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ABSTRACT
Factor graph is a graph representing the factorization of a probabil-

ity distribution function, and has been utilized in many autonomous

machine computing tasks, such as localization, tracking, planning

and control etc. We are developing an architecture with the goal

of using factor graph as a common abstraction for most, if not, all

autonomous machine computing tasks. If successful, the architec-

ture would provide a very simple interface of mapping autonomous

machine functions to the underlying compute hardware. As a first

step of such an attempt, this paper presents our most recent work of

developing a factor graph accelerator for LiDAR-Inertial Odometry

(LIO), an essential task in many autonomous machines, such as

autonomous vehicles and mobile robots. By modeling LIO as a fac-

tor graph, the proposed accelerator not only supports multi-sensor

fusion such as LiDAR, inertial measurement unit (IMU), GPS, etc.,

but solves the global optimization problem of robot navigation in

batch or incremental modes. Our evaluation demonstrates that the

proposed design significantly improves the real-time performance

and energy efficiency of autonomous machine navigation systems.

The initial success suggests the potential of generalizing the fac-

tor graph architecture as a common abstraction for autonomous

machine computing, including tracking, planning, and control etc.

KEYWORDS
factor graph, autonomous machine computing, computer architec-

ture, robotics

1 INTRODUCTION
Autonomous machine computing (AMC) is the next big trend in

information technology in the coming decades, after personal com-

puting, mobile computing, and cloud computing [1]. Specifically,

AMC is the core technology stack that empowers various kinds of

autonomous machines, including Mars or Lunar explorers, intelli-

gent vehicles, autonomous drones, delivery robots, home service
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robots, agriculture robots, industry robots and many more that we

have yet to imagine [2].

Similar to other information technology stacks, the AMC technol-

ogy stack consists of hardware, systems software and application

software. Sitting in the middle of this technology stack is computer

architecture, which defines the core abstraction between hardware

and software. This abstraction layer allows software developers

to focus on optimizing the software and hardware developers to

focus on developing faster, more affordable, more energy-efficient

hardware that can unlock the imagination of software developers.

While there have been many recent proposals of computer ar-

chitectures for AMC [3–7], this paper is the first to explore factor

graph as a common abstraction, or architecture, for autonomous

machine operations. A factor graph is a graph representing the

factorization of a probability distribution function and has been uti-

lized in many autonomous machine operations, such as localization,

tracking, planning and control [8, 9]. As the initial step, we focus on

developing a factor graph accelerator for LiDAR-inertial odometry,

a key localization method in many autonomous machines.

The rest of this paper is organized as follows. Sec. 2 introduces

the background of factor graph. Sec. 3 summarizes the traits of

factor graph computing that motivates the design of the proposed

accelerator. Sec. 4 delves into the hardware design of the proposed

accelerator. Sec. 5 presents the results of performance evaluation,

and we conclude in Sec. 6.

2 BACKGROUND ON FACTOR GRAPH
Factor graphs are probabilistic graphical models that can essentially

model complex state estimation problems. For representing a state

estimation problem, the factor graph is organized as a bipartite

graph consisting of variables connected by factors, where variables

represent unknown states and factors connected to states represent

probabilistic relations between states [10]. According to the factor

graph, the joint probability distribution of the entire states can be

factorized into products of probabilistic functions; as a result, the

state estimation is turned into the maximum a posterior (MAP)

inference [8], of which solution is to maximize the products of

probabilistic factors.

Many AMC problems, such as estimation, planning and optimal

control, have an optimization problem at their core, as a result

factor graphs have been well applied to represent, reason and solve

those AMC operations. The factor graph abstraction of robotic

optimization brings several benefits: First, it is an unified model

that well suits for various forms of optimization problem, such as

https://doi.org/10.1145/3508352.3561112


ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

filtering [11], incremental smoothing [12] and batch optimization

[13]. Second, it provides a concise and abstract programming inter-

face to compose robotic optimization problems, through which all

programmers need to program a robotic optimization application

is to specify the variables, factor functions and their connections

according to the graph. Third, its graph structure facilitates sparse

data storage that can be exploited to optimize memory resources

and performance.

