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Targeted Hardware: systolic-array-based.
Count the hardware operations:
• Data reuse in parallel MACs;
• Zero operands are skipped.

Energy Model: piece-wise linear function ! " =

Motivation

Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse 
Projection and Layer Input Masking
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• Deep Neural Networks (DNNs) are increasingly
deployed in highly energy-constrained environ-
ments.

• Compression methods like pruning or quantization
are proposed to reduce the redundant parameters.

• Existing work: barely consider the hardware and
energy constraint in pruning.

• This work: use the hardware energy model to
guide the pruning.

• Propose an end-to-end energy-aware model compre-
ssion framework;

• Outperform state-of-the-arts;
• First work to involve the hardware model in model

compression.
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Basic Idea: Projected-SGD

" ← P (" − 7∇ℒ("))

Additional trick: design a trainable binary mask to
increase the sparsity of the input mask.

Projection:
P(:) ≔ argmin
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Theorem 1
0/1 knapsack

Overview of the framework:

SGD
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cache size

unit energy cost (in-cache)

unit energy cost (out-cache) constant overhead

unit energy cost  (cache-independent)

MP: Magnitude-based Pruning; 

SSL: Structured Sparsity Learning; 

EAP: Energy-Aware Pruning. 

DNN Parameters
DNN Training Loss

Energy Modeling

SBP: Structured Bayesian Pruning; BC: Bayesian Compression

Mask on MNIST

Mask on MS-Celeb-1M


