
Euphrates: Algorithm-SoC Co-Design for Low-Power Mobile Continuous Vision

Yuhao Zhu1 Anand Samajdar2 Matthew Mattina3 Paul Whatmough3

1University of Rochester
2Georgia Institute of Technology

3ARM Research

Abstract
Continuous computer vision (CV) tasks increasingly rely on

convolutional neural networks (CNN). However, CNNs have
massive compute demands that far exceed the performance
and energy constraints of mobile devices. In this paper, we
propose and develop an algorithm-architecture co-designed
system, Euphrates, that simultaneously improves the energy-
efficiency and performance of continuous vision tasks.

Our key observation is that changes in pixel data between
consecutive frames represents visual motion. We first propose
an algorithm that leverages this motion information to relax
the number of expensive CNN inferences required by contin-
uous vision applications. We co-design a mobile System-on-
a-Chip (SoC) architecture to maximize the efficiency of the
new algorithm. The key to our architectural augmentation is to
co-optimize different SoC IP blocks in the vision pipeline col-
lectively. Specifically, we propose to expose the motion data
that is naturally generated by the Image Signal Processor (ISP)
early in the vision pipeline to the CNN engine. Measurement
and synthesis results show that Euphrates achieves up to 66%
SoC-level energy savings (4× for the vision computations),
with only 1% accuracy loss.

1. Introduction
Computer vision (CV) is the cornerstone of many emerging
application domains, such as advanced driver-assistance sys-
tems (ADAS) and augmented reality (AR). Traditionally, CV
algorithms were dominated by hand-crafted features (e.g.,
Haar [109] and HOG [55]), coupled with a classifier such as a
support vector machine (SVM) [54]. These algorithms have
low complexity and are practical in constrained environments,
but only achieve moderate accuracy. Recently, convolutional
neural networks (CNNs) have rapidly displaced hand-crafted
feature extraction, demonstrating significantly higher accuracy
on a range of CV tasks including image classification [104],
object detection [85, 97, 99], and visual tracking [56, 91].

This paper focuses on continuous vision applications that
extract high-level semantic information from real-time video
streams. Continuous vision is challenging for mobile archi-
tects due to its enormous compute requirement [117]. Using
object detection as an example, Fig. 1 shows the compute

10-3

10-2

10-1

100

101

102

Te
ra

 O
ps

 P
er

 S
ec

on
d

(T
O

P
S

)
100806040200

Accuracy (%)

Haar HOG Tiny YOLO
SSD YOLO Faster R-CNN

Compute Capability
@ 1W Power Budget

SOTA CNNs

Scaled-down
CNN

Hand-crafted Approaches

Better

Fig. 1: Accuracy and compute requirement (TOPS) comparison be-
tween object detection techniques. Accuracies are measured against
the widely-used PASCAL VOC 2007 dataset [32], and TOPS is based
on the 480p (640×480) resolution common in smartphone cameras.

requirements measured in Tera Operations Per Second (TOPS)
as well as accuracies between different detectors under 60
frames per second (FPS). As a reference, we also overlay the
1 TOPS line, which represents the peak compute capability
that today’s CNN accelerators offer under a typical 1 W mo-
bile power budget [21, 41]. We find that today’s CNN-based
approaches such as YOLOv2 [98], SSD [85], and Faster R-
CNN [99] all have at least one order of magnitude higher
compute requirements than accommodated in a mobile device.
Reducing the CNN complexity (e.g., Tiny YOLO [97], which
is a heavily truncated version of YOLO with 9/22 of its layers)
or falling back to traditional hand-crafted features such as
Haar [61] and HOG [113] lowers the compute demand, which,
however, comes at a significant accuracy penalty.

The goal of our work is to improve the compute efficiency of
continuous vision with small accuracy loss, thereby enabling
new mobile use cases. The key idea is to exploit the motion
information inherent in real-time videos. Specifically, today’s
continuous vision algorithms treat each frame as a standalone
entity and thus execute an entire CNN inference on every
frame. However, pixel changes across consecutive frames are
not arbitrary; instead, they represent visual object motion. We
propose a new algorithm that leverages the temporal pixel
motion to synthesize vision results with little computation
while avoiding expensive CNN inferences on many frames.

Our main architectural contribution in this paper is to co-

1

design the mobile SoC architecture to support the new algo-
rithm. Our SoC augmentations harness two insights. First, we
can greatly improve the compute efficiency while simplifying
the architecture design by exploiting the synergy between dif-
ferent SoC IP blocks. Specifically, we observe that the pixel
motion information is naturally generated by the ISP early in
the vision pipeline owing to ISP’s inherent algorithms, and
thus can be obtained with little compute overhead. We aug-
ment the SoC with a lightweight hardware extension that ex-
poses the motion information to the vision engine. In contrast,
prior work extracts motion information manually, either offline
from an already compressed video [45, 116], which does not
apply to real-time video streams, or by calculating the motion
information at runtime at a performance cost [73, 101].

Second, although the new algorithm is light in compute,
implementing it in software is energy-inefficient from a system
perspective because it would frequently wake up the CPU. We
argue that always-on continuous computer vision should be
task-autonomous, i.e., free from interrupting the CPU. Hence,
we introduce the concept of a motion controller, which is a new
hardware IP that autonomously sequences the vision pipeline
and performs motion extrapolation—all without interrupting
the CPU. The motion controller’s microarchitecture resembles
a micro-controller, and thus incurs very low design cost.

We develop Euphrates, a proof-of-concept system of our
algorithm-SoC co-designed approach. We evaluate Euphrates
on two tasks, object tracking and object detection, that are
critical to many continuous vision scenarios such as ADAS
and AR. Based on real hardware measurements and RTL im-
plementations, we show that Euphrates doubles the object
detection rate while reducing the SoC energy by 66% at the
cost of less than 1% accuracy loss; it also achieves 21% SoC
energy saving at about 1% accuracy loss for object tracking.

In summary, we make the following contributions:
• To our knowledge, we are the first to exploit sharing motion

data across the ISP and other IPs in an SoC.
• We propose the Motion Controller, a new IP that au-

tonomously coordinates the vision pipeline during CV tasks,
enabling “always-on” vision with very low CPU load.

• We model a commercial mobile SoC, validated with hard-
ware measurements and RTL implementations, and achieve
significant energy savings and frame rate improvement.
The remainder of the paper is organized as follows. Sec. 2

introduces the background. Sec. 3 and Sec. 4 describe the
motion-based algorithm and the co-designed architecture, re-
spectively. Sec. 5 describes the evaluation methodology, and
Sec. 6 quantifies the benefits of Euphrates. Sec. 7 discusses
limitations and future developments. Sec. 8 puts Euphrates in
the context of related work, and Sec. 9 concludes the paper.

2. Background and Motivation
We first give an overview of the continuous vision pipeline
from the software and hardware perspectives (Sec. 2.1). In
particular, we highlight an important design trend in the vision

CNN
Accelerator
(~700 mW)

ISP

(~150 mW)

Camera
Sensor

(~150 mW)

Conversion

Image
Sensing

Image Signal
Processing

Bayer Domain
Dead Pixel
Correction

Demosaic

Computer
VisionRAW RGB/

YUV

RGB Domain
Color

Balance

Semantic
Results

Frontend Backend

… … …

Semantic Understanding

Detection Tracking …

H
ar
dw

ar
e

So
ftw

ar
e

Fig. 2: A typical continuous computer vision pipeline.

frontend where ISPs are increasingly incorporating motion es-
timation, which we exploit in this paper (Sec. 2.2). Finally, we
briefly describe the block-based motion estimation algorithm
and its data structures that are used in this paper (Sec. 2.3).

2.1. The Mobile Continuous Vision Pipeline

The continuous vision pipeline consists of two parts: a fron-
tend and a backend, as shown in Fig. 2. The frontend prepares
pixel data for the backend, which in turn extracts semantic
information for high-level decision making.

The frontend uses (off-chip) camera sensors to capture light
and produce RAW pixels that are transmitted to the mobile
SoC, typically over the MIPI camera serial interface (CSI) [20].
Once on-chip, the Image Signal Processor (ISP) transforms
the RAW data in the Bayer domain to pixels in the RGB/YUV
domain through a series of algorithms such as dead pixel
correction, demosacing, and white-balancing. In architecture
terms, the ISP is a specialized IP block in a mobile SoC,
organized as a pipeline of mostly stencil operations on a set of
local SRAMs (“line-buffers”). The vision frontend typically
stores frames in the main memory for communicating with the
vision backend due to the large size of the image data.

The continuous vision backend extracts useful informa-
tion from images through semantic-level tasks such as object
detection. Traditionally, these algorithms are spread across
DSP, GPU, and CPU. Recently, the rising compute intensity
of CNN-based algorithms and the pressing need for energy-
efficiency have urged mobile SoC vendors to deploy dedicated
CNN accelerators. Examples include the Neural Engine in the
iPhoneX [4] and the CNN co-processor in the HPU [29].

Task Autonomy During continuous vision tasks, different
SoC components autonomously coordinate among each other
with minimal CPU intervention, similar to during phone calls
or music playback [90]. Such a task autonomy frees the CPU
to either run other OS tasks to maintain system responsiveness,
or stay in the stand-by mode to save power. As a comparison,
the typical power consumption of an image sensor, an ISP, and
a CNN accelerator combined is about 1 W (refer to Sec. 5.1
for more details), whereas the CPU cluster alone can easily
consume over 3 W [68, 82]. Thus, we must maintain task
autonomy by minimizing CPU interactions when optimizing
energy-efficiency for continuous vision applications.

Object Tracking and Detection This paper focuses on
two continuous vision tasks, object tracking and detection, as

2

they are key enablers for emerging mobile application domains
such as AR [16] and ADAS [24]. Such CV tasks are also prior-
itized by commercial IP vendors, such as ARM, who recently
announced standalone Object Detection/Tracking IP [9].

Object tracking involves localizing a moving object across
frames by predicting the coordinates of its bounding box, also
known as a region of interest (ROI). Object detection refers to
simultaneous object classification and localization, usually for
multiple objects. Both detection and tracking are dominated by
CNN-based techniques. For instance, the state-of-the-art ob-
ject detection network YOLO [97] achieves 37% higher accu-
racy than the best non-CNN based algorithm DPM [65]. Sim-
ilarly, CNN-based tracking algorithms such as MDNet [91]
have shown over 20% higher accuracy compared to classic
hand-crafted approaches such as KCF [72].

2.2. Motion Estimation in ISPs

Perceived imaging quality has become a strong product dif-
ferentiator for mobile devices. As such, ISPs are starting to
integrate sophisticated computational photography algorithms
that are traditionally performed as separate image enhance-
ment tasks, possibly off-line, using CPUs or GPUs. A clas-
sic example is recovering high-dynamic range (HDR) [57],
which used to be implemented in software (e.g., in Adobe
Photoshop [26]) but is now directly built into many consumer
camera ISPs [8, 10, 13, 30].