Several software libraries [13–15] using factor graph for robotic

optimization have been developed. However, hardware accelerators

for factor graph are less studied, which however are highly required

by AMCs that usually have stringent power and performance con-

straints [4]. To take the first step towards the hardware accelerator

of factor graph, we use LiDAR-Inertial Odometry (LIO, a dominant

localization approach for autonomous vehicles) [16] as an example

to exploit characteristics of factor graph computing that facilitate

hardware design.

3 TRAITS OF FACTOR GRAPH COMPUTING
This section first introduces the general MAP inference formulation

for factor graph (Sec. 3.1). Then the algorithm for solving the LIO

based on factor graph is illustrated in Sec. 3.2. The structural char-

acteristic of the LIO factor graph that facilitates parallel computing

is discussed in Sec. 3.3.

3.1 MAP Inference for Factor Graph
For AMC state estimation tasks, the core function is to compute

unknown states 𝑋 , such as poses (position and orientation) in lo-

calization applications, given the noisy measurements, 𝑍 . Factor

graphs can essentially model AMC estimation problems, in which

variable nodes represent unknown states and factor nodes repre-

sent functions that only apply on variables connected with the

factor node. With the topology definition, a factor graph defines the

factorization of a global function Φ(𝑋 ). In AMC state estimation,

the global function is a joint probability distribution. The object of

state estimation is to maximize the joint probability, which turns

into a MAP inference,

𝑋 ∗ = argmax

𝑋

Φ(𝑋 ) = argmax

𝑋

∏
𝑖

𝜙𝑖 (𝑋𝑖 ) (3.1)

Assuming that all factors are of the form as Equ. 3.2, which

include both Gaussian priors and likelihood factors derived from

measurements corrupted by zero-mean, normally distributed noise,

where 𝑧𝑖 is the 𝑖-th measurement or ground truth, ℎ𝑖 (·) is a mea-

surement function that maps the state 𝑋𝑖 to be estimated to its

sensor’s measurement space, Σ𝑖 is the covariance matrix of the 𝑖-th

measurement and ∥ · ∥2Σ𝑖 is the Mahalanobis norm that quantifies

the error. Taking the negative log of Equ. 3.1 allows us to instead

minimize a sum of nonlinear least-squares as Equ. 3.3.

𝜙𝑖 (𝑋𝑖 ) ∝ exp ∥ℎ𝑖 (𝑋𝑖 ) − 𝑧𝑖 ∥2Σ𝑖 (3.2)

𝑋 ∗ = argmin

𝑋

∑︁
𝑖

∥ℎ𝑖 (𝑋𝑖 ) − 𝑧𝑖 ∥2Σ𝑖 (3.3)

Nonlinear least-squares problems can not be solved directly,

but require an iterative solution starting from an initial estimate.

Typical nonlinear solvers, such as the Gaussian-Newton method,
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Fig. 3.1: Factor graph of tightly coupled LiDAR-Inertial
Odometry. The white circles represent the pose, velocity and
biases variables. The black dots denote the different factors.

have a similar compute process. They start from an initial 𝑋 0
. In

each iteration, an increment Δ is computed and applied to obtain

the next estimate 𝑋 = 𝑋 + Δ. This process stops when certain

convergence criteria are reached, such as the change Δ falling

below a small threshold. In each iteration, Δ is found by solving

the linear least-squares problem as Equ. 3.4,

Δ∗ = argmin

Δ

∑︁
𝑖

∥𝐴𝑏𝑖Δ𝑖 − 𝜖𝑏𝑖 ∥22 = argmin

Δ
∥𝐴𝑏Δ − 𝜖𝑏 ∥22 (3.4)

𝐴𝑏𝑖 = Σ
− 1

2

𝑖

𝜕ℎ𝑖 (𝑋𝑖 )
𝜕𝑋𝑖

����
𝑋𝑖

, 𝜖𝑏𝑖 = Σ
− 1

2

𝑖
(𝑧𝑖 − ℎ𝑖 (𝑋𝑖 )) (3.5)

where the Mahalanobis norm is transformed to 2-norm by Equ. 3.5.

𝐴𝑏 and 𝜖𝑏 are obtained by collecting all Jacobian matrices 𝐴𝑏𝑖 and

residuals 𝜖𝑏𝑖 into a largematrix𝐴𝑏 and right-hand-side (RHS) vector

𝜖𝑏 , respectively.

