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Abstract
360° panoramic video provides an immersive Virtual Reality expe-
rience. However, rendering 360° videos consumes excessive energy
on client devices. FPGA is an ideal o�oading target to improve the
energy-e�ciency. However, a naive implementation of the process-
ing algorithm would lead to an excessive memory footprint that
o�sets the energy bene�t. In this paper, we propose an algorithm-
architecture co-designed system that dramatically reduces the on-
chip memory requirement of VR video processing to enable FPGA
o�oading. Evaluation shows that our system is able to achieve
signi�cant energy reduction with no loss of performance compared
to today’s o�-the-shelf VR video rendering system.

CCS Concepts
•Hardware→Hardware accelerators; • Computingmethod-
ologies → Virtual reality; • Computer systems organization
→ Recon�gurable computing.
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1 Introduction
With the rapid development of panoramic cameras and popularity of
Virtual Reality technologies, there is an explosion of 360° content in
recent years. Content sharing websites such as YouTube, Facebook,
and Instagram support editing, streaming, and sharing this new
form of content, further accelerate the penetration of 360° videos.
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Fueled by next-generation cellular technologies such as millimeter
wave that promise orders of magnitude higher bandwidth and lower
latency, users soon will be able to create, share, and watch 360°
videos just like any other media.

Although with huge opportunities, rendering 360° content is
power-hungry. Previous work has shown that rendering a 720p 360°
video in 30 frames per second (FPS) consumes over 4 W power [18,
19], exceeding the Thermal Design Point (TDP) of typical mobile
devices [14]. The reason that rendering 360° is power-hungry is
that today’s rendering software translates 360° video rendering
to a texture mapping problem that gets o�oaded to the GPU [9].
Although using the GPU in o�-the-shelf Systems-on-a-chip (SoCs)
accelerates the adoption of 360° content, GPUs are power hungry.

We expect that next-generation mobile SoCs will soon integrate
360° content-speci�c Intellectual Property (IP) blocks to improve
the rendering energy-e�ciency. To facilitate this trend, we propose
a new 360° video rendering accelerator. We choose to base the
accelerator design on FPGA, which not only allows us to exploit
the �ne-grained, pixel-level parallelisms exist in the 360° content
rendering algorithms, but also to retain �exibility to accommodate
future developments in the rendering algorithms.

The key challenge of accelerating 360° rendering is the render-
ing algorithm’s large memory footprint and irregular data access
pattern, which not only introduce a high memory footprint that
exceeds the on-chip memory of a mobile SoC and but also are
not amenable to conventional memory optimizations such as line-
bu�ering and prefetching. As a result, frequent, and random, DRAM
accesses would have to be made, o�setting the energy bene�t of
hardware acceleration.

This paper proposes an algorithm-architecture co-designed sys-
tem for e�cient 360° content rendering. Our key observation is that
the irregular memory accesses in today’s rendering algorithm are
fundamentally caused by the algorithm’s data-�ow that leads to
arbitrary indexing of the input frame pixels. To tame the memory-
ine�ciencies, we propose a new rendering algorithm that, by design,
enforces a di�erent data-�ow that guarantees a streaming memory
access pattern. As a result, the rendering computation becomes a
stream of stencil operations, each operating on a �xed-size window
of pixels in a raster order.

The new rendering algorithm uniquely enables us to design
a simple, yet e�cient, hardware accelerator. The accelerator ar-
chitecture exploits the pixel-level parallelisms by pipelining the
rendering of di�erent pixels, and hides the memory transfer la-
tency with rendering computations. We judiciously apply a series
of energy-oriented optimizations including trading-o� the pipeline
depth for the overall latency and tuning pixel data representations.
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Fig. 1: A typical 360° content delivery pipeline. This paper focuses
on the client rendering on mobile devices.

We implement our algorithm-architecture co-designed system on
the Xilinx Zynq Ultrascale+ ZCU104 FPGA development board [7].
Comparing against an o�-the-shelf baseline running on the Nvidia
Jetson TX2 development board utilizing its mobile Pascal GPU [2],
our system achieves 55% energy savings at the same frame rate.