Among new algorithms that ISPs are integrating is motion
estimation, which estimates how pixels move between con-
secutive frames. Motion estimation is at the center of many
imaging algorithms such as temporal denoising, video stabi-
lization (i.e., anti-shake), and frame upsampling. For instance,
a temporal denoising algorithm [75, 84] uses pixel motion in-
formation to replace noisy pixels with their noise-free counter-
parts in the previous frame. Similarly, frame upsampling [52]
can artificially increase the frame rate by interpolating new
frames between successive real frames based on object motion.

Motion-based imaging algorithms are traditionally per-
formed in GPUs or CPUs later in the vision pipeline, but
they are increasingly subsumed into ISPs to improve compute
efficiency. Commercial examples of motion-enabled cam-
era ISPs include ARM Mali C-71 [8], Qualcomm Spectra
ISP [28], and products from Hikvision [18], ASICFPGA [10],
PX4FLOW [27], Pinnacle Imaging Systems [13], and Cent-
eye [34], just to name a few based on public information.

Today’s ISPs generate motion information internally and
discard it after the frame is processed. Instead, we keep the
motion information from each frame and expose it at the SoC-
level to inmprove the efficiency of the vision backend.

2.3. Motion Estimation using Block Matching

Among various motion estimation algorithms, block-matching
(BM) [74] is widely used in ISP algorithms due to its balance
between accuracy and efficiency. Here, we briefly introduce
its algorithms and data structures that we will refer to later.

<x, y>

<x+u, y+v>

MV = <u, v>

L

Macroblock
in frame N

Search window

x

y

Best match
in frame N-1

d

2d + 1

(a) Block-matching. (b) Motion vectors.

Fig. 3: Motion estimation. (a): Block-matching example in a (2d +
1)× (2d + 1) search window. L is the macroblock size. (b): Each
arrow reprensents an MB’s motion vector. MBs in the foreground
object have much more prounced motions than the background MBs.

The key idea of BM is to divide a frame into multiple L×L
macroblocks (MB), and search in the previous frame for the
closest match for each MB using Sum of Absolute Differences
(SAD) of all L2 pixels as the matching metric. The search is
performed within a 2-D search window with (2d+1) pixels in
both vertical and horizontal directions, where d is the search
range. Fig. 3a illustrates the basic concepts.

Different BM strategies trade-off search accuracy with com-
pute efficiency. The most accurate approach is to perform an
exhaustive search (ES) within a search window, which requires
L2 · (2d +1)2 arithmetic operations per MB. Other BM vari-
ants trade a small accuracy loss for computation reduction. For
instance, the classic three step search (TSS) [79] searches only
part of the search window by decreasing d in logarithmic steps.
TSS simplifies the amount of arithmetic operations per MB to
L2 ·(1+8 · log2(d+1)), which is a 8/9 reduction under d = 7.
We refer interested readers to Jakubowski and Pastuszak [74]
for a comprehensive discussion of BM algorithms.

Eventually, BM calculates a motion vector (MV) for each
MB, which represents the location offset between the MB and
its closest match in the previous frame as illustrated in Fig. 3a.
Critically, this offset can be used as an estimation of the MB’s
motion. For instance, an MV <u,v> for an MB at location
<x,y> indicates that the MB is moved from location <x+u,y+
v> in the previous frame. Fig. 3b visualizes the motion vectors
in a frame. Note that MVs can be encoded efficiently. An MV
requires dlog2(2d +1)e bits for each direction, which equates
to just 1 byte of storage under a typical d of seven.

3. Motion-based Continuous Vision Algorithm

The key idea of Euphrates is that pixel changes across frames
directly encode object motion. Thus, pixel-level temporal
motion information can be used to simplify continuous vi-
sion tasks through motion extrapolation. This section first
provides an overview of the algorithm (Sec. 3.1). We then
discuss two important aspects of the algorithm: how to extrap-
olate (Sec. 3.2) and when to extrapolate (Sec. 3.3).

3

3.1. Overview

Euphrates makes a distinction between two frame types: In-
ference frame (I-frame) and Extrapolation frame (E-frame).
An I-frame refers to a frame where vision computation such
as detection and tracking is executed using expensive CNN
inference with the frame pixel data as input. In contrast, an
E-frame refers to a frame where visual results are generated
by extrapolating ROIs from the previous frame, which itself
could either be an I-frame or an E-frame. Fig. 4 illustrates this
process using object tracking as an example. Rectangles in the
figure represent the ROIs of a single tracked object. Frames
at t0 and t2 are I-frames with ROIs generated by full CNN
inference. On the other hand, ROIs in frames at t1, t3, and t4
are extrapolated from their corresponding preceding frames.

Intuitively, increasing the ratio of E-frames to I-frames re-
duces the number of costly CNN inferences, thereby enabling
higher frame rates while improving energy-efficiency. How-
ever, this strategy must have little accuracy impact to be useful.
As such, the challenge of our algorithm is to strike a balance
between accuracy and efficiency. We identify two aspects that
affect the accuracy-efficiency trade-off: how to extrapolate
from previous frame, and when to perform extrapolation.

3.2. How to Extrapolate

The goal of extrapolation is to estimate the ROI(s) for the cur-
rent frame without CNN inference by using the motion vectors
generated by the ISP. Our hypothesis is that the average motion
of all pixels in a visual field can largely estimate the field’s
global motion. Thus, the first step in the algorithm calculates
the average motion vector (µ) for a given ROI according to
Equ. 1, where N denotes the total number of pixels bounded by
the ROI, and −→vi denotes the motion vector of the ith bounded
pixel. It is important to note that the ISP generates MVs at
a macroblock-granularity, and as such each pixel inherits the
MV from the MB it belongs to. Sec. 6.3 will show that the
MV granularity has little impact on accuracy.

µ = ∑
N
i
−→vi / N (1)

α
i
F = 1 − SADi

F
255×L2 (2)

MVF = β ·µF + (1−β) ·MVF−1 (3)

Extrapolating purely based on average motion, however,
has two downsides: it is vulnerable to motion vector noise and
it does not consider object deformation.

Filtering Noisy Motion Vectors The block-based motion
estimation algorithm introduces noise in the MVs. For in-
stance, when a visual object is blurred or occluded (hidden),
the block-matching algorithm may not be able to find a good
match within the search window.

To quantify the noise in an MV, we associate a confidence
value with each MV. We empirically find that this confidence
is highly correlated with the SAD value, which is generated

Inference
(I-Frame)

Extrapolation
(E-Frame)

Inference
(I-Frame)

Extrapolation
(E-Frame)

Extrapolation Window = 2

Extrapolation
(E-Frame)

Extrapolation Window = 3

t4t0 t1 t2 t3

Fig. 4: Vision computation results such as Region of Interest (ROIs)
are generated using CNN inference in I-frames. ROIs in E-frames are
extrapolated from the previous frame using motion information.

during block-matching. Intuitively, a higher SAD value indi-
cates a lower confidence, and vice versa. Equ. 2 formulates the
confidence calculation, where SADi

F denotes the SAD value
of the ith macroblock in frame F , and L denotes the dimension
of the macroblocks. Effectively, we normalize an MV’s SAD
to the maximum possible value (i.e., 255×L2) and regulate
the resultant confidence (α i

F) to fall between [0,1]. We then
derive the confidence for an ROI by averaging the confidences
of all the MVs encapsulated by the ROI.

The confidence value can be used to filter out the impact of
very noisy MVs associated with a given ROI. This is achieved
by assigning a high weight to the average MV in the current
frame (µF), if its confidence is high. Otherwise, the motion
from previous frames is emphasized. In a recursive fashion,
this is achieved by directly weighting the contribution of the
current MV against the average Equ. 3, where MVF denotes
the final motion vector for frame F , MVF−1 denotes the motion
vector for the previous frame, and β is the filter coefficient
that is determined by α . Empirically, it is sufficient to use
a simple piece-wise function that sets β to α if α is greater
than a threshold, and to 0.5 otherwise. The final motion vector
(MVF) is composed with the ROI in the previous frame to
update its new location. That is: RF = RF−1 +MVF .

Handle Deformations Using one global average motion
essentially treats an entire scene as a rigid object, which, how-
ever, ignores non-rigid deformations. For instance, the head
and the arms of a running athlete have different motions that
must be taken into account. Inspired by the classic deformable
parts model [65], we divide an ROI into multiple sub-ROIs
and apply extrapolation using the above scheme (i.e., Equ. 1 -
Equ. 3) for each sub-ROI. In this way, we allow each sub-ROI
to move in different directions with different magnitudes. As a
result, we get several disconnected sub-ROIs. We then derive
the final ROI by calculating the minimal bounding box that
encapsulates all the extrapolated sub-ROIs.

Computation Characteristics Our algorithm is very effi-
cient to compute. Consider a typical ROI of size 100×50, the
extrapolation step requires only about 10 K 4-bit fixed-point
operations per frame, several orders of magnitude fewer than
the billions of operations required by CNN inferences.

3.3. When to Extrapolate

Another important aspect of the extrapolation algorithm is
to decide which frames to execute CNN inference on, and

4

Legend

DRAM

Fr
am

e
Bu

ffe
r

Camera
Sensor ISP CNN

Engine

SoC Interconnect

Motion
Controller

Pixel Data Results
Buffer

SRAM

Sensor
Interface

SRAM

Job
Descriptor

Raw
Sensor
Data

MIPI CSI

RGB
Frame

Metadata

ROIs
Labels

Motion
Vectors

ROIs
Labels

CPU
(Host)

SRAM

Frontend

Backend

Fig. 5: Block diagram of the augmented continuous vision subsystem in a mobile SoC.

Device Driver

Continuous Vision Application

Vision Library

Hardware Abstraction Layer

Camera
HAL

NNX
HAL

MC
HAL

Camera
Driver

NNX
Driver

MC
Driver

Fig. 6: Vision software stack with
modifications shaded.

which frames to extrapolate. To simplify the discussion, we
introduce the notion of an Extrapolation Window (EW), which
is the number of consecutive frames between two I-frames
(exclusive) as shown in Fig. 4. Intuitively, as EW increases,
the compute efficiency improves, but errors introduced by
extrapolation also start accumulating, and vice versa. There-
fore, EW is an important knob that determines the trade-off
between compute efficiency and accuracy. Euphrates provides
two modes for setting EW: constant mode and adaptive mode.

Constant mode sets EW statically to a fixed value. This pro-
vides predictable, bounded performance and energy-efficiency
improvements. For instance, under EW = 2, one can estimate
that the amount of computation per frame is reduced by half,
translating to 2× performance increase or 50% energy savings.

