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Abstract— Compressing massive LiDAR point clouds in real-
time is critical to autonomous machines such as drones and
self-driving cars. While most of the recent prior work has
focused on compressing individual point cloud frames, this
paper proposes a novel system that effectively compresses a
sequence of point clouds. The idea to exploit both the spatial and
temporal redundancies in a sequence of point cloud frames. We
first identify a key frame in a point cloud sequence and spatially
encode the key frame by iterative plane fitting. We then exploit
the fact that consecutive point clouds have large overlaps in the
physical space, and thus spatially encoded data can be (re-)used
to encode the temporal stream. Temporal encoding by reusing
spatial encoding data not only improves the compression rate,
but also avoids redundant computations, which significantly
improves the compression speed. Experiments show that our
compression system achieves 40× to 90× compression rate,
significantly higher than the MPEG’s LiDAR point cloud
compression standard, while retaining high end-to-end appli-
cation accuracies. Meanwhile, our compression system has a
compression speed that matches the point cloud generation
rate by today LiDARs and out-performs existing compression
systems, enabling real-time point cloud transmission.

I. INTRODUCTION

LiDAR has become an essential sensor in autonomous
machines such as self-driving vehicles, autonomous drones,
and robots. LiDARs generate massive amounts of point cloud
data. For instance, the Velodyne HDL64E LiDAR generates
hundreds of thousands of points each frame, amounting to up
to 26 MB of raw data per second. Effectively compressing
point cloud in real-time enables autonomous machines to
be closely connected with each other and with the cloud,
ushering in a new era in distributed and cloud robotics.
For instance, efficient point cloud compression would enable
offloading compute-intensive perception tasks (e.g., object
detection) to the cloud to reduce the perception latency; sim-
ilarly, collaborative decision making across robots relies on
efficient point cloud compression to exchange information.

While prior work mostly focuses on the compression
rate [11], [16], [27], our work aims to simultaneously im-
prove the compression rate and compression speed while
maintaining high accuracy for end-to-end applications of in-
terest (e.g., registration and object detection). High compres-
sion speed let the compressed point cloud be transmitted in
real-time without local buffering, easing the storage pressure.

We propose a real-time Spatio-temporal point cloud com-
pression technique that delivers high compression rate, main-
tains high application-level accuracy while delivering a com-
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pression speed (>10 Hz) that matches/exceeds the LiDAR
point cloud generation speed. We use range image [27]
as the basic data representation for point clouds. Range
images not only inherently provide a lossless compression
of point clouds, but also “regularize” the unstructured 3D
point cloud data into a structured 2D data structure, which
enables computationally-efficient subsequent processing.

Our method exploits the unique redundancies inherent in
LiDAR point cloud capturing — both spatially (within a
point cloud) and temporally (across point clouds). We first
identify a key point cloud (K-frame) in a point cloud se-
quence, and transform the rest of the point clouds, which we
call predicted clouds (P-frames), into K-frame’s coordinate
system using IMU measurements. We spatially encode the
K-frame by exploiting that many points in real-world scenes
lie on the same plane and can be encoded using planes.

Building on top of the spatial encoding of the K-frame, we
exploit the fact that consecutive point clouds share a great
chunk of overlapped areas of the scene. Thus, the same set of
planes could be used to encode points across point clouds.
Our temporal encoding scheme reuses planes identified in
the K-frame to encode overlapped scenes in P-frame. The
temporal encoding also compensates for the inaccuracies in
IMU measurements, improving the robustness of the method.

We evaluate the proposed method using the KITTI dataset.
Our compression method achieves up to 90× compression
rate, significantly out-performing MPEG’s LiDAR point
cloud compression standard [16], [22]. Meanwhile, our com-
pression method operates at least 10 Hz, which matches
today’s LiDAR point cloud generation speed and is higher
than prior methods. The high compression speed is achieved
both by avoiding redundant computations (e.g., reusing the
spatially encoded planes calculated in the K-frame) and by
a careful parallel implementation of our algorithm.