In fact, the structure of factor graph is equivalent to the sparse

pattern of 𝐴𝑏 , i.e., each block row in 𝐴𝑏 corresponds to a factor

node; each block column in𝐴𝑏 corresponds to a variable node. Thus,

the structure of factor graph directs the solution of Equ. 3.4. By

traversing all variable nodes in factor graph, the adjacency factors

of each variable are combined and then factorized, namely variable

elimination [8]. After eliminating all variable nodes, Equ. 3.4 is

transformed to Equ. 3.6, where 𝑅 is an upper triangular matrix, also

called the Bayes net in probabilistic graph theory [10], obtained by

QR decomposition of𝐴𝑏 . Then Δ can be solved by back substitution

in 𝑅.

argmin

Δ
∥𝐴𝑏Δ − 𝜖𝑏 ∥22 = argmin

Δ
∥𝑄𝑇𝐴𝑏Δ −𝑄𝑇 𝜖𝑏 ∥22

= argmin

Δ
∥𝑅Δ − 𝑑 ∥2

2
(3.6)

However, data is obtained as a temporal sequence in many in-

ference problems for AMC. The latency to solve grows over time

to the point that real-time batch optimization is no longer feasi-

ble. In fact, the constraints formed by new measurements usually

affect only a local part of factor graph and the remaining part is

unchanged so that incremental smoothing requires solving only for

partially affected factor graph [15]. In terms of linear algebra, only

partial entries in 𝑅 require to be updated [17]. Therefore, incremen-

tal smoothing can be regarded as the recalculation of a subgraph

of the factor graph, of which process is consistent with the batch

solution but the dimension is reduced significantly.
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Fig. 3.2: Factor graph and corresponding matrix obtained using serial elimination. (a) Toy example of LIO factor graph with four
variables and its corresponding Jacobian matrix 𝐴𝑏 in serial elimination order. (b) Factor graph and the corresponding matrix
after eliminating 𝑥1. (c) The Bayes net obtained using serial elimination and the corresponding upper triangular matrix 𝑅.

Algorithm 3.1 Variable Elimination On LIO Factor Graph

1: function EliminationOnLio(LIO Factor Graph Φ1:𝑛)

2: for 𝑖 = 1 to 𝑛 do
3: 𝐴𝑖 ← 𝑔𝑖 , 𝑏𝑖 , 𝜏𝑖

4: 𝑝 (𝑥𝑖 |𝑥𝑖+1), 𝜏𝑖+1← partial QR decomposition on 𝐴𝑖

5: return 𝑝 (𝑥1 |𝑥2)𝑝 (𝑥2 |𝑥3) · · · 𝑝 (𝑥𝑛)

3.2 Solving for LIO Factor Graph
LIO uses GPS, IMU and LiDAR as the main sensors. GPS measure-

ments generate constraints on each keyframe; IMU and LiDAR mea-

surements produce constraints on two adjacent keyframes. Thus,

the LIO factor graph has a chain-like structure, as shown in Fig. 3.1.

The factor nodes contain the constraints formed by measurements

of three sensors, and the variable nodes include the pose, velocity

and biases of each keyframe. It results in a factor graph that is rich

in regularity when solving for the MAP solution. The chain-like

property avoids the necessity of traversing the factor graph, saving

time and space overhead.

Fig. 3.2(a) shows the LIO factor graph for a toy example and its

corresponding Jacobian matrix 𝐴𝑏 , where the velocity and biases

variables as well as the IMU factors are omitted for the sake of

brevity and clarity. If the forward (serial) elimination order of 𝑥1 →
𝑥2 → 𝑥3 → 𝑥4 is selected, when eliminating 𝑥1, the adjacent factors

𝑔1 (𝑥1) and 𝑏1 (𝑥1, 𝑥2) are multiplied into the product𝜓 (𝑥1, 𝑥2) and
factorized into a conditional probability 𝑝 (𝑥1 |𝑥2) (the first block
row in Fig. 3.2(b)) and a new factor 𝜏2 (𝑥2), that is

𝜓 (𝑥1, 𝑥2) ← 𝑔1 (𝑥1)𝑏1 (𝑥1, 𝑥2) (3.7)

𝑝 (𝑥1 |𝑥2)𝜏2 (𝑥2) ← 𝜓 (𝑥1, 𝑥2) (3.8)