However, the constant mode can not adapt to extrapolation
inaccuracies. For instance, when an object partially enters
the frame, the block-matching algorithm will either not be
able to find a good match within its search window or find a
numerically-matched MB, which, however, does not represent
the actual motion. In such case, CNN inference can provide a
more accurate vision computation result.

We introduce a dynamic control mechanism to respond to
inaccuracies introduced by motion extrapolation. Specifically,
whenever a CNN inference is triggered, we compare its results
with those obtained from extrapolation. If the difference is
larger than a threshold, we incrementally reduce EW; similarly,
if the difference is consistently lower than the threshold across
several CNN invocations, we incrementally increase EW.

The two modes are effective in different scenarios. The
constant mode is useful when facing a hard energy or frame
rate bound. When free of such constraints, adaptive mode
improves compute efficiency with little accuracy loss.

4. Architecture Support
In this section, we start from a state-of-the-art mobile SoC,
and show how to co-design the SoC architecture with the pro-
posed algorithm. After explaining our design philosophy and
providing an overview (Sec. 4.1), we describe the hardware
augmentations required in the frontend (Sec. 4.2) and backend
of the vision subsystem (Sec. 4.3). Finally, we discuss the
software implications of our architecture extensions (Sec. 4.4).

4.1. Design Philosophy and System Overview

Design Principles Two principles guide our SoC design.
First, the vision pipeline in the SoC must act autonomously,
to avoid constantly interrupting the CPU which needlessly
burns CPU cycles and power (Sec. 2.1). This design principle
motivates us to provide SoC architecture support, rather than
implementing the new algorithm in software, because the latter
would involve the CPU in every frame.

Second, the architectural support for the extrapolation func-
tionality should be decoupled from CNN inference. This de-
sign principle motivates us to propose a separate IP to support
the new functionality rather than augmenting an existing CNN
accelerator. The rationale is that CNN accelerators are still
evolving rapidly with new models and architectures constantly
emerging. Tightly coupling our algorithm with any particular
CNN accelerator is inflexible in the long term. Our parti-
tioning accommodates future changes in inference algorithm,
hardware IP (accelerator, GPU, etc.), or even IP vendor.

System Overview Fig. 5 illustrates the augmented mobile
SoC architecture. In particular, we propose two architectural
extensions. First, motivated by the synergy between the var-
ious motion-enabled imaging algorithms in the ISP and our
motion extrapolation CV algorithm, we augment the ISP to
expose the motion vectors to the vision backend. Second,
to coordinate the backend under the new algorithm without
significant CPU intervention, we propose a new hardware
IP called the motion controller. The frontend and backend
communicate through the system interconnect and DRAM.

Our proposed system works in the following way. The CPU
initially configures the IPs in the vision pipeline, and initiates
a vision task by writing a job descriptor. The camera sensor
module captures real-time raw images, which are fed into the
ISP. The ISP generates, for each frame, both pixel data and
metadata that are transferred to an allocated frame buffer in
DRAM. The motion vectors and the corresponding confidence
data are packed as part of the metadata in the frame buffer.

The motion controller sequences operations in the backend
and coordinates with the CNN engine. It directs the CNN
engine to read image pixel data to execute an inference pass
for each I-frame. The inference results, such as predicted

5

Temporal Denoising Stage

Motion
Estimation

Motion
Compensation

SRAM

DMA

Demosaic
Color

Balance

ISP Internal
Interconnect

SoC
Interconnect

ISP Pipeline

Frame Buffer
(DRAM)

ISP
Sequencer

Legend
Internal MV Flow

Write-back MV Flow

Noisy
Frame

Denoised
Frame

Prev.
Noisy
Frame

Prev.
Denoised

Frame

Fig. 7: Euphrates augments the ISP to expose the motion vectors to
the rest of the SoC with lightweight hardware extensions. The motion
vector traffic is off the critical path and has little performance impact.

ROIs and possibly classification labels for detected objects,
are written to dedicated memory mapped registers in the mo-
tion controller through the system interconnect. The motion
controller combines the CNN inference data and the motion
vector data to extrapolate the results for E-frames.

4.2. Augmenting the Vision Frontend

Motion vectors (MVs) are usually reused internally within
an ISP and are discarded after relevant frames are produced.
Euphrates exposes MVs to the vision backend, which reduces
the overall computation and simplifies the hardware design.

To simplify the discussion, we assume that the motion vec-
tors are generated by the temporal denoising (TD) stage in
an ISP. Fig. 7 illustrates how the existing ISP pipeline is aug-
mented. The motion estimation block in the TD stage calcu-
lates the MVs and buffers them in a small local SRAM. The
motion compensation block then uses the MVs to denoise the
current frame. After the current frame is temporally-denoised,
the corresponding SRAM space can be recycled. In augment-
ing the ISP pipeline to expose the MV data, we must decide:
1) by what means the MVs are exposed to the system with
minimal design cost, and 2) how to minimize the performance
impact on the ISP pipeline.

Piggybacking the Frame Buffer We propose to expose
the MVs by storing them in the metadata section of the frame
buffer, which resides in the DRAM and is accessed by other
SoC IPs through the existing system memory management
unit. This augmentation is implemented by modifying the
ISP’s sequencer to properly configure the DMA engine.

Piggybacking the existing frame buffer mechanism rather
than adding a dedicated link between the ISP and the vision
backend has the minimum design cost with negligible memory
traffic overhead. Specifically, a 1080p frame (1920 × 1080)
with a 16 × 16 macroblock size will produce 8,100 motion
vectors, equivalent to only about 8 KB per frame (Recall
from Sec. 2.3 that each motion vector can be encoded in one
byte), which is a very small fraction of the 6 MB frame pixel
data that is already committed to the frame buffer.

Taking MV Traffic off the Critical-path A naive design
to handle MV write-back might reuse the existing local SRAM

CNN Engine

Systolic MAC
Unit Array

SRAM
Buffer

DMA

Scalar Unit
(ACT, Pooling)

Sequencer (FSM)

Extrapolation UnitMotion
Vector
Buffer

DMA

Sequencer (FSM)

Motion Controller

ROI Selection

ROI

4-Way
SIMD Unit

Scalar

MVs

New
ROI

MMap
Regs

MMap
Regs R

O
I

W
in

si
ze

B
as

e
A

dd
rs

2

3

6

4 1

5

Conf

SoC Interconnect

Fig. 8: Euphrates adds the motion controller to the vision backend,
alongside an existing, unmodified CNN inference accelerator. Dash
lines are control signals and solid lines represent the data flow.

in the TD stage as the DMA buffer. However, this strategy
would stall the ISP pipeline due to SRAM resource contention.
This is because the ISP’s local SRAMs are typically sized to
precisely for the data storage required, thanks to the determin-
istic data-flow in imaging algorithms. Instead, to take the MV
write traffic off the critical path, we propose to double-buffer
the SRAM in the TD stage at a slight cost in area overhead.
In this way, the DMA engine opportunistically initiates the
MV write-back traffic as it sees fit, effectively overlapping the
write-back with the rest of the ISP pipeline.

4.3. Augmenting the Vision Backend

We augment the vision backend with a new IP called the mo-
tion controller. It’s job is two-fold. First, it executes the motion
extrapolation algorithm. Second, it coordinates the CNN en-
gine without interrupting the CPU. The CNN accelerator is left
unmodified, with the same interface to the SoC interconnect.

We design the motion controller engine as a micro-
controller (µC) based IP, similar to many sensor co-processors
such as Apple’s Motion Co-processor [3]. It sits on the system
interconnect, alongside the CNN accelerator. The main dif-
ference between our IP and a conventional µC such as ARM
Cortex-M series [7] is that the latter typically does not have
on-chip caches. Instead, our extrapolation engine is equipped
with an on-chip SRAM that stores the motion vectors and
is fed by a DMA engine. In addition, the IP replaces the
conventional instruction fetch and decode mechanisms with
a programmable sequencer, which reduces energy and area,
while still providing programmability to control the datapath.

Fig. 8 shows the microarchitecture of the extrapolation con-
troller. Important data and control flows in the figure are
numbered. The motion controller is assigned the master role
and the CNN engine acts as a slave in the system. The master
IP controls the slave IP by using its sequencer to program the
slave’s memory-mapped registers (1 and 2 in Fig. 8). The
slave IP always returns the computation results to the master
IP (3) instead of directly interacting with the CPU. We choose
this master-slave separation, instead of the other way around,

6

because it allows us to implement all the control logics such
as adaptive EW completely in the extrapolator engine without
making assumptions about the CNN accelerator’s internals.

The core of the motion controller’s datapath is an extrapola-
tion unit which includes a SIMD unit and a scalar unit. The
extrapolation operation is highly parallel (Sec. 3.2), making
SIMD a nature fit. The scalar unit is primarily responsible
for generating two signals: one that controls the EW size in
the adaptive mode (4) and the other that chooses between
inferenced and extrapolated results (5). The IP also has a set
of memory-mapped registers that are programmed by the CPU
initially and receive CNN engine’s inference results (6).

4.4. Software Implications

Euphrates makes no changes to application developers’ pro-
gramming interface and the CV libraries. This enables soft-
ware backward compatibility. Modifications to the Hardware
Abstraction Layer (HAL) and device drivers are required.

We show the computer vision software stack in Fig. 6 with
enhancements shaded. The new motion controller (MC) needs
to be supported at both the HAL and driver layer. In addition,
the camera driver is enhanced to configure the base address
of motion vectors. However, the camera HAL is left intact
because motion vectors need not be visible to OS and pro-
grammers. We note that the CNN engine (NNX) driver and
HAL are also unmodified because of our design decision to
assign the master role to the motion controller IP.

5. Implementation and Experimental Setup

This section introduces our hardware modeling methodology
(Sec. 5.1) and software infrastructure (Sec. 5.2).

5.1. Hardware Setup

We develop an in-house simulator with a methodology similar
to the GemDroid [51] SoC simulator. The simulator includes a
functional model, a performance model, and an power model
for evaluating the continuous vision pipeline. The functional
model takes in video streams to mimic real-time camera cap-
ture and implements the extrapolation algorithm in OpenCV,
from which we derive accuracy results. The performance
model captures the timing behaviors of various vision pipeline
components including the camera sensor, the ISP, the CNN ac-
celerator, and the motion controller. It then models the timing
of cross-IP activities, from which we tabulate SoC events that
are fed into the power model for energy estimation.

