
Copyright

by

Yuhao Zhu

2017

The Dissertation Committee for Yuhao Zhu
certifies that this is the approved version of the following dissertation:

Energy-Efficient Mobile Web Computing

Committee:

Vijay Janapa Reddi, Supervisor

Lizy K. John

Derek Chiou

Christine Julien

Scott Mahlke

Energy-Efficient Mobile Web Computing

by

Yuhao Zhu, B.E.,; M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2017

Dedicated to my wife Yunjing Luo

and my loving parents, Qinxiong Zhu and Xiaojing Yu

Acknowledgments

I wish to thank the multitudes of people who helped me throughout

this journey. First and foremost, I would like to thank The University of Texas

at Austin, and the taxpayers of the great state of Texas, for supporting me

to pursue a degree in a filed that I am truly passionate about. Among many

things, UT Austin provides a stimulating, diverse, and welcoming environment

for intellectual explorations that one could ever imagine having.

I would like to express my sincere gratitude to my advisor Vijay Janapa

Reddi, who turned me from a student to a researcher. I came to UT as an

avocational computer architecture enthusiast. Vijay patiently taught me how

to turn half-baked ideas to high-quality research papers, and how to turn

individual papers into a dissertation. I appreciate the many technical and

visionary discussions that he had with me while walking on campus.

Vijay also trained me to be a long-term investor. In my first semester

working with Vijay, he spent over a thousand dollars to send us to a half-day

course on information visualization. He later sent us to other venues such as

training mental agility. Although some of these investments might have not

paid off immediately toward a paper—some never will—it gradually shaped

my mindset beyond just becoming a better graduate student to becoming a

better person, which I will forever benefit from.

v

I would also like to thank other members of my dissertation commit-

tee: Lizy John, Derek Chiou, Christine Julien, and Scott Mahlke. Their keen

insights and feedbacks are absolutely invaluable in developing and refining the

concepts in my dissertation. In addition, Lizy taught me Computer Perfor-

mance Evaluation and Benchmarking, and Derek taught me Parallel Archi-

tecture; both helped me form the computer architecture foundations. Special

thanks to Christine and Scott who gave me many pieces of advice and wrote

me recommendation letters for my job search.

During my time at UT, I also had the privilege to interact and work

with other faculty members, in particular Mattan Erez, Mohit Tiwari, and

Yale Patt. Mattan is a calm, sharp, and encouraging human being who I look

up to. He taught me Computer Architecture during my first semester in UT

(and this country), which is the reason that I now can talk comfortably about

computer architecture. Mohit is always there to provide me lots of advice

in career development. I worked with Dr. Patt during my first year as a

graduate researcher and as a teaching assistant for his Computer Architecture

course in my second semester. The interactions with him provided me unique

perspectives that I would have gotten from nowhere otherwise.

I had four summer internships during my graduate study, and I want

to thank my mentors during each internship. Osvaldo Colavin was my mentor

at STMicroelectronics in summer 2011. We first met at DAC that year at San

Diego, and he later made me an internship offer. I thank Osvaldo for truly

opening my eyes to the industry for the first time. Mauricio Breternitz was

vi

my mentor during my two internships at AMD Research in summer 2012 and

2013. I admire his incredible experience in hardware and software industry.

He gave me the opportunity to integrate several AMD specific hardware per-

formance counters into the libpfm in my first internship, and gave me lots of

freedom to explore Web browser caching during my second internship. Nat

Duca was my mentor during my internship at the Google Chrome team in

summer 2015. Even to this day I couldn’t believe that I had worked with Nat.

Nat is an incredible person and great friend who continues to help me after

the internship. He also connected me with many other wonderful Chrome

engineers—the reason that the Web is well alive and kicking!

My lab mates and friends at UT Austin not only help me academically,

but also always encourage me to never back off from challenges, and I greatly

thank them for that. Jingwen Leng and Aditya Srikanth helped me with

my first project to get my research started. Jingwen and I had a lot of fun

beyond research. Among many things, we often drove to Houston just to play

snooker, and flew to UK to watch snooker games. Daniel Richins and Wenzhi

Cui helped me with the Node.js project. Wenzhi would always listen to my

nonsense ideas. Matthew Halpern helped me with everything since he joined.

He acts as a cheerleader when I am down and keeps me sane. I have also met

many friends at UT and Austin who I want to thank: Song Zhang, Haishan

Zhu, Tianhao Zheng, Yazhou Zu, Yong Li, Minsoo Rhu, Milad Hashemi, Faruk

Guvenilir, and Khubaib. Special thanks to Khubaib who mentored me during

my first year working with Dr. Patt and continued to support me after that.

vii

I am grateful to the Google Ph.D. fellowship for supporting my Ph.D.

research. Matt Welsh is my fellowship mentor, who is a true enemy of hog-

wash. Matt has supported my research throughout my entire graduate study

by being an advocator inside Google for our research. He also generously wrote

a recommendation letter for my job search. I was also supported by the Mi-

croelectronics and Computer Development Fellowship at the Cockrell School

of Engineering in UT Austin during my second year.

I also want to thank my undergraduate advisor Yangdong (Steve) Deng

at Tsinghua University. I was an undergrad at Beihang University, and Steve

just came back from the United States to start his lab. I anxiously sent

him a cold email expressing my interests, and (not) surprisingly he decided

to bring me to the lab. We together worked on GPGPU programming and

microarchitecture, which greatly raised my interests in system architectures.

He encourages me to think big and makes me believe that I, too, could publish

first-class research results. I would never get a Ph.D. if not for the one year

working and interacting with Steve.

Most importantly, not a single word of this dissertation would happen

without the support of my loving family. My parents, Qinxiong Zhu and

Xiaojing Yu, care about me more than themselves and never hold me off in

pursuing whatever I am passionate about, even if that means they only saw

me four times in the past seven years. Finally, I thank my wife Yunjing Luo

for always being there since we first met in 2012. Although she believes that

I could have finished Ph.D. sooner without her, I believe otherwise.

viii

Energy-Efficient Mobile Web Computing

Publication No.

Yuhao Zhu, Ph.D.

The University of Texas at Austin, 2017

Supervisor: Vijay Janapa Reddi

Next-generation Web services will be primarily accessed through mobile

devices. However, mobile devices are low-performance and stringently energy-

constrained. In my dissertation, I propose the design of a high-performance

and energy-efficient mobile Web computing substrate. It is a hardware/software

co-designed system that delivers satisfactory user quality-of-service (QoS) ex-

perience on a mobile energy budget. The key insight is that the traditional

interfaces between different Web stacks need to be enhanced with new abstrac-

tions that express user QoS experience and that expose architectural-level

complexities. On the basis of the enhanced interfaces, I propose synergis-

tic cross-layer optimizations across the processor architecture, Web runtime,

programming language, and application layers to maximize the whole system

efficiency. The contributions made in this dissertation will likely have a long-

term impact because the target application domain, the Web, is becoming a

universal mobile development platform, and because our solutions target the

fundamental computation layers of the Web domain.

ix

Table of Contents

Acknowledgments v

Abstract ix

List of Tables xiv

List of Figures xv

Chapter 1. Introduction 1

1.1 Research Contributions . 3

1.2 Long-term Impact . 6

1.3 Research Scope . 7

1.4 Dissertation Organization . 10

1.5 Previously Published Material 10

Chapter 2. Web: A Universal Application Platform 13

2.1 The Scope of the Web . 13

2.2 Web Languages and The Web Browser Runtime 14

Chapter 3. The Need for High-Performance and Energy-Efficient
Computation in Mobile Web 17

3.1 The Need for Compute Performance in Mobile Web 18

3.2 The Need for Energy-Efficient Computation 22

Chapter 4. WebCore: A Mobile Processor Architecture for Web
Computing 26

4.1 Experimental Setup . 29

4.2 Customizing General-Purpose Cores 32

4.2.1 Design Space Exploration 33

4.2.2 In-order vs. Out-of-order Design Space Exploration . . . 38

x

4.2.3 Sources of Inefficiency 40

4.3 Style Resolution Unit . 43

4.3.1 Motivation . 44

4.3.2 Hardware Design . 46

4.3.3 Software Support and Programmability 49

4.4 Browser Engine Cache . 50

4.4.1 Motivation . 51

4.4.2 Hardware Design . 53

4.4.3 Software Support and Programmability 55

4.5 WebCore Evaluation . 57

4.5.1 Overhead Analysis . 58

4.5.2 Style Resolution Unit 59

4.5.3 Browser Engine Cache 61

4.5.4 Combined Evaluation 64

4.6 Related Work . 67

4.6.1 Architecture Specializations for the Web 68

4.6.2 Specialized Cache Design 69

4.6.3 Web Applications Characterization 70

Chapter 5. WebRT: Energy-Efficient Web Browser Runtime 71

5.1 Experimental Setup . 73

5.2 LTM Model of Mobile User Interaction 74

5.3 Motivation: Energy-Delay Trade-off 76

5.3.1 Representative Analysis 77

5.3.2 Comprehensive Analysis 79

5.4 Webpage-aware Scheduling . 81

5.4.1 Performance and Energy Modeling 83

5.4.2 Model Evaluation . 86

5.4.3 Scheduler Implementation 89

5.4.4 Evaluation . 90

5.5 Event-based Scheduling . 97

5.5.1 Scheduling Unit . 98

xi

5.5.2 Scheduler Design Overview 99

5.5.3 Scheduler Implementation Details 101

5.5.4 Experimental Setup . 107

5.5.5 Evaluation . 109

5.6 Related Work . 119

5.6.1 Single ISA/DVFS Scheduling 119

5.6.2 Web Performance Optimizations 121

5.6.3 Web Energy Optimizations 121

Chapter 6. GreenWeb: Web Language Extensions for Energy-
Efficient Web Computing 123

6.1 Trade-off Between QoS, Performance, and Energy 125

6.2 QoS Abstractions for Web Applications 127

6.2.1 QoS Type . 128

6.2.2 QoS Target . 131

6.3 QoS-Aware Web API Design 133

6.3.1 Design Principles . 133

6.3.2 QoS-Aware Web API Design 134

6.3.3 Example Usage . 137

6.4 Automatic Annotation . 141

6.5 GreenWeb and WebRT Inteplay 143

6.6 Evaluation . 144

6.6.1 Energy-Efficiency Improvement 144

6.6.2 Annotation Effort . 149

6.7 Discussion . 151

6.8 Related Work . 153

6.8.1 Language Support for Web Performance 154

6.8.2 Language Support for Energy Efficiency 154

6.8.3 Mobile QoS Characterization 156

Chapter 7. Retrospective and Prospective Remarks 157

7.1 Retrospective . 157

7.2 Prospective . 159

xii

Bibliography 163

Vita 185

xiii

List of Tables

4.1 Microarchitecture design-space parameters. The first column
shows the parameters that are considered in our DSE. The sec-
ond column shows the metric that the value of each parameter
is measured. The i::j::k in the third column denotes values
ranging from i to k at steps of j 34

4.2 Microarchitecture configurations for P1 and P2 in Figure 4.3.
They represent different energy-delay trade-offs. For compari-
son purpose, we also show the parameters for ARM Cortex-A15,
whose information is gather from measurements using the 7-Zip
LZMA Benchmark [53] and ARM’s public presentation [56]. . 42

5.1 Model Predictors . 82

5.2 List of evaluated applications. “Interaction Description” pro-
vides a high-level description of the kind of interactions that
are performed on each application. “Time” indicates the total
interaction duration. “Events” indicates the amount of events
triggered during an interaction. 110

6.1 Interactions in mobile Web applications fall into three categories
based on different QoS type and QoS target combinations. . . 129

6.2 Specifications of the GreenWeb APIs. Each API is a new CSS
rule specifying the QoS information when a particular event is
triggered on certain Web application element. 135

6.3 Applications used for evaluating GreenWeb. They are the same
as the ones used for evaluating EBS in Chapter 5.5.5. “An-
notation” indicates percentage of events that are annotated.
“Events” indicates the amount of events triggered during full
interaction. Note: we only annotate and count events that are
directly triggered by mobile user interactions as discussed in
Chapter 5.2. Applications marked with * are manually anno-
tated because they are developed using libraries that Auto-
Green does not currently support. Their annotation percent-
age numbers are estimated. 145

xiv

List of Figures

1.1 Overview of my cross-layer research contributions. 5

1.2 The mobile Web computing scope. My research takes a compute-
driven, client-centric approach. 8

2.1 A typical Web browser architecture. 15

3.1 Webpage load time with respect to changing network latency.
Each marker corresponds to an RTT value. We also super-
impose the round-trip time (RTT) range for different cellular
technologies derived from both technical specifications as well
as real measurements in the field [1, 97]. 19

3.2 Webpage load time with respect to CPU frequency on a Galaxy
S5 smartphone. The markers represent CPU frequencies, which
range from 0.4 GHz (left) to 2.5 GHz (right). We also overlay
the load time on a desktop CPU (the dotted line) for comparison
purpose. 21

3.3 The correlation between smartphone battery capacities and their
screen sizes. There is an almost linear relationship over the time. 23

3.4 CPU measured peak power consumption has increased signif-
icantly compared to other key mobile device components over
the years. In particular, the multicore CPU power alone can
exceed SoC-level TDP. 24

4.1 We pick 24 representative webpages from 10,000 of the hottest
webpages as per www.alexa.com 30

4.2 www.cnn.com is a representative webpage from our benchmark
suite because it is almost the centroid. 36

4.3 In-order versus out-of-order Pareto optimal frontiers. 37

4.4 In-order Pareto optimal frontier for each kernel. 39

4.5 Out-of-order Pareto optimal frontier for each kernel. 40

4.6 Pseudo-code of the Style kernel. It consists of a matching phase
and an applying phase. SRU accelerates the applying phase,
which takes about two-thirds of the Style kernel execution time. 45

xv

4.7 SRU coupled with scratchpad memories. 46

4.8 Analysis of RLP and CSS properties across webpages. 48

4.9 Pseudo-code of the Style kernel with the new API. 49

4.10 DOM tree access behavior across webpages. 51

4.11 Representative DOM tree access patterns. 55

4.12 Using the DOMCache ST() API in the rendering engine. The new
DOM attribute store API (line 4 in the new code) replaces the
original attribute value assignment (line 4 in the original code),
and performs cache management. 56

4.13 Performance and energy improvement of the SRU. 60

4.14 Energy savings with a browser engine cache. 62

4.15 DOM Cache and Render Cache hit rate for desktop webpages. 63

4.16 Execution time with the browser engine cache of the three de-
signs. Values are normalized to each design’s baseline configu-
ration without the browser engine cache. 64

4.17 Energy-efficiency improvement over three designs. 65

4.18 Allocating area for caches versus specializations. 67

5.1 The LTM (Loading-Tapping-Moving) user-application interac-
tion model of mobile Web. LTM captures three primitive types
of interaction: page loading, finger tapping, and finger moving.
We use LTM as a framework to reason about user QoS experience. 74

5.2 Webpages have different ideal execution configurations to meet
the cut-off latency while consuming the least energy. 78

5.3 The distribution of ideal core and frequency configurations un-
der different cut-off latencies. 80

5.4 Predictor correlations. 85

5.5 CDF of prediction errors. 88

5.6 CDF of webpage load time under different configurations. . . . 91

5.7 Evaluation of different scheduling strategies. 92

5.8 Distribution of per-webpage energy comparisons. 96

5.9 Event handler variation in Ember.js todo list application. . . . 98

5.10 Event-based runtime scheduling framework. 100

xvi

5.11 The simplified view of frame lifetime in modern multiprocess/thread
browsers. A frame starts when the browser process receives
an input event and ends when the frame is displayed and the
browser process is signaled. In between, an input event is pro-
cessed by different stages spread across multiple threads. Dif-
ferent input events might interleave with each other. 103

5.12 Frame tracking algorithm. The key idea is to attach each input
event with a metadata (Msg in the code) that uniquely identi-
fies an input event and is propagated with the event. We use
two colors to represent metadata of two different events in this
example. 105

5.13 The event execution trace of Paper.js under three different run-
time schemesr. 111

5.14 The latency and energy model accuracy for Paper.js, which has the
median accuracy of all the applications. 112

5.15 Energy consumption normalized to Perf. Lower is better. . . . 113

5.16 The architecture configuration distribution under the “imper-
ceptible” (EBS-I) and “usable” (EBS-U) usage scenario. . . 114

5.17 Execution configuration switching frequency under EBS-I and
EBS-U. Two configuration switching types exist: CPU fre-
quency switch (solid) and core migrations (stripe). 116

5.18 QoS violations are presented as additional violations on top
of Perf. The y-axis of the two figures are kept the same for
comparion purposes. 117

6.1 The interplay between QoS, performance, and energy. 126

6.2 The syntax of GreenWeb language extensions. 134

6.3 Express the QoS type of ontouchstart event as “continuous,”
and use the default PI and PU values. 138

6.4 Express the QoS type of ontouchmove event as “continuous,”
and use 20 ms and 100 ms as the new QoS targets. 139

6.5 AutoGreen’s workflow to automatically annotate mobile Web
applications with GreenWeb APIs. 142

6.6 Microbenchmarking results. Energy numbers are normalized
to Perf, which provides the best QoS and consumes the most
energy. QoS violations are presented as additional violations on
top of Perf. GreenWeb-I and GreenWeb-U are GreenWeb under
two usage scenarios. 146

xvii

Chapter 1

Introduction

Web technologies have shaped how we think, communicate, and inno-

vate. Over the past decade, the Web’s role shifted from solely information

retrieval (Web 1.0) to providing interactive user experiences (Web 2.0). Now

the Web is once again on the cusp of a new evolution that features automatic

recognition, mining, and synthesis of user-originated “big data.” The driv-

ing force behind this evolution is today’s most pervasive personal computing

platform—mobile devices. It is estimated that 3 billion Web-connected mo-

bile devices currently exist, and will reach nearly 50 billion by 2020 [91]. The

trend is clear: next-generation Web services will be primarily accessed through

mobile devices instead of desktops and laptops as in previous generations [121].

While there are significant growth opportunities for mobile Web com-

puting, standing in the way are technology challenges. Specifically, there is a

fundamental tension between the ever-increasing computation intensity of Web

technologies and the performance and energy-constrained nature of mobile de-

vices. Such a mismatch between computational “demand and supply” leads

to poor quality-of-service (QoS) experience, resulting in severe consequences.

For example, Google estimated that “a 400 ms delay leads to a 0.44% drop in

1

search volume.” [110] Similarly, Amazon concluded that a 1-second delay in

webpage load time could translate to $1.6 billion lost in sales annually [87].

Conventional techniques to improve mobile compute capability have

largely been focused on CPU design, largely by adopting desktop-oriented de-

sign techniques, i.e., to apply aggressive (micro-)architecture mechanisms for

both single-core and multi-core performance while relying the underlying cir-

cuit techniques (i.e., Dennard Scaling [84]) for power and energy-efficiency [104].

However, as the demise of the graceful Dennard scaling becomes a reality [90],

excessive power and energy consumption will eventually put the CPU-centric,

desktop-like design strategy to its end.

Thesis Statement To sustain mobile performance improvement

while being energy-efficient, we must deviate away from the traditional CPU-

only mentality. Instead, we must expand the research scope to the entire Web

computing stack spanning architecture, runtime, and programming language

layers. Following this tenet, my dissertation proposes hardware accelerators,

runtime scheduling mechanisms, and programmers-assisted language annota-

tions, the combination of which forms a hardware/software co-designed com-

puting substrate that improves mobile Web performance and energy-efficiency.

The rest of this chapter is organized as follows. Chapter 1.1 provides

an overview of my research contributions. Chapter 1.2 discusses the long-term

impact of my work. Chapter 1.3 puts my work in the broad context of mobile

computing. Chapter 1.4 outlines the rest of the dissertation and Chapter 1.5

lists previously published materials that this dissertation draws upon.

2

1.1 Research Contributions

The key theme of my work is to deviate away from the general-purpose

CPU-centric mindset and to take a holistic view of the mobile Web compu-

tation stack spanning application, Web browser runtime, and processor archi-

tecture layers. I contend that improving energy-efficiency and performance of

mobile Web computing requires us to enhance the traditional computing inter-

faces with new abstractions and to leverage the new interfaces for cross-layer

optimizations. As such, the central challenge of my research is to carefully

forge new abstractions that expose optimization opportunities while enabling

effective and practical optimization mechanisms.

At the application/Web browser boundary, current Web applications

merely specify visual appearance and functionalities to the browser through

Web languages such as HTML, CSS, and JavaScript. User QoS requirements

(e.g., latency tolerance) are unexpressed. However, different users QoS re-

quirements lead to different optimal runtime decisions for trading off QoS

with energy consumption. Exposing user QoS expectations at the application

level would allow the Web runtime to budget wisely the energy usage while

delivering satisfactory user QoS experience.

At the Web browser/architecture boundary, the traditional interface

provides to the Web browser runtime a simplistic and monolithic execution

model of the hardware. However, today’s mobile processors are becoming

extremely complex, combining general-purpose cores that have different per-

formance and energy characteristics [124] with special-purpose domain-specific

3

accelerators. While the hardware upheaval promises performance and energy

improvements for the mobile Web, its practical impact depends on how effec-

tive the Web browser can leverage it. I see both needs on specializing the pro-

cessor architecture for the Web domain that enriches the runtime/architecture

interface and on designing an intelligent Web browser runtime that can effec-

tively manage the complex interface to optimize for energy-efficiency.

In the spirit of enhancing the traditional Web computing stack inter-

faces and leveraging the new interfaces to optimize each layer, my dissertation

makes the following three contributions. Figure 1.1 provides an overview of

the contributions. Enhancements to the existing Web stack are shaded.

• Web Language Extensions: I propose GreenWeb, a set of program-

ming language extensions that let Web developers express user QoS ex-

pectations as program annotations. GreenWeb enhances the traditional

application-runtime interface with two new programming abstractions,

QoS type and QoS target, that capture two critical aspects of user QoS

experience. Exposing QoS requirements in Web applications effectively

guides the underlying Web runtime to determine how to deliver the tar-

get QoS experience while minimizing the energy consumption. GreenWeb

does not pose any constraints on specific runtime implementations but

instead supports general energy optimization techniques.