In summary, this paper makes the following contributions:

• We provide a detailed analysis of the memory access patterns
of today’s 360° content rendering algorithm, and demonstrate
the ine�ciencies of conventional memory optimizations such
as line-bu�ering. (§ 3).

• We propose a new 360° content rendering algorithm that im-
proves the data locality of 360° content rendering, and thus
enables e�cient hardware acceleration (§ 4.1).

• We propose an accelerator architecture that is co-designed with
the new algorithm to maximize its e�ciency (§ 4.2).

• We prototype the co-designed system on an embedded FPGA
and demonstrate signi�cant energy savings (§ 5).

The rest of the paper is organized as follows. We �rst provide
the background and related work of 360° content rendering (§ 2).
We then analyze today’s rendering algorithm (§ 3), focusing on its
irregular memory accesses. We then introduce our new rendering
algorithm and the co-designed hardware architecture (§ 4). We
evaluate the our system (§ 5), followed by conclusion (§ 6).

2 Background
This section brie�y introduces the necessary background and ter-
minologies that are used throughout this paper. We refer interested
readers to El-Ganainy and Hefeeda [12] for a comprehensive survey.

Panoramic Content 360° video is a form of Virtual Reality that
has seen wide adoption recently in many areas such as news, movie,
sports, and medical industry [21]. Fig. 1 shows an end-to-end 360°
content delivery pipeline. It mainly consists of a capturing (cre-
ation) phase and a playback phase. 360° videos are typically created
using special capture devices (e.g., an omnidirectional camera [8])
that capture every direction of the scene, which later are stitched
together to form panoramic frames that present a 360° view of the
scene to users. After creation, 360° videos are streamed to client VR
device for playback, which is the focus of this paper.

Rendering Algorithm Once on the VR device, the playback
software renders di�erent regions of the frame according to the
user’s head movement. In the context of 360° video only rotational
motion is captured, but not translational motion. The head motion
can be characterized by the polar and the azimuthal angles in a
spherical coordination system. The size of the displayed region
depends on the �eld-of-view (FOV) of a particular device, which
characterizes the vertical and horizontal angles of the viewing area.

Algorithm 1: Classic 360° video rendering algorithm.
Input: Input panoramic frame Iin ; FOV size α , β ; Head

orientation θ , λ.
Result: Output FOV frame Iout .
Wo ,Ho = IOut .res ; // Output resolution

// iterate over all coordinates in output frame

for i = 0; i < Ho ; i = i + 1 do
for j = 0; j <Wo ; j = j + 1 do

// rotation
<x , y, z> = R(i , j, α , β , θ , λ);
// projection
<u, v> = P(x , y, z);
// filtering

if u and v are integer coordinates then
Iout (i, j) = Iin (u,v);

else
Iout (i, j) = F (Iin ,u,v);

end
end

end

Conventional video frames, once decoded, can be directly ren-
dered on the display. However for 360° videos, the client rendering
software converts an input panoramic frame (decoded from the
video streamed from the cloud) to a frame that contains only the
user’s viewing area based on the user’s viewing angle and device’s
FOV. Prior work shows that the rendering algorithm contribute
about 40% of the device power consumption [19].

Hardware Architecture Today’s o�-the-shelf mobile SoCs di-
rectly support rendering 360° videos. In particular, the video codec
�rst decodes 360° videos into a set of panoramic planar frames;
the Graphics Processing Unit (GPU) is then used to execute the
rendering algorithm that converts the panoramic planar frames to
FOV frames that are then sent to the display processor [9].

The reason that the GPU is tasked with the rendering algorithm
is that the latter can be viewed as a texture mapping problem [15],
where the planar panoramic frame is treated as a texture map that
is mapped to a particular region on a sphere. The spherical region’s
size is the same as the device’s FOV and its location is determined by
the user’s viewing angle. Modern GPUs can e�ectively execute tex-
ture mapping through the specialized Texture Mapping Unit (TMU)
and the texture cache [13]. The TMU accelerates the computation
of texture mapping, and the texture cache captures the irregular
data access pattern to the texture map, i.e., the input panoramic
frame in the case of 360° video rendering.