Finally, unlike prior work that evaluates quality metrics
such as Peak Signal-to-Noise Ratio (PSNR) that are not
directly tied to end-to-end application-level accuracy, our
compression method directly focuses on application-level
accuracy. We show that our compression system on three
point cloud applications—registration, object detection, and
segmentation—retains the similar accuracy as the original
point cloud while out-performing the accuracies of exist-
ing point cloud compression schemes. Our method delivers
high application-level accuracy because spatial and temporal
encoding inherently preserve the geometry of points in the
scene and denoise the point clouds.

Our main contributions of this paper are as follows:
• To the best of our knowledge, this is the first work that

leverages both the spatial and temporal redundancies to
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Fig. 1: Overview of our compression system, which compresses a sequence of consecutive point clouds. All the points clouds
are converted to range images to accelerate the compression speed. We first spatially encode the key point-cloud (K-frame)
in the sequence, typically the middle one. The spatial encoding results of the K-frame are then used to temporally encode
the rest of the point clouds, which we call predicted point clouds (P-frames).

compress LiDAR points clouds.
• The compression method simultaneously achieves

higher compression rate, higher compression speed,
and higher application-level accuracy than today’s com-
pression methods, including the MPEG’s point cloud
compression standard.

II. RELATED WORK

Unstructured Point Cloud Encoding Perhaps the most
common way to encode point cloud data is to use space-
partitioning trees, among which Octree is the most widely
used [9], [10], [12], [14], [16], [23], [25]. The G-PCC method
in MPEG’s point cloud compression standard falls into this
category [16]. Each Octree leaf node could be encoded by
either a single occupancy bit, which could be lossless if each
leaf node contains exactly one point, or by plane extraction,
which preserves more details if each leaf node contains
multiple points. G-PCC provides both options. Based on
the space-partitioning tree representation, prior work has
explored various methods to reduce redundant information,
such as 2D projection [10] or surface fitting [23].

Prior work also exploited temporal redundancies in space-
partitioning trees such as XORing the two consecutive Oc-
trees [14], using motion compensation in 3D space [25], or
applying video compression directly [9].

Other unstructured point cloud representations include
shape adaptive wavelet [6], [20] and hierarchical height
map [10], [18]. While effective in certain use-cases, the
downside of unstructured representations is that they do not
exploit the unique characteristics exposed by LiDAR point
clouds, leading to generally low compression rate.

Structured Point Cloud Compression Instead of en-
coding point clouds using space-partitioning trees, another
category of compression methods convert point clouds into
2D images using spherical projection [24], [26], [27] or
orthogonal projection such as the V-PCC method in the
MPEG’s standard [13], [15]. Existing image/video com-
pression methods are then used to further compress the
projected images [13], [24], [27]. However, directly applying
image/video compression algorithms does not preserve the
spatial information inherit in the point cloud, and thus
generally results in low application accuracy.

III. SPATIO-TEMPORAL COMPRESSION

This section introduces our spatial-temporal LiDAR point
cloud compression algorithm. We first present an overview

of our compression system (Sec. III-A), followed by the
detailed designs of the three key components: range image
conversion (Sec. III-B), spatial encoding (Sec. III-C), and
temporal encoding (Sec. III-D). Finally, we discuss our par-
allel implementation that further improves the compression
speed (Sec. III-E).

A. Main Idea
The idea of our compression system is to exploit redun-

dancies both within a point cloud (spatial) and across point
clouds (temporal). Spatially, many surfaces in the real-world
are planes (e.g., walls and ground); even non-plane surfaces
could be approximated by a set of planes. Temporally,
consecutive point clouds share a great chunk of overlapped
areas of the scene; thus, the same set of planes could be
used to encode points across point clouds. While intuitive,
exploiting spatial and temporal redundancies in real-time is
challenging due to the irregular/unstructured point cloud and
the compute-intensive plane fitting process.