• Smart Web Browser Runtime: I propose WebRT, a mobile Web

browser runtime that optimizes for energy-efficiency while delivering the

4

W
eb

 L
an

gu
ag

es

W
eb

 B
ro

w
se

r
Ru

nt
im

e

Se
cu

rit
y

Re
nd

er
in

g
N

et
w

or
k

In
pu

t

Gr
ee
nW

eb
 E

xt
en

si
on

s

We
bR

T

Fe
ed

ba
ck

-D
riv

en
 W

eb

Ru
nt

im
e

M
od

ul
e

G
en

er
al

-
pu

rp
os

e
Pr

oc
es

so
r

We
bC
or

e
M

ob
ile

 P
ro

ce
ss

or
Ar

ch
ite

ct
ur

e

W
eb

Ap

pl
ic

at
io

ns

W
eb

-s
pe

ci
fic

Pr

oc
es

so
r

M
on

ol
ith

ic

Ex
ec

ut
io

n

Tr
ad

iti
on

al
In

te
rfa

ce
s

En
ha

nc
ed

In
te

rfa
ce

s

C
om

pu
ta

tio
n

Ta
sk

s
<C

or
e,

 F
re

q>
M

ap
pi

ng
Pe

rf,
En

er
gy

R
es

ea
rc

h
C

on
tr

ib
ut

io
ns

En
er

gy
-A

w
ar

e
W

eb
 L

an
gu

ag
e

Ex
te

ns
io

ns
 (§

 6
)

➣

eQ

oS
: Q

oS
, P

er
f.

an
d

En
er

gy
 T

ra
de

-o
ffs

➣

Q

oS
 T

yp
e

an
d

Q
oS

 T
ar

ge
t A

bs
tra

ct
io

ns
➣

G

re
en

W
eb

 L
an

gu
ag

e
De

si
gn

En
er

gy
-E

ffi
ci

en
t W

eb
 B

ro
w

se
r R

un
tim

e
(§

 5
)

➣
 L

TM
 U

se
r-A

pp
lic

at
io

n
In

te
ra

ct
io

n
M

od
el

➣
 W

eb
pa

ge
-a

w
ar

e
Sc

he
du

lin
g

➣
 E

ve
nt

-b
as

ed
 S

ch
ed

ul
in

g

W
eb

-s
pe

ci
fic

 M
ob

ile
 P

ro
ce

ss
or

 A
rc

hi
te

ct
ur

e
(§

 4
)

➣
 G

en
er

al
-p

ur
po

se
 C

or
e

C
us

to
m

iza
tio

n
➣

 S
pe

ci
al

ize
d

Do
m

ai
n-

sp
ec

ifi
c

Ac
ce

le
ra

to
r

M
ob

ile
 W

eb
 C

om
pu

tin
g

St
at

ck

D
is

pl
ay

Ba
tte

ry
N

et
w

or
k

D
ev

ic
e-

le
ve

l C
ha

ra
ct

er
iz

at
io

ns
 (§

 3
)

➣
 N

et
w

or
k

vs
. C

om
pu

te
 P

er
fo

rm
an

ce
 A

na
ly

si
s

➣
 D

is
pl

ay
 v

s.
 R

ad
io

 v
s.

 C
om

pu
te

 P
ow

er
 A

na
ly

si
s

St
ru

ct
ur

e,
St

yl
e,

Fu
nc

tio
na

lit
y

Q
oS

 ty
pe

,
Q

oS
 ta

rg
et

F
ig

.
1.

1:
O

ve
rv

ie
w

of
m

y
cr

os
s-

la
ye

r
re

se
ar

ch
co

n
tr

ib
u
ti

on
s.

5

specified user QoS requirements. Although WebRT is a generic runtime de-

sign, I demonstrate a prototype implementation based on the asymmetric

chip-multiprocessor (ACMP) hardware architecture. ACMP exposes two

new architecture-level abstractions: core type and core frequency. WebRT

leverages the new abstractions and dynamically provisions the hardware

resources according to user QoS requirements for energy savings. In addi-

tion, WebRT also continuously monitors the runtime execution behaviors

to enable feedback-driven optimizations, which is critical considering the

interactive nature of mobile applications.

• Web-Specific Processor Architecture: I propose WebCore, a forward-

looking mobile CPU architecture customized and specialized for the Web

stack. The WebCore improves performance and energy-efficiency simul-

taneously by integrating domain-specific hardware that exploits critical

computation kernels and data communication patterns. A key design

goal of WebCore is maintain general-purpose programmability, which is

vital to ensure its applicability to the complex Web software stack. Over-

all, WebCore deepens the heterogeneity of the mobile processor architec-

ture and enlarges the performance-energy trade-off space that the Web

runtime can take advantage of.

1.2 Long-term Impact

Mobile hardware and Web software ecosystems undergo rapid design

cycles to keep up with constant innovations. It is vital to ensure that any

6

research contributions to this domain have long-term impact, or they perish.

The long-term impact of my work lies in two fundamental aspects.

First, the problem that I study is a long-term research agenda. The key chal-

lenge that my research focuses on, i.e., performance and energy-efficiency, will

always be at the forefront of mobile computing research. As the battleground

of mobile computing gradually shifts into even smaller form factors such as

wearables and Internet-of-Things (IoT) devices, improving performance and

energy-efficiency of mobile computing is ever important.

Second, my proposed techniques have long-term applicability because

they focus on the fundamental computation layers of Web technologies rather

than being tied to the specifics of today’s systems. For instance, WebCore

proposes a hardware units that optimizes CSS processing, which is a corner-

stone technology that remains largely unchanged as new Web standards and

specifications come and go. Similarly, the designs of WebRT and GreenWeb are

also generally applicable because they are do not rely on a particular form of

the underlying processor (micro-)architecture or application features.

1.3 Research Scope

The scope of mobile Web computing is broad and becoming increasingly

rich. It involves two critical components: compute and network. The compute

component can be further classified by approaches that are either client-centric

or based on cloud-offloading. Figure 1.2 shows the hierarchy of the mobile Web

scope. My research judiciously focuses on the client-side compute. In other

7

Client-
Centric

Mobile Web

Compute Network

Cloud-
Offloading

(Traditional Bottleneck)

(Limited Applicability)

My Research
Scope

Fig. 1.2: The mobile Web computing scope. My research takes a compute-
driven, client-centric approach.

words, it takes a compute-driven and client-centric approach. This section

discusses my rational. The goal here is not to dismiss research in network and

cloud computing community, but to explain the trade-offs between different

approaches and thereby set the context for my work.

Compute-versus-Network Traditionally when the scope of Web

computing was merely about serving static webpages, Web performance was

predominantly bottlenecked by network capability because very little process-

ing was involved. However, this trend is changing. Over the past decade cel-

lular network technology has improved dramatically. For example, the round-

trip time is improved by two orders of magnitude from 2G to LTE [111].

Meanwhile, the computational requirements posed by new Web technologies

(e.g., CSS3, HTML5, WebGL) keep increasing. For instance, under the same

network condition the processing time for loading the same website from dif-

ferent years over the past decade has increased by as much as 10X [185]. The

8

combined effect of faster network performance and higher computation de-

mand implies that future mobile Web performance will be unattainable with-

out improving the compute capability. An in-depth computer-versus-network

bottleneck analysis can be found in Chapter 3.1.

Client-versus-Cloud Compute in mobile Web has been primar-

ily carried out by client-side devices only. Recently researcher have started

investigating a new compute paradigm where part of the computation is of-

floaded to cloud platforms through wireless connections—the so called mobile

cloud computing (MCC). Although MCC is a promising approach that ex-

tends the capability of mobile devices for computation-intensive applications,

it has three major limitations. First, today’s Web applications are extremely

dynamic where both data and code can be generated at runtime depending on

user-specific information (e.g., via sensors). The dynamic nature of Web ap-

plications leads to frequent synchronizations between client and cloud that po-

tentially undermine the performance and energy-efficiency benefits that MCC

brings. Second, MCC assumes the availability of wireless connections, which

limits its usage scenario. Third, MCC raises security and privacy concerns as

data and computation are transmitted over the network.

The limitations stated above indicate that a handful questions need to

be addressed for MCC to succeed. That said, future mobile Web computing

systems will most certainly incorporate certain aspects of cloud-offloading, a

quantitative trade-off study of which is warranted but beyond my scope.

9

1.4 Dissertation Organization

The rest of my dissertation is organized as follows. Chapter 2 intro-

duces the preliminary knowledge of Web computing. Chapter 3 quantitatively

demonstrates the need for high-performance and energy-efficient computation

in the mobile Web, which directly motivates the research theme of my work.

Chapter 4, Chapter 5, and Chapter 6 describe the proposed WebCore, WebRT,

and GreenWeb at the architecture, runtime, and programming language layer,

respectively. Chapter 7 provides a retrospective and prospective view of my

dissertation work. The retrospective part summarizes the principles distilled

from this work on building a high-performance while energy-efficient mobile

Web computing system; the prospective part suggests next steps for general-

izing the principles and outlines potential research items for future work.

1.5 Previously Published Material

This dissertation contains materials that are previously published in

peer-reviewed conferences and journals:

Chapter 3. The network-versus-computer analysis in Chapter 3.1

contains results from the following paper: The Role of the CPU in Energy-

Efficient Mobile Web Browsing. Yuhao Zhu, Matthew Halpern and Vijay

Janapa Reddi. In IEEE Micro, Jan/Feb 2015, 35(1):26-33 [184]. The power

and energy characterizations in Chapter 3.2 contains results from the following

paper: Mobile CPU’s Rise to Power: Quantifying the Impact of Generational

10

Mobile CPU Design Trends on Performance, Energy, and User Satisfaction.

Matthew Halpern, Yuhao Zhu and Vijay Janapa Reddi. In High Performance

Computer Architecture (HPCA), 2016 [104].

Chapter 4. The design and implementation of WebCore are based

on the following paper: WebCore: Architectural Support for Mobile Web

Browsing. Yuhao Zhu and Vijay Janapa Reddi. In International Sympo-

sium on Computer Architecture (ISCA), 2014 [186]. Chapter 4 also contains

results from the following journal paper: Optimizing General-Purpose CPUs

for Energy-Efficient Mobile Web Computing. Yuhao Zhu and Vijay Janapa

Reddi. In ACM Transactions on Computer Systems (TOCS), March 2017,

35(1):1 [188].

Chapter 5. The fundamental idea of WebRT is based on the follow-

ing position paper: Exploiting Webpage Characteristics for Energy-Efficient

Mobile Web Browsing. Yuhao Zhu, Aditya Srikanth, Jingwen Leng and Vijay

Janapa Reddi. In Computer Architecture Letters (CAL), Oct 2012, 13(1):33-

36 [189]. The webpage-aware scheduler described in Chapter 5.4 draws upon

High-Performance and Energy-Efficient Mobile Web Browsing on Big/Little

Systems. Yuhao Zhu and Vijay Janapa Reddi. In High Performance Computer

Architecture (HPCA), 2013 [185]. The event-based scheduler in Chapter 5.5

draws upon Event-based Scheduling for Energy-Efficient QoS (eQoS) in Mobile

Web Applications. Yuhao Zhu, Matthew Halpern and Vijay Janapa Reddi. In

High Performance Computer Architecture (HPCA), 2015 [183].

Chapter 6. The GreenWeb language extensions and the AutoGreen

11

annotation framework are based on the following paper: GreenWeb: Language

Extensions for QoS-aware Energy-Efficient Mobile Web Computing. Yuhao

Zhu and Vijay Janapa Reddi. In Programming Language Design and Imple-

mentation (PLDI), 2016 [187].

12

Chapter 2

Web: A Universal Application Platform

In this section, I first present the broad scope of the Web computing

that this dissertation focuses on (Chapter 2.1). I then briefly introduce Web

languages and the Web browser runtime (Chapter 2.2). Overall, I show that

the Web has become a cornerstone technology in today’s mobile computing era.

Its evolution is largely driven by innovations made in programming languages

and system design. These observations motivate my effort on designing a

holistic energy-efficient mobile Web computing substrate.

2.1 The Scope of the Web

Web applications are applications developed using Web languages, in-

cluding HTML, CSS, and JavaScript. Originally, webpages running in a Web

browser were the only form of Web application. The scope of the Web to-

day has been greatly expanded beyond webpages to a universal application

development platform. The driving force is Web’s “write-once, run-anywhere”

feature that tackles the notorious device fragmentation issue [161]. Strategy

Analytics reported that by the year 2015 63% of all business mobile applica-

tions are based on Web technologies [162].

13

Mobile system vendors are actively embracing Web technologies. Both

iOS and Android provide developers APIs that expose Web browser function-

alities [4, 22]. This allows developing “hybrid” applications that are internally

based on Web technologies, but are wrapped by a native shell. Such a de-

velopment strategy has been widely adopted by popular mobile Apps such as

Uber and Instagram [52]. In this dissertation, the scope of Web application

extends beyond webpages to also include such hybrid applications.

2.2 Web Languages and The Web Browser Runtime

HyperText Markup Language (HTML), Cascading Style Sheets (CSS),

and JavaScript are the three fundamental languages for Web development. In

a nutshell, HTML describes the structural information of a Web application

by building a Document Object Model (DOM) tree [17], in which each node

represents a Web application element. CSS describes an application’s style

information by declaring visual properties of each DOM tree node. JavaScript

specifies an application’s dynamic behavior by defining callback functions to

execute when certain user interactions are triggered on DOM nodes.

To enable portability of Web applications, the Web browser acts as

a “virtual machine” or a runtime system layer that dynamically translates

HTML, CSS, and JavaScript to different platforms. Figure 2.1 shows the

overall flow of execution within any typical Web browser, which typically con-

sists of two core modules: a rendering engine (e.g., WebKit for Chrome and

Gecko for Firefox) that translates HTML and CSS, and a JavaScript engine

14

Dom Style Layout Render

DOM
Tree

CSS
Style
Rules

Render
Tree

Servers GPU
Painting

User
Actions

JavaScript
Engine

Rendering Engine

Data structures

Kernels

Fig. 2.1: A typical Web browser architecture.

that executes JavaScript code.

The rendering engine mainly consists of four kernels: Dom, Style, Lay-

out, and Render. The kernels, shown in boxes, process the webpage and pre-

pare pixels for a GPU to paint. The figure also shows the important data

structures that the kernels consume. The DOM tree, CSS style rules, and

Render tree are those important data structures, and they are heavily shared

across the kernels. The data structures are shown in circles with arrows indi-

cating information flow between the kernels.

The Dom kernel is in charge of parsing the webpage contents. Specif-

ically, it constructs the DOM tree from the HTML files, and extracts the

CSS style rules from the CSS files. Given the DOM tree and CSS style rules,

the Style kernel computes the webpage’s style information and stores the re-

sults in the render tree. Each render tree node corresponds to a visible element

15

in the webpage. Once the style information of each webpage element is cal-

culated, the Layout kernel recursively traverses the render tree to decide each

visible element’s position information based on each element’s size and relative

positioning. The final < x, y > coordinates are stored back into the render

tree. Eventually, the Render kernel examines the render tree to decide the

z-ordering of each visible element so that they can be displayed in the correct

overlapping order.

Over the past two decades, language evolution and Web runtime design

have been constantly driving Web innovations [36, 42]. As a result, current

Web standards such as HTML5 and CSS3 enable ever-richer functionalities,

such as offline storage, media playback, and geolocation, that are the core in

today’s mobile applications. Web language and browser design innovations

will continue to be the key enabler for next-generation Web computing.

16

Chapter 3

The Need for High-Performance and

Energy-Efficient Computation in Mobile Web

This section quantitatively demonstrates the importance of computa-

tion, among other components such as network and display, to mobile Web’s

performance and energy consumption. The observations discussed in this sec-

tion directly motivate my research to focus on the computation layer of the

mobile Web and to improve its performance and energy-efficiency.

The computation layer involves many mobile SoC components, such as

CPU, GPU, and domain-specific accelerators. My work specifically focuses on

the CPU for the following two reasons. First, CPU is the most heavily exer-

cised computation component for Web applications because the Web runtime

primarily targets CPUs. GPUs’ usage, although providing critical performance

benefits, is still limited to specific tasks such as rasterization and composit-

ing [49]. The key computations such as layout and JavaScript execution are

still solely performed on general-purpose CPUs. Second, CPU serves as an

incubator for future accelerators—we must first understand computation ker-

nels’ characteristics on CPUs before they can be accelerated. In fact, one of my

dissertation contributions is the accelerator design of a key Web computation

17

kernel based on its CPU execution behaviors.

In the rest of this chapter, I first show that the overall mobile Web

performance depends increasingly on the computational capability of mobile

CPUs, indicating the need for a high-performance computation (Chapter 3.1).

I then show that mobile devices’ power consumption is increasingly dominated

by CPUs, calling for an energy-efficient computation (Chapter 3.2).

3.1 The Need for Compute Performance in Mobile Web

Computation and network largely dictate the performance of mobile

Web. Conventional wisdom suggests that mobile Web performance is primarily

limited by the network latency. In this section, I quantify the impact of CPU

and network performance by experimentally comparing how the webpage load

time varies with different CPU and network performance on today’s high-end

smartphone Galaxy S5. I show that as cellular network technologies evolve over

generations, mobile Web performance becomes sensitive to CPU performance.

Network Impact Network performance is typically evaluated in two

metrics: latency and bandwidth. Prior work has shown that in the mobile

context, network latency—typically evaluated by round-trip time (RTT)—has

a much more significant impact than network bandwidth [97, 172]. Therefore,

we focus only on the latency aspect of network performance.

To study the impact of network latency of various cellular network

generations, we host all the webpages on a Web server, into which we manually

18

38

32

26

20

14

8

2

Lo
ad

 ti
m

e
(s

)

10
2 3 4 5 6 7 8 9

100
2 3 4 5 6 7 8 9

1000
2

Network RTT (ms)

LTE 3G Adverse 3G

2G

Wi-Fi

Fig. 3.1: Webpage load time with respect to changing network latency. Each
marker corresponds to an RTT value. We also superimpose the round-trip
time (RTT) range for different cellular technologies derived from both technical
specifications as well as real measurements in the field [1, 97].

inject delay. We then use Wi-Fi on the smartphone to access the webpages.

The delay injection lets us mimic a wide range of network latencies because

Wi-Fi has significantly lower latency than the current 4G/LTE network. This

methodology is well-established to control cellular network latency [172].

Holding the CPU performance at its peak, Figure 3.1 shows the web-

page load time with respect to different network latencies. We superimpose the

figure with different mobile network technologies’ typical latencies derived from

both technical specifications as well as real measurements in the field [1, 97].

We observe that reducing the network latency initially from an adverse 3G

connection at 2,000 ms to an LTE connection at 100 ms results in a 9.5X

speedup in webpage load time from 38 seconds to 4 seconds. However, as the

19

network latency further improves within the range of LTE network latency

(50∼100 ms), the network latency has only a marginal impact on the overall

webpage load time. This is because at this point the fast network accesses are

hidden behind CPU computations in the asynchronous execution model; the

application is largely CPU-bound. Further reducing the network latency from

LTE to Wi-Fi has almost no effect.

Computation Impact As the network latency becomes low (e.g.,

under the LTE technology), the CPU performance starts playing a significant

role in the mobile Web performance. To study how the CPU performance

affects the webpage load time, we mimic a wide range of CPU performance

capabilities by leveraging S5’s 14 frequency settings. Note that we use fre-

quency only as a proxy for CPU performance, it is not our intention to study

the impact of a particular CPU’s frequency itself. Figure 3.2 shows how web-

page load time changes with CPU performance under a 100 ms RTT (LTE-like

cellular network connectivity). As the CPU frequency decreases from the high-

est to the lowest by about 6X (2.5 GHz to 0.4 GHz), the webpage load time

slows down by as much as 4.5X from 4 seconds to about 18 seconds, indicating

strong sensitivity to CPU performance.

Note that increasing clock frequency between 1.6 GHz and 2.4 GHz

yields small performance benefits. One may then naively conclude that mo-

bile CPU performance improvements provide marginal improvements in Web

performance. However, the “marginal improvement” is merely an artifact of

using frequency as a performance proxy. At high frequencies, the processor’s

20

20

16

12

8

4

0

Lo
ad

 ti
m

e
(s

)

2.42.01.61.20.80.4

CPU Frequency (GHz)

Desktop CPU
Performance

Fig. 3.2: Webpage load time with respect to CPU frequency on a Galaxy
S5 smartphone. The markers represent CPU frequencies, which range from
0.4 GHz (left) to 2.5 GHz (right). We also overlay the load time on a desktop
CPU (the dotted line) for comparison purpose.

pipeline is already saturated, and the memory and interconnection become the

microarchitecture-level bottlenecks [54]. To overcome this artificial constraint

and assess the impact of future mobile CPU improvements, we perform the

same experiment on a desktop CPU (Intel Core i5 at 1.2 GHz). The result

is shown as the dotted line in Figure 3.2. The average webpage load time on

the desktop CPU is about 1 second, effectively a 4X speedup over the peak

performance of S5. This experiment shows that mobile CPU performance to-

day is still far from reaching a diminishing return point, and it can continue

to have a significant impact on mobile Web performance.

The takeaway from the results is that continuous improvement to net-

work latency will eventually, if not already, take us to a point where further

21

Web performance improvement will be unattainable without improving CPU

performance. This is a timely conclusion, especially when low latency cellular

network, such as LTE, is already prevalent today. It is estimated that LTE’s

subscription will reach 1.37 billion (one-fifth of the world population) by the

end of 2015 [25]. Note, however, that we do not claim that network latency is

irrelevant. When the network deviates from an ideal low-latency condition, or

in emerging markets where high-latency network accesses are prevalent [123],

mobile Web performance is indeed constrained by the network latency.

3.2 The Need for Energy-Efficient Computation

Despite the need for high-performance computation, mobile devices are

severely limited by a battery-imposed energy budget, which in turn limits the

achievable performance. In this section, I first use smartphones to quantita-

tively demonstrate that the energy budget of mobile devices is likely to stay

stringently constrained in the near future. I then show that the CPU is becom-

ing the worst power and energy consumer of a mobile device as compared to

other components such as display and radio. There is clearly a need for energy-

efficient computation in the mobile Web. Data presented here is adapted from

the results of a related project [104] that I collaborated on.

