Energy-Efficient Video Processing for Virtual Reality

Yue Leng*, UIUC Chi-chun Chen*, University of Rochester Qiuyue Sun, University of Rochester Jian Huang, UIUC Yuhao Zhu, University of Rochester

^{*} Co-primary authors

Virtual Reality

Conventional Video Processing

Conventional Video Processing

Client

Projective Transformation

Projective

Transformation

Client

▶ Custom VR client device on Nvidia Tegra X2

- Custom VR client device on Nvidia Tegra X2
- ▶ Benchmark: 360-Degree Video Head Movement Dataset

- Custom VR client device on Nvidia Tegra X2
- ▶ Benchmark: 360-Degree Video Head Movement Dataset

[1] Xavier Corbillon, Francesca De Simone, and Gwendal Simon. 2017. 360-Degree Video Head Movement Dataset. In Proceedings of the 8th ACM on Multimedia Systems Conference (MMSys'17). ACM, New York, NY, USA, 199-204. DOI: https://doi.org/10.1145/3083187.3083215

- Custom VR client device on Nvidia Tegra X2
- ▶ Benchmark: 360-Degree Video Head Movement Dataset

[1] Xavier Corbillon, Francesca De Simone, and Gwendal Simon. 2017. 360-Degree Video Head Movement Dataset. In Proceedings of the 8th ACM on Multimedia Systems Conference (MMSys'17). ACM, New York, NY, USA, 199-204. DOI: https://doi.org/10.1145/3083187.3083215

- Custom VR client device on Nvidia Tegra X2
- ▶ Benchmark: 360-Degree Video Head Movement Dataset
- ▶ Projective transformation (PT) is a major contributor (40%)

[1] Xavier Corbillon, Francesca De Simone, and Gwendal Simon. 2017. 360-Degree Video Head Movement Dataset. In Proceedings of the 8th ACM on Multimedia Systems Conference (MMSys'17). ACM, New York, NY, USA, 199-204. DOI: https://doi.org/10.1145/3083187.3083215

- Custom VR client device on Nvidia Tegra X2
- ▶ Benchmark: 360-Degree Video Head Movement Dataset
- ▶ Projective transformation (PT) is a major contributor (40%)

[1] Xavier Corbillon, Francesca De Simone, and Gwendal Simon. 2017. 360-Degree Video Head Movement Dataset. In Proceedings of the 8th ACM on Multimedia Systems Conference (MMSys'17). ACM, New York, NY, USA, 199-204. DOI: https://doi.org/10.1145/3083187.3083215

EVR

A Cloud-Client Collaborative VR Video System

Cloud

Semantic Aware Streaming

Client

Hardware Accelerated Rendering

Result

Up to 58% Energy Reduction & Only 1% Frame Rate Drops

EVR

A Cloud-Client Collaborative VR Video System

Cloud

Semantic Aware Streaming

Client

Hardware Accelerated Rendering

Result

Up to 58% Energy Reduction & Only 1% Frame Rate Drops

Pre-render FOVs in the cloud

Pre-render FOVs in the cloud

▶ Challenge: How to obtain the viewing area without communicating with sensors on the client?

Observations:

Users tend to track objects

Observations:

Users tend to track objects

Observations:

Users tend to track objects

- Users tend to track objects
- Object trajectory accurately predicts user viewing area

- Users tend to track objects
- Object trajectory accurately predicts user viewing area

- Users tend to track objects
- Object trajectory accurately predicts user viewing area
- > Tracking clustered objects result in more accurate prediction

- User tend to track objects
- Object trajectory accurately predicts user viewing area
- > Tracking clustered objects result in more accurate prediction

- User tend to track objects
- Diject trajectory accurately predicts user viewing area
- > Tracking clustered objects result in more accurate prediction

- Users tend to track objects
- Object trajectory accurately predicts user viewing area
- Tracking clustered objects result in more accurate prediction