We propose a compression system that simultaneously
achieves the state-of-the-art compression rate and com-
pression speed while maintaining high application accura-
cies. Fig. 1 provides a high-level overview of our system,
which consists of three main blocks: range image conversion,
spatial encoding, and temporal encoding. Fig. 2 shows the
relevant data structures during the encoding process.

Given a sequence of consecutive point clouds, we dif-
ferentiate between two point cloud types: key point cloud
(K-frame) and predicted point cloud (P-frame). A sequence
has only one K-frame and the rest is P-frames. P-frames
are first transformed (both translation and rotation) to K-
frame’s coordinate system using the IMU measurements.
After transformation, each point cloud is converted to a range
image [27] for subsequent computations. The range image
not only provides an initial compression to the original point
cloud, but also provides a structured representation of the
(unstructured) point cloud that is hardware-friendly.

We then spatially encode K-frame by fitting planes; the
fitted planes in the K-frame are then (re-)used to temporally
encode P-frames, greatly improving the overall compression
rate and speed. In order to be robust against transformation
errors, which might be introduced due to noisy IMU obser-
vations, we propose a set of techniques that compensate the
sensor noise and preserve the encoding quality.

In the end, after spatial and temporal encoding, most of
the tiles in the range images are plane-encoded; the unfit
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Fig. 2: Different data structures used in our compression. The
raw point clouds are converted to range images. After spatial
and temporal encoding, most of the tiles in the range images
are plane-encoded; the unfit tiles are left in the residual maps.

tiles are left in what we call residual maps (Fig. 2). The
planes and the residual maps are then further compressed by
a lossless compression scheme (e.g., Huffman encoding) to
generate the final encoded data.

Overall, in addition to providing high compression rate
and speed, our compression system also preserves application
accuracy. This is because plane fitting inherently removes
noises and outliers in the point clouds without requiring
explicitly removing outliers that prior work employs [24].

B. Range Image Conversion

We first convert the raw point cloud data to a range image,
which essentially converts every point (x,y,z) in the 3D
Cartesian space to a pixel at coordinates (θ ,φ ) in the range
image with a pixel value r:

r =
√

x2 + y2 + z2; (1)

θ = arctan(
x
y
)/θr; φ = arccos(

z
r
)/φr (2)

where θr and φr are the horizontal and vertical resolutions
of the LiDAR, respectively.

A range image naturally compresses the original point
cloud, because each point (x,y,z) can be encoded with just a
range value r of the corresponding pixel in the range image;
θ and φ are the pixel’s coordinates and do not have to be ex-
plicitly encoded. If θr and φr are the same as the resolutions
of the LiDAR, range image is a lossless compression of the
corresponding point cloud. Mathematically, however, θr and
φr could be any arbitrary positive values; larger θr and φr
would lead to a lower range image resolution, providing a
lossy compression of the original point cloud.

In addition to providing an inherent compression scheme,
range image brings two key advantages. First, operating on
range images is computationally more efficient than directly
accessing the point cloud, which requires tree traversals that
lead to high cache misses and branch mis-predictions on

today’s hardware architecture [17], [30]. Second, adjacent
pixels in the range map are likely to lie on the same
plane, because they correspond to consecutive scans from
the LiDAR. This characteristic allows us to encode the entire
range image more efficiently.

C. Spatial Encoding

The goal of spatial encoding is to encode all the points
that lie on the same plane using that plane. Intuitively, many
surfaces in the real-world are planes (e.g., walls and ground);
non-plane surfaces could be approximated by a set of planes.

In the 3D Cartesian space, a plane can be expressed as:

x+ay+bz− c = 0 (3)

where (1,a,b) is the normal vector of the plane and
|c|√

1+a2+b2
is the distance from the origin (LiDAR center)

to the plane. Thus, all the points on the same plane could be
encoded with just the three coefficients of the plane. Note
that the exact position of each point on the plane is not
explicitly encoded. The decoding process would simply have
to simulate a ray casting process to find the intersection of
a ray and the plane to reconstruct the position of a point.