Energy Constraint Battery technology has not experienced Moore’s

law-like improvements because of fundamental physics limitations [158]. As a

result, the density of lithium-ion batteries has improved by only about 10%

per year [62]. Thus, the battery capacity of today’s mobile devices is deter-

22

3.5x103

3.0

2.5

2.0

1.5

1.0

B
at

te
ry

 C
ap

ac
ity

 (m
A

h)

6.56.05.55.04.54.03.53.02.52.01.5
Screen Size (inches)

 2009 - Droid
 2010 - S
 2011 - Nexus
 2012 - S3
 2013 - S4
 2014 - S5
 2015 - S6

Fig. 3.3: The correlation between smartphone battery capacities and their
screen sizes. There is an almost linear relationship over the time.

mined by the battery’s volume, which is largely dictated by the device’s screen

size [6]. Using the smartphone as an example of a start-of-the-art mobile de-

vice, Figure 3.3 compares the screen sizes and battery capacities of over 600

smartphones from 2006 to 2014. There is a near-linear correlation between

the battery capacity and screen size. As smartphone form factors reach matu-

rity [47], the total device energy budget will likely stay severely constrained.

Mobile CPU’s Rise to Power Different components contribute to

the overall power consumption of a mobile device. Figure 3.4 compares the

measured power consumption of three major mobile device components: CPU,

display, and radio. We select seven top smartphones for each year from 2009 to

2015. They are Motorola’s Droid from 2009, and Samsung’s Galaxy S, Nexus,

S3, S4, S5, and S6 from 2010 through 2015, respectively. Chronologically,

23

10

8

6

4

2

0

M
ea

su
re

d
P

ow
er

 (W
)

Droid S Nexus S3 S4 S5 S6

Smartphone Model (Year)
(2009) (2010) (2011) (2012) (2013) (2014) (2015)

 Display
 Radio
 CPU: Single-core
 CPU: Multicore

SoC TDP (3.5 W)

Fig. 3.4: CPU measured peak power consumption has increased significantly
compared to other key mobile device components over the years. In particular,
the multicore CPU power alone can exceed SoC-level TDP.

the seven phones represent how cutting-edge smartphone technologies have

progressed over time. The results are collected while running a standard Web

benchmark, Sunspider [34], for the CPU(s), and dedicated benchmarks for the

other components [28, 73]. We used the Monsoon power monitor to measure

the seven smartphones’ power consumptions at the battery level.

We make two important observations from Figure 3.4. First of all,

CPU has become a major power consumer in a mobile device. The year

2011 marks an inflection point where a single CPU core began overtaking the

display as the most power consuming component. On any of the last three

mobile CPU generations, the multicore CPU power consumption exceeds the

entire mobile device’s thermal design power (TDP) even without considering

24

the power consumption of radio, display, and the rest of the SoC.

Second, while other mobile device components are becoming more power-

efficient over time due to their respective technological advancements [78], the

CPU’s power has risen excessively. The continuous mobile CPU power increase

is a direct result of the mobile CPU design strategy, namely simply adopting

desktop-like design techniques, such as aggressive single-core microarchitecture

enhancement and multicore scaling, to improve performance at the expense of

high power consumption. A recently study shows that mobile CPUs incor-

porated over 20 years of desktop CPU design techniques in just about seven

years [104]. The inevitable consequence of such a design methodology is that

as the Dennard Scaling [84] comes to its end, the performance improvement

can no longer make up for the additional power consumption [104], eventually

making the mobile CPU extremely energy-inefficient.

Given that users expect each mobile device generation to incorporate

new peripherals such as sensors that also require energy from the same budget,

it is clear that the CPU, as a major energy consumer, needs to become more

energy-efficient while sustaining performance improvement.

25

Chapter 4

WebCore: A Mobile Processor Architecture

for Web Computing

Domain-specific specialized architecture has long been deemed as ex-

tremely high-performance and energy-efficient because it aggregates hundreds

of operations in a few instructions and, therefore, reduces major sources of

inefficiencies in general-purpose CPUs [105, 131, 176]. The key challenge of ap-

plying architectural specialization to Web computing is how to retain general-

purpose programmability. The general-purpose programmability is a particular

necessity for Web technologies because they involve large pieces of software

that are written in a combination of different general-purpose programming

languages. For example, Google’s Chrome Web browser is developed in 29 lan-

guages with over 17 million lines of code [145]. Recent work has demonstrated

the importance and feasibility of balancing general-purpose programmability

and specialization in various data computation domains (e.g., H.264 encod-

ing [105], convolution [152]).

Following the architecture design philosophy of balancing general-purpose

programmability and domain-specific specialization, we propose WebCore, a

general-purpose core customized and specialized for mobile Web computing. In

26

comparison to prior work that either takes a fully software approach on general-

purpose processors [75, 137] or a fully hardware specialization approach [63],

our design strikes a balance between the two. On one hand, WebCore retains

the flexibility and programmability of a general-purpose core. It naturally

fits in the multicore SoC that is already common in today’s mainstream mo-

bile devices. On the other hand, it achieves energy-efficiency improvement

via modest hardware specializations that create closely coupled datapath and

data storage.

We begin by examining existing general purpose designs for the mobile

Web applications. Through exhaustive design space exploration, we find that

existing general purpose designs bear inherent sources of energy-inefficiency.

In particular, instruction delivery and data feeding are two major bottlenecks.

We show that customizing current designs by properly sizing key design pa-

rameters achieves better energy efficiency. The customization step ensures

that further optimizations are performed upon an optimized general-purpose

baseline.

Building on the customized general-purpose baseline, we develop spe-

cialized hardware to further overcome the instruction delivery and data feeding

bottlenecks. We propose two new optimizations: the “Style Resolution Unit”

(SRU) and a “Software-Managed Browser Engine Cache.” The SRU is a hard-

ware accelerator for the critical style-resolution kernel within the Web browser

engine. It is based on the observation that the style-resolution kernel has abun-

dant fine-grained parallelism that is hidden in a software implementation but

27

can be captured by a dedicated hardware structure. SRU employs a GPU-like

multi-lane architecture to exploit the inherent parallelism. Through exploiting

the parallelism, the SRU aggregates enough computations in a few operations,

which effectively increases the arithmetic intensity and offsets the instruction

delivery and data feeding overhead.

The proposed browser engine cache structure improves data feeding ef-

ficiency by exploiting the unique data access pattern of the browser engine’s

principal data structures such as the DOM tree and the Render tree. Web

applications typically operate on one DOM/Render tree node heavily and tra-

verse to the next one, indicating both heavy data reuse and predictable access

pattern. The browser engine cache uses a small and energy-conserving hard-

ware memory to capture the heavy data reuse and uses software to predict the

access pattern and to manage the cache. Overall, the browser cache achieves

a high hit rate for the important data structures but with extremely low ac-

cessing energy.

Our results show that customizations alone on the existing general-

purpose mobile processor design lead to 22.2% performance improvement and

18.6% energy saving. Our specialization techniques achieve an additional 9.2%

performance improvement and 22.2% overall energy saving; the accelerated

portion itself achieves up to 10X speedup. Finally, we also show that our spe-

cialization incurs negligible area overhead. More importantly, such overhead,

if dedicated to tuning already existing general-purpose architectural features

(e.g., caches), lead to much lower energy-efficiency improvements.

28

The rest of this chapter is organized as follows. We first describe our ex-

perimental setup including software/hardware infrastructure and application

selection in Chapter 4.1. We then describe the design-space explorations that

allow us to identify sources of inefficiency in existing general-purpose proces-

sors and customize them for mobile Web applications in Chapter 4.2. Building

on top of the customized general-purpose designs, we further propose the two

new specialization techniques in Chapter 4.3 and Chapter 4.4. We show that

our proposed WebCore achieves significant performance and energy-efficiency

improvement over existing designs in Chapter 4.5. We review related work in

Chapter 4.6.

4.1 Experimental Setup

Before we begin our investigation, we describe our software infrastruc-

ture, specifically outlining our careful selection of representative webpages to

study, and the processor simulator.

Web Browser We focus on the popular WebKit [173] rendering

engine used in Google Chromium (Version 30.0) for our studies. WebKit is

also widely used by other popular mobile browsers, such as Apple’s Safari and

Opera.

Benchmarked Web Applications We pay close attention to the

choice of webpages to ensure that the WebCore design is not misled. We

mine through the top 10,000 websites as ranked by Alexa [55] and pick the 12

most representative websites. All except one happen to rank among Alexa’s

29

10
-4

10
-3

10
-2

10
-1

10
0

10
1

P
C

2
(lo

g)

-5 0 5
PC1

Fig. 4.1: We pick 24 representative webpages from 10,000 of the hottest web-
pages as per www.alexa.com

top 25 websites. The 12 benchmarked websites also cover 10 of BBench’s

11 webpages [101]. Chapter 4.5 lists the website names. We refer interested

readers to Chapter 4.6.3 for a discussion of BBench.

We consider not only the mobile version of the 12 websites, but also

their desktop counterparts. Many mobile users still prefer desktop-version

websites for their richer content and experience [65, 163]. Moreover, many mo-

bile devices, especially tablets, typically load the desktop version of webpages

by default. As webpage sizes exceed 1 MB [64], we must study mobile proces-

sor architectures that can process more complex content and not just simple

mobile webpages.

We study 24 distinct webpages in total. The 24 benchmarked web-

pages are representative because they capture the webpage variations in both

30

webpage-inherent and microarchitecture-dependent features. To prove this, we

performed principal component analysis (PCA), which is a statistical method

that reduces the number of inputs without losing generality [86]. PCA trans-

forms the original inputs into a set of principal components (PC) that are

linear combinations of the inputs. In our study, PCA calculates four PCs

from about 400 distinct features. These four PCs account for 70% of the vari-

ance across all of the original 10,000 webpages. Figure 4.1 shows the results

for two major components, PC1 and PC2. IPC (microarchitecture-dependent

feature) is the single most significant metric in PC1, and the number of DOM

tree nodes (webpage-inherent feature) is the most significant metric in PC2.

The triangular dots represent our webpages. They cover a very large spread

of the top 10,000 webpages in the Internet.

Performance Metric We focus on the initial loading of Web ap-

plications. This is because user QoS experience is strongly tied to the initial

load time in Web applications. For instance, it is estimated that 79% of online

shoppers will not return to the website with slow load time [122].

Unless stated otherwise, we define Web application load time as the

execution time that elapses until the onload event is triggered by the Web

browser. It is worth noting that during the loading phase (i.e., before the

onLoad event is triggered), many Web applications execute JavaScript code

such as Ads and analytics. Therefore, our study not only takes into account

the initial loading of the webpage, but also includes JavaScript activity that

is triggered automatically by Web applications.

31

Simulators We assume the x86 instruction set architecture (ISA) for

our study. Prior work shows that the ISA does not significantly impact energy

efficiency for mobile workloads [66]. Therefore, we believe that our microar-

chitecture explorations are generally valid across ISAs. We use Marss86 [149],

a cycle-accurate simulator, in full-system mode to faithfully model all the

network and OS activity. Performance counters from Marss86 are fed into

McPAT [127] for power estimation.

4.2 Customizing General-Purpose Cores

WebCore design is based on general-purpose CPUs to best retain the

general-purpose programmability. However, existing general-purpose proces-

sors may not be an ideal baseline for WebCore, because they are not uniquely

tuned for Web applications. WebCore customizes current designs by explor-

ing a vast design space to properly size key microarchitecture parameters

(Chapter 4.2.1). I derive two major conclusions through the customization

process. First, out-of-order designs provide more flexibility for energy ver-

sus performance trade-offs than in-order designs (Chapter 4.2.2). Second,

a customized out-of-order design configuration still contains two sources of

inefficiency–instruction delivery and data feeding–that need to be further mit-

igated (Chapter 4.2.3).

32

4.2.1 Design Space Exploration

Design Space Specification We define the set of tunable microar-

chitectural parameters in Table 4.1. We vary the values of functionally related

parameters (e.g., issue width and the number of functional units) together

to avoid reaching an entirely unbalanced design [70]. We also do not con-

sider single-issue out-of-order processors, which are known to be energy inef-

ficient [58]. In total, we consider over 3 billion design points.

We intentionally relax the design parameters beyond the current mobile

systems in order to allow an exhaustive design space exploration. For example,

we consider up to 128 KB L1 cache design whereas most L1 caches in existing

mobile processors are 32 KB in size. Also, since thermal design power (TDP)

is important for mobile SoCs, we eliminate overly aggressive designs with more

than 2 W TDP.

We assume a fixed core frequency in our design-space exploration. We

use 1.6 GHz, a common value in mobile processors, to further prune the ex-

ploration space. However, because the latency of both the L1 and L2 caches

can still vary, we include different cache designs in the exploration space.

We use a constant memory latency to model the memory subsystem be-

cause we do not observe significant impact of the memory system on the mobile

Web browsing workload. According to hardware measurements on the Cortex-

A15 processor using ARM’s performance monitoring tool Streamline [57], the

MPKI for the L2 cache across all the webpages is below 5. We observe similar

33

Table 4.1: Microarchitecture design-space parameters. The first col-
umn shows the parameters that are considered in our DSE. The second
column shows the metric that the value of each parameter is measured.
The i::j::k in the third column denotes values ranging from i to k at
steps of j

Parameters Measure Range

Issue width count 1::1::4

Functional units count 1::1::4

Load queue size # entries 4::4::16

Store queue size # entries 4::4::16

Branch prediction size log2(#entries) 1::1::10

ROB size # entries 8::8::128

Physical registers # entries 5::5::140

L1 I-cache size log2(KB) 3::1::7

L1 I-cache delay cycles 1::1::3

L1 D-cache size log2(KB) 3::1::7

L1 D-cache delay cycles 1::1::3

L2 cache size log2(KB) 7::1::10

L2 cache delay cycles 16,32,64

34

low L2 MPKI, i.e. low main memory pressure, in our simulations. Therefore,

we use a simpler memory system to further trim the search space.

Statistical Inference Method It is not feasible to simulate billions

of the design points that we consider simply due to time constraints. Therefore,

we leverage the statistical inference technique that trains predictive models us-

ing a small number of samples. Such models reflect how different microarchi-

tecture parameters, both individually and collectively, influence performance

and power consumption. Statistical inference methods have been used suc-

cessfully in the past for architecture design-space exploration [100, 125].

In particular, we use linear regression modeling [108] to construct our

predictive models. A linear regression model can be formulated as in Equa-

tion. 4.1, where y denotes the response, x = x1, ..., xp denote p predictors, and

β = β0, ..., βp denote corresponding coefficients of each predictor. The least

squares method is used to solve the regression model by identifying the best-

fitting β that minimizes the residual sum of squares (RSS) [109]. In our case,

the response y is either performance (measured in terms of instruction per

cycle, IPC) or power, and the predictors xi are microarchitecture structures

listed in Table 4.1.

y = β0 +

p∑
i=1

xiβi (4.1)

We find that 2,000 uniformly at random (UAR) samples of microar-

chitecture configurations from the design space are sufficient in our case to

35

1.0x10
4

0.8

0.6

0.4

0.2

0.0

D

O
M

 tr
ee

 n
od

es

12008004000
HTML class attributes

cnn

Fig. 4.2: www.cnn.com is a representative webpage from our benchmark suite
because it is almost the centroid.

construct robust models. We also obtain 500 additional UAR samples from

the cache design space (both L1 and L2) to reinforce the credibility of instruc-

tion and data cache design predictions. We perform cross-validation of the

model (i.e., we partition a sample dataset into complementary subsets, and

perform analysis on one subset and validate the analysis on the other subset),

and then obtain additional samples from the design space for full evaluation.

In order to derive general conclusions about the design space and opti-

mize for the common case, in this section we present only our in-depth analysis

for the representative website www.cnn.com. Figure 4.2 compares www.cnn.com

with other webpages to demonstrate that it is indeed representative of the

other benchmarked webpages. The x-axis and y-axis represent the number

of DOM tree nodes and the number of class attributes in HTML. These are

36

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

E
ne

rg
y

(J
)

54321
Load Time (s)

500

450

400

350

300

250

200

E
P

I (pJ per instruction)

2.5 1.5 1 0.5
BIPS

P2

P1Compare

Compare

 OOO
 In-Order

Fig. 4.3: In-order versus out-of-order Pareto optimal frontiers.

the two webpage characteristics that are most correlated with a webpage’s

load time and energy consumption [185]. As the figure shows, www.cnn.com is

roughly the centroid of the benchmarked webpages, and thus we use it as a

representative webpage for the common case.

We construct predictive models for out-of-order and in-order design

space separately because microarchitecture structures have different impact

on performance and power in in-order and out-of-order pipelines. In general,

the out-of-order models’ error rates are below 6.0%. The in-order models

(not shown) are more accurate because of their simpler design. On average,

the in-order performance and power models’ errors are within 5% and 2%,

respectively.

37

4.2.2 In-order vs. Out-of-order Design Space Exploration

Design space exploration helps customization at the “macro-architecture”

level, i.e., determining between in-order and out-of-order designs. We under-

stand the difference between in-order and out-of-order design space by examin-

ing their Pareto optimal frontiers. Design points on a Pareto optimal frontier

reflect different optimal design decisions given specific performance/energy tar-

gets. The Pareto-optimal is more general than the (sometimes overly specific)

EDP , ED2P metrics, etc. Design configurations optimized for such met-

rics have been known to correspond to different points on the Pareto-optimal

frontier [58]. Figure 4.3 shows the Pareto-optimal frontiers of both in-order

and out-of-order designs between energy and performance. We use energy per

instruction (EPI) for the energy metric, and million instructions per second

(MIPS) as the performance metric.

We make two important observations from Figure 4.3. First, the out-

of-order design space offers a much larger performance range (∼1 BIPS be-

tween markers P1 and P2, see top x-axis) than the in-order design space

(< 0.5 BIPS), which reflects the out-of-order’s flexibility in design decisions.

Second, the out-of-order design frontier is flatter around the 4-second webpage

load time range (see marker P1) than in the in-order design, which indicates

that the out-of-order design has a much lower marginal energy cost. The ob-

servation indicates that processor architects can make design decisions based

on the different performance goals without too much concern about the en-

ergy budget. In contrast, the in-order design space quickly enters the region

38

700

600

500

400

300

200

E
P

I (
pJ

 p
er

 in
st

ru
ct

io
n)

12001000800600400
MIPS

4-issue

1-issue

 Dom
 Style
 Layout
 Render

Fig. 4.4: In-order Pareto optimal frontier for each kernel.

of diminishing returns (i.e., sharp increase in energy consumption) as we push

toward webpage load times that are less than 4 seconds. In other words, the

in-order design has a low marginal performance value (or equivalently high

marginal cost of energy).

To understand the difference behind the in-order versus out-of-order

designs, we study the kernel behaviors in Web applications. There are four

important computation kernels in executing a Web application: i.e., Dom,

Style, Layout, and Render. They contribute to about 75% of the webpage

load time and energy consumption. Figure 4.4 and Figure 4.5 show the Pareto

optimal frontiers of the in-order and out-of-order design space for each kernel.

We find that the kernel variance in the in-order designs is more pronounced

than in the out-of-order designs. As we push toward more performance in

39

600

500

400

300

200

E
P

I (
pJ

 p
er

 in
st

ru
ct

io
n)

16001200800400
MIPS

 Dom
 Style
 Layout
 Render

Fig. 4.5: Out-of-order Pareto optimal frontier for each kernel.

the in-order design space, some kernels stop scaling gracefully on the energy-

versus-delay curve, and eventually become a performance bottleneck. Overall,

in-order designs have low marginal performance value with high marginal en-

ergy cost [58]. In contrast, out-of-order cores can cover the variances across

the different kernels through complex execution logic and, therefore, provide

wider performance and energy trade-off range.

4.2.3 Sources of Inefficiency

DSE also helps customization at the microarchitecture level. We exam-

ine microarchitectural parameters of two out-of-order Pareto optimal designs:

P1 and P2 in Figure 4.3. They represent designs optimized for different per-

formance and energy targets. P1 is optimized for minimal energy consumption

40

in the out-of-order space. P2 is a high-performance design with a performance

of 1500 MIPS (million instructions per second). Table 4.2 summarizes the mi-

croarchitecture configurations of the two designs. For comparison purposes, it

also lists the same parameters for ARM Cortex-A15, which represents today’s

high-end mobile CPU.

By comparing P1 and P2 with Cortex-A15, we find two major sources

of inefficiencies in general-purpose processors: instruction delivery and data

feeding. First, current mobile processors have a small L1 instruction cache

that is typically 32 KB in size. However, the two Pareto optimal designs

require a 64 KB to 128 KB instruction cache to alleviate the pressure on

instruction delivery in mobile Web applications. The pathological front-end

behavior mainly stems from the large instruction footprint and the prevalence

of the irregular control flow path [101].

Second, the high-performance design P2 also necessitate a 64 KB data

cache, doubling the typical L1 data cache size in current mobile CPUs. The

need for a large data cache mainly stems from the large working set size on

principal data structures (e.g., the DOM tree) during webpage processing. For

example, profiling results show that the average data reuse distance for DOM

tree accesses is 4 KB (excluding other memory operations interleaved with

DOM accesses). The large data cache leads to excessive energy consumption

and needs to be optimized.

41

Table 4.2: Microarchitecture configurations for P1 and P2 in Fig-
ure 4.3. They represent different energy-delay trade-offs. For com-
parison purpose, we also show the parameters for ARM Cortex-A15,
whose information is gather from measurements using the 7-Zip LZMA
Benchmark [53] and ARM’s public presentation [56].

P1 P2 Cortex-A15

Issue width 1 3 3

Functional units 2 3 8

Load queue size (# entries) 4 16 16

Store queue size (# entries) 4 16 16

BTB size (# entries) 1024 128 64

ROB size (# entries) 128 128 40+

Physical registers 128 128 ?

L1 I-cache size (KB) 64 128 32

L1 I-cache delay (cycles) 1 2 ?