3 Rendering Algorithm Analysis
This section �rst presents the algorithm used in today’s 360° render-
ing software and discusses its computation pattern that is suitable
for hardware acceleration (§ 3.1). We then particularly focus on
the irregular memory access patterns of the algorithm (§ 3.2), from
which we motivate the need for a new algorithm-architecture co-
designed strategy.
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(a)Head orientation at (45°, 90°).

(b)Head orientation at (45°, 45°).

Fig. 2: 360° frame rendering at two di�erent head orientations. The
left �gures are the input panoramic frame, and the right �gures are
the output FOV frame1. The black pixels in the left �gures are the
pixels that are referenced during the rendering process.

3.1 Algorithm and Its Computation Patterns
The goal of the rendering algorithm is to generate an output frame
Iout from the input panoramic frame Iin . Algo. 1 shows the pseu-
docode. Speci�cally, the rendering algorithm calculates each output
frame pixel (<i, j>) by mapping it to a pixel in the input frame
(<u,v>), e�ectively sampling the input frame. The mapping is done
by raster scanning all the points in the output frame and iteratively
applying two operations, rotation (R) and projection (P), on each
<i, j> point to obtain its corresponding <u,v> coordinates. R and
P are matrix multiplications and cartesian-spherical conversions
to support perspective rotation and projection [20]. The renderer
then uses the <u,v> coordinates to look up the input frame, and
returns the corresponding input pixel as Iout<i , j>. If <u,v> are
not integer coordinates, the renderer applies a so-called �ltering
function (F ), such as nearest neighbor or bilinear �ltering [15], to
return a “best approximation” of the pixel value at Iout<i , j>.

The rendering algorithm is highly parallel. In particular, the ren-
dering of every output pixel is completely independent of each
other. Under a particular head orientation, an output pixel’s value
Iout (i, j) depends only on its coordinates <i , j>. In addition, the
computation involved in R, P, and F are mostly a�ne transfor-
mations that are suitable for e�cient hardware implementations.
Overall, the computation patten is ideal for hardware acceleration.

3.2 Memory Access Patterns
In stark contrast to the computation pattern, the memory access
pattern of the rendering algorithm is far from ideal for an e�cient
accelerator design, especially on FPGAs.

Large Footprint The rendering algorithm accesses the memory
in the �ltering step, which uses the <u, v> coordinates generated
from the projection step to index into the input frame (Iin ), and
sequentially writes to the output frame (Iout ) in the raster order. The
output frame is small in size; its accesses are sequential, and thus

1All �gures here are down-sampled to reduce their sizes.
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Fig. 3: Memory access sequences of input frame (left) and output
frame (right) as scatter plots. Each marker <x , y> indicates that the
pixel at position <x , y> is referenced. The three sequences corre-
spond to when the rendering algorithm scans three di�erent rows
(i in Algo. 1) of the output frame. Di�erent markers in the same se-
quence correspond to di�erent columns (j in Algo. 1) on the same
row. The head orientation is (45°, 90°), same as in Fig. 2a.

could be bu�ered on-chip and e�ciently streamed to the DRAM in
the end [22]. However, the input frame can not be fully captured
by a typical on-chip memory. For instance, a 1080 and 4K frame
would require over 5.9 MB and 23.7 MB memory, respectively.

Irregularity The pixel access pattern of the input frame is non-
sequential, which severely hurts the e�ciency of hardware acceler-
ation. Fig. 2a shows a rendering example where the input frame on
the left is rendered to the output frame on the right. In this example,
the FOV size is 110° × 110°, and the head orientation is (45°, 90°).
The black pixels at the top of the input frame refer to all the pixels
that are accessed by the rendering algorithm. To better illustrate
the memory access pattern, Fig. 3a plots the input pixels that are ac-
cessed as the rendering algorithm iterates over three output frame
rows, which are shown in Fig. 3b. Each <x , y> marker in the �gures
indicates that the pixel at position <x , y> is referenced.