- Users tend to track objects
- Object trajectory accurately predicts user viewing area
- Tracking clustered objects result in more accurate prediction

- Users tend to track objects
- Object trajectory accurately predicts user viewing area
- Tracking clustered objects result in more accurate prediction

Observation:

- Users tend to track objects
- Object trajectory accurately predicts user viewing area
- Tracking clustered objects result in more accurate prediction

Advantage:

Client device avoids power-hungry PT operation

Leveraging Video Semantics Information

Observation:

- Users tend to track objects
- Object trajectory accurately predicts user viewing area
- > Tracking clustered objects result in more accurate prediction

Advantage:

- Client device avoids power-hungry PT operation
- Object trajectory can be generated offline once

Leveraging Video Semantics Information

Observation:

- Users tend to track objects
- Object trajectory accurately predicts user viewing area
- Tracking clustered objects result in more accurate prediction

Advantage:

- Client device avoids power-hungry PT operation
- Dobject trajectory can be generated offline once
- Doject trajectory can be reused for multiple times

Servel

360 Video

Client

Client

Client

▶ Naive implementation

Naive implementation

Denerate FOV videos for entire video

Naive implementation

- ▶ Generate FOV videos for entire video
- ▶ High video compression rate

Naive implementation

- Denerate FOV videos for entire video
- ▶ High video compression rate
- ▶FOV miss Re-streaming entire original video

- Naive implementation
 - Denerate FOV videos for entire video
 - ▶ High video compression rate
 - ▶FOV miss Re-streaming entire original video
- Recovery Penalty

Naive implementation

- Denerate FOV videos for entire video
- ▶ High video compression rate
- ▶FOV miss Re-streaming entire original video

Recovery Penalty

Streaming time

Naive implementation

- Denerate FOV videos for entire video
- ▶ High video compression rate
- ▶FOV miss Re-streaming entire original video

Recovery Penalty

- Streaming time
- ▶ Bandwidth usage

Naive implementation

- Denerate FOV videos for entire video
- ▶ High video compression rate
- ▶FOV miss Re-streaming entire original video
- Recovery Penalty
 - Streaming time
 - ▶ Bandwidth usage
- ▶ Trade-off: Recovery penalty vs. Video compression rate

▶ Split video into several temporal segments

- ▶ Split video into several temporal segments
- ▶ Generate FOV videos for each segment

- ▶ Split video into several temporal segments
- Generate FOV videos for each segment
- Every FOV-miss only requests one segment

- ▶ Split video into several temporal segments
- Generate FOV videos for each segment
- Every FOV-miss only requests one segment
- ▶ To balance recovery penalty with video compression rate

- Split video into several temporal segments
- ▶ Generate FOV videos for each segment
- ▶ Every FOV-miss only requests one segment
- ▶ To balance recovery penalty with video compression rate▶ Design decision: 30 frames/segment

EVR

A Cloud-Client Collaborative VR Video System

Cloud

Semantic Aware Streaming

Client

Hardware Accelerated Rendering

Result

Up to 58% Energy Reduction & Only 1% Frame Rate Drops

EVR

A Cloud-Client Collaborative VR Video System

Cloud

Semantic Aware Streaming

Client

Hardware Accelerated Rendering

Result

Up to 58% Energy Reduction & Only 1% Frame Rate Drops

▶ PT is treated as Texture Mapping

- ▶ PT is treated as Texture Mapping
- ▶ GPU has Texture Mapping Unit (TMU)

- ▶ PT is treated as Texture Mapping
- ▶ GPU has Texture Mapping Unit (TMU)

- ▶ PT is treated as Texture Mapping
- ▶ GPU has Texture Mapping Unit (TMU)

- ▶ PT is treated as Texture Mapping
- ▶ GPU has Texture Mapping Unit (TMU)
- OpenGL supports various object shapes and customized mapping functions

Mapping Functions

- ▶ PT is treated as Texture Mapping
- ▶ GPU has Texture Mapping Unit (TMU)
- OpenGL supports various object shapes and customized mapping functions

