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Figure 1: Imaging system, computer systems, and human visual systems are three necessary components in end-to-end AMC
platforms. Jointly designing and optimizing them is crucial for maximizing overall efficiency and task performance.

Abstract
Autonomous machines such as drones, robots, and even Augmented
and Virtual Reality headsets, while are of a computing nature, in-
timately interact with both the environment and humans. They
must be built, from the ground up, with principled considerations
of three main components: imaging system, computer system, and
human perception and cognition. While our community has been,
for very good reasons, focused almost exclusively on improving the
computer systems, our position is that the continued progress in
autonomous machine computing (AMC) must rely on co-designing
and co-optimizing all three components. We call them, collectively,
agents for progress in AMC.

This paper has three goals: discuss how the three agents play
their (largely isolated) roles in today’s AMC, describe a framework
where the three agents are fundamentally connected, and finally,
present exciting research opportunities that arise when jointly
designing and optimizing across the three agents.

CCS Concepts
• Computer systems organization → Heterogeneous (hybrid)
systems; Optical computing; Special purpose systems; • Com-
puting methodologies → Mixed / augmented reality; Percep-
tion; Virtual reality.
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1 Introduction
Autonomous Machine Computing necessarily encompasses three
components: imaging systems, computer systems, and the human
visual system. Imaging systems capture massive visual data, tem-
porally and spatially. Computer systems interpret the visual data
(e.g., performing machine vision tasks) and, in many cases, generate
visual data for humans to consume. The human visual interpret
both physical visual data from the scene and synthesized visual
data generated by the computer systems. Figure 1 shows end-to-end
pipeline architecture.

The goal of this opinion piece is to discuss opportunities that
arise when we jointly design and optimize all three components.
These opportunities come in two forms: co-designing imaging and
computer systems (Section 2) and co-optimizing computer systems
with human visual system (Section 3). We will conclude with an
outlook for exciting research directions (Section 4).

2 Imaging-Computing Co-Design
Imaging and computing, which acquire and interpret visual data,
respectively, are traditionally designed in isolation and simply
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Fig. 2: A typical machine vision pipeline that encompasses
both the imaging system and the computing system.

Fig. 3: The imaging system is an encoder that encodes the
high-dimensional scene space into a low-dimensional image
space; the computing system decodes the scene information
back from the low-dimensional space.

stitched together in a system, resulting in a sub-optimal whole.
Figure 2 shows how imaging and computing interacts in a typical
machine vision pipeline. This section discusses some recent devel-
opments in co-designing imaging and computing systems to deliver
orders of magnitude efficiency gains or task quality improvements.

Fundamentally, the imaging system is an encoder, and the com-
puter system is a decoder. This is the idea illustrated in Figure 3. The
physical world is a very high-dimensional space: there are many
points in the scene; each point has many rays existing it, each of
which carries spectral radiance, polarization, and phase information.
In order to make sense of the scene, an imaging system encodes the
high-dimensional information into a low-dimensional space, i.e.,
the image pixel space. The computer system, i.e., the machine vision
algorithms executing on a piece of hardware substrate, operates on
the low-dimensional information with the goal of reconstructing
information (e.g., object detection) in the high-dimensional scene
space. Once taking this information-theoretical perspective, it only
makes sense to jointly design the encoder with the decoder.

The imaging system has three main components: optics, image
sensor, and the Image Signal Processor (ISP). The optics, e.g., lenses,
serve to focus lights on the sensor. The sensor turn optical signals,
i.e., photons, to electrical signals, i.e., RAW pixels. The RAW image
pixels are transferred to the host through the MIPI CSI-2 interface
to be processed by an Image Signal Processor (ISP), which removes
sensing artifacts and generates clean pixels either for machines
to consume (i.e., computer vision) or for humans to consume (i.e.,
photography). We will discuss how each component can be co-
designed with computer systems.

2.1 Deep Optics
Lenses focus lights onto the sensor, but introduce aberrations. Con-
ventional lens design aims to maximize the imaging quality by
minimizing aberration. Recent research focuses on co-designing
optics with the downstream algorithms, both for better imaging
quality or for improving the end-to-end system efficiency. Both are
research directions share the same common strategy: parameteriz-
ing optical design using a differentiable model and co-train optics
with downstream DNNs, hence the notion “deep optics”.

