
Algorithm-SoC Co-Design for Energy-Efficient Continuous Vision∗

Yuhao Zhur Anand Samajdarg Matthew Mattinaa Paul Whatmougha

rUniversity of Rochester gGeorgia Institute of Technology aARM Research

1. Introduction

Domain-specific architectures (DSAs) are widely recognized
as a promising solution to the Dark Silicon challenge. Due to
the high non-recurring engineering (NRE) cost of designing
custom architectures and hardware chips, we must identify
key application domains whose demands are large enough and
whose social impacts are high enough to justify the efforts of
designing DSAs. We focus on the domain of continuous com-
puter vision, which encapsulates a class of emerging applica-
tions that extract visual insights from real-time camera streams
to guide high-level decision making. Continuous vision appli-
cations are widely deployed in both consumer mobile devices
and “always-on” embedded systems such as Unmanned Aerial
Vehicles, Augmented Reality, and smart-city sensing.

Continuous vision applications impose an enormous com-
pute requirement, which in turn consumes excessive energy.
Consider a typical mobile power budget of 3W; continuous
vision algorithms that operate on 720p (1280 × 720) resolu-
tion images at 30 frames per second (FPS) can only afford an
energy budget of about 110 nJ/pixel. In contrast, today’s CNN
accelerators consume about 10,000 nJ/pixel [6], indicating an
energy gap of two orders of magnitude.

Today’s most prevalent efforts to close this energy gap, have
largely focused on optimizing hardware (micro-)architecture
for the vision kernels of interest, with little regard to the wider-
system. Fundamentally, these approaches treat frames in real-
time video streams as independent entities, and optimize the
execution efficiency of each frame. In contrast, this work takes
a step back and re-examines the inherent execution model
of continuous vision at the system-level. In particular, we
harness a key trait of continuous vision: visual information
changes only incrementally across frames in a real-time video
stream. Therefore, the vision results can be incrementally
computed from one frame to another without having to re-
execute the entire vision algorithm on each frame. We propose
a new algorithm that encodes frame pixel changes as object
motion, and leverages the motion data to simplify the vision
computation for the majority of real-time frames.

Along with the new algorithm is the co-designed Systems-
on-Chip (SoC) architecture. To maximize the efficiency of
the incremental vision computation, the new SoC architecture

∗The original article is “Euphrates: Algorithm-SoC Co-Design for Low-
Power Mobile Continuous Vision” by Yuhao Zhu, Anand Samajdar, Matthew
Mattina, and Paul Whatmough, published in 45th International Symposium
on Computer Architecture (ISCA), June 2018, 547-560.

exploits the algorithmic synergies between different vision
SoC components. Specifically, we observe that the pixel mo-
tion information is naturally generated by the Image Signal
Processor (ISP) for temporal de-noising, which is performed
early in the vision pipeline. We propose lightweight SoC aug-
mentations that enable reuses of the motion data between the
ISP and the vision algorithm with little compute overhead.

Our work embodies two key themes of optimizing mobile
continuous vision. First, re-examining the system-level execu-
tion model of continuous vision unlocks hidden dimensions
for optimization. Instead of executing the same algorithm
on all the frames, we identify incremental computation as an
energy-efficient execution model. Second, expanding the ar-
chitecture design scope from an individual accelerator (e.g., a
CNN engine) to the entire SoC exposes lucrative optimization
opportunities. Our work exploits the synergies between the
two key IP blocks in a vision SoC–the ISP and the vision
engine–and simplifies the SoC design.

2. Euphrates Design
We first introduce motion-based incrementation computation
and describe how it applies to continuous vision. We then
discuss the SoC support for the algorithm. Our algorithm-SoC
co-designed system is called EUPHRATES.