To encode the entire point cloud, which contains points
that lie in many different planes, we use a “divide and
conquer” strategy. Specifically, we first uniformly divide the
range image into unit tiles (e.g. 4× 4). We start by fitting
a plane for points in the first tile, and gradually grow to
include adjacent tiles, essentially forming a bigger tile. Each
time we grow, we test whether the plane fit so far can be
used to encode all the points in the new (bigger) tile under
a predefined threshold. If so, all the points in the new tile
are encoded with the plane. Otherwise, we start from the
current tile and repeat the process until all the tiles in the
range image are processed.

Our spatial encoding process grows tiles horizontally,
which we find coalesces many more adjacent tiles than grow-
ing vertically. This is inherently because today’s LiDARs
have a much more fine-grained horizontal resolution than
vertical resolution. For instance, Velydone’s HDL-64E has
a 0.08◦ horizontal resolution, and a 0.4◦ vertical resolution.
As a result, points in horizontally adjacent tiles are closer
to each other and, thus, more likely to fit in the same plane
than points from vertically adjacent tiles.

Fitting a plane given points can be naturally formulated
as a linear least squares problem [19]. While classic iterative
methods such as RANSAC [7] are widely used, we find
that directly calculating the closed-form solution is generally
faster, because deriving the closed-form solution requires less
computation and also the computations could be parallelized.

Note that we intentionally do not encode the deltas of
plane fitting (i.e., the difference between a true point and a
predicted point on the plane). Instead, we find that when a
reasonably small threshold is used, discarding deltas effec-
tively denoises the point cloud, leading to higher application
accuracy than even the original point cloud (Sec. V-A).
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Fig. 3: A spatial encoding example. The range image on the
left is first tiled, and then iteratively planed-fitted. Horizon-
tally adjacent tiles fit by the same plane are shaded by the
same stripe pattern. Tiles that are plane-fitted are encoded
using the format shown on the right. Points in unfit tiles are
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In order to reconstruct/decode the range image later, each
row in the range image is encoded with a row ID followed by
a set of three-tuples [s, len,P]. Fig. 3 provides an example.
Each three-tuple corresponds to a sequence of adjacent tiles
in that row, starting from s to s+ len, that are fit by the same
plane P, which is parameterized by the three coefficients
(Equ. 3). Inevitably, there are tiles that contain points that can
not be fit on planes, because, for instance, those points are
sparse samples of an irregular surface. These “unfit” points
are left in what we call a residual map (Fig. 2) and are
directly encoded using their raw range values.

D. Temporal Encoding

Spatial encoding provides a building block to encode
point clouds individually. LiDARs in autonomous machines,
however, generate a sequence of point clouds. While it is
possible to individually apply spatial encoding to each point
cloud, doing so loses opportunities exposed by the temporal
correlations across consecutive point clouds.

Consecutive point clouds have large chunks of overlaps,
because they are just different samples of the same physical
scene. Using the KITTI dataset, we find that on average 99%
of each point cloud is geometrically overlapped with the
previous point cloud. Motivated by this observation, temporal
encoding encodes a set of consecutive point clouds together.
The idea is to use one plane to encode the overlapped scene
across multiple consecutive point clouds. Doing so improves
both the compression rate and the compression speed by
avoiding plane fitting in each point cloud.

Transformation Each point cloud has its own coordinate
system when generated by the LiDAR. In order to fit planes
across a sequence of point clouds, we convert all the point
clouds to the same coordinate system—by performing a 6
DoF (translation and rotation) transformation. Fig. 4 com-
pares the effect of overlaying five consecutive point clouds
together in the same coordinate system before and after the
transformation. Without motion transformation point clouds
at different timestamps are mis-aligned, making temporal
encoding challenging.