Whenever possible, we calibrate the power model by mea-
suring the Nvidia Jetson TX2 module [19], which is widely
used in mobile vision systems. TX2 exposes several SoC and
board level power rails to a Texas Instruments INA 3221 volt-
age monitor IC, from which we retrieve power consumptions
through the I2C interface. Specifically, the ISP power is ob-
tained from taking the differential power at the VDD_SYS_SOC
power rail between idle and active mode, and the main mem-

Table 1: Details about the modeled vision SoC.

Component Specification
Camera Sensor ON Semi AR1335, 1080p @ 60 FPS

ISP 768 MHz, 1080p @ 60 FPS

NN Accelerator
(NNX)

24×24 systolic MAC array
1.5 MB double-buffered local SRAM
3-channel, 128bit AXI4 DMA Engine

Motion Controller
(MC)

4-wide SIMD datapath
8KB local SRAM buffer
3-channel, 128bit AXI4 DMA Engine

DRAM 4-channel LPDDR3, 25.6 GB/s peak BW

ory power is obtained through the VDD_SYS_DDR power rail.
We develop RTL models or refer to public data sheets when
direct measurement is unavailable. Below we discuss how
major components are modeled.

Image Sensor We model the AR1335 [6], an image sen-
sor used in many mobile vision systems including the Nvidia
Jetson TX1/TX2 modules [15]. In our evaluation, we primar-
ily consider the common sensing setting that captures 1920
× 1080 (1080p) videos at 60 FPS. AR1335 is estimated to
consume 180 mW of power under this setting [6], representa-
tive of common digital camera sensors available on the mar-
ket [5, 23, 25]. We directly integrate the power consumptions
reported in the data sheet into our modeling infrastructure.

ISP We base our ISP modeling on the specifications of the
ISP carried on the Jetson TX2 board. We do not model the
ISP’s detailed microarchitecture but capture enough informa-
tion about its memory traffic. We make this modeling decision
because our lightweight ISP modification has little effect on
the ISP datapath, but does impact memory traffic (Sec. 4.2).
The simulator generates ISP memory traces given a particu-
lar resolution and frame rate. The memory traces are then
interfaced with the DRAM simulator as described later.

We take direct measurement of the ISP on TX2 for power
estimation. Under 1080p resolution at 60 FPS, the ISP is
measured to consume 153 mW, comparable to other industrial
ISPs [2]. We could not obtain any public information as to
whether the TX2 ISP performs motion estimation. According
to Sec. 2.3, a 1080p image requires about 50 million arithmetic
operations to generate motion vectors, which is about 2.5%
compute overhead compared to a research ISP [70], and will
be much smaller compared to commercial ISPs. We thus
conservatively factor in 2.5% additional power.

Neural Network Accelerator We develop a systolic array-
based CNN accelerator and integrate it into our evaluation
infrastructure. The design is reminiscent of the Google Tensor
Processing Unit (TPU) [77], but is much smaller, as befits the
mobile budget [95].

The accelerator consists of a 24 × 24 fully-pipelined
Multiply-Accumulate array clocked at 1GHz, representing
a raw peak throughput of 1.152 TOPS. A unified, double-

7

Table 2: Summary of benchmarks. GOPS for each neural network is
estimated under the 60 FPS requirement. Note that our baseline CNN
accelerator provides 1.15 TOPS peak compute capability.

Application
Domain

Neural
Network

GOPS Benchmark Total
Frames

Object
Detection

Tiny YOLO 675 In-house Video
Sequences

7,264
YOLOv2 3423

Object
Tracking

MDNet 635
OTB 100 59,040
VOT 2014 10,213

buffered SRAM array holds both weights and activations and
is 1.5 MB in total. A scalar unit is used to handle per-activation
tasks such as scaling, normalization, activation, and pooling.

We implement the accelerator in RTL and synthesize, place,
and route the design using Synposys and Cadence tools in a
16nm process technology. Post-layout results show an area of
1.58 mm2 and a power consumption of 651 mW. This is equiv-
alent to a power-efficiency of 1.77 TOPS/W, commensurate
with recent mobile-class CNN accelerators that demonstrate
around 1~3 TOPs/W [41, 42, 49, 58, 89, 103] in silicon.

To facilitate future research, we open-source our cycle-
accurate simulator of the systolic array-based DNN accelerator,
which can provide performance, power and area requirements
for a parameterized accelerator on a given CNN model [100].

Motion Controller The motion controller has a light com-
pute requirement, and is implemented as a 4-wide SIMD dat-
apath with 8 KB local data SRAM. The SRAM is sized to
hold the motion vectors for one 1080p frame with a 16×16
MB size. The IP is clocked at 100 MHz to support 10 ROIs
per frame at 60 FPS, sufficient to cover the peak case in our
datasets. We implement the motion controller IP in RTL, and
use the same tool chain and 16nm process technology. The
power consumption is 2.2 mW, which is just slightly more
than a typical micro-controller that has SIMD support (e.g.,
ARM M4 [12]). The area is negligible (35,000 um2).

DRAM We use DRAMPower [14] for power estimation.
We model the specification of an 8GB memory with 128-bit
interface, similar to the one used on the Nvidia Jetson TX2.
We further validate the simulated DRAM power consumption
against the hardware measurement obtained from the Jetson
TX2 board. Under the 1080p and 60 FPS camera capture
setting, the DRAM consumes about 230 mW.

5.2. Software Setup

We evaluate Euphrates under two popular mobile continuous
vision scenarios: object detection and object tracking. Their
corresponding workload setup is summarized in Table 2.

Object Detection Scenario In our evaluation, we study a
state-of-the-art object detection CNN called YOLOv2 [97,98],
which achieves the best accuracy and performance among all
the object detectors. As Table 2 shows, YOLOv2 requires
over 3.4 TOPS compute capability at 60 FPS, significantly
exceeding the mobile compute budget. For comparison pur-

poses, we also evaluate a scaled-down version of YOLOv2
called Tiny YOLO. At the cost of 20% accuracy loss [38],
Tiny YOLO reduces the compute requirement to 675 GOPS,
which is within the capability of our CNN accelerator.

We evaluate object detection using an in-house video
dataset. We could not use public object detection benchmarks
(such as Pascal VOC 2007 [32]) because they are mostly com-
posed of standalone images without temporal correlation as in
real-time video streams. Instead, we capture a series of videos
and extract image sequences. Each image is then manually
annotated with bounding boxes and labels. The types of object
classes are similar to the ones in Pascal VOC 2007 dataset.
Overall, each frame contains about 6 objects and the whole
dataset includes 7,264 frames, similar to the scale of Pascal
VOC 2007 dataset. We plan to release the dataset in the future.

We use the standard Intersect-over-Union (IoU) score as
an accuracy metric for object detection [64, 83]. IoU is the
ratio between the intersection and the union area between the
predicted ROI and the ground truth. A detection is regarded
as a true positive (TP) if the IoU value is above a certain
threshold; otherwise it is regarded as a false positive (FP).
The final detection accuracy is evaluated as T P/(T P+FP)
across all detections in all frames, also known as the average
precision (AP) score in object detection literature [64].

Visual Tracking Scenario We evaluate a state-of-the-art,
CNN-based tracker called MDNet [91], which is the win-
ner of the Video Object Tracking (VOT) challenge [36]. Ta-
ble 2 shows that compared to object detection, tracking is less
compute-intensive and can achieve 60 FPS using our CNN
accelerator. However, many visual tracking scenarios such
as autonomous drones and video surveillance do not have ac-
tive cooling. Thus, there is an increasing need to reduce the
power/energy consumption of visual tracking [37].

We evaluate two widely used object tracking benchmarks:
Object Tracking Benchmark (OTB) 100 [35, 112] and VOT
2014 [36, 39]. OTB 100 contains 100 videos with different
visual attributes such as illumination variation and occlusion
that mimic realistic tracking scenarios in the wild. VOT 2014
contains 25 sequences with irregular bounding boxes, com-
plementing the OTB 100 dataset. In total, we evaluate about
70,000 frames. We use the standard success rate as the accu-
racy metric [111], which represents the percentage of detec-
tions that have an IoU ratio above a certain threshold.

6. Evaluation
We first quantify the effectiveness of Euphrates under object
detection (Sec. 6.1) and tracking (Sec. 6.2) scenarios. We then
show that Euphrates is robust against motion estimation results
produced in the vision frontend (Sec. 6.3).

6.1. Object Detection Results

Euphrates doubles the achieved FPS with 45% energy saving
at the cost of only 0.58% accuracy loss. Compared to the
conventional approach of reducing the CNN compute cost by

8

80

60

40

20

0

Av
er

ag
e

P
re

ci
si

on
 (%

)

1.00.80.60.40.20.0

IoU Threshold

 YOLOv2
 EW-2
 EW-4
 EW-8
 EW-16
 EW-32
 Tiny YOLO

(a) Average precision comparison.

1.0

0.8

0.6

0.4

0.2

0.0

N
or

m
. E

ne
rg

y

60

48

36

24

12

0

FP
S

YOLO
v2

EW-2
EW-4

EW-8

EW-16

EW-32

EW-8@
CPU

Tin
yY

OLO

 Backend
 Memory
 Frontend

(b) Energy and FPS comparison.

70

60

50

40

30

20

10

0

Av
g.

 B
ill

io
n

O
ps

/F
ra

m
e

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

M
em

ory Traffic/Fram
e (G

B
)

YOLO
v2

EW-2
EW-4

EW-8

EW-16

EW-32

(c) Compute and memory comparison.

Fig. 9: Average precision, normalized energy consumption, and FPS comparisons between various object detection schemes. Energy is
broken-down into three main components: backend (CNN engine and motion controller), main memory, and frontend (sensor and ISP).

scaling down the network size, Euphrates achieves a higher
frame rate, lower energy consumption, and higher accuracy.

Accuracy Results Fig. 9a compares the average precision
(AP) between baseline YOLOv2 and Euphrates under different
extrapolation window sizes (EW-N, where N ranges from 2 to
32 in powers of 2). For a comprehensive comparison, we vary
the IoU ratio from 0 (no overlap) to 1 (perfect overlap). Each
<x,y> point corresponds to the percentage of detections (y)
that are above a given IoU ratio (x). Overall, the AP declines
as the IoU ratio increases.

Replacing expensive NN inference with cheap motion ex-
trapolation has negligible accuracy loss. EW-2 and EW-4 both
achieve a success rate close to the baseline YOLOv2, repre-
sented by the close proximity of their corresponding curves in
Fig. 9a. Specifically, under an IoU of 0.5, which is commonly
regarded as an acceptable detection threshold [63], EW-2 loses
only 0.58% accuracy compared to the baseline YOLOv2.

Energy and Performance The energy savings and FPS
improvements are significant. Fig. 9b shows the energy con-
sumptions of different mechanisms normalized to the baseline
YOLOv2. We also overlay the FPS results on the right y-axis.
The energy consumption is split into three parts: frontend
(sensor and ISP), main memory, and backend (CNN engine
and motion controller). The vision frontend is configured to
produce frames at a constant 60 FPS in this experiment. Thus,
the frontend energy is the same across different schemes.