Although the output frame pixels are accessed sequentially in a
streaming fashion, the input frame pixels are referenced irregularly
as is evident in the three access traces in Fig. 3a. Irregular memory
accesses are known to hurt e�ciency for two reasons. First, random
DRAMaccesses consumemuchmore energy than sequential DRAM
accesses [6, 17]. Second, irregular memory accesses require explicit
control logic to manually coordinate the tra�c between DRAM
and on-chip memory [10]. This is particularly an issue for FPGAs,
which implement control �ow logic rather ine�ciently. Ideally,
FPGAs prefer streaming data accesses, which exhibit strong locality
and can be e�ectively captured by memory optimizations such as
line-bu�ering [16]. The non-raster access order of the input pixels
indicates that line-bu�er would be ine�cient.

To quantify the ine�ectiveness of using a line-bu�er, Fig. 4 shows
how the line-bu�er e�ciency (left y-axis) and hit rate (right y-
axis) vary with the line-bu�er capacity when rendering the frame
in Fig. 2a. The e�ciency is de�ned as the percentage of pixels that
are brought into the line-bu�er and that are actually referenced;
the miss rate is de�ned as the number of memory references that
are not found in the line-bu�er and thereby cause pipeline stall;
the line-bu�er capacity is characterized by the number of lines in
the input frame the line-bu�er can hold. The rendering algorithm
requires about 512 lines, which roughly equate almost 4 MB of
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Fig. 4: The e�ciency (left) andmiss rate (right) of using a line-bu�er
vary with the line-bu�er capacity.

line-bu�er size, to reach 100% hit rate. Even under such a large line-
bu�er size, over 50% the fetched pixels would never be referenced,
leading to signi�cant bandwidth waste and energy-e�ciencies.

Variation The irregular memory access pattern varies both spa-
tially and temporally, making static optimizations ine�ective.

On one hand, the rendering algorithm exhibits di�erent input
access patterns when iterating over di�erent output rows as shown
in Fig. 3a, exhibiting spatial variance. On the other hand, although
the input access pattern is deterministic given a particular head
orientation, the access pattern changes across di�erent head ori-
entations as users move, exhibiting temporal variance. Fig. 2b il-
lustrates the memory accesses for a di�erent head orientation at
(45°, 90°), which has a di�erent pattern from that of (45°, 45°) shown
in Fig. 2a. Since the head orientation is not known until runtime,
pre-computing and memoizing the access streams for all possible
head orientations would lead to prohibitive memory overhead.

4 Algorithm-Hardware Co-Design
We propose a new 360° content rendering algorithm, which stream-
lines the memory accesses while retaining the pixel-level paral-
lelism, enabling practical FPGA acceleration. We �rst describe the
algorithm (§ 4.1), and then describe the co-designed the hardware
architecture and the implementation details (§ 4.2).

4.1 Algorithm
Overview Fundamentally, the root-cause of the irregular memory
accesses in the original rendering algorithm is inherent in the algo-
rithm’s data-�ow. In particular, the rendering algorithm calculates
each output frame pixel by mapping it to a pixel in the input frame.
Since the input pixel indexing is arbitrary, memory accesses to
the input frame are irregular. Our idea is to invert the rendering
algorithm such that it scans the input frame in the raster order, and
maps each input pixel to one pixel in the output frame. In this way,
the input frame is accessed in a streaming fashion, enabling e�-
cient line-bu�er optimizations. The trade-o� is that output frame is
now accessed in an arbitrary order. However, this is an acceptable
trade-o� because the output frame is small in size and could be
bu�ered on-chip before streaming out.