2.1.1 Free-Space Optical Computing. While lenses are convention-
ally thought of as an imaging device, it can be used for computation.
We can computationally model an optical system as a linear system
that performs a convolution against the optical image incident on
the sensor plane. An optical image 𝐼 (𝑥,𝑦) represents the irradiance
at position <𝑥,𝑦> on the sensor plane. The sensor then samples the
convolved optical image at the pixel sites. The convolution kernel is
called the Point Spread Function (PSF), which is uniquely dictated
by the inherent optical parameters of the lenses and is dependent
on both the depth of the scene points and the wavelength.

The fact that lenses perform convolution has inspired a whole
host of work to offload convolution operations in a CNN to the opti-
cal domain, which, admittedly, is not a new idea [80]. For instance,
PSF engineering, i.e., tuning the system PSF to achieve a particular
convolution, has been a field in optics for decades [40]. The recent
interests arise because, partially, we can model the design of the
lenses in a differentiable way so that we can co-train the lenses with
the downstream CNNs. For instance, Chang et al. [12] uses Diffrac-
tive Optical Elements (DOEs) as the optical device to implement
convolution; Villegas Burgos et al. [10, 77] uses metasurface optics.
In both cases, the optical parameters (height map in DOE and token
orientation in metasurface) are co-trained with downstream CNNs.

While using lens for optical convolution is inefficient, it is gener-
ally challenging to implement non-linear operations in free-space
optics. Therefore, one generally has to converts signals from the op-
tical domain back to the electrical domain after each convolutional
layer [47]. The per-layer signal transduction might hurt the overall
system efficiency; as a result, using free-space optical computing
for performance improvements might be applicable only to limited
scenarios where the CNN is lean to begin with.

2.1.2 Domain-Specific Deep Optics. Orthogonal to improving per-
formance is improving the quality of domain-specific tasks, many of
which are critical to AMC such as depth estimation [13, 30, 33, 82],
acquisition of high-dynamic-range images [54, 70], obtaining large
depth-of-field [50], object detection [13], and extended depth of
field [64]. The idea is to co-train the optical design with downstream
computer vision algorithms to optimize for vision task loss. Such
co-design usually applies additional manufacturing constraints to
ensure that the optimized optical design is fabricable.
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Fundamentally, these optical designs improve task quality be-
cause it learns what information in the incident light is essential to
retain for a specific task. Imaging through lenses is necessarily a
lossy encoding. For instance, the phase and polarization information
in the scene lights is lost through this encoding. The diffraction limit
and optical aberrations further degrade the signal. Reconstructing
the original scene signal from the degraded (and sampled) signal is
an ill-posed problem that does not have a general solution. Deep
optics addresses this issue by learning from the large amount of
training data, optimizing for a specific task domain.

The limitation of domain-specific optics is the lack of flexibil-
ity: the lenses, once fabricated, are fixed; they are optimized for a
particular class of tasks and are usually sub-optimal for others.

2.2 Computational Image Sensors
While conventional CMOS image sensors are responsible for only
“imaging”, i.e., generating pixels from scene light, modern image
sensors do much more: they run deep neural networks (DNNs)
and buffer a large amount of data (at the order of Gb) — all in the
same die! What’s fueling the ever more capable image sensors is
die stacking, a technology that is perhaps more commonly seen
in processor design but is virtually everywhere in high-end image
sensors today.

2.2.1 Stacked Image Sensors. Conceptually, an image sensor has
two basic components: a light-sensitive pixel array that converts
photons to electric charges and the read-out logic that converts
charges to digital values (RAW pixels). Traditional CMOS image
sensors lay the pixel array and the logic circuitry side by side.
Virtually all image sensors today, however, stack the pixel array
layer on top of the logic layer. Some of the early and classic examples
are the SONY IMX240 sensor used in Galaxy S6 smartphones and
the Samsung S5K2L2 sensor used in Galaxy S9 smartphones.

The usual advantages of die stacking, such as providing higher
bandwidth and allowing for heterogeneous integration (i.e., the
pixel layer and the logic layer can use their respective, optimal
process node), still apply. For image sensors, however, perhaps
the biggest benefit that stacking offers is the smaller form factor
or, equivalently and more commonly, the ability to integrate more
functionalities, mostly into the logic layer, given the same footprint.