The baseline YOLOv2 consumes the highest energy and can
only achieve about 17 FPS, which is far from real-time. As we
increase EW, the total energy consumption drops and the FPS
improves. Specifically, EW-2 reduces the total energy con-
sumption by 45% and improves the frame rate from 17 to 35;
EW-4 reduces the energy by 66% and achieves real-time frame
rate at 60 FPS. The frame rate caps at EW-4, limited by the
frontend. Extrapolating beyond eight consecutive frames have
higher accuracy loss with only marginal energy improvements.
This is because as EW size increases the energy consumption
becomes dominated by the vision frontend and memory.

The significant energy efficiency and performance improve-
ments come from two sources: relaxing the compute in the

backend and reducing the SoC memory traffic. Fig. 9c shows
the amount of arithmetic operations and SoC-level memory
traffic (both reads and writes) per frame under various Eu-
phrates settings. As EW increases, more expensive CNN
inferences are replaced with cheap extrapolations (Sec. 3.2),
resulting in significant energy savings. Euphrates also re-
duces the amount of SoC memory traffic. This is because E-
frames access only the motion vector data, and thus avoid the
huge memory traffic induced by executing the CNNs (SRAM
spills). Specifically, each I-frame incurs 646 MB memory
traffic whereas E-frames require only 22.8 MB.

Finally, the second to last column in Fig. 9b shows the total
energy of EW-8 when extrapolation is performed on CPU.
EW-8 with CPU-based extrapolation consumes almost as high
energy as EW-4, essentially negating the benefits of extrap-
olation. This confirms that our architecture choice of using
a dedicated motion controller IP to achieve task autonomy is
important to realizing the full benefits in the vision pipeline.

Tiny YOLO Comparison One common way of reducing
energy consumption and improving FPS is to reduce the CNN
model complexity. For instance, Tiny YOLO uses only nine
of YOLOv2’s 24 convolutional layers, and thus has an 80%
MAC operations reduction (Table 2).

However, we find that exploiting the temporal motion infor-
mation is a more effective approach to improve object detec-
tion efficiency than simply truncating a complex network. The
bottom curve in Fig. 9a shows the average precision of Tiny
YOLO. Although Tiny YOLO executes 20% of YOLOv2’s
MAC operations, its accuracy is even lower than EW-32,
whose computation requirement is only 3.2% of YOLOv2.
Meanwhile, Tiny YOLO consumes about 1.5 × energy at a
lower FPS compared to EW-32 as shown in Fig. 9b.

6.2. Visual Tracking Results

Visual tracking is a simpler task than object detection. As
shown in Table 2, the baseline MDNet is able to achieve real-
time (60 FPS) frame rate using our CNN accelerator. This
section shows that without degrading the 60 FPS frame rate,
Euphrates reduces energy consumption by 21% for the vision

9

100

80

60

40

20

0

S
uc

ce
ss

 R
at

e
(%

)

1.00.80.60.40.20.0
IoU Threshold

 MDNet
 EW-2
 EW-4
 EW-8
 EW-16
 EW-32
 EW-A

(a) Success rate comparison.

1.0

0.8

0.6

0.4

0.2

0.0

N
or

m
. E

ne
rg

y

MDNet
EW-2

EW-4
EW-8

EW-16

EW-32
EW-A

100

80

60

40

20

0

Inference R
ate (%

)

 Backend
 Memory
 Frontend

(b) Normalized energy consumption and
inference rate comparison.

100

80

60

40

20

0

S
uc

ce
ss

 R
at

e
(%

)

12080400
Video Sequence

 EW-A
 EW-2
 EW-4

(c) Success rate for all 125 video se-
quences under an IoU ratio of 0.5.

Fig. 10: Accuracy loss and energy saving comparisons between baseline MDNet and various Euphrates configurations for OTB 100 and VOT
2014 datasets. Energy is dissected into three parts: backend (CNN engine and motion controller), main memory, and frontend (sensor and ISP).

subsystem (50% for the backend), with an 1% accuracy loss.
Results Fig. 10a compares the success rate of baseline

MDNet, Euphrates under different EW sizes (EW-N, where N
ranges from 2 to 32 in power of 2 steps), and Euphrates under
the adaptive mode (EW-A). Similar to object detection, reduc-
ing the CNN inference rate using motion extrapolation incurs
only a small accuracy loss for visual tracking. Specifically,
under an IoU of 0.5 EW-2’s accuracy degrades by only 1%.

The energy saving of Euphrates is notable. Fig. 10b shows
the energy breakdown under various Euphrates configurations
normalized to the baseline MDNet. As a reference, the right
y-axis shows the inference rate, i.e., the percentage of frames
where a CNN inference is triggered. EW-2 and EW-4 trigger
CNN inference for 50% and 25% of the frames, thereby achiev-
ing 21% and 31% energy saving compared to MDNet that has
an 100% inference rate. The energy savings are smaller than
in the object detection scenario. This is because MDNet is sim-
pler than YOLOv2 (Table 2) and therefore, the vision backend
contributes less to the overall energy consumption.

Finally, Euphrates provides an energy-accuracy trade-off
through tuning EW. For instance, EW-32 trades 42% energy
savings with about 27% accuracy loss at 0.5 IoU. Extrapolating
further beyond 32 frames, however, would have only marginal
energy savings due to the increasing dominance of the vision
frontend and memory, as is evident in Fig. 10b.

Adaptive Mode Compared to the baseline MDNet, the
adaptive mode of Euphrates (EW-A) reduces energy by 31%
with a small accuracy loss of 2%, similar to EW-4. However,
we find that the adaptive mode has a more uniform success rate
across different tracking scenes compared to EW-4. Fig. 10c
shows the success rate of all 125 video sequences in the OTB
100 and VOT 2014 datasets under EW-A, EW-2, and EW-
4, sorted from low to high. Each video sequence presents a
different scene that varies in terms of tracked objects (e.g.,
person, car) and visual attributes (e.g., occlusion, blur). EW-A
has a higher success rate than EW-4 across most of the scenes,
indicating its wider applicability to different object detection
scenarios. Compared to EW-2, the adaptive mode has a similar
accuracy behavior, but consumes less energy.

6.3. Motion Estimation Sensitivity Study

Euphrates leverages motion vectors generated by the ISP. This
section shows that the results of Euphrates are robust against
different motion vector characteristics. In particular, we focus
on two key characteristics: granularity and quality. Due to the
space limit we only show the results of object tracking on the
OTB 100 dataset, but the conclusion holds generally.

Granularity Sensitivity Motion vector granularity is cap-
tured by the macroblock (MB) size during block-matching.
Specifically, a L×L MB represents the motions of all its L2

pixels using one single vector. Fig. 11a shows how the success
rate under an IoU ratio of 0.5 changes with the MB size across
three extrapolation windows (2, 8, and 32).

We make two observations. First, Euphrates’ accuracy is
largely insensitive to the MB size when the extrapolation win-
dow is small. For instance, the success rates across different
MB sizes are almost identical in EW-2. As the extrapola-
tion window grows from 2 to 32, the impact of motion vector
granularity becomes more pronounced. This is because errors
due to imprecise motion estimation tend to accumulate across
frames under a large extrapolation window.

Second, MBs that are too small (e.g., 4) or too large (e.g.,
128) have a negative impact on accuracy (Fig. 11a). This is
because overly-small MBs do not capture the global motion
of an object, especially objects that have deformable parts
such as a running athlete; overly-large MBs tend to mistake a
still background with the motion of a foreground object. 16×
16 strikes the balance and consistently achieves the highest
success rate under large extrapolation windows. It is thus a
generally preferable motion vector granularity.

Quality Sensitivity Motion vector quality can be captured
by the Sum of Absolute Differences (SAD) between the source
and destination macroblocks. Lower SAD indicates higher
quality. Different block-matching algorithms trade-off quality
with computation cost. As discussed in Sec. 2.3, the most
accurate approach, exhaustive search (ES), leads to 9× more
operations than the simple TSS algorithm [79].

We find that ES improves the accuracy only marginally

10

100

80

60

40

20

0

S
uc

ce
ss

 R
at

e
(%

)

4 8 16 32 64 128
Macroblock size (log-scale)

 EW-2
 EW-8
 EW-32

(a) Sensitivity of success rate to dif-
ferent macroblock sizes.

100

80

60

40

20

0

S
uc

ce
ss

 R
at

e
w

ith
 T

S
S

 (%
)

100806040200
Success Rate with ES (%)

 EW-2
 EW-8
 EW-32

(b) Success rate comparison be-
tween ES and TSS.

Fig. 11: Accuracy sensitivity to motion estimation results.

over TSS. Fig. 11b is a scatter plot comparing the success
rates between ES (x-axis) and TSS (y-axis) where each marker
corresponds to a different IoU ratio. Across three different
extrapolation window sizes (2, 8, and 32), the success rates of
ES and TSS are almost identical.

7. Discussion
Motion Estimation Improvements Euphrates is least effec-
tive when dealing with scenes with fast moving and blurred
objects. Let us elaborate using the OTB 100 dataset, in which
every video sequence is annotated with a set of visual at-
tributes [35] such as illumination variation. Fig. 12 compares
the average precision between MDNet and EW-2 across differ-
ent visual attribute categories. Euphrates introduces the most
accuracy loss in the Fast Motion and Motion Blur category.

Fast moving objects are challenging due to the limit of the
search window size of block matching (Sec. 2.3), in which
an accurate match is fundamentally unobtainable if an object
moves beyond the search window. Enlarging the search win-
dow might improve the accuracy, but has significant overhead.
Blurring is also challenging because block-matching might
return a macroblock that is the best match for a blurred object
but does not represent the actual motion.

In the short term, we expect that fast and blurred motion can
be greatly alleviated by higher frame rate (e.g., 240 FPS) cam-
eras that are already available on consumer mobile devices [1].
A high frame rate camera reduces the amount of motion vari-
ance in consecutive frames and also has very short exposure
time that diminishes motion blur [66]. In the long term, we
believe that it is critical to incorporate non-vision sensors such
as an Inertial Measurement Unit [22] as alternative sources
for motion [3, 80], and combine vision vs. non-vision sensors
for accurate motion estimation, as exemplified in the video
stabilization feature in the Google Pixel 2 smartphone [11].