- ▶ PT is treated as Texture Mapping
- ▶ GPU has Texture Mapping Unit (TMU)
- OpenGL supports various object shapes and customized mapping functions

- ▶ PT is treated as Texture Mapping
- ▶ GPU has Texture Mapping Unit (TMU)
- OpenGL supports various object shapes and customized mapping functions

- ▶ PT is treated as Texture Mapping
- ▶ GPU has Texture Mapping Unit (TMU)
- OpenGL supports various object shapes and customized mapping functions
- ▶ Too "general" for VR applications

- ▶ PT is treated as Texture Mapping
- ▶ GPU has Texture Mapping Unit (TMU)
- OpenGL supports various object shapes and customized mapping functions
- ▶ Too "general" for VR applications

Equirectangular Projection, CubeMap Projection. Equi-Angular Projection

▶ Key Idea: VR-specific Texture Mapping Accelerator

- ▶ Key Idea: VR-specific Texture Mapping Accelerator
 - DA specialized hardware for projective transformation

- ▶ Key Idea: VR-specific Texture Mapping Accelerator
 - A specialized hardware for projective transformation

- ▶ Key Idea: VR-specific Texture Mapping Accelerator
 - A specialized hardware for projective transformation

Matrix Multiplication

- ▶ Key Idea: VR-specific Texture Mapping Accelerator
 - A specialized hardware for projective transformation

- ▶ Key Idea: VR-specific Texture Mapping Accelerator
 - A specialized hardware for projective transformation

- ▶ Key Idea: VR-specific Texture Mapping Accelerator
 - A specialized hardware for projective transformation
 - ▶ Projective Transformation Unit (PTU)

Matrix Multiplication

Trigonometry Operation

Linear Interpolation

▶ Exploits pixel-level parallelism of projective transformation

▶ Exploits pixel-level parallelism of projective transformation

▶ Exploits pixel-level parallelism of projective transformation

▶ Instantiate multiple PTUs

- ▶ Exploits pixel-level parallelism of projective transformation
 - ▶Instantiate multiple PTUs
 - Each PTU is responsible for one pixel

- ▶ Exploits pixel-level parallelism of projective transformation
 - Instantiate multiple PTUs
 - Each PTU is responsible for one pixel

- ▶ Exploits pixel-level parallelism of projective transformation
 - Instantiate multiple PTUs
 - ▶ Each PTU is responsible for one pixel

- ▶ Exploits pixel-level parallelism of projective transformation
 - Instantiate multiple PTUs
 - Each PTU is responsible for one pixel

- ▶ Exploits pixel-level parallelism of projective transformation
 - ▶Instantiate multiple PTUs
 - ▶ Each PTU is responsible for one pixel

Client

SoC Integration

Client

SoC Integration

Putting It Together

Putting It Together

Putting It Together

EVR

A Cloud-Client Collaborative VR Video System

Cloud

Semantic Aware Streaming

Client

Hardware Accelerated Rendering

Result

Up to 58% Energy Reduction & Only 1% Frame Rate Drops

EVR

A Cloud-Client Collaborative VR Video System

Cloud

Semantic Aware Streaming

Client

Hardware Accelerated Rendering

Result

Up to 58% Energy Reduction & Only 1% Frame Rate Drops

Experimental Setup

▶ Dataset: 59 real VR user head movement traces from watching 5 YouTube VR videos

Experimental Setup

- ▶ Dataset: 59 real VR user head movement traces from watching 5 YouTube VR videos
- ▶ SAS server: Deployed on an AWS instance (EC2 + S3)

Experimental Setup

- ▶ Dataset: 59 real VR user head movement traces from watching 5 YouTube VR videos
- ▶ SAS server: Deployed on an AWS instance (EC2 + S3)
- ▶ SAS client: Java-based in-house player. FFmpeg+NVDEC for video decoding.