L1 D-cache size (KB) 8 64 32

L1 D-cache delay (cycles) 1 1 4

L2 cache size (KB) 256 1024 512˜4096

L2 cache delay (cycles) 16 16 21

42

4.3 Style Resolution Unit

Unusual design parameters in a customized processor tuned for the

mobile Web workload indicate that instruction delivery and data feeding are

critical to guarantee high performance while still being energy efficient. I

propose specialized hardware mechanisms to mitigate the instruction delivery

and data feeding inefficiencies in the customized out-of-order core designs. In

particular, I introduce two new hardware structures: a Style Resolution Unit

(SRU) and a Browser Engine Cache (BEC). This section focuses on the SRU

and the next section focuses on the BEC.

The SRU is an accelerator for the critical Style kernel within the Web

browser rendering engine. The SRU design is based on the observation that

the Style kernel has abundant fine-grained parallelism that is hidden in a

software implementation but can be captured by a dedicated hardware struc-

ture (Chapter 4.3.1). To exploit the inherent fine-grained parallelism, the

SRU employs a multi-lane parallel architecture, which greatly reduces the in-

struction delivery overhead. To reduce the data feeding pressure, the SRU is

tightly coupled with a small scratchpad memory that brings operands closer

to the SRU (Chapter 4.3.2). To maintain general-purpose programmability,

these new hardware structures are accessed via a set of high-level language

APIs. The APIs are implemented through a runtime library with only slight

modification to the current browser implementation (Chapter 4.3.3).

43

4.3.1 Motivation

Optimizing the Style kernel would improve the overall energy efficiency

the most for the following reasons. The Style kernel is the most time-consuming

task in the rendering engine. In our profiling, it consumes 35% of the total

rendering engine execution time. it also dominates the energy consumption

by consuming 40% of the total energy.

In order to mitigate the instruction delivery and data communica-

tion overhead of the Style kernel, we propose a special functional unit called

the Style Resolution Unit (SRU) that is tightly coupled with a small scratch-

pad memory. The SRU exploits fine-grained parallelism to reduce the amount

of instructions and potential divergences. The scratchpad memory reduces

data communication pressure by bringing operands closer to the SRU.

The Style kernel consists of two phases: a matching phase and an ap-

plying phase. Figure 4.6 shows the pseudo-code of the two phases. Previous

work [75, 137] focuses on parallelizing the matching phase. However, in our

profiling, we find that the applying phase takes nearly twice as long to execute

as the matching phase. Therefore, we focus on the applying phase. The ap-

plying phase takes in a set of CSS rules (matchedRules) as input, iterates over

each rule in the correct cascading order [171] to calculate each style property’s

final value (e.g., the exact-color RGB values, font width pixels). The final

values are stored back to the Render tree (the RenderStyle array).

The key observation we make in the applying phase is that there are two

44

// matching phase
matchedRules = matching(DOMTree, DOMNodeId, CSSRules);

// applying phase
foreach (rule in matchedRules) {
 foreach (property in rule) {
 switch (property.ID) {
 case Font:
 RenderStyle[Font] = FontHandler(property, DOMNodeId);
 break;
 case Color:
 RenderStyle[Color] = ColorHandler(property, DOMNodeId);
 break;
 …
 case N: ...
 }
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Fig. 4.6: Pseudo-code of the Style kernel. It consists of a matching phase and
an applying phase. SRU accelerates the applying phase, which takes about
two-thirds of the Style kernel execution time.

types of inherent parallelism: “rule-level parallelism” (RLP) and “property-

level parallelism” (PLP). Improving the energy efficiency of the Style kernel

requires us to exploit both forms of parallelism in order to reduce the control-

flow divergence and data communication overheads. Our profiling results in-

dicate that both control flow and memory instructions put together constitute

80% of the total instructions that are executed within the Style kernel.

RLP comes from the following. In order to maintain the correct cascad-

ing order, each rule contained in the input data structure must be sequentially

iterated from the lowest priority to the highest, so that the higher-priority

rules can override the lower-priority rules. However, in reality, we could spec-

ulatively apply the rules with different priorities in parallel, and select the one

45

... ... Rule j

... ...

Prop l

... ...

scratchpad mem
(input)

Rule i.id

... Prop m ... Prop k ...

Rule j.id

...

...

...scratchpad mem
(output)

start end start end

Rule i

Prop kProp m Prop mProp l

compute
lanes

Style l Style m Style k

conflict
resolution

Fig. 4.7: SRU coupled with scratchpad memories.

with the highest priority. PLP follows RLP. Each rule has multiple properties,

and each property is examined by the engine to set the corresponding data

field in the Render tree according to its property ID. Because properties are

independent of one another, handling of their processing routines can be dealt

with in parallel.

4.3.2 Hardware Design

We propose a parallel hardware unit that exploits both RLP and PLP,

called the Style Resolution Unit. The SRU aggregates enough computations

to reduce control-flow divergences and increase arithmetic intensity. It is ac-

companied by data storage units for both input and output. Note that it is

not easy to exploit software-level parallelism for PLP and RLP because of the

complex control flow, memory aliasing, and severe loop-carried dependencies.

46

In addition, we noticed that the input to the applying phase, matchedRules,

is an intra-kernel shared data structure between the matching and applying

phases. Storing such short-lived data into the memory hierarchy, and accessing

it through traditional load and store instructions, results in slow computation.

It also wastes energy. Therefore, we provide a scratchpad memory for the in-

put. Similarly, we store the output structure (i.e., RenderStyle) in a separate

scratchpad memory.

Figure 4.7 shows the structure of the SRU with scratchpad memory

for input and output data. SRU has multiple lanes, with each lane dealing

with one CSS property. Assume Rule i and Rule j are two rules from the

input that are residing in the scratchpad memory. Rule i has higher priority

than Rule j. Prop l and Prop m are two properties in Rule i. Similarly,

Rule j has properties Prop k and Prop m. Prop l and Prop k can be executed

in parallel using different SRU lanes because they do not conflict with each

other. However, Prop m is present in both rules, and as such it causes an SRU

lane conflict, in which case the MUX selects the property from the rule with

the highest priority, which in our example is Rule i.

Design Considerations A hardware implementation can have only

a fixed amount of resources. Therefore, the number of SRU lanes and the size

of the scratchpad memory is limited. Prior work [185] shows that the number

of matched CSS rules and the number of properties in a rule can vary from

one webpage to another. As such, a fixed design may overfeed or underfeed

the SRU if the resources are not allocated properly.

47

100

80

60

40

20

0

D
O

M
 T

re
e

N
od

es
 (

%
)

1612840
RLP

(a) RLP analysis.

100

80

60

40

20

0

T
ot

al
 C

S
S

 P
ro

pe
rt

ie
s

(%
)

9664320
CSS Properties

(b) CSS property analysis.

Fig. 4.8: Analysis of RLP and CSS properties across webpages.

We profile the webpages to determine the appropriate amount of re-

source allocation required for the SRU. Profiling indicates that 90% of the

time, the RLP is below or equal to 4 (Figure 4.8a). Therefore, our design’s

scratchpad memory only stores up to four styles. Similarly, 32 hot CSS prop-

erties cover about 70% of the commonly used properties (Figure 4.8b). Thus,

we implement a 32-wide SRU where each lane handles one hot CSS property.

Due to these considerations, the input and output scratchpad memories are

each 1 KB in size.

Furthermore, not all of the properties are delegated to the SRU. For

example, some style properties require information on the parent and sib-

ling nodes. To avoid complex hardware design for recursions and loops with

unknown iterations, we do not implement them in our SRU prototype. The

48

runtime library performs these checks, which we discuss later in Chapter 4.3.3.

Despite the trade-offs we make, about 72.4% of the style rules across all the

benchmarked webpages can utilize the SRU.

4.3.3 Software Support and Programmability

The SRU can be accessed via a small set of instruction extensions to

the general-purpose ISA. In order to abstract the low-level details away from

application developers, we provide a set of library APIs in high-level languages.

Application developers use the APIs without knowing the existence of the spe-

cialized hardware. It is important to notice that these software APIs are used

by Web browser rendering engine developers rather than high-level Web appli-

cation developers. WebCore does not affect the programming interface of Web

application developers, and therefore has no impact on the Web application

development productivity.

// matching phase
matchedRules = matching(DOMTree, DOMNodeId, CSSRules);

// applying phase
Style_Apply(DOMNodeId, matchedRules);

1
2
3
4
5

Fig. 4.9: Pseudo-code of the Style kernel with the new API.

Programmers trigger the style resolution task by issuing a Style Apply(Id,

Rules) API, in which Id represents a DOM tree node ID and Rules represents

matched CSS rules produced by the matching phase. Figure 4.9 illustrates the

pseudo-code of the Style kernel using the provided API. Comparing against the

49

original code in Figure 4.6, we notice that the matching phase is not changed

while the applying phase is greatly simplified with the Style Apply API.

One key task of this API implementation is to examine all the CSS

properties of a particular DOM node because not all the CSS properties are

implemented in the SRU (as discussed in Chapter 4.3.2). For properties that

can be offloaded to the SRU, the API implementation loads related data into

the SRU’s scratchpad memory. For those “unaccelerated” properties, the run-

time creates the necessary compensation code. Specifically, we propose rely-

ing on the existing software implementation as a fail-safe fallback mechanism.

Once the style resolution results are generated, the results can be copied out

to the output scratchpad memory.

4.4 Browser Engine Cache

To further improve the energy-efficiency of date feeding, we propose the

browser engine cache. It is based on the observation that Web applications’ ac-

cesses to principal data structures, such as the DOM tree and the Render tree,

exhibit heavy data reuse and predictable access pattern (Chapter 4.4.1). Based

on such an observation, the browser engine cache uses a small hardware mem-

ory structure coupled with a lightweight software-based cache management

layer to provide energy-efficient data access (Chapter 4.4.2). In addition, sim-

ilar to SRU, we also provide a set of high-level language APIs that allow Web

browser developers to easily access the browser engine cache (Chapter 4.4.3).

50

100

80

60

40

20

D
O

M
 T

re
e

N
od

es
 (%

)

86420
Consecutive Reuses

(a) DOM node reuse behavior.

1.0

0.9

0.8

0.7

0.6

0.5

H
it

R
at

e

1 4 8 12 16
DOM Cache Entries

(b) DOM node access hit rate.

Fig. 4.10: DOM tree access behavior across webpages.

4.4.1 Motivation

The DOM tree and Render tree are the two most important data struc-

tures because they are shared across different kernels. We propose the Browser

Engine Cache to improve the energy-efficiency of accessing them. Specifically,

the browser engine cache consists of a DOM cache and a Render cache for

the DOM tree and Render tree, respectively. We use the DOM to explain our

locality observation. Similar analysis and design principles also apply to the

render cache. Note that the browser engine cache focuses on improving the

energy efficiency of data feeding. We will discuss techniques for improving the

performance aspect of data accesses in Chapter 4.6.

The energy inefficiency of the traditional cache is best embodied in

the performance-oriented design P2 in Table 4.2. P2 requires a larger data

51

cache (64 KB) compared to a traditional mobile core. Although a large cache

achieves a high hit rate of 93%, it leads to almost one-fourth of the total en-

ergy consumption. However, through careful characterizations, we find that

accesses to the DOM/Render tree have strong locality and regular access pat-

tern such that they can benefit from a small and energy-efficient cache mem-

ory, rather than the large power-hungry traditional caches. Let us explain our

observations below.

First, we find that data accesses to the DOM tree have heavy reuses.

Figure 4.10a shows the cumulative distribution of DOM tree node reuse.

Each (x, y) point corresponds to a portion of DOM tree nodes (y) that are

consecutively reused at least a certain number of times (x). About 90% of the

DOM tree nodes are consecutively reused at least three times, which reflects

strong data locality. This indicates that a very small cache can achieve the

similar hit rate as a regular cache, but with much lower power.

Second, we find that the accesses to the DOM tree have regular stream-

like patterns. To illustrate this, Figure 4.11 shows two representative data

access patterns to the DOM tree from www.sina.com and www.slashdot.org.

Each (x, y) point is read as follows. The x-th access to the DOM tree operated

on the y-th DOM node. We observe a common streaming pattern. Such a

streaming pattern is due to the intensive DOM tree traversal that is required

by many rendering engine kernels. For example, in order to match CSS rules

with descendant selectors such as “div p,” which selects any <p> element that

is a descendant of <div> in the DOM tree, the Style kernel must traverse the

52

DOM tree, one node at a time, to identify the inheritance relation between two

nodes. Similarly, the Layout kernel must traverse the Render tree (recursively)

to determine the size of each webpage element, which in turn depends on the

sizes of the elements contained within it.

In summary, the rendering engine typically operates on one DOM tree

node heavily and traverses to the next one. After the rendering engine moves

past a DOM node, it is rarely re-referenced soon. Such a unique access behav-

ior motivates the browser engine cache design as we describe below.

4.4.2 Hardware Design

We propose the DOM cache to capture the DOM tree data locality.

It sits between the processor and the L1 cache, effectively behaving as an L0

cache. Each cache line contains the entire data for one DOM tree node, which

is 698 bytes in our design. Different from the data array in a regular cache,

we implement each cache entry (both in the DOM cache and render cache) as

a collection of registers instead of a wide cache line. Each register holds one

attribute of the DOM (Render) tree node, and can be individually accessed

through special memory instructions from the software.

The motivations to split each DOM cache line into individually ad-

dressable registers are as follows. First, not all the attributes of a node are ac-

cessed every time a node is referenced such that pre-loading all the node data

from L1 cache to the browser engine cache lead to performance and energy

penalty. For example, a Render tree node most often is of either RenderBlock

53

or RenderInline type, each of which involves its own set of attributes. The

browser can decide what attributes to load depending on what type a Render

tree node is. Second, splitting the large memory array into small registers also

allows fast and more energy-conserving accesses.

We choose to implement the DOM cache as a “software-managed”

cache–i.e., the data is physically stored in hardware memory, and the software

performs the actual cache management, such as insertion and replacement.

Prior work has demonstrated effective software-managed cache implementa-

tions [102]. It is possible to implement the DOM cache entirely in hardware,

similar to a normal data cache. Our motivation for a software-managed cache

is to avoid the complexity of a hardware cache. Typically, the cache involves

hardware circuitry whose overhead can be high, especially for extremely small

cache sizes.

The software overhead for the software-managed browser cache is rela-

tively insignificant for the following reasons. First, a simple replacement policy

that always evicts the earliest inserted line is sufficient. Due to the streaming

pattern shown in Figure 4.11, DOM tree nodes are rarely re-referenced soon

after the browser engine moves past them. Therefore, a simple FIFO design

is almost as effective as the least recently used policy, but with much less

management overhead.

Second, a very small number of DOM cache entries guarantee a high hit

rate. Therefore, the cache-hit lookup overhead is minimal. Figure 4.10b shows

how the hit rate changes with the number of entries allocated for the DOM

54

14

12

10

8

6

4

2

0

D
O

M
 N

od
e

Id
 (X

 1
03)

6543210

DOM Tree Accesses (X 105)
(a) www.sina.com.cn

5

4

3

2

1

0

D
O

M
 N

od
e

Id
 (X

 1
03)

43210

DOM Tree Accesses (X 105)
(b) www.slashdot.org

Fig. 4.11: Representative DOM tree access patterns.

tree. The curve represents the average hit rate, and the error bars represent

the standard deviations across different webpages. Across all the webpages, a

4-entry design can achieve about 85% hit rate, and so we use this configuration.

In this sense, the DOM cache is effectively a single set, 4-way fully associative

cache. Similarly, the render cache contains two entries (i.e., two cache lines).

On average, it achieves over 90% hit rate.

4.4.3 Software Support and Programmability

To access a particular DOM tree node in the rendering engine, devel-

opers issue DOMCache LD(Id, attr) and DOMCache ST(Id, attr, data) for

read and write operation, respectively. Similar APIs are also provided for the

Render Cache. In the provided APIs, Id represents the DOM tree node ID

(similar to the Style Apply() API), attr represents a particular DOM node

55

Class Attribute {
public:
 void setValue(const AttrVal &value) {
 m_value = value;
 }

private:
 AttrName m_name;
 AttrVal m_value;
}

Class Attribute {
public:
 void setValue(const AttrVal &value) {
 DOMCache_ST(toNodeID(), m_name, value);
 }

private:
 AttrName m_name;
 AttrVal m_value;
}

Original Code

New Code

1
2
3
4
5
6
7
8
9
10

1
2
3
4
5
6
7
8
9
10

Fig. 4.12: Using the DOMCache ST() API in the rendering engine. The new
DOM attribute store API (line 4 in the new code) replaces the original at-
tribute value assignment (line 4 in the original code), and performs cache
management.

attribute, and data indicates the new data of the specified attr. Recall that

our DOM cache design allows each attribute of a DOM node to be individually

addressed (Chapter 4.4.2). The syntax of both APIs allow developers to fully

utilize this feature.

Figure 4.12 shows how DOMCache ST() API is used in the rendering

engine. It is used to set value of any given attribute in the setValue() method

of the Attribute class. Specifically, DOMCache ST() replaces the original value

56

assignment. The API implementation performs the actual hardware memory

accesses as well as cache management, such as replacement and insertion.

For example, the API needs to maintain an array, similar to the tag array

in a regular cache, to keep track of which DOM nodes are in the cache and

whether they are modified. Effectively, the runtime library of DOM cache APIs

implements a cache simulator. However, the runtime overhead is negligible due

to the simple cache design as described in Chapter 4.4.2.

It is worth noting that using DOM cache APIs only affects the primitive

classes of a rendering engine (such as the Attribute class in Figure 4.12) while

maintaining the interface between primitive classes and the rest of the render-

ing engine unchanged. For example, rendering engine developers can still use

the same setValue() method to update an attribute’s value. Therefore, we

do not expect using the new APIs to affect the development productivity.

4.5 WebCore Evaluation

In this section, we first present the power and timing overhead analy-

sis of the proposed specialization techniques (Chapter 4.5.1). We then eval-

uate the energy-efficiency implications of the SRU and the browser engine

cache individually (Chapter 4.5.2, Chapter 4.5.3). In the end, we show the

energy-efficiency improvement combining both customization and specializa-

tion (Chapter 4.5.4). In particular, we show that our specializations can

achieve significantly better energy efficiency than simply dedicating the same

amount of area and power overhead to tune the conventional general-purpose

57

cores.

We evaluate our optimizations against three designs, D1 through D3.

D1 refers to the energy-conscious design (P1) that we explored in Figure 4.3.

Similarly, D2 refers to the performance-oriented design (P2) in Figure 4.3.

D3 mimics the common design configuration of current out-of-order mobile

processors. We configure D3 as a three-issue out-of-order core with 32-entry

load queue and store queue, 40 ROB entries, and 140 physical registers. It has

a 32 KB, 1-cycle latency L1 data and instruction cache, and a 1 MB, 16-cycle

latency L2 cache.

4.5.1 Overhead Analysis

We use CACTI v5.3 [169] to estimate the memory structures overhead.

We implement the SRU in Verilog and synthesize our design in 28 nm tech-

nology using the Synposys toolchain.

Area The size of SRU’s scratchpad memory is 1 KB. The DOM

cache size is 2,792 bytes. The render cache size is 1,036 bytes. The hardware

requirements for the SRU are mainly comparators and MUXes to deal with

control flow, and simple adders with constants inputs to compute each CSS

property’s final value. In total, the area overhead of the memory structures

and the SRU logic is about 0.59 mm2, which is negligible compared to typical

mobile SoC size (e.g., Samsung’s Exynos 5410 SoC has a total die area size of

122 mm2 [180]).

Power The synthesis reports that the SRU logic introduces 70 mW

58

total power under typical stimuli. The browser engine cache and the SRU

scratchpad memory add 7.2 mW and 2.4 mW to the dynamic power, respec-

tively. They are insignificant compared to power consumption for Web brows-

ing (in our measurements, a single core Cortex-A15 consumes about 1 W for

webpage loading). Clocking gating can reduce the power consumption fur-

ther [129]. But we are conservative in our analysis and do not assume such

optimistic benefits.

Timing Both the browser engine cache and SRU scratchpad memory

can be accessed in one cycle, which is the same as the fastest L1 cache latency

in our design space. The synthesis tool reports that the SRU logic latency

is about 16 cycles under 1.6 GHz. Later in our performance evaluation, we

conservatively assume the SRU logic is not pipelined.

Software The software overhead mainly includes cache management

and SRU compensation code creation. The overhead varies depending on

individual webpage runtime behaviors. We model these overheads in our per-

formance evaluation and discuss their impact along with the improvements.

4.5.2 Style Resolution Unit

Our SRU prototype design achieves on average 3.5X, and up to 10X,

speedup for the accelerated style applying phase. The improvements vary

because of individual webpage characteristics.

Figure 4.13 shows SRU’s performance improvement for the Style kernel

and the entire webpage loading on the performance-oriented design D2 in

59

80

60

40

20

0

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

16
3

m
sn cn
n

go
og

le
si

na
es

pn bb
c

sl
as

hd
ot

yo
ut

ub
e

eb
ay

tw
itt

er
am

az
on

gm

ea
n

sl
as

hd
ot

cn
n

bb
c

am
az

on
m

sn
si

na
es

pn
tw

itt
er

eb
ay

yo
ut

ub
e

16
3

go
og

le
gm

ea
n

40

30

20

10

0

E
ne

rg
y

S
av

in
gs

 (%
)

 Style Kernel
 Entire Loading
 Oracle Gain

Desktop Webpages Mobile Webpages

Fig. 4.13: Performance and energy improvement of the SRU.

Figure 4.3. The average performance improvement of the Style kernel is 33.4%

and 37.8% for desktop and mobile webpages, respectively. Generally, we find

that mobile webpages benefit slightly more from the SRU because they tend

to be less diversified in webpage styling, and therefore the SRU has higher

coverage.

The overall improvements vary across webpages because different web-

pages spend different portions of time in the Style kernel. For example, cnn

spends only 14% of its execution time in the Style kernel during the entire run.

Therefore, its 62% improvement in the Style kernel translates to an overall im-

provement of only 7%. On average, the SRU improves the entire webpage load

time by 13.1% on all the webpages.