Hardware Design Alternatives The video codec is
known for using block-matching algorithms for video com-
pression [67]. However, video codecs are trigged only if
real-time camera captures are to be stored as video files. This,
however, is not the dominant use case in continuous vision
where camera captures are consumed as sensor inputs by the

90

80

70

60

50

40

30

Av
er

ag
e

pr
ec

is
io

n
(%

)

Visual Attributes

Illu
m

in
at

io
n

Va
ria

tio
n

Sc
al

e
Va

ria
tio

n

Oc
cl

us
io

n

De
fo

rm
at

io
n

M
ot

io
n

Bl
ur

Fa
st

 M
ot

io
n

In
-P

la
ne

 R
ot

at
io

n

Ou
t-

of
-P

la
ne

 R
ot

at
io

n

Ou
t-

of
-V

ie
w

Ba
ck

gr
ou

nd
 C

lu
tt

er
s

 MDNet EW-2

Fig. 12: Accuracy sensivitity to different visual attributes.

computer vision algorithms, rather than by humans.
That being said, video codecs complement ISPs in scenarios

where ISPs are not naturally a part of the image processing
pipeline. For instance, if video frames are streamed from
the Internet, which are typically compressed, or are retrieved
from compressed video files, video codecs can readily provide
motion vectors to augment the continuous vision tasks whereas
ISPs typically are idle during these tasks. We leave it as future
work to co-design the codec hardware with the vision backend.

8. Related Work

Motion-based Continuous Vision Euphrates exploits the
temporal motion information for efficient continuous vision,
an idea recently getting noticed in the computer vision commu-
nity. Zhang et al. [116] and Chadha et al. [45] propose CNN
models for action recognition using motion vectors as training
inputs. TSN [107] trains a CNN directly using multiple frames.
Our algorithm differs from all above in that Euphrates does
not require any extra training effort. In the case of TSN which
is also evaluated using OTB 100 datasets, our algorithm ends
up achieving about 0.2% higher accuracy.

Fast YOLO [101] reuses detection results from the previous
frame if insufficient motion is predicted. Euphrates has two
advantages. First, Fast YOLO requires training a separate
CNN for motion prediction while Euphrates leverages motion
vectors. Second, Fast YOLO does not perform extrapolation
due to the lack of motion estimation whereas Euphrates ex-
trapolates using motion vectors to retain high accuracy.

Finally, Euphrates is composable with all the above systems
as they can be used as the baseline inference engine in Eu-
phrates. Our algorithm and hardware extensions do not modify
the baseline CNN model, but improves its energy-efficiency.

Energy-Efficient Deep Learning Much of the recent re-
search on energy-efficient CNN architecture has focused on
designing better accelerators [40, 48, 62, 77, 102], leverag-
ing emerging memory technologies [50, 78, 105], exploiting
sparsity and compression [60, 69, 92, 110, 115], and better
tooling [76, 86, 96]. Euphrates takes a different but comple-
mentary approach. While the goal of designing better CNN
architectures is to reduce energy consumption per inference,
Euphrates reduces the rate of inference by replacing inferences
with simple extrapolation and thus saves energy.

11

Suleiman et al. [106] quantitatively show that classic CV al-
gorithms based on hand-crafted features are extremely energy-
efficient at the cost of large accuracy loss compared to CNNs.
Euphrates shows that motion extrapolation is a promising way
to bridge the energy gap with little accuracy loss.

Specialized Imaging & Vision Architectures Traditional
ISPs perform only primitive image processing while leaving
advanced photography and vision tasks such as high dynamic
range and motion estimation to CPUs and GPUs. Modern
imaging and vision processors are capable of performing ad-
vanced tasks in-situ in response to the increasing compute
requirements of emerging algorithms. For instance, Google’s
latest flagship smartphone, Pixel 2, has a dedicated SoC
equipped with eight Image Processing Units for advanced
computational photography algorithms such as HDR+ [31].
IDEAL [87] accelerates the BM3D-based image denoising
algorithms. Mazumdar et al. [88] design specialized hardware
for face-authentication and stereoscopic video processing.

Researchers have also made significant effort to retain pro-
grammability in specialized vision architectures [46, 93, 108].
For instance, Movidius Myriad 2 [41] is a VLIW-based vision
processor used in Google Clip camera [17] and DJI Phan-
tom 4 drone [33]. Clemons et al. [53] propose a specialized
memory system for imaging and vision processors while ex-
posing a flexible programming interface. Coupled with the pro-
grammable architecture substrate, domain specific languages
such as Halide [94], Darkroom [70], and Rigel [71] offer de-
velopers even higher degree of flexibility to implement new
features. We expect imaging and vision processors in future to
be highly programmable, offering more opportunities to syn-
ergistically architect image processing and continuous vision
systems together as we showcased in this paper.

Computer Vision on Raw Sensor Data Diamond et
al. [59] and Buckler et al. [44] both showed that CNN models
can be effectively trained using raw image sensor data. Red-
Eye [81] and ASP Vision [47] both move early CNN layer(s)
into the camera sensor and compute using raw sensor data.
This line of work is complementary to Euphrates in that our
algorithm makes no assumption about which image format
motion vectors are generated. In fact, recent work has shown
that motion can be directly estimated from raw image sensor
data using block matching [43, 114]. We leave it as future
work to port Euphrates to support raw data.

9. Conclusion
Delivering real-time continuous vision in an energy-efficient
manner is a tall order for mobile system design. To over-
come the energy-efficiency barrier, we must expand the re-
search horizon from individual accelerators toward holistically
co-designing different mobile SoC components. This paper
demonstrates one such co-designed system to enable motion-
based synthesis. It leverages the temporal motion information
naturally produced by the imaging engine (ISP) to reduce the
compute demand of the vision engine (CNN accelerator).

Looking forward, exploiting the synergies across different
SoC IP blocks will become ever more important as mobile
SoCs incorporate more specialized domain-specific IPs. Fu-
ture developments should explore cross-IP information sharing
beyond just motion metadata and expand the co-design scope
to other on/off-chip components. Our work serves the first step,
not the final word, in a promising new direction of research.

References
[1] “A Closer Look at Slow Motion Video on the iPhone6.”

https://www.wired.com/2015/01/closer-look-slow-motion-video-
iphone-6/ 11

[2] “AP0101CS High-Dynamic Range (HDR) Image Signal Processor
(ISP).” http://www.onsemi.com/pub/Collateral/AP0101CS-D.PDF 7

[3] “Apple Motion Coprocessors.”
https://en.wikipedia.org/wiki/Apple_motion_coprocessors 6, 11

[4] “Apple’s Neural Engine Infuses the iPhone with AI Smarts.”
https://www.wired.com/story/apples-neural-engine-infuses-the-
iphone-with-ai-smarts/ 2

[5] “AR0542 CMOS Digital Image Sensor.”
https://www.onsemi.com/pub/Collateral/AR0542-D.PDF 7

[6] “AR1335 CMOS Digital Image Sensor.” https://www.framos.com/
media/pdf/06/d8/9a/AR1335-D-PDF-framos.pdf 7

[7] “Arm Cortex-M Series Processors.”
https://developer.arm.com/products/processors/cortex-m 6

[8] “ARM Mali Camera.” https:
//www.arm.com/products/graphics-and-multimedia/mali-camera 3

[9] “Arm Object Detection Processor.” https://developer.arm.com/
products/processors/machine-learning/arm-od-processor 3

[10] “ASICFPGA Camera Image Signal Processing Core.”
http://asicfpga.com/site_upgrade/asicfpga/pds/isp_pds_files/
ASICFPGA_ISP_Core_v4.0_simple.pdf 3

[11] “Behind the Motion Photos Technology in Pixel 2.”
https://research.googleblog.com/2018/03/behind-motion-photos-
technology-in.html 11

[12] “Cortex-M4 Technical Reference Manual, Revision r0p0.”
https://static.docs.arm.com/ddi0439/b/DDI0439B_cortex_m4_
r0p0_trm.pdf 8

[13] “DENALI-MC HDR ISP.”
http://pinnacleimagingsystems.com/embedded-products/ 3

[14] “DRAMPower: Open-source DRAM Power & Energy Estimation
Tool.” https://github.com/tukl-msd/DRAMPower 8

[15] “e-CAM131_CUTX2 - 4K MIPI NVIDIA Jetson TX2/TX1 Camera
Board.” https://www.e-consystems.com/13mp-nvidia-jetson-tx2-
camera-board.asp 7

[16] “Enhancing Augmented Reality with Advanced Object Detection
Techniques.” https://www.qualcomm.com/invention/research/
projects/computer-vision/3d-object-detection 3

[17] “Google’s Clips camera is powered by a tailor-made AI chip.”
https://www.theverge.com/circuitbreaker/2017/10/6/16434834/
google-clips-camera-ai-movidius-myriad-vpu 12

[18] “Hikvision Advanced Image Processing: Noise Reduction.”
http://oversea-download.hikvision.com/UploadFile/file/Hikvision_
Advanced_Image_Processing--Noise_Reduction.pdf 3

[19] “Jetson TX2 Module.” http://www.nvidia.com/object/embedded-
systems-dev-kits-modules.html 7

[20] “MIPI Camera Serial Interface 2 (MIPI CSI-2).”
https://www.mipi.org/specifications/csi-2 2

[21] “Movidius Myriad X VPU Product Brief.”
https://uploads.movidius.com/1503874473-MyriadXVPU_
ProductBriefaug25.pdf 1

[22] “MPU-9250 Product Specification Revision 1.1.”
https://www.invensense.com/wp-content/uploads/2015/02/PS-
MPU-9250A-01-v1.1.pdf 11

[23] “MT9P031 CMOS Digital Image Sensor.”
http://www.onsemi.com/pub/Collateral/MT9P031-D.PDF 7

[24] “Nvidia ADAS.”
https://www.nvidia.com/en-us/self-driving-cars/adas/ 3

[25] “OmniVision OV5693.” http://www.ovt.com/sensors/OV5693 7
[26] “Photoshop CS2 HDR.”