Indeed, we are seeing a plethora of image sensors with ever more
advanced processing capabilities. These pixels are generally clas-
sified into two categories, each with a complementary uses of the
extra space available in the stacked design. The first class of sensors
improve the fundamental imaging quality through advanced pixel
circuitries [35, 48, 76]. One could argue that those circuitries are
better to be placed inside a sensor anyways but had not been possi-
ble before due to the form factor limit. The more compact design
in a stacked sensor just makes them possible.

The second, and arguably the more interesting, class of sensors
integrate computations, such as image signal and DNN processing,
that are traditionally carried out outside an image sensor [23, 32, 42].
The computations are usually carried out in a DNN accelerator/DSP
stacked with the pixel array layer. For instance, the Sony IMX 400
sensor is a 3-layer design that integrates a pixel layer, a DRAM layer
(1 Gbit), and a logic layer with an ISP. The DRAM layer buffers
high-rate frames before steaming them out to the host. This enables

super slow motion (960 FPS). Otherwise, the bandwidth of the MIPI
CSI-2 interface limits the capturing rate of the sensor.

Moving computation into a sensor has clear advantages. Most
importantly, by consuming data closer to where they are generated,
we reduce the data communication energy, which, as is well recog-
nized, dominates the overall energy consumption. Communication
inside a sensor through a micro through-silicon-via (uTSV) con-
sumes two orders of magnitude lower energy than that through the
MIPI CSI-2 interface. Now imagine instead of transferring an HD
image ( 6 MB) we transfer only an object label (a few bytes) by run-
ning an object detection DNN inside the sensor. The savings on data
transmission are more significant if the data has to be transmitted
to the cloud when, for instance, the sensor itself has little to none
computation capability. The energy cost of wireless communication
is five orders of magnitude higher than that of uTSV.

While computations in existing stacked sensors are customized
for specific tasks and will likely continue to be so, it should not
be surprising that some image sensors have started integrating
some form of programmable processors with a relatively involved
memory hierarchy to allow more flexible computation inside the
sensor. For instance, SCAMP-5 integrates an ALU, a set of registers
and SRAMs within each pixel [11].

2.2.2 Challenges. Moving computation into an image sensor, while
appealing, is not without challenges.

Inefficient Computation. Most importantly, computation in-
side an image sensor is inherently inefficient compared to that in
the main processing chip — for two main reasons, both of which
are out of cost-driven, practical considerations. First, image sensors
are smaller in area than the SoC and, therefore, offer lower peak
performance. Second, the process node of image sensors usually
lags at least one generation behind that of the main SoC. Today,
many commercial processors are fabricated using a 7 nm process
node or smaller, but even high-end image sensors still use a 14 nm
or 28 nm process node.

Thermal-Induced Noise. Performing more computation in-
side a sensor naturally increases the temperature. Unfortunately,
image sensors are susceptible to thermal-induced noise, such as
read noise and dark current noise. Recent research has shown that
computation inside a sensor noticeably degrades both the perceived
imaging quality and the computer vision task accuracy [6, 41].

Interestingly, while thermal noise is a concern, thermal hotspots
are unlikely an issue. Our recent work [51] shows that 3D stack-
ing increases power density for compute-dominant applications.
The absolute power density, however, is generally at the order of
mW/mm2, three to four orders of magnitude lower than the power
density of typical CPUs (up to 1W/mm2 [19]) and GPUs (up to
0.3W/mm2[14]). Such a low power density will unlikely lead to
thermal hotspots and create a cooling challenge [84].

2.2.3 Promising Solutions. Given the two limitations, the ideal
workload for in-image sensor computing is one where a trivial
amount of computation inside the image sensor can drastically
reduce the data transmission volume. The trivial computation en-
sures that the thermal-induced noise is minimal and minimizes the
inefficiencies of the actual computation inside the sensor. Unfor-
tunately, many common visual computing algorithms do not fit
this ideal model [25]. Therefore, we must purposefully design new
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algorithms that are amenable for in-image sensor processing by
construction.