2.1. Motion-based Incremental Computation

Frames in a real-time video stream are not independent. In-
stead, pixel changes are correlated in time, due to visual object
motion. Our algorithm leverages the pixel motion information
to incrementally execute vision algorithms so as to greatly
reduce the total compute requirement. This motion-based
incremental computation is formulated as follows:

f (xt) = f (xt−1)
⊕

δ (xt ,xt−1)

where xt is the current frame, xt−1 is the previous frame, δ

denotes the operation that calculates the increments between
two frames (i.e., motion), and

⊕
denotes the operation that

produces the vision results for the current frame by combining
the previous frame’s result with the pixel motion data. If both
the δ and

⊕
operations are computationally cheaper than the

original vision algorithm f (·), the vision results for the current
frame can be calculated in a much more efficient way.

While incremental computation in general is a technique
used in program analysis and optimization [3, 4], our work
applies it to the domain of continuous vision. We demon-

1



Legend

DRAM

Fr
am

e
Bu

ffe
r

Camera 
Sensor ISP CNN

Engine

SoC Interconnect

Motion
Controller

Pixel Data Results
Buffer

SRAM

Sensor
Interface

SRAM

Job 
Descriptor

Raw 
Sensor 
Data

MIPI CSI

RGB 
Frame

Metadata

ROIs
Labels

Motion 
Vectors

ROIs
Labels

CPU
(Host) 

SRAM

Frontend

Backend

Fig. 1: Block diagram of the augmented continuous vision subsystem in a mobile SoC.

Device Driver

Continuous Vision Application

Vision Library

Hardware Abstraction Layer

Camera 
HAL

NNX
HAL

MC
HAL

Camera 
Driver

NNX
Driver

MC
Driver

Fig. 2: Vision software stack with
modifications shaded.

strate one set of δ and
⊕

operations that perform well in
practice. In particular, we propose to encode δ (xt ,xt−1) as
motion vectors [2], and to realize the

⊕
operation through

motion extrapolation, which is six orders of magnitude lighter
than executing a full CNN inference (i.e., f (·)).

2.2. SoC Architecture Support

The continuous vision pipeline in the SoC must act au-
tonomously to avoid constantly interrupting the CPU which
needlessly burns CPU cycles and power. This design principle
motivates us to provide autonomous architectural support for
the new algorithm, rather than implementing it in software, to
remove the CPU from the frame processing loop.

Fig. 1 illustrates the augmented mobile SoC architecture.
The key to our SoC co-design is the observation that motion
vectors, although expensive to compute, are already calculated
by the ISP early in the vision pipeline, and thus are cheap to
re-use at the system-level. We augment the ISP to directly
expose the motion vectors to the vision engine such that the δ

operation is performed “for free.” This strategy exploits the
algorithmic synergies between the ISP and the vision engine to
avoid redundant computations while simplifying SoC design.

Further, we propose a new IP block called the motion con-
troller, which implements the

⊕
operation (i.e., extrapolation)

in the algorithm. It is important that we do not directly bake
the extrapolation operation into a particular CNN accelera-

80

60

40

20

0

Av
er

ag
e 

P
re

ci
si

on
 (%

)

1.00.80.60.40.20.0

IoU Threshold

 YOLOv2
 EW-2
 EW-4
 Tiny YOLO

(a) Average precision comparison.

1.0

0.8

0.6

0.4

0.2

0.0

N
or

m
. E

ne
rg

y 

60

48

36

24

12

0

FP
S

YOLO
v2

EW-2
EW-4

Tin
yY

OLO

(b) Energy and FPS comparison.

Fig. 3: Average precision, normalized energy consumption, and FPS
comparisons between various object detection schemes.

tor. The rationale is that CNN accelerators are still evolving
rapidly with new models and architectures constantly emerg-
ing. Tightly coupling our algorithm with any particular CNN
accelerator is inflexible in the long term. Our partitioning ac-
commodates future changes in inference algorithm, hardware
IP (accelerator, GPU, etc.), or even IP vendor. The motion con-
troller also coordinates the backend under the new algorithm
without significant CPU intervention.