To unify point clouds in the same coordinate system,
we must 1) decide a key point cloud K, whose coordinate
system is used as the transformation target, and 2) calculate

the corresponding transformation matrix Mi between K and
every other point cloud Pi.

In our system, we calculate the transformation matrix
using the IMU measurements, which provides the transla-
tional acceleration (â) and rotational rate (ω̂). Using the IMU
measurements, we estimate the translation vector T3×1 as:

T3×1 =
[
∆x ∆y ∆z

]
(4)

where ∆x, ∆y, and ∆z are translational displacements inte-
grated from â using the first-order Runge-Kutta numerical
method. Similarly, the rotation matrix R3×3 is estimated as:

R3×3 =

 cos(∆α) sin(∆α) 0
−sin(∆α) cos(∆α) 0

0 0 1


×

cos(∆β ) 0 −sin(∆β )
0 1 0

sin(∆β ) 0 cos(∆β )


×

1 0 0
0 cos(∆γ) sin(∆γ)
0 −sin(∆γ) cos(∆γ)

 (5)

where ∆α , ∆β , and ∆γ are rotational displacements inte-
grated from ω̂ using the first-order Runge-Kutta method.

We use the middle point cloud in a consecutive point cloud
sequence as the key point cloud (K-frame). This minimizes
the impact of cumulative IMU sample errors when calcu-
lating the transformation matrix. Every other point cloud,
which we call predicted cloud (P-frame), is transformed to
K-frame’s coordinate system by:

p
′
4×1 = Mp4×1 =

[
R3×3 T3×1
01×3 1

]
4×4

p4×1 (6)

where p4×1 and p
′
4×1 denote a point in a predicted cloud

before and after transformation, respectively.
All the N point clouds in a sequence, after transformation,

are converted to range images with the same dimension.
For the ease of manipulation, we stack the N range images
together to form a N-channel image.

Note that it is possible that points in a P-frame after
transformation could collide, i.e., mapped to the same range
image pixel, in which case we preserve the nearest point. On
the KITTI dataset, about 4.6% of the points collide when
transforming between two adjacent point clouds, and this
percentage increases as the gap two point clouds increases.
This suggests that the number of consecutive point clouds
that are encoded together (N) affects the encoding results.
We show the sensitivity to N in Sec. V-C.

Encoding We use the same “divide-and-conquer” strat-
egy used in spatial encoding to encode across channels (point
clouds). A naive implementation would be to fit all the points
in a tile across all N channels (e.g., 4×4×N) and then grow
to adjacent tiles. However, this approach is susceptible to
IMU measurement errors. Inaccurate IMU observations lead
to inaccurate point cloud transformations. As a result, points
in the same tile across different channels might not end up
lying on the same plane, leading to poor plane fitting results.
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different point clouds. Motion transformation better aligns
different point clouds in one coordinate system.

We propose an effective method to temporally encode
across channels while compensating the transformation er-
rors. Our idea is to first fit a tile in the K-frame’s channel,
and use the fitted plane Q to test against the same tile in each
of the other channels. Critically, we hold Q’s normal vector
constant while varying its distance to the origin (i.e., varying
c in Equ. 3). This effectively compensates the translation
error in the IMU measurements. If the relaxed plane Q′

(parameterized by a,b,c′) fits all the points in a channel
under a certain threshold, only c′ needs to be encoded for
that channel rather than all three plane coefficients.

We apply the same horizontal growing strategy until all the
tiles of all the channels in the range image are processed,
at which point we remove all the encoded tiles from the
range image. The remaining range image I′ contains tiles that
could not be fitted across channels even after compensating
translation errors. We then spatially encode I′ channel by
channel using the same process described in Sec. III-C.
Effectively, this channel-wise spatial encoding compensates
the rotation errors in transformation. In the end, the unfit
tiles are left in the residual map (Fig. 2), which is further
compressed in a lossless fashion along with the fit planes.

Temporal encoding not only provides high compression
rate, but also improves the compression speed compared to
spatially compressing each point cloud individually. This is
because the planes fit in the K-frame are reused in P-frames,
reducing the plane fitting overhead.