https://luminous-landscape.com/photoshop-cs2-hdr/ 3

12

https://www.wired.com/2015/01/closer-look-slow-motion-video-iphone-6/
https://www.wired.com/2015/01/closer-look-slow-motion-video-iphone-6/
http://www.onsemi.com/pub/Collateral/AP0101CS-D.PDF
https://en.wikipedia.org/wiki/Apple_motion_coprocessors
https://www.wired.com/story/apples-neural-engine-infuses-the-iphone-with-ai-smarts/
https://www.wired.com/story/apples-neural-engine-infuses-the-iphone-with-ai-smarts/
https://www.onsemi.com/pub/Collateral/AR0542-D.PDF
https://www.framos.com/media/pdf/06/d8/9a/AR1335-D-PDF-framos.pdf
https://www.framos.com/media/pdf/06/d8/9a/AR1335-D-PDF-framos.pdf
https://developer.arm.com/products/processors/cortex-m
https://www.arm.com/products/graphics-and-multimedia/mali-camera
https://www.arm.com/products/graphics-and-multimedia/mali-camera
https://developer.arm.com/products/processors/machine-learning/arm-od-processor
https://developer.arm.com/products/processors/machine-learning/arm-od-processor
http://asicfpga.com/site_upgrade/asicfpga/pds/isp_pds_files/ASICFPGA_ISP_Core_v4.0_simple.pdf
http://asicfpga.com/site_upgrade/asicfpga/pds/isp_pds_files/ASICFPGA_ISP_Core_v4.0_simple.pdf
https://research.googleblog.com/2018/03/behind-motion-photos-technology-in.html
https://research.googleblog.com/2018/03/behind-motion-photos-technology-in.html
https://static.docs.arm.com/ddi0439/b/DDI0439B_cortex_m4_r0p0_trm.pdf
https://static.docs.arm.com/ddi0439/b/DDI0439B_cortex_m4_r0p0_trm.pdf
http://pinnacleimagingsystems.com/embedded-products/
https://github.com/tukl-msd/DRAMPower
https://www.e-consystems.com/13mp-nvidia-jetson-tx2-camera-board.asp
https://www.e-consystems.com/13mp-nvidia-jetson-tx2-camera-board.asp
https://www.qualcomm.com/invention/research/projects/computer-vision/3d-object-detection
https://www.qualcomm.com/invention/research/projects/computer-vision/3d-object-detection
https://www.theverge.com/circuitbreaker/2017/10/6/16434834/google-clips-camera-ai-movidius-myriad-vpu
https://www.theverge.com/circuitbreaker/2017/10/6/16434834/google-clips-camera-ai-movidius-myriad-vpu
http://oversea-download.hikvision.com/UploadFile/file/Hikvision_Advanced_Image_Processing--Noise_Reduction.pdf
http://oversea-download.hikvision.com/UploadFile/file/Hikvision_Advanced_Image_Processing--Noise_Reduction.pdf
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
https://www.mipi.org/specifications/csi-2
https://uploads.movidius.com/1503874473-MyriadXVPU_ProductBriefaug25.pdf
https://uploads.movidius.com/1503874473-MyriadXVPU_ProductBriefaug25.pdf
https://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
https://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
http://www.onsemi.com/pub/Collateral/MT9P031-D.PDF
https://www.nvidia.com/en-us/self-driving-cars/adas/
http://www.ovt.com/sensors/OV5693
https://luminous-landscape.com/photoshop-cs2-hdr/

[27] “PX4FLOW Smart Camera.” https://pixhawk.org/modules/px4flow 3
[28] “Qualcomm pioneers new active depth sensing module.”

https://www.qualcomm.com/news/onq/2017/08/15/qualcomm-
pioneers-new-active-depth-sensing-module 3

[29] “Second Version of HoloLens HPU will Incorporate AI Coprocessor
for Implementing DNNs.”
https://www.microsoft.com/en-us/research/blog/second-version-
hololens-hpu-will-incorporate-ai-coprocessor-implementing-dnns/
2

[30] “Snapdragon 835 Mobile Platform.”
https://www.qualcomm.com/products/snapdragon/processors/835 3

[31] “Surprise! The Pixel 2 is hiding a custom Google SoC for image
processing.” https://arstechnica.com/gadgets/2017/10/the-pixel-2-
contains-a-custom-google-soc-the-pixel-visual-core/ 12

[32] “The PASCAL Visual Object Classes Challenge 2007.”
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/ 1, 8

[33] “The revolutionary chipmaker behind Google’s project Tango is now
powering DJI’s autonomous drone.”
https://www.theverge.com/2016/3/16/11242578/movidius-myriad-
2-chip-computer-vision-dji-phantom-4 12

[34] “Vision Chips.” http://www.centeye.com/technology/vision-chips/ 3
[35] “Visual Tracker Benchmark.”

http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html 8, 11
[36] “VOT2014 Benchmark.” http://www.votchallenge.net/vot2014/ 8
[37] “What are the Toughest Challenges in ADAS Design.”

http://www.electronicdesign.com/power/what-are-toughest-
challenges-adas-design 8

[38] “YOLO: Real-Time Object Detection.”
https://pjreddie.com/darknet/yolo/ 8

[39] “The Visual Object Tracking VOT2014 challenge results,” in Proc.
of CVPRW, 2015. 8

[40] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free Deep Neural
Network Computing,” in Proc. of ISCA, 2016. 11

[41] B. Barry, C. Brick, F. Connor, D. Donohoe, D. Moloney,
R. Richmond, M. O’Riordan, and V. Toma, “Always-on Vision
Processing Unit for Mobile Applications,” IEEE Micro, 2015. 1, 8,
12

[42] K. Bong, S. Choi, C. Kim, S. Kang, Y. Kim, and H.-J. Yoo, “14.6 A
0.62 mW Ultra-Low-Power Convolutional-Neural-Network
Face-recognition Processor and a CIS Integrated with Always-on
Haar-like Face Detector,” in Proc. of ISSCC, 2017. 8

[43] G. Boracchi and A. Foi, “Multiframe Waw-data Denoising based on
Block-matching and 3-D Filtering for Low-light Imaging and
Stabilization,” in Proc. Int. Workshop on Local and Non-Local
Approx. in Image Processing, 2008. 12

[44] M. Buckler, S. Jayasuriya, and A. Sampson, “Reconfiguring the
Imaging Pipeline for Computer Vision,” in Proc. of ICCV, 2017. 12

[45] A. Chadha, A. Abbas, and Y. Andreopoulos, “Video Classification
With CNNs: Using The Codec As A Spatio-Temporal Activity
Sensor,” in arXiv:1710.05112, 2017. 2, 11

[46] N. Chandramoorthy, G. Tagliavini, K. Irick, A. Pullini, S. Advani,
S. Al Habsi, M. Cotter, J. Sampson, V. Narayanan, and L. Benini,
“Exploring Architectural Heterogeneity in Intelligent Vision
Systems,” in Proc. of HPCA, 2015. 12

[47] H. G. Chen, S. Jayasuriya, J. Yang, J. Stephen, S. Sivaramakrishnan,
A. Veeraraghavan, and A. Molnar, “ASP Vision: Optically
Computing the First Layer of Convolutional Neural Networks using
Angle Sensitive Pixels,” in Proc. of CVPR, 2016. 12

[48] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for
Energy-efficient Dataflow for Convolutional Neural Networks,” in
Proc. of ISCA, 2016. 11

[49] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
Energy-Efficient Reconfigurable Accelerator for Deep Convolutional
Neural Networks,” in Proc. of ISSCC, 2017. 8

[50] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“PRIME: A Novel Processing-in-Memory Architecture for Neural
Network Computation in ReRAM-Based Main Memory,” in Proc. of
ISCA, 2016. 11

[51] N. Chidambaram Nachiappan, P. Yedlapalli, N. Soundararajan, M. T.
Kandemir, A. Sivasubramaniam, and C. R. Das, “GemDroid: A
Framework to Evaluate Mobile Platforms,” 2014. 7

[52] B.-D. Choi, J.-W. Han, C.-S. Kim, and S.-J. Ko,
“Motion-compensated frame interpolation using bilateral motion
estimation and adaptive overlapped block motion compensation,”
IEEE Transactions on Circuits and Systems for Video Technology,
2007. 3

[53] J. Clemons, C.-C. Cheng, I. Frosio, D. Johnson, and S. W. Keckler,
“A patch memory system for image processing and computer vision,”
in Proc. of MICRO, 2016. 12

[54] N. Cristianini and J. Shawe-Taylor, An Introduction to Support
Vector Machines and Other Kernel-based Learning Methods.
Cambridge university press, 2000. 1

[55] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for
Human Detection,” in Proc. of CVPR, 2005. 1

[56] M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg, “ECO: Efficient
Convolution Operators for Tracking,” in Proc. of CVPR, 2017. 1

[57] P. E. Debevec and J. Malik, “Recovering High Dynamic Range
Radiance Maps from Photographs,” in Proc. of SIGGRAPH, 1997. 3

[58] G. Desoli, N. Chawla, T. Boesch, S.-p. Singh, E. Guidetti,
F. De Ambroggi, T. Majo, P. Zambotti, M. Ayodhyawasi, H. Singh
et al., “14.1 A 2.9 TOPS/W Deep Convolutional Neural Network
SoC in FD-SOI 28nm for Intelligent Embedded Systems,” in Proc. of
ISSCC, 2017. 8

[59] S. Diamond, V. Sitzmann, S. Boyd, G. Wetzstein, and F. Heide,
“Dirty Pixels: Optimizing Image Classification Architectures for Raw
Sensor Data,” in Proc. of CVPR, 2017. 12

[60] C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang, X. Qian,
Y. Bai, G. Yuan et al., “CirCNN: Accelerating and Compressing
Deep Neural Networks Using Block-CirculantWeight Matrices,” in
Proc. of MICRO, 2017. 11

[61] P. Dollár, R. Appel, S. Belongie, and P. Perona, “Fast Feature
Pyramids for Object Detection,” PAMI, 2014. 1

[62] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng,
Y. Chen, and O. Temam, “ShiDianNao: Shifting Vision Processing
Closer to the Sensor,” in Proc. of ISCA, 2015. 11

[63] M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams,
J. Winn, and A. Zisserman, “The PASCAL Visual Object Classes
Challenge: A Retrospective,” IJCV, 2015. 9

[64] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The PASCAL Visual Object Classes (VOC)
Challenge,” IJCV, 2009. 8

[65] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object Detection with Discriminatively Trained Part Based Models,”
PAMI, 2010. 3, 4

[66] H. K. Galoogahi1, A. Fagg, C. Huang, D. Ramanan, and S. Lucey,
“Need for Speed: A Benchmark for Higher Frame Rate Object
Tracking,” in arXiv:1703.05884, 2017. 11

[67] M. Ghanbari, Standard Codecs: Image Compression to Advanced
Video Coding. Institution Electrical Engineers, 2003. 11

[68] M. Halpern, Y. Zhu, and V. J. Reddi, “Mobile CPU’s Rise to Power:
Quantifying the Impact of Generational Mobile CPU Design Trends
on Performance, Energy, and User Satisfaction,” in Proc. of HPCA,
2016. 2

[69] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. Horowitz, and
W. Dally, “EIE: Efficient Inference Engine on Compressed Deep
Neural Network,” in Proc. of ISCA, 2016. 11

[70] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen,
S. Bell, A. Vasilyev, M. Horowitz, and P. Hanrahan, “Darkroom:
Compiling High-Level Image Processing Code into Hardware
Pipelines,” in Proc. of SIGGRAPH, 2014. 7, 12