EUPHRATES makes no changes to application developers’
programming interface and the CV libraries as shown in Fig. 2.
The new motion controller (MC) needs to be supported at both
the Hardware Abstraction Layer (HAL) and driver layer. In
addition, the camera driver is minimally enhanced to configure
the base address of motion vectors.

3. Euphrates Results
We base our evaluation on a mix of real-system measurements
and RTL implementation. We model after the Nvidia’s TX2
mobile SoC, from which we obtain power measurements. We
implement in RTL the SoC augmentations that are unavailable
on TX2 and perform synthesis, placement, and layout.

We evaluate EUPHRATES on two main continuous vision
use-cases: visual tracking and object detection. Due to the
space limit, here we show only the results of object de-
tection. Fig. 3a shows the average precision (AP) between
the state-of-the-art object detector CNN YOLOv2 and EU-
PHRATES under two different extrapolation window sizes (2
and 4). EW-2 and EW-4 both achieve an AP close to the
baseline YOLOv2, represented by the close proximity of their
corresponding curves. Specifically, under an IoU of 0.5, a
commonly acceptable detection threshold, EW-2 loses only
0.58% accuracy compared to the baseline YOLOv2.

Fig. 3b shows the energy consumptions of different mech-
anisms normalized to the baseline YOLOv2. We overlay the
FPS results on the right y-axis. The baseline YOLOv2 con-
sumes the highest energy and achieves only about 17 FPS, far
from being real-time. EW-2 reduces the total energy consump-
tion by 45% and improves the frame rate from 17 to 35; EW-4
reduces the energy by 66% and achieves real-time frame rate
at 60 FPS. Overall, EUPHRATES achieves significant energy
savings and speedup with little accuracy loss.

2



4. Long-Term Impact

Our paper has both algorithmic and architectural impact.
Motion-based Incremental Computation Our work

demonstrates the effectiveness of motion-based incremental
computation as a fundamental computing paradigm for con-
tinuous vision applications. However, we see a much broader
scope in the general domain of visual computing, which en-
capsulates a wide variety of applications that operate on visual
information such as images and videos. Table 1 lists different
visual computing applications in which incremental computa-
tion is either inherently part of the algorithms or can be applied
as an effective optimization.

These applications operate on a sequence of (real-time) im-
ages as inputs, in which pixel changes in consecutive frames
represent motion. For instance, temporal denoising removes
the noise of the current frame using pixel motion data along
with the noise-free counterparts in the previous frame. Sim-
ilarly, frame upsampling artificially increases the frame rate
by interpolating new frames between successive real frames
based on object motion. Recently developments of Timewarp
and Spacewarp in Virtual Reality (VR) use motion information
to generate frames that sustain real-time requirements while
lowering the compute demand for VR devices.

We thus see a promising direction of research to provide
principled architecture support for motion-based incremental
computation. Critically, in applying incremental computation,
these applications differ in two fundamental aspects: how the
motion data is obtained (i.e., the motion estimation operator,
δ ) and how the motion data is used to generate new results
(i.e., the motion synthesis operator,

⊕
). The key architectural

challenge is thus how to generally support different motion
estimation and synthesis operators.

A potential solution is to consolidate different motion esti-
mation and synthesis operators into dedicated IP blocks that
can then be reused across different algorithms. For instance,
the motion controller IP proposed in our paper implements
one particular form of synthesis operator (extrapolation), and
could be used as the basis for a generic “motion processor.”

Expanding the Research Scope From Accelerators to
SoCs By re-examining and optimizing the execution model
of continuous vision, we promote a whole-of-system approach
that exploits the synergies of various SoC components rather
than focusing only on one particular accelerator. Specifically,
EUPHRATES exploits the data reuse between the ISP and vi-
sion engine to improve compute-efficiency and simplify SoC
design. As we enter the era of specialization where mobile
SoCs integrate tens of domain-specific IP blocks [1, 5], we
must expand the research horizon from individual accelerator
optimizations to a holistic co-design of the entire SoC.