60

The SRU not only improves performance but also reduces energy con-

sumption. The right y-axis of Figure 4.13 shows the energy saving for the

entire webpage loading. Webpages are sorted according to the energy savings.

On average, SRU results in 13.4% energy saving for all webpages.

Figure 4.13 also shows the oracle improvement if the entire applying

phase can be delegated to the SRU (i.e., no hardware resource constraints).

Desktop webpages have much higher oracle gain than mobile webpages. The

software fall-back mechanism is more frequently triggered in desktop-version

webpages due to their diversity in styling webpages. This also implies the

potential benefits of reconfiguring the SRU according to different webpages.

An SRU that is customized for mobile webpages could potentially be much

smaller.

We apply the SRU to different designs to show its general applicability.

For loading an entire webpage, on a current mobile processor design (D3),

the SRU improves performance by 10.0% and reduces energy consumption by

10.3%. On an energy-conscious design (D1), it improves performance by 8.4%

and reduces energy consumption by 11.6%.

4.5.3 Browser Engine Cache

Figure 4.14 shows the energy reduction from using the browser engine

cache. The browser engine cache can serve data more energy-efficiently be-

cause of the high hit rate of its cache (as shown in Figure 4.10b). Mobile

webpages achieve less energy saving than desktop-version webpages because

61

25

20

15

10

5

0

E
ne

rg
y

S
av

in
gs

 (%
)

80

60

40

20

0 D
O

M
/R

en
de

r T
re

e
Tr

af
fic

 (%
)

go
og

le
tw

itt
er

am
az

on 16
3

sl
as

hd
ot

eb
ay

es
pn

m
sn

yo
ut

ub
e

bb
c

si
na cn

n
gm

ea
n

tw
itt

er
es

pn
sl

as
hd

ot
am

az
on bb

c
eb

ay
go

og
le

16
3

yo
ut

ub
e

si
na cn

n
m

sn

gm
ea

n

Desktop Webpages Mobile Webpages

 D1
 D2
 D3

Fig. 4.14: Energy savings with a browser engine cache.

of their smaller memory footprint. On average, the performance-oriented de-

sign (D2) achieves 14.4% energy savings. Since the energy-conscious (D1) and

current design (D3) have smaller caches, the energy consumption caused by the

data cache is less, and therefore benefits less from the browser engine cache.

On average, their energy consumption reduces by 5.9% and 9.3%, respectively.

We find that the DOM tree and Render tree access intensity largely

determines the amount of energy saving. The right y-axis in Figure 4.14

shows the amount of L1 data cache traffic that is attributed to accessing both

data structures. In the most extreme case, about 80% of the data accesses for

loading cnn touch the DOM tree and the Render tree. Therefore, it achieves

the largest energy saving.

62

100

90

80

70

H
it

R
at

e
(%

)

16
3

am
az

on bb
c

cn
n

eb
ay

es
pn

go
og

le

m
sn

si
na

sl
as

hd
ot

tw
itt

er

yo
ut

ub
e

 Dom Cache
 Render Cache

Fig. 4.15: DOM Cache and Render Cache hit rate for desktop webpages.

There are some outliers in desktop webpages where the energy savings

are not proportional to DOM/Render tree access intensity. For example, sina

has a much higher traffic (∼60%) than twitter (∼40%), but with similar

energy savings. This is because sina has a much lower DOM cache hit rate

than twitter. Figure 4.15 shows the DOM cache and Render cache hit ratio

for desktop webpages. We observe that sina has a DOM cache hit rate at

∼70%, lower than twitter at ∼97%. A lower DOM cache hit ratio indicates

the sina does not fully use the low-energy browser engine cache. In contrast,

we find that mobile webpages all have a high browser engine cache hit rate,

and therefore their energy savings closely track the DOM/Render tree traffic.

Due to the software cache management overhead, the browser engine

cache incurs performance overhead. Figure 4.16 shows the desktop webpages’

execution time of the three designs with the browser engine cache. The values

are normalized to each design’s baseline configuration without the browser

63

1.06

1.04

1.02

1.00

N
or

m
. E

xe
cu

tio
n

Ti
m

e

16
3

am
az

on bb
c

cn
n

eb
ay

es
pn

go
og

le

m
sn

si
na

sl
as

hd
ot

tw
itt

er

yo
ut

ub
e

gm
ea

n

 D1
 D2
 D3

Fig. 4.16: Execution time with the browser engine cache of the three
designs. Values are normalized to each design’s baseline configuration
without the browser engine cache.

engine cache. We find that the performance slow down is minimal, primarily

because the design decisions that we made (as described in Chapter 4.4.2)

minimize the software management overhead. On average, the slowdown for

D2 with a 64 KB L1 data cache is only 2.7%. The slowdown for D1 and D3

with smaller L1 data caches (8 KB and 32 KB, respectively) is slightly smaller–

only 1.6% and 2.1%, respectively. We speculate that the reason is that both

D1 and D3 have slower performance than D2, and as such, they amortize the

overhead of the software cache management.

4.5.4 Combined Evaluation

Figure 4.17 shows the energy-efficiency improvement for the entire web-

page loading on all three designs by progressively adding the two optimization

techniques. The dotted curve represents the Pareto-optimal frontier of the de-

64

1.0

0.8

0.6

0.4

E
ne

rg
y

(J
)

54321
Load time (s)

D2 (Perf.)

D1 (Energy)

D3 (Current)

 Original
 Cache
 Cache+SRU

Fig. 4.17: Energy-efficiency improvement over three designs.

sign space discovered in Chapter 4.2.2. The circles represent original designs

in this energy-performance space. The triangles represent the new energy-

performance trade-off points after applying the software-managed browser en-

gine cache optimization. The squares show the new energy-performance points

when the SRU is added atop the caching optimization.

Comparing the energy-conscious design (D2) with an existing mobile

processor design (D3), we observe that customization of the general-purpose

architecture alone without applying any specialization allows us to achieve

22.2% performance improvement and 18.6% energy saving.

After applying the browser engine cache, the performance slightly de-

grades due to its software management overhead. Therefore, all the triangles

move slightly to the right despite the energy savings. However, applying the

65

SRU optimization improves both performance and energy consumption. All

the squares move toward the left corner. In effect, we push the Pareto-optimal

frontier in the original design space to a new design frontier with significantly

better energy efficiency.

In addition, we also observe that D3 with our specializations can now

approach the original Pareto-optimal frontier. This implies that it is possible to

apply specializations to existing mobile processors to achieve a similar level of

energy efficiency as processors that are optimized for the mobile Web browsing

workloads.

On average, the energy-conscious design (D1) benefits by 6.9% and

16.6% for performance improvement and energy reduction, respectively. The

performance-oriented design (D2) benefits by 9.2% and 22.2% for performance

improvement and energy reduction, respectively. Lastly, the existing mobile

processor design (D3) benefits by 8.1% and 18.4% for performance improve-

ment and energy reduction, respectively.

Our specializations incur area overhead. To quantitatively assess the

effectiveness of the area overhead, we compare our results with general-purpose

designs that simply use the same area overhead to scale up microarchitecture

resources. In our evaluation, we use the additional area to improve the I-cache

and D-cache sizes because instruction delivery and data feeding are the two

major bottlenecks, as discussed in Chapter 4.2.3. The additional area would

be most justified to improve the I-cache and D-cache sizes.

66

1.1

1.0

0.9

0.8

0.7

N
or

m
. L

oa
di

ng
 T

im
e

I+D$ D$ I$ WebCore

1.1

1.0

0.9

0.8

0.7

N
or

m
. E

ne
rg

y

0.
99

2

0.
99

4

0.
98

9

1.
00

1

1.
00

2

0.
99

8
0.

90
8

0.
77

8

Fig. 4.18: Allocating area for caches versus specializations.

As an example, Figure 4.18 compares our combined specializations (We-

bCore) with designs that increase the I-cache size by 24 KB (I$), D-cache size

by 24 KB (I$), and both caches by 12 KB (I+D$) based on the D2 design. The

figure normalizes the webpage loading time and energy consumption to the D2

design without any specializations. We see that simply improving the cache

sizes in general-purpose cores achieves only negligible performance improve-

ment (<1%) with a slightly higher energy consumption. However, WebCore

specializations provide significantly better energy efficiency.

4.6 Related Work

We first put WebCore in the broad context of architecture specializa-

tion for Web applications in Chapter 4.6.1. The browser engine cache bears

67

similarities with previous work on specialized cache design, which we discuss

in Chapter 4.6.2. Finally, Chapter 4.6.3 discusses prior work on constructing

representative mobile Web benchmarks, which is inherently related to our Web

application selection process.

4.6.1 Architecture Specializations for the Web

Similar to WebCore, SiChrome [63] performs aggressive specializations

that map much of the Chrome browser into silicon. The key difference is

that WebCore starts from a (well-optimized) general-purpose baseline and thus

retains general-purpose programmability while still being energy-efficient. In

addition, SiChrome evaluates energy-efficiency using the EDP metric while

our Pareto optimal analysis provides a more generic optimization view than

EDP.

EFetch [76] and ESP [77] also propose specialized hardware struc-

tures on top of general-purpose cores to improve the performance and energy-

efficiency of Web applications. They view a Web application execution as a

sequence of events. As a result, the proposed specialized hardware primar-

ily targets the inefficiencies associated with the event-driven execution model.

WebCore views a Web application execution as a mix of different kernels. As

such, the proposed specialization technique targets individual kernels. Both

views are complementary in that per-event execution can benefit from kernel-

level improvement that WebCore provides and vice versa.

68

4.6.2 Specialized Cache Design

L0 caches and scratchpad memories [61, 118] have long been used to

reduce data communication overhead by acting as small, fast, and energy-

conserving data storage. The browser engine cache proposed in this paper

demonstrates the effectiveness of such an idea for mobile Web browsing work-

loads. We propose to implement the browser engine cache as a collection of

registers where each register holds exactly one DOM (render) tree attribute.

In contrast, the typical L0 cache in mobile SoCs [119] is agnostic to the

application-level data structures. Each L0 cache line, thus, holds more than

one DOM attribute, leading to excessive energy consumption when accessing

individual attributes.

In addition, the strong locality of the principal data structures revealed

in our analysis can potentially be captured by dedicating cache ways to the

Web browser application [92, 120]. The streaming access pattern of the DOM

tree shown in Figure 4.11 indicates that a dynamic cache insertion policy

such as DIP [153] or an intelligent linked data structure prefetcher [88] on

L1 data cache are also worth exploring. However, the browser engine cache

we propose aims at saving energy with minimal loss in performance, which

the prior performance-oriented techniques have not been proven/claimed to

provide.

69

4.6.3 Web Applications Characterization

BBench [101] is a webpage benchmark suite that includes 11 hot web-

pages. Its authors perform microarchitectural characterizations of webpage

loading on an existing ARM system. Although the authors show that the 11

webpages have distinctly different characteristics from SPEC CPU 2006, they

do not quantify the comprehensiveness and representativeness of the webpages

against the vast number of webpages “in the wild.” In stark contrast, our anal-

ysis in Chapter 4.1 systematically proves the broad coverage of our webpages,

which is needed for robustly evaluating the impact of the optimizations that

we propose. For example, we find that BBench does not include significantly

complex webpages, and our analysis led to including two webpages of that sort,

i.e., www.163.com and www.sina.com.cn. Their webpage sizes are about 4x

larger than the average BBench webpage, and as such are needed to increase

the coverage of our benchmarking suite.

MobileBench [148] characterizes the performance impact of various

microarchitecture features on mobile workloads. Our paper quantifies the

performance-energy trade-off, and focuses specifically on Web applications.

Complementary to our design space exploration, MobileBench results show

that more aggressive customizations of other microarchitecture structures such

as the prefetcher are worth exploring.

70

Chapter 5

WebRT: Energy-Efficient Web Browser

Runtime

Today’s mobile processors are becoming extremely heterogeneous. They

often combine general-purpose cores that have different performance and en-

ergy characteristics [124] (e.g., asymmetric chip-multiprocessor architecture)

with special-purpose domain-specific cores (e.g., WebCore). While the hard-

ware upheaval promises performance and energy improvements for the mo-

bile Web, current Web runtime systems are not designed to fully exploit

the capability of the underlying hardware. The main bottleneck is that cur-

rent runtime-architecture interface merely exposes the hardware as a mono-

lithic sequential execution model to the runtime system while hiding many

architecture-level details. Without having a full visibility of the hardware de-

tails, current Web runtimes often lead to energy-inefficient decisions or violate

user QoS requirement.

To bridge the widening gap between the architecture complexity and

the architecture-agnostic runtime system, I propose to enhance the existing

runtime-architecture interface by exposing architecture details to the Web

runtime. I specifically focus on the ACMP architecture [124, 167] as the hard-

71

ware substrate. ACMP is long known to provide a large performance-energy

trade-off space, and is already widely used in today’s mobile systems [20, 44]. I

quantitatively show that Web applications particularly benefit from the hetero-

geneity offered by the ACMP architecture to achieve an ideal balance between

QoS experience and energy consumption.

Leveraging the ACMP architecture, I propose WebRT, a Web runtime

that minimizes energy while guaranteeing satisfactory user QoS experience

by scheduling Web application executions using proper ACMP configurations.

The key insight is that we must devise different optimization schemes accord-

ing to the nature of different user interaction forms. To that end, I introduce

a user-application interaction model called LTM. LTM captures three funda-

mental user interaction forms in mobile Web applications–Loading, Tapping,

and Moving–and provides a framework for reasoning about different energy

optimization strategies.

The rest of this chapter is organized as follows. Chapter 5.1 presents

the hardware and software experimental methodology. Chapter 5.2 introduces

the LTM interaction model and points out that the runtime mechanisms need

to be different for different interaction forms. Using loading (L) as a case

study, Chapter 5.3 quantitatively shows that an ACMP is beneficial for mobile

Web and therefore is a natural candidate for WebRT. Chapter 5.4 describes the

WebRT components for L, and Chapter 5.5 describes the WebRT component for

T and M. Finally, Chapter 5.6 compares the contrasts WebRT with prior work

on software support for mobile Web.

72

5.1 Experimental Setup

Software Infrastructure WebRT-related experiments and imple-

mentations are performed on Google’s open-source Chromium browser en-

gine, which is used directly in the Chrome browser and is the core of many

other popular browsers, such as Opera and Android’s default browser. We use

Chromium version 48.0.2549.0, which is the most recent version at the time of

my work. The modified Chromium runs on unmodified Android version 4.2.2.

Hardware Platform We use the ODroid XU+E development board [107],

which contains an Exynos 5410 SoC that is known for powering the Samsung

Galaxy S4. The Exynos 5410 SoC contains a representative ACMP architec-

ture comprising an energy-hungry high-performance (big) core cluster and an

energy-conserving low-performance (little) core cluster. The big and little clus-

ters can be individually disabled and enabled. The big cores are ARM Cortex-

A15 processors that operate between 800 MHz and 1.8 GHz at a 100 MHz gran-

ularity. The little cores are ARM Cortex-A7 processors that operate between

350 MHz and 600 MHz at a 50 MHz granularity. The frequency switching and

core migration overhead is 100µs and 20 µs, respectively [183, 185].

Energy Measurement WebRT focuses on the processor power con-

sumption because the processor power has been steadily increasing and has

gradually become the most significant power consumer in a mobile device com-

pared to other components such as the screen and radio (Chapter 3.2).

We measure the processor power and energy consumption on real hard-

73

Loading Tapping MovingInteraction:

Fig. 5.1: The LTM (Loading-Tapping-Moving) user-application interaction
model of mobile Web. LTM captures three primitive types of interaction:
page loading, finger tapping, and finger moving. We use LTM as a framework
to reason about user QoS experience.

ware as follows. The ODroid XU+E development board has built-in current

sense resistors (10 mΩ) for both the big and little cores. We use a National

Instrument DAQ Unit X-series 6366 to collect voltage measurements at these

sense resistors for the big and small CPU clusters at a rate of 1,000 samples

per second, and thereby derive the power consumption. Energy consumption

is computed by multiplying power with real execution time.

Reproducibility We repeat every experiment that we study 3 times.

Unless otherwise mentioned, the results we report are the median of all runs.

We find the run-to-run variations are usually about 5%, and do not affect our

conclusions. We use Mosaic [103], a UI-level record and replay tool, to ensure

consistent user interaction and to reduce human-induced noise across different

runs on the same application.

5.2 LTM Model of Mobile User Interaction

To systematically analyze user interactions in mobile Web applications,

we introduce a simple conceptual model called LTM, which captures three

74

primitive user interaction forms in mobile Web applications: loading applica-

tion page (L), tapping the display (T), and moving finger on the display (M).

Figure 5.1 illustrates the LTM model.

The three interactions cover a majority of human-computer interactions

on mobile devices. This is because every application requires a loading phase

(L), and post-loading interactions on mobile devices are mostly performed in

the form of finger tapping (T) or finger moving (M). The moving interaction

in particular could be manifested in various ways, such as scrolling, swiping,

or even drawing a picture. Internally, each user interaction is translated to

one or more application event. For example, a tapping interaction is often

translated to a touchstart and a touchend event, and a moving interaction

can be translated to a scroll event or a touchmove event depending on con-

text. In this paper, we focus on the following events that could be triggered by

LTM interactions on a mobile device: click, scroll, touchstart, touchend,

and touchmove. We do not consider events specific to desktops (e.g., drag,

mouseover) that are generally not fired on mobile devices.

The runtime optimization strategy for Loading is different from that

for Touching and Moving. The fundamental difference is that Loading occurs

only once per usage session while Touching and Moving interactions occur

repetitively throughout the entire Web application usage session. As a result,

it is possible to make the prediction for the Touching and Moving interactions

based on the history information within the same usage session. For Loading,

however, every application loading is likely different from the previous one,

75

and as such we can not make predictions based on previous loadings of (po-

tentially different) applications. Instead, we have to make prediction based

on the particular content of a given Web application. I will discuss the WebRT

component that targets the Loading in Chapter 5.4 and the component that

targets Touching and Moving interactions in Chapter 5.5 separately.

5.3 Motivation: Energy-Delay Trade-off

An ACMP consists of cores with different computation capabilities–

often with different microarchitectures, such as big out-of-order cores and small

in-order cores. Each core has a variety of frequency settings. Different core and

frequency combinations provide a wide range performance and energy charac-

teristics. The flexibility of an ACMP architecture to make trade-offs between

performance and energy consumption leads us to answer a fundamental ques-

tion: do Web applications benefit from an ACMP heterogeneous systems? For

example, can a processor lower the frequency for a simple webpage to con-

sume less energy but still respect the QoS deadline? Can a webpage originally

scheduled on an energy-consuming core be migrated to an energy-saving core

without violating the QoS constraint?

We quantitatively answer this question using webpage loading as a case

study. The same experimental methodology and conclusion also hold true for

the other two types of interactions in mobile Web applications. We base our

measurements and analysis on the 5,000 hottest webpages on the Internet

ranked by http://www.alexa.com/. We show that different webpages require

76

different core and frequency configurations to meet a given deadline of webpage

loading while minimizing the energy. This suggests that ACMPs with both

big and smalls core, each capable of performing DVFS, are strongly beneficial.

To demonstrate the benefits of such heterogeneous systems, we measure

the webpage load time and energy consumption of the 5,000 webpages on the

Cortex-A9 and A8 processors. We sweep a total of seven configurations avail-

able on the big and little cores, i.e., Cortex-A9 with four DVFS settings and

A8 with three DVFS settings, respectively. We begin our analysis with four

webpages that represent the general trends that we observe (Chapter 5.3.1),

and we subsequently expand our analysis to include the comprehensive set of

all webpages (Chapter 5.3.2).

5.3.1 Representative Analysis

Figure 5.2 shows the energy versus delay plots for the four representa-

tive webpages. Assuming 3 seconds as the cut-off latency for webpage load [32],

the four webpages have different ideal core and frequency configurations to

meet the cut-off while simultaneously minimizing the energy consumption.

For example, www.autoblog.com is a complex website that has 4,235 nodes

in the DOM tree, and it therefore requires the highest frequency on the big

core to meet the cut-off latency. However, this configuration is overpumped

for simpler websites such as www.newegg.com with 3,152 DOM tree nodes. It

only requires 700 MHz of the big core. This suggests that some webpages can

benefit from different frequencies in each processor’s core.

77

1.6

1.2

0.8

0.4

0.0

E
ne

rg
y

(J
)

3.02.01.00.0
Loading Time (s)

URL: www.baidu.com

 A9 1.2 GHz
 A9 920 MHz
 A9 700 MHz
 A9 350 MHz
 A8 800 MHz
 A8 600 MHz
 A8 300 MHz

4

3

2

1

0

E
ne

rg
y

(J
)

6543210
Loading Time (s)

URL: www.adobe.com

6

5

4

3

2

1

0
E

ne
rg

y(
J)

9630
Loading Time (s)

URL: www.newegg.com

8

6

4

2

0

E
ne

rg
y

(J
)

15129630
Loading Time (s)

URL: www.autoblog.com

DVFS

B
ig

/L
it

tl
e

Fig. 5.2: Webpages have different ideal execution configurations to meet the
cut-off latency while consuming the least energy.

78

In addition, some webpages can take advantage of scheduling between

big/little cores. If only the big core is available, www.adobe.com can at best be

loaded at 700 MHz. Instead, with the little core, the webpage can be loaded

using 600 MHz, which still meets the cut-off latency but consumes 75% less

energy than 700 MHz on the big core. Similarly, www.baidu.com is a search

engine website that has very concise content with less than 1 KB of images.

It only requires the lowest frequency on the little core.

5.3.2 Comprehensive Analysis

We extend our analysis to the full set of 5,000 webpages. Figure 5.3

shows the distribution of ideal core and frequency configurations for different

cut-off latencies, ranging from 1 second to 10 seconds at 1 second intervals.

Each region in Figure 5.3 represents the portion of webpages that are loaded at

the corresponding architectural configuration with minimal energy consump-

tion while still meeting the cut-off latency. We find a wide distribution of ideal

configurations, indicating the benefits of a flexible baseline architecture that

mixes big/little cores with different frequencies.