One such approach is in-sensor sampling, where we predict and
extract only the Region-of-Interests (ROI) that are relevant to the
downstream tasks and then sample pixels in the ROI. This strategy
has the advantage of reducing both the amount of work done inside
the sensor (fewer pixels are captured and fewer ADC invocations)
and the amount of work done outside the sensor (downstream
algorithms operate on sparse pixels).

We demonstrate in-sensor sampling for gaze tracking [26], a cru-
cial task in both AR/VR and driving assistant systems (e.g., tracking
the attention of drivers). We use a light-weight DNN to predict
the ROI in a near-eye image [24] and perform random sampling
within the ROI. Critically, the downstream gaze detection CNN is
co-trained with the randomly sampled pixels, ensuring high end-to-
end accuracy in the presence of sparse pixels. We show that our eye
tracking system reduces pixel volume by about 95%, leading to an
8.2× energy reduction and a 1.4× tracking latency reduction com-
pared to existing eye tracking systems, all with little degradation
on the tracking accuracy.

2.3 Image Signal Processing
The ISP plays an important role in turning “imperfect” RAW pixels
in the Bayer domain to pixels in the RGB/YUV domain through a
series of algorithms such as dead pixel correction, demosaicking,
and white-balancing. In architecture terms, the ISP is a specialized
IP block in a mobile SoC, organized as a pipeline of mostly stencil
operations on a set of local SRAMs (“line-buffers”) [34, 74].

While ISPs are usually fixed-function ASIC, they are increasingly
programmable so as to accommodate different computations and
algorithms in support of higher imaging quality, which has become
a strong product differentiator for mobile devices. For instance,
the ISP in Google’s Pixel2 smartphone is a fully programmable
processor with its own VLIW ISA [61]. ISPs are now capable of
sophisticated computational photography algorithms that are tradi-
tionally performed as separate image enhancement tasks, possibly
off-line, using CPUs or GPUs. Examples include HDR imaging [1–3]
and (temporal) denoising [38, 49].

2.3.1 Machine Vision-Optimized ISP Algorithms. The majority of
images captured by today’s cameras are consumed by machine
vision algorithms rather than humans. Traditional ISP design, how-
ever, optimizes imaging quality for humans rather than machine
vision. A recent line of work has been to rethink the ISP design,
both its algorithms and hardware architecture, for machine vision.

For instance, Dirty Pixels [21], Buckler et al. [9], and ISP4ML [31]
all investigated the importance of different ISP stages to machine
vision quality. Some ISP stages that are critical to imaging qual-
ity, such as demosaciking and white balancing, can be skipped
altogether if the images are to be consumed by machine vision algo-
rithms. This perhaps is not surprising, since CNNs can be trained
to learn the functions of those stages. However, CNNs learned di-
rectly on RAW data are ineffectively. They either require a much
larger model or do not generalize well to different datasets/scenes,
as empirically studied by Hansen et al. [31].

There are also proposals that attempt to replace the entire ISP
with a DNN [63, 73]. There are at least two benefits of replacing an

ISP with a DNN. First, we can co-train the ISP with the downstream
machine vision DNNs to optimize for end-to-end quality [73]. Sec-
ond, it becomes relatively easier to update the ISP algorithm — by
replacing the model/weights, assuming there is a general-purpose
DNN accelerator supporting the neural ISP. However, replacing the
traditional ISP pipeline with a DNN adds computational cost.

2.3.2 ISP-Assisted Machine Vision. Another line of work uses meta-
data generated by the ISP, especially the motion vector metadata,
to simplify downstream computations. The idea is to transform
continuous machine vision algorithms from a frame computation
into an incremental computation.

Frames in a real-time video stream are not independent. Instead,
pixel changes are correlated in time, due to visual object motion.
Our algorithm leverages the pixel motion information to incremen-
tally execute vision algorithms so as to greatly reduce the total
compute requirement. This motion-based incremental computation
is formulated as follows:

𝑓 (𝑥𝑡 ) = 𝑓 (𝑥𝑡−1)
⊕

𝛿 (𝑥𝑡 , 𝑥𝑡−1)

where 𝑥𝑡 is the current frame, 𝑥𝑡−1 is the previous frame, 𝛿 denotes
the operation that calculates the increments between two frames
(i.e., motion), and

⊕
denotes the operation that produces the vision

results for the current frame by combining the previous frame’s
result with the pixel motion data. If both the 𝛿 and

⊕
operations

are computationally cheaper than the original vision algorithm
𝑓 (·), the vision results for the current frame can be calculated in a
much more efficient way.