Experimental Setup

- ▶ Dataset: 59 real VR user head movement traces from watching 5 YouTube VR videos
- ▶ SAS server: Deployed on an AWS instance (EC2 + S3)
- ▶ SAS client: Java-based in-house player. FFmpeg+NVDEC for video decoding.
- ▶ Network: 300 Mbps on campus WiFi environment

Experimental Setup

- ▶ Dataset: 59 real VR user head movement traces from watching 5 YouTube VR videos
- ▶ SAS server: Deployed on an AWS instance (EC2 + S3)
- ▶ SAS client: Java-based in-house player. FFmpeg+NVDEC for video decoding.
- ▶ Network: 300 Mbps on campus WiFi environment
- ▶ Hardware:
 - Nvidia TX2 and Xilinx ZC702 development board

Amazon S3

Nvidia TX2

Xilinx ZC702

▶ Baseline: VR client device built on Nvidia TX2

- ▶ Baseline: VR client device built on Nvidia TX2
 - ▶ Running at 30 FPS

- ▶ Baseline: VR client device built on Nvidia TX2
 - ▶ Running at 30 FPS
 - ▶ No SAS and HAR optimizations

- ▶ Baseline: VR client device built on Nvidia TX2
 - ▶ Running at 30 FPS
 - No SAS and HAR optimizations
- Metrics:

- ▶ Baseline: VR client device built on Nvidia TX2
 - ▶ Running at 30 FPS
 - No SAS and HAR optimizations
- Metrics:
 - ▶ Energy Savings

- ▶ Baseline: VR client device built on Nvidia TX2
 - ▶ Running at 30 FPS
 - No SAS and HAR optimizations
- Metrics:
 - ▶ Energy Savings

- ▶ Baseline: VR client device built on Nvidia TX2
 - ▶ Running at 30 FPS
 - No SAS and HAR optimizations
- Metrics:
 - ▶ Energy Savings
- Use Cases

- ▶ Baseline: VR client device built on Nvidia TX2
 - ▶ Running at 30 FPS
 - No SAS and HAR optimizations
- Metrics:
 - ▶ Energy Savings
- Use Cases
 - Only Semantic Aware Streaming (SAS)

- ▶ Baseline: VR client device built on Nvidia TX2
 - ▶ Running at 30 FPS
 - No SAS and HAR optimizations
- Metrics:
 - ▶ Energy Savings
 - User Experience Loss
- Use Cases
 - Only Semantic Aware Streaming (SAS)
 - ▶ Only Hardware Accelerated Rendering (HAR)

- ▶ Baseline: VR client device built on Nvidia TX2
 - ▶ Running at 30 FPS
 - No SAS and HAR optimizations
- Metrics:
 - Energy Savings
 - User Experience Loss
- Use Cases
 - Only Semantic Aware Streaming (SAS)
 - ▶ Only Hardware Accelerated Rendering (HAR)
 - ▷SAS + HAR

▶ Applying only SAS achieves ~22% energy reduction

- ▶ Applying only SAS achieves ~22% energy reduction
- ▶ Applying only HAR achieves ~38% energy reduction

- ▶ Applying only SAS achieves ~22% energy reduction
- ▶ Applying only HAR achieves ~38% energy reduction
- ▶ SAS + HAR save up to 58% and ~41% energy

▶ SAS introduce a FOV-miss rate of ~7.7%

- ▶ SAS introduce a FOV-miss rate of ~7.7%
- ▶ FPS drops only ~1%

- ▶ SAS introduce a FOV-miss rate of ~7.7%
- ▶ FPS drops only ~1%
- ▶ Loss is negligible by users

Conclusion

Virtual reality popularity is growing rapidly

Conclusion

Virtual reality popularity is growing rapidly

Virtual reality devices consume excessive power

Conclusion

Virtual reality popularity is growing rapidly

Virtual reality devices consume excessive power

- ▶ EVR saves up 58% of energy
 - Semantic Aware Streaming
 - Hardware Accelerated Rendering