From the perspective of the matrix, Equ. 3.7 corresponds to the

process of constructing a matrix 𝐴; Equ. 3.8 represents the process

of decomposing 𝐴. When eliminating 𝑥1, 𝐴1 =

[
𝐴11

𝐴51 𝐴52

]
. Then

perform partial 𝑄𝑅 decomposition on 𝐴1 = 𝑄1

[
𝑅1 𝑇12

𝜏52

]
, where

𝑅1 is an upper triangular matrix, as shown in Fig. 3.2(b). The above

process is then iterated for subsequent variables. As the number

of iterations increases, the dimension of 𝜏 grows linearly, thus the

Algorithm 3.2 Incremental Inference On LIO Factor Graph

1: function IncrementalLio(𝑔 𝑗+1, 𝑏 𝑗 )
2: Reconstruct the factor graph Φ𝑗−1:𝑗+1 of 𝑥 𝑗−1, 𝑥 𝑗 and 𝑥 𝑗+1
3: ELIMINATIONONLIO(Φ𝑗−1:𝑗+1)
4: return 𝑝 (𝑥 𝑗−1 |𝑥 𝑗 )𝑝 (𝑥 𝑗 |𝑥 𝑗+1)𝑝 (𝑥 𝑗+1)

dimension of 𝐴 is also growing linearly. The obtained Bayes net is

shown in Fig. 3.2(c) after all variables are eliminated. When solving

the MAP solution in back substitution, the reverse order of the

elimination should be followed, i.e., 𝑥4 → 𝑥3 → 𝑥2 → 𝑥1 should

be solved in turn.

However, in each elimination, factors adjacent to 𝑥 𝑗 to be elimi-

nated are fixed due to the chain-like nature of LIO factor graph, i.e.,

only a GPS factor 𝑔 𝑗 (𝑥 𝑗 ), a LiDAR factor 𝑏 𝑗 (𝑥 𝑗 , 𝑥 𝑗+1), and a new

factor 𝜏 𝑗 (𝑥 𝑗 ) obtained by previous elimination are involved when

eliminating 𝑥 𝑗 . Therefore, the matrix𝐴 𝑗 can be directly constructed

without traversing the factor graph. Besides, during the back sub-

stitution, each variable depends only on its neighboring variable

so that this process can also be performed without traversing the

graph. Algo. 3.1 shows pseudocode for eliminating a LIO factor

graph.

When solving LIO factor graph incrementally, a factor graph of

the three most recent variables need to be recalculated according

to [15], while the other parts remain unchanged. Algo. 3.2 shows

pseudocode for incremental inference on LIO factor graph.

3.3 Parallel Computation of LIO Factor Graph
The parallelism of elimination and back substitution is explored

by considering the symmetric properties of LIO factor graph to

improve the inference performance in hardware. Parallel elimina-

tion is feasible because only the elimination order is changed and

the parts without data dependency are computed in parallel, while

minimizing the filling-in (the number of non-zero entries) in the

upper triangular matrix 𝑅 [10].

Reviewing the toy example, when eliminating 𝑥1, there is no

common factor between 𝑥1 and 𝑥4. Therefore, the elimination of 𝑥1
and 𝑥4 is considered simultaneously. The computations involved

are similar due to the symmetry of LIO factor graph, as shown in

Fig. 3.3(a). Parallel elimination from both sides to the middle could
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Fig. 3.3: Factor graph and corresponding matrix obtained
using parallel elimination. (a) Factor graph and the corre-
sponding matrix after eliminating 𝑥1 and 𝑥4 simultaneously.
(b) The Bayes net obtained using parallel elimination and
the corresponding upper triangular matrix 𝑅.

continue if the chain was longer, but not in this case because 𝑥2 and

𝑥3 have common factor𝑏2 here. Moreover, the maximum dimension

of the matrix𝐴 𝑗 to be decomposed for parallel elimination is smaller

than that for serial elimination, as the number of iterations required

for parallel elimination is half that of serial elimination. Parallel

elimination also results in a different Bayes net, in which case the

root is in the middle and the directed edges point to the variables

on both sides, as shown in Fig. 3.3(b). This means that the root

variable can be solved first, after which the children variables on

both sides can be solved in parallel in turn, e.g. 𝑥2 and 𝑥4 can be

solved simultaneously.