While incremental computation in general is a technique used in
program analysis and optimization [55, 60], Euphrates [86] applies
it to the domain of continuous vision. We demonstrate one set of 𝛿
and

⊕
operations that perform well in practice. In particular, we

propose to encode 𝛿 (𝑥𝑡 , 𝑥𝑡−1) as motion vectors [37], and to realize
the

⊕
operation through motion extrapolation, which is six orders

of magnitude lighter than executing a full CNN inference (i.e., 𝑓 (·)).
Critically, the motion vectors are naturally generated by the ISP

as a byproduct of temporal denoising. That is, the ISP exposes the
motion vectors to the vision engine such that the 𝛿 operation is
performed “for free.” This strategy exploits the algorithmic syn-
ergies between the ISP and the vision engine to avoid redundant
computations while simplifying SoC design. The additional hard-
ware requirement is low: only a simple augmentation to the ISP
that saves and transfers the motion vectors to the SoC.

There is a host of work that leverages motion vectors to sim-
plify downstream vision tasks. For instance, EVA2 [8] accelerates
DNN inference in continuous vision by using the motion vectors to
extrapolate intermediate feature maps; ASV [27] uses the motion
vectors across two stereo images to accelerate depth estimation
from stereo images. Neither explicitly reuses the motion vectors
from the ISP, but conceptually can.

3 Human-Systems Co-Optimizations
AR/VR and, to some extent, robots and self-driving cars, are human-
facing systems. An important goal of human-facing systems is to
stimulate certain percepts from humans. To do so, computing sys-
tems as an encoder and the HVS acts as a decoder. This is the idea



Imaging, Computing, and Human Perception: Three Agents to Usher in the Autonomous Machine Computing Era ICCAD ’24, October 27–31, 2024, New York, NY, USA

Fig. 4: The computer system encodes the percept intended to
stimulate from humans (e.g., color, objects, depth, motion)
as a set of visual stimuli (i.e., lights from the display pixels),
which become the inputs to the HVS. The human visual sys-
tem decodes the target percept from the incident lights.

illustrated in Figure 4. For instance, a VR system renders photoreal-
istic images such that humans interpret the rendered objects as if
they are from the real, physical world. In this sense, the computer
system encodes the percept intended to evoke from humans (e.g.,
color, objects, depth, motion) as a set of visual stimuli (i.e., lights
from the display pixels), which become the inputs to the HVS. The
human visual system decodes the target percept from the incident
lights. Again, this perspective naturally points to jointly optimizing
the computer systems with the HVS.

3.1 Spatial Vision
Our peripheral visual acuity is extremely bad. If we fixate straight
ahead, we will not be able to tell the details of an object in our
peripheral vision. A great deal of work leverages the non-uniform
spatial visual acuity to improve system performance.

Scientific Basis. The fundamental reason for low peripheral
acuity is at least three-fold and is well-known.

(1) The receptive field (RF) sizes of Retinal Ganglion Cells (RGCs)
increasewith eccentricity, a result of larger dendritic fields [18,
62] and sparser RGC density in periphery [16]. A large RF
means that a RGC integrates signals from a larger spatial
area, i.e., more blurring in the (spatial) frequency domain.

(2) Cone cells (photoreceptors responsible for vision under nor-
mal daylight) become larger in size as eccentricity increases [17],
also contributing blurring in spatial frequency.

(3) The distribution of cone cells on our retina is extremely non-
uniform: over 95% of the cone cells are located in the central
region of the retina (i.e., fovea) with an eccentricity of below
5 ° [17, 65]. The density of the cone cells decreases drastically
in the visual periphery, which is, thus, significantly under-
sampled spatially.