Assuming a tight 3 second cut-off latency [32], a single core with a

fixed frequency is insufficient for a wide spectrum of webpages. The best

single core with a fixed frequency is the little core with 600 MHz. However,

it can only load 40.2% of the webpages within that latency constraint. Even

a single core (big or little) with varying frequencies is insufficient. When we

consider the little core with varying frequencies, only 74.4% of webpages can

79

1.0

0.8

0.6

0.4

0.2

0.0

C
on

fig
ur

at
io

n
D

is
tr

ib
ut

io
n

10987654321
Cut-off Latency (s)

74
.4

%

40
.2

%87
.5

%

52
.6

%

 Big 1.2 GHz
 Big 920 MHz
 Big 700 MHz
 Big 350 MHz
 Little 800 MHz
 Little 600 MHz
 Little 300 MHz

Fig. 5.3: The distribution of ideal core and frequency configurations under
different cut-off latencies.

be loaded within the cut-off latency. However, if we use a big core to load

all the webpages, then the 74.4% of webpages have suboptimal performance-

energy trade-off. Furthermore, a simple heterogeneous system with both a

big and little core but each with a fixed frequency may also cause suboptimal

performance-energy trade-off for some webpages. Statistically, the best single-

frequency configurations are 700 MHz on the big core and 600 MHz on the

little core; yet, a heterogeneous system with only these two settings leads to

ideal scheduling for only 52.1% of the webpages.

Although 3 seconds is the typical cut-off latency on mobile systems, we

also study the sensitivity of the ideal configuration distribution under other

cut-off latencies. We find that varying cut-off demands also call for a flexible

80

baseline architecture. As Figure 5.3 shows, no one particular configuration

consistently performs well under varying cut-off latency requirements. For

example, although relaxed cut-offs favor the little core, it is suboptimal for

87.5% of the webpages under a tight 1 second constraint. Similarly, the big

core, which performs very well under tight cut-offs, is overpumped under more

relaxed constraints; it is only needed for about 3% of webpages when the

cut-off latency is 10 seconds.

In summary, we find that different webpages require different ideal core

and frequency settings to achieve the ideal balance between performance and

energy-efficiency. Varying cut-off latencies also demand different ideal config-

urations. Therefore, we conclude that different webpages can strongly benefit

from a versatile heterogeneous system consisting of both big and little cores

each capable of performing DVFS.

5.4 Webpage-aware Scheduling

In this section, I first show that it is possible to predict the webpage

load time and energy consumption using merely webpage-inherent character-

istics (Chapter 5.4.1). This prediction scheme had two advantages. First,

it does not rely on any previous webpage loading history information and is

based completely on each webpage’s inherent characteristics. Second, the pre-

diction is performed at the webpage parsing time which happens at the very

beginning of the loading process, and as such allows enough time for energy

optimizations. We quantitatively show that our predictive models achieve a

81

Table 5.1: Model Predictors

Category Model Predictors

Webpage primitive: HTML

Number of each tag

Number of each attribute

Number of DOM tree node

Webpage primitive: CSS

Number of rules

Number of each selector pattern

Number of each property

Content-dependent
Total image size

Total webpage size

desirable accuracy (Chapter 5.4.2).

Based on such predictions, we propose a webpage-aware scheduler as a

WebRT component that predicts the ACMP configuration for webpage loading

in order to minimize energy consumption while meeting a specified cut-off la-

tency (Chapter 5.4.3). Real hardware and software measurements show that

against a performance-oriented hardware strategy, the webpage-aware sched-

uler achieves 83.0% energy savings while violating the cut-off latency for only

4.1% more webpages. Compared with a more intelligent, on-demand OS DVFS

scheduler, the mechanism achieves an additional 8.6% energy savings along

with a 4.0% performance improvement (Chapter 5.4.4).

82

5.4.1 Performance and Energy Modeling

Model Derivation We find that regression models provide sufficient

accuracy to predict the webpage load time and energy consumption. A re-

gression model is a mathematical function between a set of predictors and a

response. Within our context, the response is either the webpage’s load time

or energy consumption in loading the webpage. The predictors are a set of

webpage characteristics. The linear regression model models a webpage’s load

time and energy consumption (responses) as a linear combination of various

webpage characteristics (predictors), formulated as: y = β0 +
∑p

i=1 xiβi where

y denotes the response, x = x1, ..., xp denote p predictors, and β = β0, ..., βp

denote corresponding coefficients of each predictor. The least squares method

is used to identify the best-fitting β that minimizes the residual sum of squares

(RSS) [109].

We consider two types of predictors. The first type includes the webpage-

inherent primitives such as the number of HTML tags. These primitives have

show strong inter-webpage differences, and as such have a strong influence

on the load time and energy consumption. In addition, we must also con-

sider the impact of content-dependent characteristics such as image size and

the total size of a webpage. These characteristics are coarse-grained metrics

that are independent of webpage structures but which influence the load time

and energy of rendering. A media website is a classic example where content-

dependent characteristics are dominant. For example, a news website, such

as www.bbc.com, has a relatively stable appearance. Its structural layout (i.e.,

83

HTML) and style (i.e., CSS) do not change frequently. However, the website’s

content is changing daily to keep up with the latest breaking news. For in-

stance, they are constantly updating images, and image sizes have a significant

impact on the webpage load time. In our measurement we observe a 4X load

time difference between a 200 KB and 50 KB image. Therefore, it is necessary

to consider both webpage-primitive and content-dependent characteristics for

modeling the load time and energy consumption of webpage load.

We summarize these features in Table 5.1. In total, we consider 376

predictors. We require a number of sampling observations to construct the

regression models. In total, we obtain 2,500 sampling observations, for which

we measure both webpage load time and energy consumption simultaneously

on the Cortex-A9 processor running at 1.2 GHz.

Model Specification and Refinement We apply various techniques

to mitigate overfitting and capture predictor-response nonlinearity to achieve

high prediction accuracy. We use R [31] and its glmnet and rms packages for

all analysis.

We consider a large number of predictors (376) relative to the number

of observations (2,500). This is known to produce predictions that result in

overfitting [109]. We mitigate this, to the first order, by eliminating predic-

tors that are less correlated to the response. We test the predictor/response

correlation strength by calculating the squared correlation coefficient (ρ2) be-

tween each predictor variable and observed load time and energy. Figure 5.4a

shows the seven most-correlated predictors. For both load time and energy, we

84

0.7

0.6

0.5

0.4

0.3

0.2

C
or

re
la

tio
n

st
re

ng
th

no

de
s

at
tr

_c
la

ss

at
tr

_h
re

f

ta
g_

a

ta
g_

di
v

to
t_

si
ze

im
g_

si
ze

 Load time
 Energy

(a) Predictor-response correlation. (b) Predictor self-correlation.

Fig. 5.4: Predictor correlations.

find the number of DOM tree nodes (#nodes) is the most-correlated webpage

primitive because it heuristically captures the webpage structure’s complexity.

Also, both image size and the total webpage size are also correlated because

they capture the webpage content. We only select predictors with ρ2 greater

than 0.01.

We further minimize overfitting by pruning features that are correlated

to each other. We test the correlation across predictors left after predictor

strength test. The correlation matrix is shown as a heatmap in Figure 5.4b.

The intensity of a point in the heatmap is proportional to the magnitude of

the correlation coefficient between two predictors. The height of the branches

in the dendrogram quantifies this magnitude.

85

In general, we find two types of correlation: inherent correlation and

imposed correlation. Several HTML tags and attributes are functionally de-

fined symbiotically and most often used together, exemplifying the inherent

correlation. For example, the <form> tag describes a form in the webpage,

and the action attribute specifies where to submit the form. These two predic-

tors are almost synchronized with each other, suggesting redundancy. Similar

examples are the <a> tag and the href attributes, which are defined to spec-

ify an external hypertext link. Some other predictors do not bear such an

inherent relationship, but web developers use them together to describe re-

lated information, such as an image’s width and height. For example, CSS

properties height and width are highly correlated. The descendant selector

pattern and class selector pattern also show heavy correlation for this reason.

Furthermore, it is unlikely that the true relationship between the re-

sponse and all predictors is strictly linear as assumed by simple linear models.

One effective method to model nonlinearity is to fit data with restricted spline

functions that are piecewise polynomial functions but which force linear fitting

beyond the first and last knots [109].

5.4.2 Model Evaluation

To validate the model, we obtain 2,500 observations in addition to the

2,500 observations used for deriving the model. We incrementally evaluate

the effect of various refinement techniques described previously by compar-

ing the accuracy of three regression models. First, we evaluate a basic linear

86

regression (L) model that prunes less-significant predictors. Second, we eval-

uate linear regression with regularization (R) that further prunes predictors

correlated with each other. Third, we evaluate a restricted cubic spline-based

(RCS) model using pruned features, which captures the nonlinear relation-

ship between predictors and responses. Of all three models, RCS performs

best at predicting both load time and energy. We show all three models for

completeness of evaluation.

Performance model The basic linear regression model (L) has a

median and mean error rate of 25.8% and 32.8%, respectively, indicating a

less-desirable prediction. The regularization-based model (R) reduces the me-

dian and mean error rate to 11.5% and 13.6%, respectively, due to more ag-

gressive predictor pruning. Restricted cubic spline (RCS) modeling predicts

the best, with the median and mean error rate of only 5.7% and 7.5% due to

its capability of capturing more complex relationships between predictors and

responses.

We also assess the distribution or prediction errors. Figure 5.5a shows

the results by presenting the cumulative distribution of the error for three

modeling methods. Each (x, y) point in the graph corresponds to the portion of

pages (y) that are at or below a particular error rate (x). Owing to overfitting,

L predicts very accurately for a few webpages, but lacks the capability to be

generally applicable to a large range of webpages. As a result, L can only

predict 20.0% of the webpages within 10% error. In contrast, R mitigates

overfitting due to aggressive pruning, and predicts 44.6% of the webpages

87

0.60.50.40.30.20.10.0
Error

1.0

0.8

0.6

0.4

0.2

0.0

F
(e

rr
or

)

 L
 R
 RCS

(a) Load time model.

0.60.50.40.30.20.10.0
Error

1.0

0.8

0.6

0.4

0.2

0.0

F
(e

rr
or

)

 L
 R
 RCS

(b) Energy model.

Fig. 5.5: CDF of prediction errors.

within 10% error. Finally, RCS further captures the nonlinear relationship,

and therefore can predict 73.0% of the webpages within 10% error, and 94.0%

webpages within 20% error.

Energy Model Similar to the load time model, the RCS-based model

performs the best, with the median error rate of 6.4% (mean of 8.2%), dropping

from the median of 12.3% and 27.1% for R and L, respectively. Figure 5.5b

shows the cumulative distribution of the error for three modeling methods.

For reasons explained earlier, RCS can predict 70.0% of the webpages within

10% error (91.8% within 20% error), improving from 41.7% and 18.7% of R

and L, respectively.

88

5.4.3 Scheduler Implementation

Scheduler During the parsing stage, which takes <1% of the total

execution time, the webpage-aware scheduler extracts webpage characteristics,

and feeds them into the prediction models to estimate the webpage load time

and energy consumption under different core and frequency configurations. On

the basis of these predictions, the scheduler then identifies the configuration

(if possible) that meets the cut-off latency with minimal energy consumption.

If no such configuration is found, the webpage is scheduled to the big core with

the highest frequency for the best possible performance.

Scheduling Overhead We consider two major scheduling overheads:

prediction and configuration transitioning. Prediction occurs very rapidly

(<3 milliseconds on the Cortex-A9 under 1.2 GHz). Moreover, prediction is in-

terleaved with the parsing stage of the rendering engine. As parsing in modern

browsers is highly optimized (e.g., asynchronous with the other processing),

the prediction overhead is insignificant. On the basis of our measurements, we

assume a constant overhead of 5 milliseconds.

Transitioning between hardware configurations involves the penalty of

migrating tasks between big/little cores and/or frequency scaling overhead.

The major overhead source of task migration is context switch, i.e. (re)storing

architecture state such as register files and configuration registers, as well as

warming up the private L1/L2 caches (assuming cache coherency between the

last-level cache (LLC) of big and little cores). We assume a constant over-

head of 20 milliseconds for state (re)storing per context switch, as indicated

89

for the ARM big.LITTLE system [43]. For private cache warmup penalty,

prior work shows that performance often improves when private LLCs of big

and little cores are powered on together [82]. Thus, we ignore the warmup

penalty. Also, prior work suggested that the power overhead of task migration

is <0.75% [154]. Thus, we do not consider the additional energy consumption

of our scheduling mechanism.

For frequency scaling, we assume 0.3 milliseconds as the overhead. The

Linux kernel uses this value on both the Cortex-A9 and A8 systems. This value

takes into account both hardware (i.e., voltage regulator module switching fre-

quency) and software overhead (i.e., privilege-level switching overhead for the

frequency change request). In our evaluation, since we do not know which

configuration the web browser is currently running in, we conservatively con-

sider both the configuration transitioning overhead and the frequency scaling

overhead at every scheduling point.

5.4.4 Evaluation

Baseline Mechanism We compare the webpage-aware scheduling

mechanism against an intelligent synthesized OS scheduler that performs on-

demand DVFS on a heterogeneous system. The OS scheduler scales the fre-

quency during a webpage load based on simple heuristics of system utiliza-

tion [99, 175]. It samples the CPU usage at a certain period and scales up the

frequency if the average CPU usage in the previous sampling period is above a

preset threshold, and vice versa. Because no Linux scheduler can yet perform

90

1.0

0.8

0.6

0.4

0.2

0.0

F
(L

oa
di

ng
 T

im
e)

1815129630
Loading Time (s)

 Big 1.2 GHz
 Big 920 MHz
 Big 700 MHz
 Big 350 MHz
 Little 800 MHz
 Little 600 MHz
 Little 300 MHz

Fig. 5.6: CDF of webpage load time under different configurations.

heterogeneous scheduling across big/little cores, we synthesize such a sched-

uler by running the webpages under the “on-demand” cpufreq-governor [147]

on the big core and the little core, individually, and then choose the better

result.

We compare the two scheduling techniques with a baseline strategy

that consistently yields the best performance. We determine such a baseline

by assessing the performance of all the different core and frequency configu-

rations. Figure 5.6 shows the cumulative distribution of webpage load time

under each configuration. Each (x, y) point in the figure represents the por-

tion of webpages (y) loaded within a certain delay (x). The big core with the

peak frequency (1.2 GHz) achieves the best overall performance. It can load

96.5% of the webpages within 3 seconds. As the frequency and core capabil-

ity degrade, fewer webpages can be loaded within the same cut-off latency.

91

OS WS

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Scheduler

F
(E

ne
rg

y
S

av
in

g
P

er
 W

eb
pa

ge
)

(a) Distribution of per webpage energy sav-
ing against the baseline.

200

150

100

50

0

V

io
la

te
d

W
eb

pa
ge

s

Perf. OS WS

Scheduler
(b) Number of webpages that load under
the strict cut-off latency of 3 seconds.

Fig. 5.7: Evaluation of different scheduling strategies.

Therefore, we choose the big core (A9) with its peak frequency (1.2 GHz) as

the high-performance baseline.

Energy savings We evaluate the same 2,500 webpages that we used

to assess the accuracy of the regression models. Assuming a 3 second cut-off

latency, Figure 5.7a shows the boxplot of per-webpage energy savings under

the webpage-aware and OS schedulers against the high-performance mode.

Both schedulers achieve significant energy savings over the high-performance

baseline, with a (geometric) average of 83.6% and 83.0%, respectively. This

is because both schedulers can schedule webpages to the lower power core or

lower frequency.

The webpage-aware scheduler has a denser energy-saving distribution

toward 100% than the OS scheduler. This indicates that generally the webpage-

92

aware scheduler achieves higher energy savings. Figure 5.8a shows the his-

togram of per-webpage relative energy of the webpage-aware scheduler to the

OS scheduler. The webpage-aware scheduler saves energy for about 80% of the

webpages. There are several webpages that are mis-scheduled onto the big core

that could have met the cut-off latency with the little core. These webpages

consume much higher energy under the webpage-aware scheduler than the OS

scheduler (>2X in Figure 5.8a). On average, the webpage-aware scheduler

reduces energy consumption by 8.6% compared with the OS scheduler.

Performance impact Both the OS scheduler and the webpage-

aware scheduler trade performance for better energy savings compared with

the performance mode. We evaluate their behaviors more critically using the

number of webpages that violate the cut-off latency under their operations.

This data is shown in Figure 5.7b. The performance mode violates only 3.5%

of the webpages with a 3 second cut-off latency because it always operates

at peak computational capability. Both of the software schedulers perform

slightly worse. Our mechanism, the webpage-aware scheduler, results in 7.6%

violations, which is only 0.6% worse than the OS scheduler. However, on

(geometric) average, our mechanism loads webpages 4.0% faster than the OS

scheduler.

Cut-off sensitivity To assess the webpage-aware scheduler under

variable user demands and mobile device conditions, we also experiment with

different cut-off latencies. For example, when the end user requests faster web-

page load at 2 seconds, the mechanism achieves 7.3% energy savings over the

93

OS scheduler while violating 4% fewer webpages. In a battery conservation

mode where performance is less critical and the cut-off latency is relaxed to

10 seconds, the webpage-aware scheduler achieves 11.8% energy savings com-

pared with the OS scheduler while exceeding the cut-off latency for only 0.02%

webpages in total. We conclude that the webpage-aware scheduler is flexible

to changing user requirements.

Prediction Accuracy Scheduling effectiveness relies on the load

time and energy prediction accuracy. We study the impact of the prediction

accuracy by comparing webpage-aware scheduling with an Oracle scheduler

that assumes perfect prediction under the 3 second cut-off latency. There

are two types of misprediction: over-prediction causes webpages to load on a

more powerful configuration that consumes more energy than the ideal one but

does not cause cut-off violation; under-prediction loads webpages on a weaker

configuration that consumes less energy but violates the cut-off constraint.

Our models lead to 10% over-prediction and 4.1% under-prediction. Compared

with the Oracle scheduler, the webpage-aware scheduler results in 4.1% cut-off

violation but “conserves” 9.7% energy.

Analysis The advantage of the webpage-aware scheduler lies in its

awareness of the webpages characteristics and the cut-off latency. As a result,

it predicts and chooses a proper, albeit fixed, configuration for each webpage.

In contrast, the OS scheduler’s DVFS decision is based on the system utiliza-

tion, which has no direct correlation with the webpage characteristics/cut-off

latency and is sensitive to other system activities. Therefore, it may lead to a

94

suboptimal performance-energy trade-off or even miss the cut-off constraint.

For example, when loading www.newegg.com (top-right in Figure 5.2)

under the OS scheduler, we find that the CPU usage on the big core reaches

above 95% for around 40% of the time and (unnecessarily) incurs peak fre-

quency (i.e. 1.2 GHz). When in fact, the big core with 720 MHz chosen

by the webpage-aware scheduler is sufficient to meet the 3-second cut-off la-

tency, achieving 20% energy savings compared with the OS scheduler in our

experiments.

However, the flexibility to scale the frequency while loading a webpage

sometimes allows the OS scheduler to exploit the marginal value of energy, i.e.

a slight increase in energy (through frequency scaling) can bring the webpage

back within the cut-off latency that would have been missed if the webpage

were loaded using a lower frequency.

For example, www.autoblog.com (top-left in Figure 5.2) when loaded

under 920 MHz (on the big core) just surpasses the 3-second deadline by 0.1

seconds, but has to fall back using 1.2 GHz under the webpage-aware scheduler.

At 1.2 GHz, the webpage loads in only 1.8 seconds but consumes 37% more

energy than 920 MHz. However, under the OS scheduler, our statistics show

that the OS boosts the frequency above 920 MHz for only around 20% of the

time, and finishes the load in 2.7 seconds. Compared with the webpage-aware

scheduler that runs at 1.2 GHz for this webpage, the OS scheduler in this case

saves 20% energy, effectively exploiting the high marginal value of energy.

95

0.6

0.5

0.4

0.3

0.2

0.1

0.0

F
(w

eb
pa

ge
s)

3.02.01.00.0
Normalized Energy

(a) Relative energy of the webpage-aware
scheduler against the OS scheduler.

0.7 0.8 0.9 1
Normalized Energy

0.9

0.6

0.3

0.0

F
(w

eb
pa

ge
s)

(b) Relative energy of the integrated sched-
uler against the webpage-aware scheduler.

Fig. 5.8: Distribution of per-webpage energy comparisons.

Integrated Scheduler For complete evaluation, we also assess an in-

tegrated scheduler that combines the webpage-aware scheduler with OS DVFS.

The purpose is to exploit the potentially high marginal value of energy via OS

DVFS, but bound the DVFS space to avoid frequencies that are unnecessarily

high (wasting energy) or low (missing the cut-off latency).

Specifically, the webpage-aware scheduler first restricts the OS DVFS

scheduling space to two frequencies: a lower frequency that just meets the cut-

off constraint and a upper frequency that just misses the constraint. Given the

two frequencies, the webpage-aware scheduler tries to ensure that the cut-off

latency can still be met by further tuning the percentage of time spent in either

frequency. In practice, we set the scaling max freq and scaling min freq of the

Linux cpufreq-governor to the lower and upper frequency, respectively. We set

96

the up threshold to control when to promote to the higher frequency [147].

For example, for www.autoblog.com (top-left in Figure 5.2), the OS DVFS on

the big core would only operate on 1.2 GHz and 920 MHz. Because 920 MHz

is nearly able to hit the deadline, only a small portion of the webpage load

must be run in the upper frequency.

Figure 5.8b shows, under a 3 seconds cut-off constraints, the histogram

of per webpage relative energy of the integrated scheduler to the webpage-

aware scheduler. The integrated scheduler consistently out-performs the webpage-

aware scheduler with 3.0% average energy savings (up to 30%). We leave the

full integration and detailed comparison for future work.