The two elimination patterns get the same minimum filling-

in, three in this toy example, with different elimination orders.

However, the competitiveness of parallel elimination is reflected

in: (a) parallelization of the matrix decomposition, (b) dimension

reduction of the matrix to be decomposed and (c) parallelization of

the back substitution.

Parallel elimination can also be employed for incremental smooth-

ing which recalculates the symmetric LIO factor graph contain-

ing the three most recent variable nodes. Therefore, incremental

smoothing of LIO factor graph is also accelerated by parallel elimi-

nation.

4 HARDWARE ACCELERATOR DESIGN
This section first gives an overview of the hardware architecture

(Sec. 4.1). Then, how the key blocks in the hardware architecture are

designed by leveraging the data and computation patterns inherent

to LIO factor graph is presented, respectively (Sec. 4.2 to Sec. 4.4).

4.1 Hardware Design Overview
Fig. 4.1 shows the hardware architecture of the accelerator, con-

sisting of a series of optimized hardware blocks to accelerate the

inference on LIO factor graph while minimizing the area and power

consumption through circuit reuse. The main functional blocks of

the accelerator include the factor block, the partial-QR decomposi-

tion blocks and the back-substitution blocks.

First, the state variables 𝑋 , measurements 𝑍 and covariance

matrices Σ are loaded from the input buffer, and then the residuals

𝜖𝑏𝑖 and the Jacobians 𝐴𝑏𝑖 are calculated by the factor block. The

sensors supported by this hardware architecture are GPS, IMU and

LiDAR. 𝐴𝑏 and 𝜖𝑏 used to construct the system of linear equations

are stored in on-chip memory, which leverages the inherent sparsity

in LIO factor graph to reduce memory size.

The hardware architecture uses two sets of partial-QR decompo-

sition blocks and back-substitution blocks to accelerate the infer-

ence process. After multiple iterations of partial-QR decomposition

and back substitution, the increment Δ of the state variables is

calculated. In each iteration, Δ is added to 𝑋 to obtain the updated

state 𝑋 = 𝑋 + Δ. If the convergence conditions are not met, 𝑋 is

written directly to the input buffer for the next iteration. Otherwise,

𝑋 ∗ = 𝑋 is output as the final result.

4.2 Circuit Reuse
Computation similarities across algorithm modules are exploited to

reuse circuits and thereby reduce the resource consumption. Circuit

reuse here refers to two aspects: (1) Computation Results Reuse

and (2) Functional Units Time-Multiplexing.

Computation Results Reuse Fig. 4.2 shows the architecture

of the factor block. There is a significant overlap of general parts

in the three factors, which is divided into two levels: between

sensors, and within sensors. Although the IMU factor and LiDAR

factor are produced by different sensors, they are both constraints

on two adjacent keyframes, so there are a large number of same

intermediate results in the computing process. Computation overlap

also exists in the IMU factor. While calculating the 𝜖𝑏𝑖 in IMU, some

items in 𝐴𝑏𝑖 can be calculated at the same time. These common

computations are finished by the General Calculation unit, avoiding

repeated calculations.

Functional Units Time-Multiplexing The factor block has

two operating modes, which perform the calculation of 𝜖𝑏 , 𝐴𝑏 and

the cost function, respectively. 𝜖𝑏 and 𝐴𝑏 need to be constructed

when solving Δ in each iteration. However, only 𝜖𝑛𝑒𝑤
𝑏

is required

to calculate the cost when evaluating whether accepting Δ or not.

Therefore, the computations of 𝜖𝑏 ,𝐴𝑏 and the cost are mapped onto

the configurable basic computing units. In Fig. 4.2, solid lines and

dashed lines denote the data flow for calculating 𝜖𝑏 , 𝐴𝑏 and the

cost, respectively.

4.3 Storage Optimization
Storage optimization can be divided into three steps. The first step

is to store 𝜖𝑏 and 𝐴𝑏 according to the sparse factor graph structure

instead of the original matrix with substantial zero entries. Each

factor needs to store its 𝜖𝑏𝑖 and 𝐴𝑏𝑖 , in addition to its factor type

(to know the dimension of 𝜖𝑏𝑖 and 𝐴𝑏𝑖 ) and corresponding variable

indexes.