[71] J. Hegarty, R. Daly, Z. DeVito, J. Ragan-Kelley, M. Horowitz, and
P. Hanrahan, “Rigel: Flexible Multi-Rate Image Processing
Hardware,” in Proc. of SIGGRAPH, 2016. 12

[72] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
Tracking with Kernelized Correlation Filters,” PAMI, 2015. 3

[73] Y. Inoue, T. Ono, and K. Inoue, “Adaptive frame-rate optimization
for energy-efficient object tracking,” in Proceedings of the
International Conference on Image Processing, Computer Vision,
and Pattern Recognition (IPCV). The Steering Committee of The
World Congress in Computer Science, Computer Engineering and
Applied Computing (WorldComp), 2016, p. 158. 2

[74] M. Jakubowski and G. Pastuszak, “Block-based Motion Estimation
Algorithms–A Survey,” Opto-Electronics Review, 2013. 3

[75] H. Ji, C. Liu, Z. Shen, and Y. Xu, “Robust Video Denoising using
Low Rank Matrix Completion,” in Proc. of CVPR, 2010. 3

[76] Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, and W. Chen,
“NEUTRAMS: Neural Network Transformation and Co-design
Under Neuromorphic Hardware Constraints,” in Proc. of MICRO,
2016. 11

13

https://pixhawk.org/modules/px4flow
https://www.qualcomm.com/news/onq/2017/08/15/qualcomm-pioneers-new-active-depth-sensing-module
https://www.qualcomm.com/news/onq/2017/08/15/qualcomm-pioneers-new-active-depth-sensing-module
https://www.microsoft.com/en-us/research/blog/second-version-hololens-hpu-will-incorporate-ai-coprocessor-implementing-dnns/
https://www.microsoft.com/en-us/research/blog/second-version-hololens-hpu-will-incorporate-ai-coprocessor-implementing-dnns/
https://www.qualcomm.com/products/snapdragon/processors/835
https://arstechnica.com/gadgets/2017/10/the-pixel-2-contains-a-custom-google-soc-the-pixel-visual-core/
https://arstechnica.com/gadgets/2017/10/the-pixel-2-contains-a-custom-google-soc-the-pixel-visual-core/
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
https://www.theverge.com/2016/3/16/11242578/movidius-myriad-2-chip-computer-vision-dji-phantom-4
https://www.theverge.com/2016/3/16/11242578/movidius-myriad-2-chip-computer-vision-dji-phantom-4
http://www.centeye.com/technology/vision-chips/
http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html
http://www.votchallenge.net/vot2014/
http://www.electronicdesign.com/power/what-are-toughest-challenges-adas-design
http://www.electronicdesign.com/power/what-are-toughest-challenges-adas-design
https://pjreddie.com/darknet/yolo/

[77] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, R. C.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan,
G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon, “In-Datacenter Performance
Analysis of a Tensor Processing Unit,” in Proc. of ISCA, 2017. 7, 11

[78] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A Programmable Digital Neuromorphic Architecture
with High-Density 3D Memory,” in Proc. of ISCA, 2016. 11

[79] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion
Compensated Interframe Coding for Video Conferencing,” in Proc.
Nat. Telecommunications Conf., 1981. 3, 10

[80] S. M. LaValle, A. Yershova, M. Katsev, and M. Antonov, “Head
tracking for the Oculus Rift,” in Proc. of ICRA, 2014. 11

[81] R. LiKamWa, Y. Hou, J. Gao, M. Polansky, and L. Zhong, “RedEye:
Analog ConvNet Image Sensor Architecture for Continuous Mobile
Vision,” in Proc. of ISCA, 2016. 12

[82] R. LiKamWa, Z. Wang, A. Carroll, F. X. Lin, and L. Zhong,
“Draining our Glass: An Energy and Heat Characterization of Google
Glass,” in Proc. of APSys, 2014. 2

[83] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common Objects in
Context,” in Proc. of ECCV, 2014. 8

[84] C. Liu and W. T. Freeman, “A High-Quality Video Denoising
Algorithm based on Reliable Motion Estimation,” in Proc. of ECCV,
2010. 3

[85] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single Shot Multibox Detector,” in Proc. of
ECCV, 2016. 1

[86] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K.
Kim, and H. Esmaeilzadeh, “TABLA: A Unified Template-based
Framework for Accelerating Statistical Machine Learning,” in Proc.
of HPCA, 2016. 11

[87] M. Mahmoud, B. Zheng, A. D. Lascorz, F. Heide, J. Assouline,
P. Boucher, E. Onzon, and A. Moshovos, “IDEAL: Image DEnoising
AcceLerator,” in Proc. of MICRO, 2017. 12

[88] A. Mazumdar, T. Moreau, S. Kim, M. Cowan, A. Alaghi, L. Ceze,
M. Oskin, and V. Sathe, “Exploring Computation-Communication
Tradeoffs in Camera Systems,” in Proc. of IISWC, 2017. 12

[89] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “14.5
Envision: A 0.26-to-10TOPS/W Subword-parallel
Dynamic-Voltage-Accuracy-Frequency-Scalable Convolutional
Neural Network Processor in 28nm FDSOI,” in Proc. of ISSCC,
2017. 8

[90] N. C. Nachiappan, H. Zhang, J. Ryoo, N. Soundararajan,
A. Sivasubramaniam, M. T. Kandemir, R. Iyer, and C. R. Das, “VIP:
Virtualizing IP Chains on Handheld Platforms,” in Proc. of ISCA,
2015. 2

[91] H. Nam and B. Han, “Learning Multi-Domain Convolutional Neural
Networks for Visual Tracking,” in Proc. of CVPR, 2016. 1, 3, 8

[92] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An
Accelerator for Compressed-sparse Convolutional Neural Networks,”
in Proc. of ISCA, 2017. 11

[93] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis,
and M. A. Horowitz, “Convolution Engine: Balancing Efficiency &
Flexibility in Specialized Computing,” in Proc. of ISCA, 2013. 12

[94] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: A Language and Compiler for Optimizing
Parallelism, Locality, and Recomputation in Image Processing
Pipelines,” in Proc. of PLDI, 2013. 12

[95] B. Reagen, R. Adolf, P. Whatmough, G.-Y. Wei, and D. Brooks,
Deep Learning for Computer Architects. Morgan & Claypool
Publishers, 2017. 7

[96] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva:
Enabling Low-Power, Highly-Accurate Deep Neural Network
Accelerators,” in Proc. of ISCA, 2016. 11

[97] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” in Proc. of CVPR,
2016. 1, 3, 8

[98] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in
arXiv:1612.08242, 2016. 1, 8

[99] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
Real-time Object Detection with Region Proposal Networks,” in
Proc. of NIPS, 2015. 1

[100] A. Samajdar, Y. Zhu, and P. N. Whatmough, “Scale-sim,”
https://github.com/ARM-software/SCALE-Sim, 2018. 8

[101] M. J. Shafiee, B. Chywl, F. Li, and A. Wong, “Fast YOLO: A Fast
You Only Look Once System for Real-time Embedded Object
Detection in Video,” in arXiv:1709.05943v1, 2017. 2, 11

[102] Y. Shen, M. Ferdman, and P. Milder, “Maximizing CNN Accelerator
Efficiency Through Resource Partitioning,” 2016. 11

[103] J. Sim, J.-S. Park, M. Kim, D. Bae, Y. Choi, and L.-S. Kim, “14.6 a
1.42 TOPS/W Deep Convolutional Neural Network Recognition
Processor for Intelligent IoE Systems,” in Proc. of ISSCC, 2016. 8

[104] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in Proc. of ICLR, 2014. 1

[105] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined
reram-based accelerator for deep learning,” in Proc. of HPCA, 2017.
11

[106] A. Suleiman, Y.-H. Chen, J. Emer, and V. Sze, “Towards Closing the
Energy Gap Between HOG and CNN Features for Embedded Vision,”
in Proc. of ISCAS, 2017. 12

[107] Z. Teng, J. Xing, Q. Wang, C. Lang, S. Feng, and Y. Jin, “Robust
Object Tracking based on Temporal and Spatial Deep Networks,” in
Proc. of ICCV, 2017. 11

[108] A. Vasilyev, N. Bhagdikar, A. Pedram, S. Richardson, S. Kvatinsky,
and M. Horowitz, “Evaluating Programmable Architectures for
Imaging and Vision Applications,” in Proc. of MICRO, 2016. 12

[109] P. Viola and M. J. Jones, “Robust Real-time Object Detection,” IJCV,
2004. 1

[110] P. N. Whatmough, S. K. Lee, H. Lee, S. Rama, D. Brooks, and G. Y.
Wei, “14.3 a 28nm soc with a 1.2ghz 568nj/prediction sparse
deep-neural-network engine with >0.1 timing error rate tolerance for
iot applications,” in 2017 IEEE International Solid-State Circuits
Conference (ISSCC), Feb 2017, pp. 242–243. 11

[111] Y. Wu, J. Lim, and M.-H. Yang, “Online Object Tracking: A
Benchmark,” in Proc. of CVPR, 2013. 8

[112] ——, “Object Tracking Benchmark,” in IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2015. 8

[113] J. Yan, Z. Lei, L. Wen, and S. Z. Li, “The Fastest Deformable Part
Model for Object Detection,” in Proc. of CVPR, 2014. 1

[114] C.-C. Yang, S.-M. Guo, and J. S.-H. Tsai, “Evolutionary Fuzzy
Block-Matching-Based Camera Raw Image Denoising,” in IEEE
Transactions on Cybernetics, 2017. 12

[115] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing DNN Pruning to the Underlying Hardware
Parallelism,” in Proc. of ISCA, 2017. 11

[116] B. Zhang, L. Wang, Z. Wang, Y. Qiao, and H. Wang, “Real-time
Action Recognition with Enhanced Motion Vector CNNs,” in Proc.
of CVPR, 2016. 2, 11

[117] Y. Zhu, M. Mattina, and P. Whatmough, “Mobile Machine Learning
Hardware at ARM: A Systems-on-Chip (SoC) Perspective,” ArXiv
e-prints, Jan. 2018. 1

14

https://github.com/ARM-software/SCALE-Sim

	Introduction
	Background and Motivation
	The Mobile Continuous Vision Pipeline
	Motion Estimation in ISPs
	Motion Estimation using Block Matching

	Motion-based Continuous Vision Algorithm
	Overview
	How to Extrapolate
	When to Extrapolate

	Architecture Support
	Design Philosophy and System Overview
	Augmenting the Vision Frontend
	Augmenting the Vision Backend
	Software Implications

	Implementation and Experimental Setup
	Hardware Setup
	Software Setup

	Evaluation
	Object Detection Results
	Visual Tracking Results
	Motion Estimation Sensitivity Study

	Discussion
	Related Work
	Conclusion

