects



L everaging Video Semantics Information

» Observations:
> Users tend to track objects

100%
90%

80%
Elephant

Percentage of
Frames

70% '®
60%

# of Identified Objects



L everaging Video Semantics Information

» Observations:
> Users tend to track objects

100%

90%

80%
Elephant

Percentage of
Frames

70%

60%

# of Identified Objects



L everaging Video Semantics Information

» Observations:
> Users tend to track objects
> Object trajectory accurately predicts user viewing area

100%
S
o , 90%
S o
£ £ 80%
S I Elephant
2 70%

60%

1 2

# of Identified Objects



L everaging Video Semantics Information

» Observations:
> Users tend to track objects
> Object trajectory accurately predicts user viewing area

100%
S
o, 90%
S o
£ £ 80%
S I Elephant
2 70%
60%

1 2 3 4 5 6 14 8
# of Identified Objects



L everaging Video Semantics Information

» Observations:
> Users tend to track objects
> Object trajectory accurately predicts user viewing area

> Tracking clustered objects result in more accurate prediction

100%
o, 90%
S o
£ £ 80%
S I Elephant
2 70%
60%

1 2 3 4 5 6 14 8
# of Identified Objects



L everaging Video Semantics Information

» Observation:
> User tend to track objects
> Object trajectory accurately predicts user viewing area

> Tracking clustered objects result in more accurate prediction

100%
90%
80%
70%
60%

Frames (%)

1 2 3 4 5 6 7 8



L everaging Video Semantics Information

» Observation:

Frames (%)

> User tend to track objects
> Object trajectory accurately predicts user viewing area
> Tracking clustered objects result in more accurate prediction
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L everaging Video Semantics Information

» Observation:
> Users tend to track objects
> Object trajectory accurately predicts user viewing area

> Tracking clustered objects result in more accurate prediction

» Advantage:
> Client device avoids power-hungry PT operation
> Object trajectory can be generated offline once

> Object trajectory can be reused for multiple times
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SAS: Design Decisions/Optimizations

» Naive implementation

> Generate FOV videos for entire video
> High video compression rate

> FOV miss » Re-streaming entire original video
» Recovery Penalty
> Streaming time
> Bandwidth usage
» Trade-off: Recovery penalty vs. Video compression rate
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Temporal Segmentation

» Split video into several temporal segments
» Generate FOV videos for each segment
» Every FOV-miss only requests one segment

» 0 balance recovery penalty with video compression rate
> Design decision: 30 frames/segment

Segment 1 Segment 2 Segment 3 Segment 4
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Current Hardware Usage

» PT Is treated as Texture Mapping
» GPU has Texture Mapping Unit (TMU)

» OpenGL supports various object shapes and customized
mapping functions

» Too “general” for VR applications

Equirectangular Projection, CubeMap Projection.
Equi-Angular Projection
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HAR: Hardware Accelerated Rendering

» Key ldea: VR-specific Texture Mapping Accelerator
> A specialized hardware for projective transformation
> Projective Transformation Unit (PTU)
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Projective Transformation Engine (PTE)

» Exploits pixel-level parallelism of projective transformation
> Instantiate multiple PTUs
> Each PTU is responsible for one pixel
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» Collaborates with IPs in existing hardware architecture
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Experimental Setup

» Dataset: 59 real VR user head movement traces from watching 5
YouTube VR videos

» SAS server: Deployed on an AWS instance (EC2 + S3)

» SAS client: Java-based in-house player. FFmpeg+NVDEC for video
decoding.

» Network: 300 Mbps on campus WiFi environment
» Hardware:

> Nvidia TX2 and Xilinx ZC702 development board

Amazon EC?2 Amazon S3 Nvidia TX2 Xilinx ZC702
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Evaluation

» Baseline: VR client device built on Nvidia TX2
> Running at 30 FPS
> No SAS and HAR optimizations
» Metrics:
> Energy Savings
> User Experience Loss
» Use Cases
> Only Semantic Aware Streaming (SAS)

> Only Hardware Accelerated Rendering (HAR)
> SAS + HAR
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Energy Savings

» Applying only SAS achieves ~22% energy reduction
» Applying only HAR achieves ~38% energy reduction
» SAS + HAR save up to 58% and ~41% energy
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User Experience Loss

» SAS introduce a FOV-miss rate of ~7.7%
» FPS drops only ~1%
» Loss is negligible by users
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» Virtual reality popularity is
growing rapidly

» Virtual reality devices consume
excessive power

» EVR saves up 58% of energy
> Semantic Aware Streaming

> Hardware Accelerated
Rendering
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