However, due to the chain structure of LIO factor graph, the

sparsity pattern of the matrix𝐴 can be determined each time before

variable elimination is performed. In other words, the factors and

variables involved are fixed in each elimination so the factor types

and corresponding variable indexes are always known. Therefore,

in the second step, 𝜖𝑏𝑖 and 𝐴𝑏𝑖 corresponding to each factor can be

stored sequentially without any redundant information.

The third step is to skip the large number of zero and identity

entries in 𝐴𝑏𝑖 , e.g. 𝐴𝑏𝑖 in IMU factor has a large number of iden-

tity matrices and zero entries in fixed positions. Besides, since the

partial derivatives of 𝜖𝑏𝑖 with respect to 𝑥𝑖 and 𝑥𝑖+1 are symmetric
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in LiDAR factors, only half of them are stored. The Householder

matrix constructed in the QR decomposition (Sec. 4.4) can also take

advantage of its symmetry to further reduce memory size.

4.4 Optimization of QR Decomposition Block
The partial-QR decomposition starts from the first column of the

𝑚×𝑛matrix𝐴, fromwhich the Householder matrix𝐻 is constructed

(the Evaluate phase).𝐻𝐴 zeros the entries below the diagonal of the

first column, and updates the second to 𝑛-th columns (the Update

phase). Then the obtained (𝑚−1) × (𝑛−1) matrix in the lower right

corner is the input for the second iteration. The iteration continues

until the 𝑛̂-th column, where 𝑛̂ represents the dimension of 𝑥𝑖 to

be eliminated.

After each iteration, the entries below the diagonal are known

to be zeros and they are not needed in subsequent calculations.

Therefore, the calculations of these zeros entries can be omitted

directly so as to improve performance and save resources.

Fig. 4.3 shows the architecture of the block, where each Evaluate-

Update pair performs one iteration of the decomposition. The anal-

ysis of the fine-grained data dependencies shows that the Evaluate-

Update phase can be pipelined. The Evaluate phase of next iteration

and the Update phase of current iteration can start at the same time.

However, the Update phase is usually more time-consuming than

the Evaluate phase. Therefore, this block designs an Evaluate unit

and 𝑛𝑢 time-multiplexed Update units. The larger the 𝑛𝑢 , the better

the performance, but the larger the area.

5 PERFORMANCE EVALUATION
To evaluate the proposed accelerator, we conducted a series of

experiments. We first introduce the experimental setup (Sec. 5.1).

Then the results are presented in three parts. The first part shows

the speed and energy of the proposed hardware accelerator com-

pared to software (Sec. 5.2). The second part gives the localization

accuracy of the accelerator while running the datasets (Sec. 5.3).

The third part performs some comparisons before and after we

optimize the hardware based on the data and computation patterns

inherent to LIO factor graph (Sec. 5.4).

5.1 Experimental Setup
The accelerator is designed using Vitis-HLS, and synthesized and

implemented onto the Xilinx Zynq-7000 SoC ZC706 FPGA using

Vivado Design Suite 2021.1. The accelerator operates at a fixed fre-

quency of 143 MHz. The FPGA power consumption is estimated by

the Vivado power analysis tool using real workloads under test. All

power and resource consumption data are obtained after the design

passes the post-layout timing. The accelerator is evaluated on two

common datasets: the Walking [18] and the Park [19]. The Walking

dataset was collected using a custom-built handheld device on the

MIT campus. The Park dataset was collected in a park covered by

vegetation, using an unmanned ground vehicle.

A software implementation of localization is used as a baseline,

which uses GTSAM [20] to implement factor graph optimization

for sensor fusion in Robotics. The software is evaluated on two

hardware platforms: the one on the 11th Intel processor that has 16

cores and operates at 2.5 GHz, and the other on the quad-core Arm

Cortex-A57 processor on the Nvidia mobile Jetson TX1 platform

[21] operating at 1.9 GHz. The Intel CPU power is measured through

a power meter and the Arm core power is measured through the

power sensing circuitry on TX1.

5.2 Performance Evaluation
We first evaluate the performance and energy efficiency of the

accelerator. The proposed accelerator with FLP32 is compared to

the Intel CPU implementation and the Arm implementation with

FLP64.

