

Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking

Motivation

- Deep Neural Networks (DNNs) are increasingly deployed in highly energy-constrained environments.
- Compression methods like pruning or quantization are proposed to reduce the redundant parameters.
- Existing work: barely consider the hardware and energy constraint in pruning.
- This work: use the hardware energy model to guide the pruning.

Overview

Overview of the framework:

Haichuan Yang¹, Yuhao Zhu¹, Ji Liu^{2,1} ¹University of Rochester, ²Kwai Al Lab at Seattle

Modeling DNN Inference Energy Consumption

Count the hardware operations:

Energy Model: piece-wise linear function E(W) =

Compressed

DNN

Energy-Constrained DNN Training

Basic Idea: Projected-SGD

$$W \leftarrow P(W - r)$$

Additional trick: design a trainable binary mask to increase the sparsity of the input mask.

MP: Magnitude-based Pruning; SSL: Structured Sparsity Learning; EAP: Energy-Aware Pruning.

DNNs	AlexNet					SqueezeNet				MobileNetV2		
Energy Budget	26%				38%				68%			
Methods	MP	SSL	EAP	NetAdapt	Ours	MP	SSL	EAP	Ours	MP	SSL	Ours
Accuracy Drop	0.7%	2.4%	0.8%	4.4%	0.5%	1.7%	2.7%	0.1%	0.4%	1.7%	2.0%	1.0%
Energy	34%	32%	27%	26%	26%	44%	50%	76%	38%	70%	72%	68%
Nonzero Weights Ratio	8%	35%	9%	10%	31%	34%	61%	28%	48%	52%	63%	63%

DNNs@Dataset	LeNet-5@MNIST							MobileNetV2@MS-Celeb-1M			
Energy Budget		17%						60%			
Methods	MP	SSL	NetAdapt	SBP	BC	Ours	MP	SSL	Ours		
Accuracy Drop	1.5%	1.5%	0.6%	1.5%	2.2%	0.5%	1.1%	0.7%	0.2%		
Energy	18%	20%	18%	22%	26%	17%	66%	72%	60%		

SBP: Structured Bayesian Pruning; BC: Bayesian Compression

- ssion framework;
- Outperform state-of-the-arts;
- compression.

Experiment Results

& Kwai

Mask on MS-Celeb-1M

Conclusion

Propose an end-to-end energy-aware model compre-

First work to involve the hardware model in model