E. Parallel Optimizations

The speed of the sequential implementation of our algo-
rithm scales linearly with respect to number of channels and
angular resolution of the LiDAR. To further improve the
compression speed, we exploit the parallelisms exposed by
our encoding system and leverage parallel hardware available
in modern processors.

At the high level, we exploit both the thread-level paral-
lelism (TLP) and data-level parallelism (DLP). During the
range image conversion, we exploit the TLP where each
thread is responsible for converting one point cloud into
the corresponding range image. During spatial encoding, we
leverage TLP where each thread is responsible for encoding
a row in the K-frame. During temporal encoding, each thread
is responsible for testing planes in a P-frame.

The actual computation in each thread also exposes data-
level parallelism such as computing the immediate results
(radius, indexes) and the various matrix operations in the
plane-fitting and plane-testing processes. Our implementation
uses the OpenMP programming model in C++ to exploit both
TLP and DLP.

IV. EVALUATION METHODOLOGY

Applications and Evaluation Metrics We evaluate our
compression method on three common point cloud applica-
tions: registration, object detection, and scene segmentation:
• Registration: we use a recent ICP-based registration

pipeline [30] developed using the widely-used PCL [21].
• Object Detection: we use VoxelNet [31], a Deep Con-

volution Neural (DNN)-based approach.
• Scene Segmentation: we use SqueezeSeg [29], a DNN-

based approach.
We use three evaluation metrics: compression rate over the

uncompressed point clouds, compression speed in FPS, and
application-level accuracy. We evaluate the application-level
accuracy instead of common quality metrics such as PSNR or
RMSE because we want to assess how compression affects
point cloud applications, which is what ultimately matters.

Dataset We use the widely-used KITTI dataset [8] for
evaluating registration and object detection. We evaluate on
all the sequences and frames for comprehensiveness. To
evaluate segmentation, we use SemanticKITTI [5], which
augments KITTI dataset for segmentation tasks. We report
geometric mean results unless otherwise noted.

Baseline We compare against four baselines:
• G-PCC: It is a point cloud compression standard pro-

posed by the MPEG [16] specifically designed to com-
press LiDAR point cloud data. It constructs an Octree
for a point cloud and encodes the Octree.

• V-PCC: It is a point cloud compression standard pro-
posed by the MPEG [13], [15] designed to compress
dense point clouds used in volumetric rendering. It
maps point clouds to images and uses existing video
compression to compress the images.

• JPEG: It compresses each point cloud’s range image
individually using the (lossy) JPEG codec [4].

• H.264: It compresses a sequence of point clouds by
compressing the corresponding range image sequence
using the H.264 video codec [28]. We shows results of
both the lossy and lossless versions.

Variants Our method can be configured in two modes:
the single-frame mode that applies only spatial encoding to
individual frames and the streaming mode that applies both
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spatial and temporal encoding to a sequence of frames. For
both versions, we vary the threshold of plane fitting to form
different design points.

Hardware Platform We implement our compression
method in C++ and evaluate the compression speed on both a
PC, Intel i5-7500 with 4 cores, and a mobile platform, Nvidia
Jetson TX2 [2], which represents the compute capability of
mobile robots or drones.

V. EVALUATION

We first show the end-to-end accuracy and compression
rate of our compression method on three general robotic
applications: localization, object detection, and 3D scene
segmentation, compared against a range of existing methods
(Sec. V-A). We then demonstrate that our compression speed
matches the point cloud generation speed and surpasses other
methods (Sec. V-B). Last, we evaluate the sensitivity of our
compression method (Sec. V-C).

A. Compression Rate vs. Accuracy

This section assumes that we compress five consecutive
point clouds together unless otherwise noted. We will later
study the sensitivity of different frame configurations.

Localization Our compression method outperforms
other methods in both application accuracy and compression
rate. Fig. 5 compares the translation error (y-axis) against the
compression rate (x-axis) of different compression methods.