5.5 Event-based Scheduling

I propose event-based scheduling (EBS) as the mechanism to optimize

energy-efficiency for the Touching (T) and Moving (M) interactions. Each T or

M interaction is internally translated to an application event. EBS is based on

the observation that a T or M event may occur repetitively throughout a Web

application usage session such that it is possible to predict the ideal architec-

ture configuration of an event based on its history information of performance

and energy consumption. We first present our motivation for performing event-

based scheduling at the event handler level (Chapter 5.5.1). We then provide

a high-level design overview of the event-based scheduling framework (Chap-

ter 5.5.2) and then describe its implementation details (Chapter 5.5.3).

97

150

100

50

0

H
an

dl
er

 L
at

en
cy

 (m
s)

100500
Event Handlers

PU

 Large slack

 Small
 slack

Unusable
Region

onkeyup onchange

onclick

Fig. 5.9: Event handler variation in Ember.js todo list application.

5.5.1 Scheduling Unit

The scheduling unit in the event-based scheduler is the event handler.

Whenever an event is triggered, a corresponding event handler is executed.

Figure 5.10 provides an example, showing how event handlers H1, H2, and

H3 (in that order) are pushed into the event queue for execution. For events

that share the same performance constriant, we find that their event handlers

have different execution latencies, and therefore lead to different performance

slacks. We must treat each event handler differently and make scheduling

decisions at that granularity.

We explain the variation in the event handlers’ execution behavior using

the Ember.js-based todo list application. Figure 5.9 shows the sorted execution

latencies of all the event handlers. The x-axis corresponds to the event handlers

and the y-axis corresponds to the event handlers’ execution latencies. In this

example, we assume that the performance target for the scheduler is 100 ms,

98

which is a common performance target for a smooth responsiveness.

We observe a large latency variation for the handlers in Figure 5.9. We

label three of the application’s representative event handlers as the application

executes: onkeyup, onchange, and onclick. The keyup event handler only

processes one keystroke and therefore finishes execution very quickly in just

2 ms, which leaves a large amount of slack (98%) for the scheduler to exploit.

In contrast, the onchange event handler adds one entry into the todo list. It

requires about 50 ms for execution, which translates to only about 50% slack

in performance. Lastly, the onclick event handler deletes all the entries in

the todo list. The processing time exceeds the performance constraint, and as

such there is no opportunity to exploit performance slack. Instead, it requires

a higher performance configuration, if available.

5.5.2 Scheduler Design Overview

The event-based scheduler predicts the ideal heterogeneous architecture

execution configuration (i.e., a 〈core, frequency〉 tuple) whenever an event is

triggered and the corresponding event handler is executed such that it “barely”

meets the performance target with minimal energy consumption. It is impor-

tant to emphasize that one event may lead to multiple frames being updated.

Therefore, the EBS runtime operates on a per-frame basis as frames are what

ultimately dictate user perceivable experience. If an event execution only pro-

duces one frame, the runtime finds the ideal execution configuration for the

single frame associated with the event. If an event’s execution leads to a se-

99

Heterogeneous
Hardware

Event
Queue H3 … H2 … H1 Dispatch

<Core, Freq>

PI, PU

Detector

QoS
Monitor

Model
Constructor

R
ecalibrate

Event-Based Scheduler

Event
Info

M
odels

onkeyup=“H1 () {…}”

keyup

onchange=“H2 () {…}”

change

Event execution
feedback

onclick=“H3 () {…}”

click

Fig. 5.10: Event-based runtime scheduling framework.

quence of frames such as in an animation, the runtime continuously identifies

the ideal execution configuration for each frame until all the frames associated

with the event are produced. All the associated frames share the same QoS

target of the event.

The key idea of identifying an event’s ideal execution configuration is

to build a performance model and an energy model. They predict an event’s

latency and energy consumption under any core and frequency combination.

With the two models, EBS sweeps all possible core and frequency combinations

and selects the one that meets the QoS target with minimal energy.

The scheduler consists of a simple dispatch frontend and scheduling

backend as illustrated in Figure 5.10. The frontend Dispatch unit extracts rel-

evant event information, and passes it to the backend. The backend consists

of a Detector, a Model Constructor and a QoS Monitor. The detector auto-

matically identifies each event’s QoS requirement. In its simplest form, the

detector assumes a default latency target, such as 100 ms, for each event. If an

100

event is annotated with programmer-guided QoS hints such as those enabled

by the GreenWeb language extensions as I will discuss in Chapter 6, the detec-

tor can also extract the specified QoS information from the application. The

model constructor builds a performance and energy model for each event. The

models and event QoS information are then fed into the QoS monitor, which

predicts the architecture configuration for executing an event while meeting

the specified QoS target.

During application execution, the QoS monitor keeps monitoring event

execution time and energy consumption on the hardware and uses the infor-

mation to adjust its prediction and scheduling decisions on the fly, similar to

conventional feedback-driven optimizations [164]. We will explain the detailed

operation of the monitor in the next subsection. Intuitively, it is possible for

the performance and energy models to underpredict or overpredict the archi-

tecture configuration. Under such circumstances, the monitor can decide to

tune the predicted frequency or transition between big and little cores. If the

models are deemed completely unusable, the monitor informs the model con-

structor to recalibrate the models. We now describe some key implementation

details of the QoS monitor operations.

5.5.3 Scheduler Implementation Details

Performance Model We construct performance models for big and

little cores separately. Each model predicts the event handler execution la-

tency under different frequencies. We use the classical DVFS analytical model

101

initially proposed in [178], and employed in subsequent work, such as [177]:

Executiontime = Tindependent +Nnonoverlap/f (5.1)

in which T is the frame latency; f is the CPU frequency; Tindependent is the

time that is independent of f , which primarily includes the GPU processing

and main memory access time; Nnonoverlap is the number of CPU cycles that

do not overlap with Tindependent and scales with f .

Strictly speaking, Nindependent is a function of f . However, precisely

constructing a model that varies Nindependent with f is complex and introduces

a large calibration overhead at runtime. In our experiments, we find that it is

feasible and necessary to trade model precision for performance. In particular,

we find that treating Nindependent as a constant is sufficient in our case.

Given this simplification, the model constructor builds the model with

the event latency under two different frequencies by calculating the value of

Tindependent and Nnonoverlap. The trade-off in choosing the two frequencies is

that on one hand using two sufficiently different frequencies provides higher

accuracy, since the execution latencies from closer frequencies are more sus-

ceptible to measurement noise. But on the other hand, using two frequencies

that are extremely high and low may result in execution falling in the imper-

ceptible or unusable QoS regions, ultimately wasting energy. In our current

implementation, we use the highest and the second-highest frequencies to con-

struct the performance model. We find that the run-to-run variation for the

data collected using these two frequencies is low, resulting in a robust model.

102

 2Input 1Browser Process

Renderer Process
Main Thread

Renderer Process
Compositor Thread

Time

Inter-process
communication

Inter-thread
communication

Legend: UI
Signals

Processing
Stages

Dirty
Bit

VSync 1

Auxiliary
Modules

Begin
Frame

Dataflow Data
Structure

CompositePaint

Callback LayoutStyle

Input 2 VSync 2 …Frame 1

Fig. 5.11: The simplified view of frame lifetime in modern multiprocess/thread
browsers. A frame starts when the browser process receives an input event
and ends when the frame is displayed and the browser process is signaled. In
between, an input event is processed by different stages spread across multiple
threads. Different input events might interleave with each other.

Frame Latency Tracking Tracking frame latency is crucial to con-

structing the performance and energy model. However, accurate frame latency

tracking is a nontrivial task, primarily because of the complexities involved in

generating a frame in modern Web browsers. Most prior work either is con-

cerned only with the callback latency [76, 183], which, as we will show later,

contributes to only a portion of frame latency, or it considers logical latency

(e.g., the number of conditionals evaluated), which is insufficient to construct

the prediction models [151].

Accurately tracking frame latency requires us to understand how a

frame is processed internally by a Web browser. Using Google Chrome browser

as an example, Figure 5.11 illustrates a typical frame lifetime, starting from

when an input event is received by the browser to when the frame is generated.

Although we focus on Chrome, the execution model is generally applicable to

103

almost all modern Web browsers such as Firefox, Safari, Opera, and Edge.

The browser process receives an input event and sends it to the renderer

process, which applies five processing stages to produce a frame: callback

execution, style resolution, layout, paint, and composite [126]. In the end,

the browser process receives a signal indicating that the frame is produced.

To improve performance, the processing stages are spread across two threads,

and some portion of the composite stage could be offloaded to GPU (not

shown). Note that our performance model in Equation. 5.1 captures the GPU

processing time.

The key to latency tracking is to accurately attribute a frame to its

triggering input. Two complexities of the frame generation process make frame

attribution non-trivial. First, different input events might be interleaved. For

the example in Figure 5.11, Input 2 is triggered before Input 1 finishes. Naively

associating an input event with its immediate next frame in this case would

mistakenly attribute Frame 1 to Input 2.

Second, one frame might be associated with multiple input events. This

is because modern browsers generate a new frame only when the display re-

freshes, i.e., a VSync signal arrives (typically 60 Hz on a mobile device), to

avoid screen tearing [23, 38]. If multiple callback functions have been executed

before a VSync arrives, their effects are batched and cause only one frame.

The batching is achieved through a dirty bit. Each callback sets a dirty bit

to indicate whether a new frame is needed as a result of callback execution.

Callbacks from different inputs write to the same bit, but as long as one call-

104

Dirty
Bit

VSync

Callback
CompositePaintLayoutStyle

Callback
Message
Queue

Begin
Frame

Input 1

Input 2

Frame

Part I:
UID = getUniqueID();

Msg.startTs = now();
Msg.UID = UID;
SendIPC(Msg);

Part II:
if (!dirtyBit)

 dirtyBit = true;

MsgQueue.push(Msg)

Part III:
foreach Msg in MsgQueue {
 latency = now() - Msg.startTs;
 FrameLatency[Msg.UID] = latency;
}

Fig. 5.12: Frame tracking algorithm. The key idea is to attach each input event
with a metadata (Msg in the code) that uniquely identifies an input event and
is propagated with the event. We use two colors to represent metadata of two
different events in this example.

back sets the dirty bit, a new frame will be generated when the browser later

receives a VSync signal.

We show the flow of our tracking algorithm in Figure 5.12. The key

idea is to attach each input event with a piece of metadata (Msg in the code)

that is propagated with the event throughout the entire processing pipeline.

Each Msg is assigned with an ID that uniquely identifies an input (Part I). To

track batched input events, the dirty bit system is augmented with a message

queue, which stores Msg metadata of all input events that access the dirty bit

after the previous VSync. All messages in the queue get propagated when

the VSync signal arrives (Part II). When the browser receives the frame ready

signal, it iterates through all the messages propagated with the signal and

calculates the frame latency of each input based on their unique ID (Part III).

Energy Model The energy model predicts the energy consumption

of an event handler’s execution. We construct the energy model on the basis of

105

the performance model and the estimated power consumption. We derive the

power estimation of all the core and frequency combinations by performing a

profiling run and storing the results in a local power profile file that is read by

the Web browser upon every launch. Persistently storing and looking up the

power profile file aligns with the Android standard [30]. Alternatively, we can

dynamically derive the power consumption if power proxy counters, such as

Running Application Power Limit (RAPL) [83], are available and exposed to

software. In our case, a rough estimate of the power consumption is sufficient.

QoS Monitor’s Operation The monitor uses deterministic finite

automation (DFA) for each event handler to keep track of what architectural

configuration it needs to provide for the event handler’s execution. The first

two times an event handler is executed, the QoS monitor informs the model

constructor to build the performance and energy models. This lets the monitor

predict the architecture configuration during all subsequent executions of the

event handler.

After the initial model construction, the QoS monitor keeps monitoring

the event handler’s execution in order to perform fine-grained tuning. More

specifically, the monitor compares the measured event handler execution la-

tency with the scheduling target. The monitor conservatively deems the event

handler’s model as overpredicting (or underpredicting) if the measured value

is lower than 80% (or higher than 90%) of the target latency. We empirically

adopt these two threshold values because they are found to be effective in

practice. Using a two-bit saturating counter, the monitor then increases the

106

frequency by 100 MHz or transitions from the little core to the big core if

model is underpredicting, or vice versa.

The monitor switches from fine-tuning an event handler’s execution to

recalibrating its model if it detects that the model is not performing well. We

use a simple heuristic that is efficient in practice. If the model mispredicts

(i.e., either underpredicts or overpredicts) more than four consecutive times,

the monitor requests the model constructor to recalibrate.

Overheads The QoS monitor accounts for scheduling overheads,

which consist of two components: the overhead of the scheduling algorithm it-

self and the overhead of changing the architecture configuration (i.e, big/little

core migration and/or frequency scaling). The scheduling algorithm’s overhead

is dominated by model construction, which only requires solving a two-variable

linear system that imposes almost negligible overhead. For changing the ar-

chitecture’s configuration, we assume 100 µs for frequency scaling and 20 µs

for switching cores, as discussed in Chapter 5.1.

5.5.4 Experimental Setup

Application Selection Table 5.2 shows the applications we use for

evaluation. We crawl them using HTTrack [21] and host them on our Web

server to enable annotations (discussed later). We acknowledge that the net-

work condition could be slightly better when accessing a local server. However,

we believe it has minimal impact because many prior work has shown that

computation dominates the performance and energy consumption for today’s

107

mobile Web applications [112, 184, 185]. Overall, these applications cover a

wide range of domains such as news, utility, etc., and are mostly among the

top 200 websites as ranked by Alexa [55].

Baseline We compare EBS with two baselines:

• Perf is the policy that always runs the system at the peak performance,

i.e., highest frequency in the big core in our setup. It is the standard

policy for interactive applications to guarantee the best user QoS expe-

rience.

• Interactive is Android’s default interactive CPU governor designed

specifically for interactive usages. It maximizes performance when the

CPU recovers from the idle state, and then dynamically changes CPU

performance as CPU utilization varies [3].

Usage Scenarios Real-world user study over one year span from

the LiveLab project [159] shows that mobile users often have to interact with

devices under different battery conditions. Therefore, we evaluate EBS under

two primary usage scenarios based on battery status:

• “Imperceptible” represents scenarios in which the battery budget is abun-

dant and users expect high QoS experience. Therefore, the target per-

formance that WebRT must deliver is high. We will rigorously define

“imperceptibility” in Chapter 6.1.

108

• “Usable” represents scenarios in which the battery budget is tight and

users could tolerate lower performance. Therefore, the target perfor-

mance that WebRT must deliver is lower than the “imperceptible” sce-

nario. We will rigorously define “usable” in Chapter 6.1.

It is worth noting that Perf and Interactive behave the same indepen-

dently of the usage scenario. EBS under these two scenarios is denoted by

EBS-I and EBS-U, respectively, in the rest of the evaluation.

5.5.5 Evaluation

In this section, we perform a sequence of interactions on each applica-

tion, and evaluate the end-to-end behavior of EBS. Each sequence consists of

a mix of LTM interactions and contains events with different QoS types and

QoS targets. The “Full Interaction” category in Table 6.3 shows the details

of each interaction. On average, each interaction sequence triggers about 94

events and lasts about 43 s.

We acknowledge that there are alternative ways to interact with each

application. Thoroughly evaluating all the representative interactions with

each application involves a large user study and is beyond the scope of this

paper. However, we did perform our due diligence to make sure that the chosen

interaction for each application is representative.

Representative Study We first use Paper.js as a case-study to

illustrate the effectiveness of the runtime system. Figure 5.13 shows three rep-

109

Table 5.2: List of evaluated applications. “Interaction Description” provides a
high-level description of the kind of interactions that are performed on each ap-
plication. “Time” indicates the total interaction duration. “Events” indicates
the amount of events triggered during an interaction.

Application Interaction Description Time Events

BBC Load the main webpage 0:86 60

Google Load the main webpage 0:31 26

CamanJS Tap a button to apply an image filter 0:49 24

LZMA-JS Tap a button to compress a file 0:53 39

MSN Tap to display the menu bar 0:59 126

Todo Tap to delete all List items. 0:26 26

Amazon Horizontally swipe the Ads bar 0:36 101

Craigslist Scroll to find the “outdoor” category 0:25 22

Paper.js Move finger to draw a series of curves 0:16 560

Cnet Tap a button to expand the main menu 0:46 60

Goo.ne.jp Tap button to switch to another news 0:16 23

W3Schools Tap to show the sitemap 0:64 59

110

La
te

nc
y

(m
s)

160140120100806040200
Event sequence

100

75

50

25

0
70 220 130

1
2 3

 EBS
 Energy
 Perf.

Fig. 5.13: The event execution trace of Paper.js under three different runtime
schemesr.

resentative snapshots of Paper.js. The x -axis shows the event sequence during

the execution because our runtime system works at the event granularity, and

the y-axis shows the QoS under three different runtime management schemes:

one always optimizes for the lowest energy (Energy), one always optimizes

for highest performance (Perf), and the event-based scheduler (EBS). In this

example, we set the QoS target to 50 ms. Intuitively, as the actual QoS nears

the QoS target (without violating it), less energy is consumed.

We take three snapshots throughout application execution to discuss

in more detail. The first snapshot shows the initial calibration period, which

constructs the predictive QoS model. Figure 5.14 shows the accuracy of the

model constructed for Paper.js by comparing the measured event latency to

the predicted latency for each frequency. As shown, our simplified achieves an

average error <0.3%. As a result, the runtime system in the calibration mode

111

80

60

40

20

0

M
ea

su
re

d
La

te
nc

y
(m

s)

806040200
Predicted Latency (ms)

 Big core
 Little core

(a) Latency model validation.

40

30

20

10

M
ea

su
re

d
En

er
gy

 (
m

J)

40302010
Predicted Energy (mJ)

(b) Energy model validation.

Fig. 5.14: The latency and energy model accuracy for Paper.js, which has the
median accuracy of all the applications.

settles down quickly after the fifth run. The near-perfect accuracy and low

performance overhead justifies our model simplification decision.

After calibration, the runtime enters monitoring mode. The second

snapshot in Figure 5.13 illustrates typical operation for monitoring mode when

events are so lightweight they could solely meet QoS on the most energy-

optimized performance configurations. However, such a scheme is infeasible

because event behavior is not known a priori. Our runtime system is able

to quickly adapt to the constant influx of simple events to achieve behavior

similar to energy-oriented optimization scheme.

The third snapshot illustrates an application phase with more complex

events where the energy-oriented scheme is rarely able to meet the QoS target.

Although the performance scheme maximizes the likelihood to meet the QoS

112

100

80

60

40

20

0N
or

m
. E

ne
rg

y
(%

)

C
am

an
JS

C
ra

ig
sl

is
t

P
ap

er
js

G
oo

G
oo

gl
e

To
do

C
ne

t

B
B

C

LZ
M

A
-J

S

A
m

az
on

W
3S

ch
oo

l

M
S

N

EBS-U EBS-I Interactive

Fig. 5.15: Energy consumption normalized to Perf. Lower is better.

requirement, it results in excessively high energy consumption. Our eQoS

runtime intelligently provisions architecture resources to prolong execution

within the target QoS bounds. Exploiting the QoS gap between peak QoS

and target QoS results in a significant energy savings.

Energy Savings We now expand our evaluation to all benchmarked

applications. Figure 5.15 shows the energy consumption of Interactive and

EBS’s two usage scenarios. The results are normalized to Perf, and sorted in

the ascending order of EBS-I. As compared to Interactive, EBS achieves on

average 29.2% and 66.0% energy saving under the imperceptible and usable

usage scenarios, respectively.

Interactive consumes energy close to Perf across all applications, indi-

cating that the Android Interactive governor is almost always operating at

the peak performance. This is because user interactions, especially events with

a “continuous” QoS type, typically generate a large volume of frames, which

113

100
80
60
40
20
0

Ti
m

e
D

is
tri

bu
tio

n
(%

)

C
am

an
JS

C
ra

ig
sl

is
t

P
ap

er
js

G
oo

G
oo

gl
e

To
do

C
ne

t

B
B

C

LZ
M

A
-J

S

A
m

az
on

W
3S

ch
oo

l

M
S

N

A
15

A
7

GHz
1.6

1.4

1.2

1.0

0.8

0.6

0.4

(a) Architecture configuration distribution for EBS-I.

100
80
60
40
20
0

Ti
m

e
D

is
tri

bu
tio

n
(%

)

C
am

an
JS

C
ra

ig
sl

is
t

P
ap

er
js

G
oo

G
oo

gl
e

To
do

C
ne

t

B
B

C

LZ
M

A
-J

S

A
m

az
on

W
3S

ch
oo

l

M
S

N

A
15

A
7

GHz
1.6

1.4

1.2

1.0

0.8

0.6

0.4

(b) Architecture configuration distribution for EBS-U.

Fig. 5.16: The architecture configuration distribution under the “impercepti-
ble” (EBS-I) and “usable” (EBS-U) usage scenario.

114

leads to high CPU utilization. Interactive responds to the high CPU utiliza-

tion by increasing CPU performance. With the QoS knowledge provided by

developers, however, EBS can identify execution configurations that conserve

energy while still meeting QoS requirements.

Architecture Configuration Distribution To better understand

the sources of energy savings of EBS, we examine the architecture configura-

tion distribution of EBS under the imperceptible and usable usage scenario

shown in Figure 5.16a and Figure 5.16b, respectively. Bars with darker colors

indicate higher performance configurations.

We make two notable observations from the distribution results. First,

EBS tends to bias toward big core (A15) configurations much more often

under the imperceptible scenario (Figure 5.16a) than under the usable scenario

(Figure 5.16b). This observation confirms the result that EBS-I has less

energy saving than EBS-U. Second, the fact the EBS dynamically changes its

execution configuration under different QoS targets indicates that the EBS

can adapt to different user QoS expectations while saving energy. In contrast,

Interactive always adopts the same scheduling policy independent of the user

QoS expectation, leading to energy waste. This observation indicates that

an ACMP architecture is beneficial in mobile Web, but the burden is on the

runtime system to intelligently leverage it.