Inverting the original algorithm is possible because the rotation
function (R) and projection function (P) are unique and thus are
naturally invertible. The �ltering function (F ) is not invertible
because it is not unique. Consider the simple nearest-neighbor �l-
tering; multiple input points could be mapped to the same output

Algorithm 2: Proposed 360° video rendering algorithm.
Input: Input panoramic frame Iin ; FOV size α , β ; Head

orientation θ , λ.
Result: Output FOV frame Iout .
Wi ,Hi = IIn .res ; // Input resolution

/* iterate over all output boundary coordinates
*/

for <i, j> coordinates on the Iout boundary do
<u, v> = P(R (i , j, α , β , θ , λ));
Add <u, v> to B ; // B is the input boundary set

end
/* iterate over all input pixels */

for u = 0; u < Hi ; u = u + 1 do
for v = 0; v <Wi ; v = v + 1 do

if <u, v> within the boundary B then
<i , j> = R−1(P−1 (u, v), α , β , θ , λ)
Iout (i, j) = Iin (u,v);

end
end

end
/* apply filtering to all output pixels */

foreach <i , j> in Iout do
F
′ (<i , j>);

end

point that is the nearest neighbor to both input points. However,
since �ltering is inherently an approximation, we could approx-
imate the �ltering step without loss of visual quality as we will
demonstrate later.

Reduce Redundancies Naively inverting the rendering algo-
rithm, however, introduces lots of redundant computation. This
is because only a small fraction of the pixels in the input frames
is actually referenced during the rendering process. For instance,
only 17.1% and 16.5% of the input pixels are referenced in Fig. 2a
and Fig. 2b, respectively. In other words, the vast majority of the
input pixels will not be needed to generate any output frame pixels,
and therefore inversely mapping them would waste computation.

To reduce the redundant computations, our idea is to determine
the boundary of the input region that contains the pixels that are
needed for rendering. In this way, we are able to apply the inverse
mapping only to the input pixels that are within the boundary.
Input boundary calculation can be easily achieved by applying the
original rendering algorithm to the output boundary coordinates.
Since boundary pixels are only a very small portion of the entire
frame, boundary calculation has low overhead as we show later.

Algo. 2 shows the pseudocode of the new algorithm. It �rst
applies the original rotation and projection functions R and P to
generate a boundary set B. It then iterates over all the input pixels,
and apply inverse functions R−1 and P−1 to pixels that are within
the boundary delineated by B. In the end, it applies a �ltering step
of the entire output image. Note that this �ltering function F ′ is
not, and needs not to be, the same as the original �ltering function
F or its inverse F −1 due to the approximate nature of �ltering.

Output Quality The output of our new rendering algorithm is
not pixel-accurate compared to the original algorithm because the
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�ltering function is non-invertible. We verify that the di�erence is
acceptable, both objectively and subjectively.

Objectively, we use two metrics to quantify the di�erence be-
tween the outputs generated by our rendering algorithm and the
original algorithm: the Peak Signal to Noise Ratio (PSNR) and the
Normalized Root Mean Square Error (NRMSE). The PSNRs across
three representative viewing angles, (0°, 0°), (45°, 45°), and (45°, 90°),
are 40.4, 57.1, and 42.6, respectively, and the NRMSE is below 0.01,
con�rming the high precision of the new algorithm. Subjectively,
we also conduct subjective user study and �nd that the di�erence
is visually indistinguishable.

4.2 Architecture Co-design
We co-design the hardware architecture to maximize the e�ciency
of the proposed rendering algorithm. Fig. 5a shows the overall
execution model. The boundary calculation is serialized with the
rest of the processing because it provides the boundary set for
testing input pixels. The input frame is streamed from the DRAM,
which is overlapped with pixel rendering. We exploit the pixel-level
parallelism of the new algorithm by pipelining the processing of
di�erent pixels. The pipeline has an initiation internal of one. That
is, a new pixel starts execution every cycle. During pixel rendering,
the output frame is bu�ered on-chip and is streamed out in the end.