Our method in the streaming mode can achieve an 88.9×
compression rate with only 0.91% translation error, and
the single-frame mode achieves 59.7× compression rate
with 0.96% translation error. In comparison, the best G-
PCC compression has a 1.38% translation error with only
8.5× compression rate. Interestingly, our compression meth-
ods have lower errors than using the original point clouds
(1.25%). This is because our plane fitting process inherently
reduces the noise from the point cloud.

Other baselines including JPEG compression on range
images, lossy H.264 video compression, and V-PCC have
much higher localization errors (> 16%) as Fig. 5 shows.
Although the lossless video compression has better localiza-
tion accuracy, its compression rate (5.4×) is much lower.

Object Detection On KITTI dataset object detection
uses only individual point clouds instead of point cloud
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Fig. 7: The segmentation error and compression rate com-
parison of various compression methods.

sequences. Thus, we present only the single-frame variant of
our compression system. For the same reason, V-PCC and
H.264 compression methods are not applicable. Fig. 6 com-
pares the object detection accuracy against compression rate
across different compression methods. Our method Pareto-
dominates the prior methods.

Comparing against the 74.4% accuracy using the original
point clouds, our compression method achieves a compa-
rable accuracy of 72.2% with a 11.5× compression rate. In
addition, our compression method achieves more than 42.3×
compression rate while still keeping the accuracy over 70%.
In contrast, the best accuracy that G-PCC and JPEG achieve
is 42.1% and 57.6% with the compression rate of 15.3 and
20.6, respectively.

Segmentation Fig. 7 shows the compression rate vs. seg-
mentation accuracy trade-offs across the different compres-
sion schemes. Our methods Pareto-dominates other methods
except for lossless video compression. In particular, our
method achieves a better compression rate (21.8×) than G-
PCC (8.5×) and JPEG (20.6×) with a similar accuracy at
75.5%. The accuracies of G-PCC and JPEG drop quickly as
the compression rates increase while our method maintains a
high accuracy (72.4%) even at a compression rate of 50.3×.

Lossless video compression achieves little accuracy drop
with only a 5.4× compression rate; lossy video compression,
in contrast, has the highest compression rate—at the expense
of over 30% accuracy drop.

B. Compression Speed

Fig. 8 and Fig. 9 show the compression speeds on both a
PC and the Nvidia TX2 mobile platform, respectively. Our
compression method outperforms G-PCC by about one order
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Fig. 8: Compression speed vs. compression rate of various
methods on Intel i5-7500 CPU.
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Fig. 9: Compression speed vs. compression rate of various
methods on Nvidia mobile TX2 platform.

of magnitude on both platforms. The compression speed on
a PC could be as high as 52.1 FPS, and even on the mobile
TX2 the compression speed could be as high as 20.5 FPS.
As today’s LiDARs generally operate at between 5 Hz to
20 Hz [1], [3], our compression method could be executed
in real-time as the point clouds are being generated. Lossy
and lossless video compressions have a similar compression
speed. However, as shown before, they either have a much
lower compression rate or lead to much lower application
accuracies. V-PCC is much slower than other methods.

C. Sensitivity Study

All results shown so far assume that five consecutive point
clouds are encoded together. Fig. 10 shows how compression
rate, application accuracy, and compression rate vary with
the number of consecutively encoded frames. All results are
normalized to the results where the number of consecutive
frames is five. Object detection uses individual frames, so its
accuracy numbers are not shown.

We find that the compression speed is most sensitive
to the number of encoded frames. This is because our
implementation parallelizes many operations across frames
such as the range image conversion and plane testing. More
frames provides more opportunities for parallelization, lead-
ing to higher speeds. The application accuracies are mostly
insensitive to the number of frames, because our compression
method is able to preserve the vast majority of points during
motion transformation and encoding.
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Fig. 10: Sensitivity study on application accuracy, compres-
sion rate, and compression speed by varying the number of
consecutive frames that are encoded together.
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Fig. 11: Distribution of different encoding types within a
point cloud sequence as the number of consecutively encoded
frames varies. “Unfit” refers to points that could not be
encoded in either method. Note that with only one frame
there is no temporally encoded frame.