Improving Computer Systems. The low peripheral vision
does not quite affect how computer systems are designed for PCs
and smartphones, since the visual content coming from their dis-
plays will mostly fall in the fovea. When immersed in a virtual envi-
ronment (e.g., when a user wears a VR headset), however, much of
the visual stimuli generated from the computer systems will fall in
the peripheral of the retina. This observation gave rise to the now
well-established area of foveated rendering [29, 58, 66, 67], where

one could improve the rendering speed by generating low-quality
visual stimuli for the periphery with impunity. Our community
has quickly picked up the idea and proposed hardware extensions
to support foveated rendering in AR holograms [85] and cloud-
assisted collaborative VR rendering [83].

While conceptually simply, we must answer a basic question:
what exactly to render in the periphery without degrading per-
ceptual quality? Perhaps unsurprisingly, today we simply blur or
lower the resolution of the peripheral content. These empirical ap-
proaches, however, introduce suspicious artifacts [79], and it is not
clear whether blurring content buys us any computation saving.

A scientifically sound answer requires understanding the com-
plex processing that takes place in the entire human visual pathway,
including processing on the retina, in the Lateral Geniculate Nu-
cleus, and by the visual cortex of the brain. Assume we could model
the human visual processing as a function 𝑓 , and model the original
input stimulus (without any degradation) as 𝐼 . What we want to
find is an alternative stimulus 𝐼 ′ such that 𝑓 (𝐼 ) = 𝑓 (𝐼 ′), all the
while minimizing the cost (of the underlying computing systems)
to generate 𝐼 ′. This gives the following optimization problem:

min
𝐼 ′

𝑃 (𝐼 ′) 𝑠 .𝑡 . 𝑓 (𝐼 ) = 𝑓 (𝐼 ′) (1)

As one might imagine, the central difficulty is how to model 𝑓 ,
which we know is highly non-linear, dynamically self-adapting,
feedback-driven, and most likely non-differentiable; one could even
argue that the Holy Grail of neuroscience is to decipher 𝑓 . Literature
is rich with hypotheses and even models of bits and pieces in the
entire system, but to date we simply do not know how to model 𝑓
from first principles.

Since we cannot derive 𝑓 from first principles (yet), we look for
the next best thing: a computational model that fits experimen-
tal data. This is done through psychophysics, where we measure
human behaviors under a set of controlled physical stimuli [28, 59].

Our recent work makes a good stride in this direction by com-
putationally modeling one specific aspect of human vision: color
perception. Through over 8,000 (IRB-approved) trials of psychophys-
ical measurements on real participants, we build a computational
model that predicts, for a given reference color at a given eccen-
tricity, the set of colors that are perceptually no different from the
reference color.

Leveraging the perception model, we design a VR rendering
system that modulates pixel colors to minimize display power (dic-
tated by colors) without affecting human color perception [15, 22].
Building on the principle of peripheral color confusion, we propose
a compression algorithm that encodes perceptually similar colors
together [75]. This algorithm, efficiently implemented in hardware,
reduces the average memory traffic in a VR SoC by 67%.

Improving Imaging Systems. Complementary to improving
the computer systems (and perhaps a bit out of place for this section)
is to leverage spatial vision for improving imaging systems. Just
like human vision, machine vision applications (e.g., drones and
robots) do not require high-quality data at the camera periphery.
Foveated image sensing is thus a natural idea: sense the center of
camera field-of-view (FOV) with high quality at the expense of
low-quality periphery sensing.
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Foveated imaging can be realized in camera optics and/or sensor
circuits. For instance, one might use a (3D printed!) micro-lens array
to expose different pixels to different FOV sizes [72]. Alternatively,
one might build the sensor circuit with non-uniform pixel shapes
and sizes [57, 81].

A particularly interesting approach for foveated imaging is to
integrate two imagers that share the same aperture in a camera [36].
he peripheral imager senses the entire FOVwith low resolution, and
the other foveated imager provides the “fine high-contrast details
and color sensation of a narrow foveated region.” Conceptually, this
design is reminiscent of three-chip cameras for consumer photogra-
phy [43] and multi-chip cameras for astrophysical imaging [5], both
of which use multiple imagers to accurately capture color/spectrum
information of the scene. The dual-sensor foveated imaging system
has a similar idea, but applies it to foveated imaging.