Today’s mobile SoCs encompass five main application do-
mains that are traditionally considered separately: imaging,
vision, graphics, video processing, and acoustics. Although
these components exist in mobile devices such as mobile

Table 1: Applications where motion-based incremental computation
applies. The EUPHRATES work demonstrates the idea on one applica-
tion domain, but the general idea is broadly applicable.

Domain Application
Motion
Operator (δ )

Synthesis
Operator (

⊕
)

Vision Object Tracking/Detection Motion Vector Extrapolation

Imaging
Temporal Denoising Motion Vector

Motion-Compensated
Temporal Filtering

High Dynamic Range
(Sub)pixel-level
Motion Vector

Image Alignment

Rolling Shutter Correction
Scanline-level
Motion Vector

Motion Compensation

Video
Processing

Video Encoding Motion Vector Motion Compensation

Video Stabilization Egomotion Vector Motion Compensation

Display
Frame Upsampling Motion Vector Interpolation

Spacewarp (in VR) Motion Vector Extrapolation

Graphics Timewarp (in VR) Egomotion Vector Reprojection

phones, they are mostly isolated from one another throughout
the system stack and rarely interact in an application. As a re-
sult, today’s mobile SoCs are largely a collection of segregated
sub-systems (accelerators), each specialized for a domain.

Emerging applications such as Augmented Reality and Vir-
tual Reality require the five domains to operate collectively
and synergistically. For instance, an Augmented Reality appli-
cation must perform imaging to convert camera sensor data to
continuous frames, trigger vision algorithms to extract seman-
tics information from the frames, and draw virtual graphical
contents to augment the real scene, all the while producing
an immersive acoustic experience and encoding the generated
video content for future playback. The fusion of the five com-
puting domains presents unprecedented opportunities to build
mobile SoCs that co-optimize the five domains simultaneously.

This work demonstrates one particular form of co-design be-
tween imaging and vision. We hope that it is just the promising
first step toward an exciting era of SoC architecture research.

Citation in 2029 In their landmark paper on algorithm-
SoC co-design for mobile continuous vision, the authors pio-
neered the work on SoC support for motion-based incremental
computation. Today, hardware support for motion-based in-
cremental computation has become the norm in mainstream
mobile SoCs. The publication also spurred numerous propos-
als on co-optimize SoC components for application domains
beyond the paper’s original focus on continuous vision.

References
[1] “NVIDIA Reveals Xavier SOC Details.” https://www.forbes.com/sites/

moorinsights/2018/08/24/nvidia-reveals-xavier-soc-details/amp/
[2] M. Jakubowski and G. Pastuszak, “Block-based Motion Estimation

Algorithms–A Survey,” Opto-Electronics Review, 2013.
[3] D. Michie, ““memo” functions and machine learning,” Nature, vol. 218,

no. 5136, p. 19, 1968.
[4] W. Pugh and T. Teitelbaum, “Incremental computation via function

caching,” in Proc. of POPL, 1989.
[5] Y. S. Shao et al., “The aladdin approach to accelerator design and mod-

eling,” IEEE Micro, vol. 35, no. 3, pp. 58–70, 2015.
[6] A. Suleiman et al., “Towards Closing the Energy Gap Between HOG

and CNN Features for Embedded Vision,” in Proc. of ISCAS, 2017.

3

https://www.forbes.com/sites/moorinsights/2018/08/24/nvidia-reveals-xavier-soc-details/amp/
https://www.forbes.com/sites/moorinsights/2018/08/24/nvidia-reveals-xavier-soc-details/amp/

	Introduction
	Euphrates Design
	Motion-based Incremental Computation
	SoC Architecture Support

	Euphrates Results
	Long-Term Impact