It is worth noting that the compression rate is relatively in-
sensitive to the number of frames. To understand why, Fig. 11
shows the distribution of how different points are encoded
in a sequence. As the the number of frames increases, the
percentage of temporally encoded points decreases because
the overlapped region becomes smaller, while the percentage
of spatially encoded points increases. The overall percentage
of points that are encoded by either methods stays roughly
the same, leading to a roughly stable compression rate. Note
that as the number of frames increases the decoding speed is
faster with similar accuracy as shown in Fig. 10, indicating
longer sequences are preferred in encoding point clouds.

Fig. 12 shows the speedup of our parallel compression
system over a sequential baseline. Recall from Sec. III-E that
our implementation exploits various forms of parallelism to
improve the speed. With five frames available for compres-
sion, we achieve a 3.8× speedup over a sequential imple-
mentation. With 19 frames available, the speedup is 5.4×.
As the number of consecutive frames increases, the speedup
saturates because of the hardware resource limitation.

VI. FUTURE WORK

While effectively, our existing compression algorithm also
points out several areas of improvement for future work.

First, our current design uses native IMU measurements to
register consecutive point cloud frames, which could suffer
from inaccurate IMU measurements. Performing precise reg-
istration (e.g., using SLAM) could be computationally costly,
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Fig. 12: Speedup of our parallel implementation over a
sequential implementation on a four-core Intel i5-7500 CPU
as the number of consecutive frames increases.

defeating our goal of real-time compression. It would be
interesting to investigate lightweight yet precise registration
algorithms specifically designed for compression.

Second, our method extracts the geometric and temporal
information from point cloud frames such as the plane
coefficients, which could be used to assist certain robotic ap-
plications such as localization. Finally, it would be interesting
to investigate point cloud algorithms that directly operate on
compressed (encoded) point cloud.

VII. CONCLUSION

Efficient point cloud compression will enable autonomous
machines to be more connected with each other and with
the cloud, and thus usher in a new era in distributed and
cloud robotics. This paper proposes a novel spatio-temporal
scheme for compressing LiDAR point clouds. We show that
by exploiting spatial and temporal redundancies across con-
secutive point clouds, our compression method achieves up to
90× compression rate, maintains high application accuracy
while achieving real-time (>10 FPS) compression speed.
It out-performs the state-of-the-art point cloud compression
standards on compression rate, speed, and accuracy.
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[15] M. Krivokuća, P. A. Chou, and M. Koroteev, “A volumetric approach
to point cloud compression–part ii: Geometry compression,” IEEE
Transactions on Image Processing, 2020.

[16] S. Lasserre, D. Flynn, and S. Qu, “Using neighbouring nodes for the
compression of octrees representing the geometry of point clouds,” in
Proceedings of the 10th ACM Multimedia Systems Conference, 2019.

[17] Z. Liu, H. Tang, Y. Lin, and S. Han, “Point-voxel cnn for efficient 3d
deep learning,” arXiv preprint arXiv:1907.03739, 2019.

[18] V. Morell, S. Orts, M. Cazorla, and J. Garcia-Rodriguez, “Geometric
3d point cloud compression,” Pattern Recognition Letters, 2014.

[19] Y. Nievergelt, “Total least squares: State-of-the-art regression in nu-
merical analysis,” SIAM review, 1994.

[20] T. Ochotta and D. Saupe, “Compression of point-based 3d models by
shape-adaptive wavelet coding of multi-height fields,” in Proceedings
of the First Eurographics Conference on Point-Based Graphics, 2004.

[21] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),”
in 2011 IEEE international conference on robotics and automation.
IEEE, 2011.

[22] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. Chou,
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