3.2 Saliency
Complementary to peripheral vision, we can also exploit human
visual saliency to reduce the rendering and streaming cost of VR
(360 °) videos. Informally, saliency refers to stimuli in the scene
that attract our attention. Our visual cortex builds a saliency map
from the scene to guide our actions, e.g., gaze shifts. In practical
terms, this means users will be more attracted to salient objects
when watching a video.

Leveraging saliency, EVR is a one such cloud-client collaborative
rendering system [46, 69]. The cloud service, deployed on Amazon
EC2, extracts trajectories of salient objects in a video (i.e., stim-
uli that most likely attract user attention), pre-render them, and
store them as much smaller “videolets”. At rendering time given
the real-time visual field of a user, only the best matching videolets
are transmitted. EVR reduces the data transmission cost and avoids
expensive on-device rendering, amounting to 58% overall energy
reduction. One could also leverage saliency for compression: pri-
oritize bits to perceptually more interesting visual areas. Vignette
builds a DNN to predict saliency and presents a system for video
compression and storage [53].

3.3 Temporal Vision
All the discussions so far are concerned with the spatial charac-
teristics of human vision. The temporal dimension provides many
interesting opportunities too. The most well-known aspect of tem-
poral vision is saccades [4], where our eyes move rapidly when
shifting visual attention between targets. Unless purposely trained,
e.g., in the military, we simply cannot avoid saccades. On average,
saccades occur 3–4 times per second (more frequent than heart
beats) and last 20 ms – 200 ms each time, amounting to as many as
15 frames on a 90 FPS device.

Interestingly, human vision during saccades is momentarily
blind, a phenomenonwidely known as saccadic suppression [52, 71].
Application researchers use saccades to realize many interesting
ideas, such as infinite walking in VR [68]. Saccades also temporally
modulate the incident light signals, re-distributing power from 0
Hz temporal frequency to other temporal frequencies. This power
re-distribution has been shown to have significant impact on visual
sensitivity right after a saccade lands [7, 56]. Recent work exploits

the post-saccade visual sensitivity change to improve the image
resolution during VR rendering [44].

A related phenomenon is blink: our visual perception is also
suppressed during eye blinks [78]. Vision research has shown that
humans are functionally blind for about ten percent of the time
due to blink-induced visual suppression, another opportunity to
shave some computation cost. For instance, people have started
using blinks for VR redirection/infinite walking [45].

Finally, keep in mind that the visual stimuli are generated from
the displays, which have finite refresh rates. A low refresh rate
reduces the computation and display power but introduces many
artifacts such as flickering and blur (low refresh rate is the main rea-
son moving objects look blurry to you onmany TVs). A high refresh
rate, in contrast, increases the computational load. This contention
has led to recent work on variable refresh rate systems [20, 39].

4 Outlook
It is clear that continued progress in AMC, and visual computing
in general, requires co-designing and co-optimizing imaging sys-
tems, computer systems, and human visual system. Many exciting
opportunities lie ahead.

Rather than simply deciding which portion of an existing algo-
rithm should be “offloaded” to the sensor, wemust rethink algorithm
design for in-image sensor processing. For instance, instead of mit-
igating or reducing the thermal-induced noise, can we embrace
the noise and design downstream algorithms with the noise profile
in mind? In the long run, holistically designing the sensing and
computing architectures will provide a greater return of investment
compared to designing each individually and simply stitching them
together. This co-design hinges critically on the ability to model
and explore the hybrid optical-electrical-mechanical design space
across performance, power, and thermal measures.

As visual scientists keep questing for the fundamental operat-
ing principles of the HVS, systems researchers can help acceler-
ate the rate of progress and increase the impact using our soft-
ware/hardware optimization expertise. Many obvious questions
follow: How to build lightweight computational models? How to
coordinate the accelerators under the perceptual constraints? How
to build a proactive, rather than reactive, system that re-configures
itself by predicting human (visual) perception? Perhaps most im-
portantly: what are the principled abstractions of the multifaceted
HVS that we should expose the computer systems to? Without a
doubt new phenomena in HVS beyond what are discussed here will
be discovered and lend themselves to new systems opportunities.
Having principled abstractions avoids the endless game of chasing
after yet another new phenomenon.

Finally, while this opinion piece focuses on leveraging co-design
for improving systems efficiency, a complementary and equally
important direction is to enhance the capabilities both of humans
and engineered systems.
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