The architecture block diagram is illustrated in Fig. 5b. The
boundary calculation and the rendering module both use a set
of multiply-accumulate (MAC) units and trigonometric function
hardware to support the perspective rotation, cartesian-spherical
conversion, and �ltering operations. To support the streaming I/O,
we use the simple AXI4-Stream interconnect design, which has
e�cient IP implementation on FPGA [22].

OptimizationsWe apply a series of optimizations to improve
the performance and reduce resource utilization. First, the boundary
test is on the critical path and thus impacts the overall performance.
Testing precisely whether a pixel is within the boundary requires
storing all the boundary pixels and many comparisons. To reduce
the boundary test, we approximate the boundary by its smallest
bounding box (a rectangle), which requires us to store only four
parameters and only four comparisons for boundary test. The trade-
o� is that the rendering algorithm now has to process more pixels
that are not in the boundary.We �nd that this is a desirable trade-o�
because the bene�ts of reducing the per-pixel latency out-weights
the overhead of pipelining more pixels.

In addition, we choose to use a �xed-point representation for
computation to improve the resource utilization and speed. We em-
pirically �nd that a 28-bit representation with 14 bits for the integer
part is su�cient to guarantee negligible loss of visual quality.

5 Evaluation Results
This section �rst introduces the experimental setup (§ 5.1). We
then evaluate on a set of micro-benchmarks using di�erent reso-
lutions and head orientations to understand the e�ciency of the
co-designed system (§ 5.2). Finally, we present the evaluation results
on a 360° dataset using real user head orientations (§ 5.3).

BC

Streaming Input Frame

Pipelined Rendering

Streaming 
Output Frame

Time

I/O

Compute

BT

BT

R-1 F’P-1

BT R-1 F’P-1

……

Pixel 1

Pixel 2

Pixel N

……
Skipped if BT fails

(a) The execution model. “BC” stands for “Boundary Calculation”, i.e., the �rst
loop in Algo. 2; “Pipelined Rendering” is the second and third loop in Algo. 2;
“BT” stands for “Boundary Test”, i.e., the test condition of the second loop
in Algo. 2. Execution times are not to scale.
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Fig. 5: Architectural support for the proposed rendering algorithm.

5.1 Experimental Setup
We implement our architecture on the Xilinx Zynq UltraScale+ MP-
SoC ZCU104 development board [7], which is speci�cally designed
for embedded visual applications such as Augmented Reality and
Virtual Reality. It has a programmable logic with 1.38 MB on-chip
BRAM. We synthesize, place, and route the design using the Xilinx
Vivado tool chain, and obtain the post-layout power consumption.
The design is clocked at 100 MHz, which meets the 30 FPS real-time
target for all resolutions. The ZCU104 development board uses a 2
GB, 64-bit wide DDR4 memory system [4]. We estimate the DRAM
power using the Micron DDR4 power calculator [1, 5] based on the
application’s memory access traces.

BaselinesWe compare against two baselines. First, we compare
against a baseline that implements the original rendering algorithm
(Algo. 1) on the mobile Pascal GPU available on the Nvidia Jetson
TX2 development board [2]. TX2 is used in many o�-the-shelf VR
devices such as the ones from Magic Leap [3]. This baseline is
representative of how 360° video rendering is performed in today’s
VR devices as discussed in § 2. GPU power is measured using TX2’s
built-in TI INA 3221 voltage monitor IC, from which we retrieve
power consumptions through the I2C interface.

Second, we compare against an FPGA baseline that implements
the original rendering algorithm on the ZCU104 FPGA. Comparing
against this baseline normalizes the e�ect of FPGA acceleration and
thus highlights the bene�ts of algorithm-architecture co-design.
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Fig. 6:Microbenchmarking energy savings over the baselines across
di�erent resolutions and head orientations.

5.2 Microbenchmark Results
We evaluate four di�erent resolutions, including 480p, 720p, 1080p,
and 2K, to represent di�erent rendering requirements. Since di�er-
ent head orientations a�ect how many input pixels are processed,
we evaluate three di�erent head orientations, (0°, 0°), (45°, 45°), and
(45°, 90°), which mimic users watching the front (around the Equa-
tor), middle, and top (around the North Pole) region of a video.