By changing the number of Evaluate-Update units in the QR

decomposition blocks, we obtain multiple sets of circuits with dif-

ferent performance. Fig. 5.1 shows the speedup of the accelerator

with different configurations including 𝑛𝑢 and elimination mode

over Intel and Arm. The results show that the best performance de-

sign achieves 9.3× speedup over Intel and 47.6× speedup over Arm.

Performing parallel elimination can improve performance by an av-

erage of 1.6× compared to serial elimination. Fig. 5.2 demonstrates

the energy efficiency. It shows that the design with the highest

performance has an energy reduction of 50.3× over Intel and 16.8×
over Arm. Fig. 5.3 shows the latency of the accelerator compared

to Intel while running the Park dataset. Batch optimization of LIO
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Fig. 5.1: With the increase of 𝑛𝑢 , the speedup of
the accelerator working in parallel elimination
and serial elimination modes compared with In-
tel and Arm.
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Fig. 5.2: Energy reduction compared to
Intel and Arm when the accelerator
works at its best performance.
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Fig. 5.3: Latency comparison be-
tween the accelerator and In-
tel for factor graph optimization
when running the Park dataset.
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Fig. 5.4: localization accuracy measured by
Maximum Error and Root Mean Square
Error.
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Fig. 5.5: Resource savings fromomitting the
computation of zeros.
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Fig. 5.6:Matrix𝐴𝑏 Storage optimiza-
tion.

Table 5.1: FPGA resource consumption (utilization percent-
ages and absolute numbers) for parallel and serial elimina-
tion modes.

Mode LUT FF BRAM DSP

Parallel
85%

(184990)

48%

(211895)

15%

(163)

53%

(473)

Serial
46%

(99733)

28%

(120416)

8%

(88)

28%

(255)

factor graph is performed at steps 5, 15, and 25, and incremental

smoothing is performed for the rest.

5.3 Localization Accuracy Evaluation
With the improvement in performance and energy reduction, we are

also concerned about the localization accuracy of the accelerator,

as illustrated in Fig. 5.4. The localization accuracy is evaluated

in terms of two Relative Pose Errors (RPEs): Root Mean Square

Error (RMSE) and Maximum Error (ME). The result shows that our

accelerator achieves the high localization accuracy compared to

the ground truth. On the Walking dataset, its RMSE and ME are

0.6cm and 2.8cm, respectively. On the Park dataset, its RMSE and

ME are 1.1cm and 5.7cm, respectively.

5.4 Resource Usage Evaluation
The resource consumption of the best performance design with

two elimination modes is shown in Tbl. 5.1. The results show that

our design is memory-friendly, but consumes a lot of FFs and LUTs.

This is because we store part of the intermediate data on FFs and

LUTs instead of BRAMs to improve the performance.

The resources that can be saved by omitting the zeros computa-

tion in partial-QR decomposition blocks are shown in Fig. 5.5, and

the results indicate that it saves 12.1% LUTs, 23.8% FFs, and 20.4%

DSPs in the best performance design.

In Sec. 4.3 we optimize the storage according to the chain struc-

ture of LIO factor graph. Fig. 5.6 presents the results of memory

saving. It shows that the memory size drops by 15.5×, 19.0× and

56.3× after three steps of optimization with 30 keyframes, respec-

tively.

6 CONCLUSION
Rise of the autonomous machines demands an effective and efficient

computer architecture to provide a concise and precise abstraction

of the underlying autonomous machine operations, so as to unlock

the imagination of AMC application developers. We believe a great

candidate for AMC computer architecture is factor graph, which

is a graph representing the factorization of a probability distribu-

tion function, and has been utilized in many autonomous machine

computing functions, such as localization, tracking, planning and

control etc.

This paper presents the first work exploring factor graph archi-

tecture for autonomous machine computing, starting with LiDAR-

Inertial Odometry, a key method in autonomous machine local-

ization. Through exploiting the traits of factor graph computing,

we have achieved up to 9× acceleration of autonomous machine

localization compared to an advanced Intel CPU, along with 50×
improvement of energy efficiency. Based on this initial success, we

are going to generalize the factor graph architecture to provide com-

puting support for other autonomous machine functions, including

tracking, planning, and control etc.
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