Energy Savings Our co-designed system achieves signi�cant
amount of energy savings compared to the GPU baseline. Fig. 6a
shows the energy savings per frame across di�erent resolutions
under the three viewing angles. Under the 480p and 2K resolutions
and the front viewing angle, our system is able to save close to 75%
and 55% of the energy compared to the GPU baseline, respectively.
On average, under a 2K resolution, our system consumes about
1.4 W of power, of which about 65% is the dynamic power.

Our co-design system also out-performs the FPGA baseline with
the original rendering algorithm in most cases, as shown in Fig. 6b.
The only exception is under the middle viewing angle. This is
inherent to our new rendering algorithm, which processes more
pixels when the viewing angle is near the (45°, 45°) region of the
sphere. Recall from § 4.2 that we �rst calculate a bounding box and
then process all the pixels that are encapsulated by the box. The
bounding box contains more pixels when the viewing angle is near
the middle than near the Equator and the Poles.

Latency Breakdown We �nd that each frame’s execution time
is consistently dominated by pixel rendering. We break down the
frame latency into three main phases: boundary calculation, pixel
rendering (which includes input streaming, which overlaps with
pixel rendering), and output streaming. Regardless of the resolution,
the pixel rendering time contributes to over 90% of the total frame
latency. The boundary calculation has negligible execution time
(< 0.2%), indicating that although it is on the critical path of frame
latency, it is far from being a bottleneck.

Resource Utilization Finally, we show that our proposed sys-
tem has low resource utilization. Fig. 7a shows the BRAM utilization
across di�erent resolutions. The BRAMusage increases from 0.1MB
at 480p resolution to 0.84 MB at 2K resolution, but is still well under
the budget of the mobile-grade Ultrascale+ FPGA. Fig. 7b shows
the utilizations of other FPGA resources including DSP, FF, and
LUT. Their utilizations do not change across resolutions because
the underlying data-path is exactly the same for di�erent resolu-
tions. Although boundary calculation contribute little to the frame
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Fig. 7: Resource utilization at the (0°, 0°) viewing angle.
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Fig. 8: Evaluation results on real user viewing traces.

latency, it occupies signi�cant amount of FPGA resources. This is a
typical resource-performance trade-o� that accelerators make.

5.3 Real User Trace Evaluation
We evaluate on a recently released 360° dataset [11], which includes
the per-frame head orientations of 59 real users watching six di�er-
ent YouTube 360° videos. Fig. 8a shows the average energy saving
of our system over the FPGA and the GPU baselines. The error bars
indicate one standard deviation across all the users. On average,
we achieve 26.4% and 40.0% energy savings over the GPU and the
FPGA baselines in all �ve benchmarked videos across all users.

We �nd that when watching 360° videos users tend to focus on
the scenes in front of them, under which circumstances our system
is able to signi�cantly out-perform the baselines as quanti�ed be-
fore using microbenchmarks (Fig. 6). Fig. 8b shows the cumulative
distribution function of the absolute vertical angles of all users
across all videos. Each < x ,y > point in Fig. 8b reads as: users’
vertical viewing angles are between -y° and y° for x% of time. While
the vertical viewing angle theoretically span between −90° and 90°,
over 80% of the time users focus on regions that are between −30°
and 30° vertically. Users rare look at the 45° vertical angle, in which
case our rendering algorithm introduces redundant pixel process-
ing. In essence, our co-design system optimizes for the common
case to achieve signi�cant overall energy savings.

6 Conclusions
We expect that a signi�cant amount of video tra�c in the near
future will be 360° panoramic videos. Mobile system designers will
soon face the challenge of guaranteeing desirable user experience
while rendering 360° content under severe energy constraints. This
paper takes a promising �rst step in energy-e�cient 360° content
rendering through a specialized accelerator design. We demon-
strate that the key is to tame the irregular memory accesses by
co-designing the rendering algorithm with the architecture.
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