Configuration Switching Frequency Complementary to the dis-

tribution of architecture configuration, Figure 5.17 shows the switching fre-

quency of architecture configuration in EBS-I and EBS-U. We decompose

115

100

80

60

40

20

0

C
on

f.
S

w
itc

hi
ng

 F
re

q.
 (%

)

C
am

an
JS

C
ra

ig
sl

is
t

P
ap

er
js

G
oo

G
oo

gl
e

To
do

C
ne

t

B
B

C

LZ
M

A
-J

S

A
m

az
on

W
3S

ch
oo

l

M
S

N

 EBS-I Freq
 EBS-I Core
 EBS-U Freq
 EBS-U Core

Fig. 5.17: Execution configuration switching frequency under EBS-I and
EBS-U. Two configuration switching types exist: CPU frequency switch
(solid) and core migrations (stripe).

the configuration switching into two categories: CPU frequency change and

core migration (between big and little clusters). Thus, Figure 5.17 is shown

as a stacked bar plot where the frequencies of both categories are stacked for

each application.

We draw three conclusions from the switching frequency statistics.

First, EBS introduces only modest configuration switching (20% on average).

Recall from Chapter 5.1 that the CPU frequency switching and core migration

incur overhead only to the order of µs, much smaller than the QoS target which

is typically to the order of millisecond. Therefore, the execution configuration

has minimal performance impact.

Second, for most of applications EBS-I incurs more switchings than

EBS-U. This is unsurprising because as compared to EBS-U, EBS-I op-

timizes for a tighter QoS target, which is more sensitive to frame (phase)

116

3.0

2.0

1.0

0.0Q
oS

 V
io

la
tio

n
(%

)

C
am

an
JS

C
ra

ig
sl

is
t

P
ap

er
js

G
oo

G
oo

gl
e

To
do

C
ne

t

B
B

C

LZ
M

A
-J

S

A
m

az
on

W
3S

ch
oo

l

M
S

N

EBS-I Interactive

(a) QoS violation comparison under the imperceptible usage scenario.

3.0

2.0

1.0

0.0Q
oS

 V
io

la
tio

n
(%

)

C
am

an
JS

C
ra

ig
sl

is
t

P
ap

er
js

G
oo

G
oo

gl
e

To
do

C
ne

t

B
B

C

LZ
M

A
-J

S

A
m

az
on

W
3S

ch
oo

l

M
S

N

EBS-U Interactive

(b) QoS violation comparison under the usable usage scenario.

Fig. 5.18: QoS violations are presented as additional violations on top of Perf.
The y-axis of the two figures are kept the same for comparion purposes.

117

variance and more vulnerable to frame performance mis-prediction. In con-

trast, a more relaxed QoS target is more robust against frame variance. Our

results suggest that a better frame performance predictor such as the profiling-

guided prediction [133] would be helpful in reducing the execution configura-

tion switching in the imperceptible mode.

Third, the CPU frequency change dwarfs core migrations and domi-

nates the configuration switching. Thus, fast DVFS is desired. Our results

suggest that a fast on-chip voltage regulator that is increasingly prevalent in

server processors [68, 117] is also beneficial in mobile CPUs.

QoS Violation Figure 5.18a and Figure 5.18b show the QoS vio-

lation of Interactive and EBS under the imperceptible and usable scenarios,

respectively. On average, EBS introduces 0.8% and 0.6% more QoS violations

than Perf under the imperceptible and usable scenarios, respectively. The

QoS violations are lower than in the microbenchmarks because the interac-

tion duration gets longer and the QoS violations caused by profiling runs are

amortized.

Compared to Interactive, EBS has similar, in some cases fewer, QoS

violations. Considering the significant energy savings, we conclude that the

QoS-aware EBS system can use energy more wisely by being aware of user

QoS expectations. Overall, EBS achieves better energy efficiency than the

QoS-agnostic Interactive scheme.

118

5.6 Related Work

We first discuss prior scheduling work on ACMP because the particular

implementation of WebRT presented in this work relies on the ACMP architec-

ture (Chapter 5.6.1). As the goal of WebRT is to save energy without sacrificing

performance, we then discuss prior work on improving the performance (Chap-

ter 5.6.2) and energy consumption (Chapter 5.6.3).

5.6.1 Single ISA/DVFS Scheduling

The particular implementation of WebRT is an example of utilizing

single-ISA heterogeneous systems capable of DVFS for trading off performance

with energy [124]. Nvidia’s Kal-El [45] is a single-ISA heterogeneous system

that integrates four high-frequency cores with one low-frequency core. ARM’s

proposed big.LITTLE system [43] contains an out-of-order Cortex-A15 pro-

cessor and an in-order Cortex-A7 processor. ACMP architecture is already

widely adopted in today’s mobile SoCs shipped by major vendors such as

Samsung and Qualcomm [20]. We expect our WebRT implementation to be

readily applicable to commodity mobile hardware.

The scheduling mechanism in WebRT differs from existing single-ISA

scheduling and DVFS techniques in three key aspects: scheduling unit, schedul-

ing objective, and scheduling heuristics. First, the scheduling unit in exist-

ing techniques is either interval based (fixed-instruction interval [124, 134,

139, 146, 154] or fixed-time interval [82, 98, 147, 170, 174]) or a code segment

(e.g., critical sections, lagging threads, application kernels [71, 114, 115, 166]).

119

The scheduling unit in the WebRT is Web application-specific entities: event

handlers in event-based scheduling and webpage loadings in webpage-aware

scheduling. These Web application-specific units directly correspond to user

interactions and let us directly optimize for user QoS experience.

Second, the scheduling objectives in existing techniques are typically

architecture-level energy-efficiency metrics such as energy, EDP [95], and million-

instructions-per-joule (MIPJ) [174]. These metrics trade off raw performance

instead of QoS with energy. Therefore, they may lead to executions that fall

into the imperceptible or unusable QoS regions and waste energy. On the con-

trary, WebRT scheduler aims at minimizing energy consumption under explicit

performance constraint in order to guarantee satisfactory QoS experience.

Third, the webpage-aware scheduler’s prediction-based scheduling heuris-

tics is similar to other recent heterogeneous scheduling proposals in the ar-

chitecture community [82, 134, 146, 154]. In contrast, instead of relying on

(micro)architecture- and system-level statistics for prediction, the webpage-

aware scheduler captures the complex behavior of webpage characteristics us-

ing regression modeling, and accurately predicts the webpage load time and

energy consumption.

Timer coalescing [46] used in OS X Mavericks also exploits the per-

formance slack for energy savings, similar to our event-based scheduling. It

postpones noncritical timers and coalesces them for batch executions to in-

crease the processor idle time for energy savings. However, timer coalescing

applies only to timers in Apple’s native applications (or OS processes), whereas

120

our EBS framework is not limited to timer events, but can apply to any event-

driven applications.

5.6.2 Web Performance Optimizations

Most prior research focus on parallelizing browser tasks, such as pars-

ing, CSS selection, etc. [59, 130, 137, 138]. Although such parallelized algo-

rithms can achieve speedups ranging from 4X to 80X for various browsing

tasks, they typically do not scale well beyond four cores with the expense

of potential energy inefficiency. Thus, while parallelization has potential in

desktop systems, it is less favorable for mobile Web computing.

Another portion of performance optimizations focuses on improving

the execution model of the Web browser through asynchronous/multiprocess

rendering, resource prefetching, smarter browser caching, etc. [29, 41, 135, 136,

181]. All these techniques are orthogonal and can be integrated with my pro-

posal, which primarily focused on the core rendering engine of a Web browser.

5.6.3 Web Energy Optimizations

Thiagarajan et al. [168] break the Web browser’s energy consumption

into coarser-grained elements, such as CSS and Javascript behavior, and iden-

tify a few system- and application-level optimizations to improve the energy

consumption of mobile Web browsing. The optimizations they recommend,

such as reorganizing JavaScript files and removing unnecessary CSS rules,

are orthogonal and complementary to our webpage prediction and schedul-

121

ing work. Other works analyze the power/energy consumption of the entire

smartphone[67, 74, 150], whereas we focus on improving the energy-efficiency

of the mobile processor in response to the demand for high-performance.

Another body of energy-related research focuses on diagnosing energy

bugs and hogs in mobile applications. These techniques either completely kill

an energy-hungry application [144] or require developers to improve manually

the energy efficiency [106, 132, 150]. WebRT eases developers’ effort by auto-

matically optimizing for energy efficiency.

122

Chapter 6

GreenWeb: Web Language Extensions for

Energy-Efficient Web Computing

Web languages are at the interface between applications and Web run-

time. Traditionally, Web developers use Web languages to express structure,

style, and functionality of an application while relying on the underlying sys-

tem to perform energy optimizations without compromising user QoS expe-

rience. However, as mobile users become increasingly aware of poor energy

behavior of applications [2, 35], Web developers today must be explicitly con-

scious of energy efficiency. Current programming language abstractions, how-

ever, provide developers few opportunities to optimize for energy efficiency.

Instead, energy optimizations are mostly conducted at the hardware and OS

level via techniques such as dynamic voltage and frequency scaling. Although

effective from a system perspective, the key limitation of these techniques is

that they are not aware of user quality-of-service (QoS) expectations and may

lead to poor experience [133, 183, 185]. Failing to deliver a desirable QoS ex-

perience can cause severe consequences. For example, a 1-second delay in

webpage load time costs Amazon $1.6 billion annual sales lost [87].

In this chapter, I present GreenWeb, a set of Web language extensions

123

defined as Cascading Style Sheet (CSS) rules that allow Web developers to

express user QoS expectation at an abstract level. Based on the programmer-

guided QoS information, the runtime substrate of GreenWeb could then dynam-

ically determine how to deliver the target QoS experience while minimizing

the energy consumption.

To help Web developers reason about QoS constraints in Web appli-

cations, our key insight is that user QoS experience can be sufficiently cap-

tured by two fundamental abstractions: QoS type and QoS target. Intuitively,

QoS type characterizes whether users perceive QoS experience by interaction

responsiveness or animation smoothness, and QoS target denotes the perfor-

mance level that is required to deliver a desirable user experience for a specific

QoS type. GreenWeb provides specific language constructs for expressing the

two QoS abstractions and thus empowering Web developers to provide “hints”

to guide energy optimizations.

Allowing programmers to annotate QoS information in applications is

both precise and efficient. It is precise because only developers have the exact

knowledge of code logic. They can provide QoS type and target information

that is difficult for the runtime to infer. It is efficient because it does not

entail performance and energy overhead of runtime detection. Such a design

philosophy is similar to traditional pragma-based programming APIs such as

OpenMP. For example, the “omp for” pragma in OpenMP indicates that

iterations in a for loop are completely independent such that the runtime can

safely parallelize the loop without the need to check for correctness. Similarly,

124

GreenWeb annotations would allow the Web runtime to perform “best-effort”

optimizations without having to infer QoS information.

The rest of this chapter is organized as follows. Chapter 6.1 discusses

the relationship between QoS, performance, and energy consumption. It lays

the foundation of abstracting user QoS experience. Chapter 6.2 defines two

abstractions that are critical to mobile user QoS experience, and Chapter 6.3

describes the proposed GreenWeb language constructs that express the two

abstractions. Chapter 6.4 presents AutoGreen to demonstrate the feasi-

bility of automatically applying GreenWeb annotations to a Web application.

Chapter 6.5 discusses the relationship between the GreenWeb extensions and

the WebRT runtime, and argue that GreenWeb and WebRT are synergistic while

independent. Chapter 6.7 discusses the implications and limitations of the

current design and implementation of GreenWeb. Finally, Chapter 6.8 puts

GreenWeb in the general context of language support for performance and

energy-efficiency.

6.1 Trade-off Between QoS, Performance, and Energy

We illustrate the relationship between application QoS, performance,

and energy savings in Figure 6.1. Performance degrades from left to right

on the x -axis. The left and right y-axes indicate QoS and energy savings, re-

spectively. Foundational work in human-computer interaction research [72, 89,

140–142, 160] indicates that interactive application QoS can be classified into

three distinct states as machine performance degrades: imperceptible [PH , PI],

125

PH

Imperceptible

0

PI PU PL

QoSU

QoSI

Tolerable Unusable

-ESU

ESI

EST

 Q

ua
lit

y-
of

-S
er

vi
ce

 (Q
oS

)

 E

nergy S
avings (E

S
)

 Performance (degrades from left to right)

Fig. 6.1: The interplay between QoS, performance, and energy.

tolerable (PI , PU], and unusable (PU , PL].

In the imperceptible region, performance can degrade without any user-

perceptible QoS loss while achieving more energy savings. Imperceptible QoS,

QoSI , is maintained until performance reaches PI , the lowest performance level

that provides QoSI . In the imperceptible region, supplying higher performance

simply leads to more energy waste without adding any end-user value. For

example, the most conservative approach to guarantee application QoS is to

supply the peak performance of PH ; it leads to an energy waste of ESI . Beyond

PI , application QoS enters the tolerable region, where QoS deteriorates as

performance reduces, but still remains tolerable. Any QoS could be acceptable

in this region depending on the usage scenario or specific user pattern [179,

182]. Therefore, the tolerable QoS region exhibits a traditional performance-

energy trade-off space. As performance further degrades, QoS is eventually

violated at PU , which is the performance limit where users no longer feel

126

engaged by the application. At PU and beyond, users abandon the service.

As a result, any energy consumed up until the service abandonment (ESU) is

wasted, because the underlying computation does not provide any utility to

the user.

In summary, QoS-aware energy-efficiency optimization implies one of

the following two optimization strategies depending on user QoS expectation.

First, when the QoS expectation is high, guarantee imperceptible QoS expe-

rience with the minimal energy by exploiting the performance slack between

PH and PI . Second, when the user QoS expectation is low, guarantee usable

QoS experience with the minimal energy by achieving a performance of PU .

6.2 QoS Abstractions for Web Applications

Expressing user QoS experience to the underlying system is the key in

QoS-aware energy efficiency optimizations. However, today’s Web languages

do not allow expressing QoS information. Programmers need new abstrac-

tions. We propose two abstractions, QoS type and QoS target, that capture

two fundamental aspects of user QoS experience in Web applications. Such

QoS abstractions hide the complexity of the specific application implemen-

tation from underlying systems while still providing enough details to guide

energy optimizations. This section introduces the abstractions, and the next

section (Chapter 6.3) describes the proposed language constructs that enable

programmers to express the abstractions.

Abstracting user QoS experience requires us to first understand how

127

users assess QoS experience in mobile Web applications. To that end, we

leverage the LTM user-application interaction model described in Chapter 5.2.

The LTM model captures three fundamental user interactions in mobile Web

applications (Loading-Tapping-Moving) and gives us a framework for reason-

ing about user QoS experience. Based on the LTM model, we propose the

QoS type (Chapter 6.2.1) and QoS target (Chapter 6.2.2) abstractions. We

discuss why they are necessary and sufficient to express QoS information for

QoS-aware energy efficiency optimizations.

6.2.1 QoS Type

We define an abstraction called QoS type to capture different ways that

users interpret the QoS experience. Two major QoS types exist: single and

continuous. Intuitively, they indicate whether the QoS experience is deter-

mined by the “responsiveness” of a single frame or the “smoothness” of a

continuous sequence of frames, respectively. Let us use the LTM model to

elaborate on the two QoS types.

Single Some user interactions produce only a single frame, which

we call the response frame. The QoS type of these interactions is “single,”

indicating that user QoS experience is determined by the latency at which the

response frame is perceived by users [89]. For instance, imagine a fingertap

interaction (T) that opens a search box in a Web application. Users perceive

the effect of the fingertap when the application displays a response frame—the

frame with the search box displayed. Web application loading process (L) also

128

Table 6.1: Interactions in mobile Web applications fall into three categories
based on different QoS type and QoS target combinations.

QoS Type
QoS Target

(PI, PU)
Description Interaction

Continuous (16.6, 33.3) ms
QoS experience is evaluated

by continuous frame latencies.
T, M

Single

(100, 300) ms

QoS experience is evaluated

by single frame latency. Users

expect short response period.

T

(1, 10) s

QoS experience is evaluated

by single frame latency. Users

expect long response period.

L, T

falls in this category. This is because although there are several intermediate

frames being produced during the loading process, user QoS experience is

largely determined by the latency of the “first meaningful frame” [156], which

indicates that a Web application is usable by users.

Under the “single” QoS type, an ideal energy-efficient system would

allocate just enough energy to produce the single response frame and conserve

energy afterwards. It is worth noting that the system might not be completely

idle after the response frame is delivered. The system could still perform

work such as updating the browser cache, performing garbage collection, or

rasterizing off-screen pixels. Such “post-frame” work is not critical to user

QoS experience and could be executed in a low-power mode.

Continuous The other QoS type is “continuous,” corresponding to

129

interactions whose responses are not one single frame but a sequence of contin-

uous frames. User QoS experience is determined by the latency of each frame

in the sequence rather than one specific frame as in the “single” case. Ideally,

an energy-efficient Web runtime would allocate just enough energy for each

frame in the sequence and conserve energy after all the frames are produced.

Continuous frames are often found in the form of animations. The

simplest form of animation is triggered by finger moving (M) such as scrolling.

Tapping (T) can also cause a sequence of frames to be generated. For instance,

many Web applications provide a navigation button that dynamically expands

when tapped and generates an animation. More complex animations in Web

applications can be controlled by requestAnimationFrame (rAF) APIs [37] and

CSS animation/transition [11, 14].

Distinguishing between “continuous” and “single” is important. If an

event callback triggers an animation but the runtime treats its QoS type as

“single”, the runtime would optimize for only the first frame in the sequence,

and thus mis-operates for the remaining frames. On the other hand, if an

event produces only a single frame followed by some “post-frame” work, a

runtime (mistakenly) optimizing for “continuous” frame latency would force

the hardware to run at the peak performance to execute the “post-frame”

work (with the intention of generating more frames), leading to energy waste.

Whether an event triggers a single frame or a sequence of frames can not

be determined a priori. In Chapter 6 we will introduce a set of language

extensions that let developers explicit specify an event’s QoS type, through

130

which the runtime could be better informed in optimizations.

6.2.2 QoS Target

Another critical QoS abstraction is QoS target, denoting the perfor-

mance level needed to deliver a certain QoS experience. We use frame latency

as a natural choice for the performance metric because frame updates dictate

QoS experience. Specifically, we define frame latency as the delay from when

an event is initiated by a user to when its corresponding frame(s) show on the

display.

Two different QoS targets exist that are critical to user experience:

imperceptible target (PI) and usable target (PU) [183]. Imperceptible target

delivers a latency that is imperceptible/instantaneous to users. Achieving a

performance higher than PI does not add user perceptible value while unneces-

sarily wasting energy. The usable target, in contrast, corresponds to a latency

that can barely keep users engaged. Delivering a performance lower than PU

may cause users to deem an application unusable and even abandon it.

Single For interactions with the “single” QoS type, QoS target de-

pends on the complexity of the interaction [89]. For interactions that are

expected to finish quickly, user latency tolerance is low. For instance, a fin-

gertap that displays a search box falls into this category, because displaying a

search box is inherently expected to finish “instantly.” For these “lightweight”

interactions, users feel the system is responding instantly at 100 ms, and start

thinking that the system is not working after 300 ms [33]. Thus, 100 ms and

131

300 ms can be used as the PI and PU values, respectively.

In contrast, when users are aware of a computationally intensive job

being processed, they tend to have high tolerance for latencies [142]. Psycho-

logical study shows that users can subconsciously wait up to 1 second for a job

to complete while still staying focused on the current train of thought. Once

a job execution exceeds 10 seconds, user attentions are distracted and cannot

tolerate the delay [72, 140]. Therefore, 1 second and 10 seconds can be treated

as the PI and PU values for “heavyweight” interactions, respectively.

Continuous For interactions with a “continuous” QoS type, 60 and

30 frames per second (FPS) deliver a “seamless” and “just playable” user ex-

perience, respectively [80]. Thus, a performance level that guarantees 16.6 ms

and 33.3 ms frame latency can be regarded as the imperceptible and usable

QoS target, respectively. It is worth noting that the QoS target applies to

each frame rather than an average latency. This is because human eyes are

very sensitive to frame variance. Tiny hitches in a high volume of frames can

cause a poor QoS experience and even headaches [23, 26].

User interactions fall into three distinct categories based on the different

QoS type and QoS target combinations as listed in Table 6.1. Although the ab-

solute values of QoS target (PI and PU) in each category can vary slightly with

user perceptibility, their magnitudes differ significantly across categories (i.e.,

tens of milliseconds versus hundreds of milliseconds versus seconds). Thus,

QoS target is an important abstraction to differentiate different performance

requirements.

132

6.3 QoS-Aware Web API Design

We now present GreenWeb, a set of Web language extensions that lets

application developers easily express the two QoS abstractions as program an-

notations. We first discuss the design principles of GreenWeb extensions (Chap-

ter 6.3.1). We then describe the design and specification of GreenWeb (Chap-

ter 6.3.2). We then present usage scenarios to demonstrate the expressiveness

and modularity of the GreenWeb design (Chapter 6.3.3).

6.3.1 Design Principles

GreenWeb extensions follow three design principles. First, adding or re-

moving GreenWeb annotations does not change application functionality and

correctness. In other words, GreenWeb annotations are modular components

in an application. Modularity allows developers who are unfamiliar with ap-

plication logic to still be able to express QoS information, and allows removing

problematic annotations in a non-interference manner.

Second, GreenWeb is intuitive for Web application developers to use in

that it does not require developers to specify absolute values of QoS targets

(although this option is provided if needed). This is important because devel-

opers may not have quantitative knowledge about user perceptibility. Instead,

developers provide a qualitative specification. This design makes the APIs

more expressive, and provides flexibility for runtime implementation.

Third, GreenWeb syntax is compatible with current Web language spec-

ifications, which is crucial for lowering the learning curve and ensuring pro-

133

Selector? { QoSDecl+ }
Element:QoS
CDecl | SDecl
onEventName-qos: continuous[, v, v]
onEventName-qos: SValue
single, short | long | [v, v]

GreenWebRule
Selector

QoSDecl
CDecl
SDecl

SValue

::=
::=
::=
::=
::=
::=

Element DOM element
EventName DOM event name

v Integer value

Fig. 6.2: The syntax of GreenWeb language extensions.

grammer productivity.

6.3.2 QoS-Aware Web API Design

The GreenWeb APIs extend the current CSS language to specify QoS

type and QoS target information. We choose CSS because its syntax and

semantics naturally allow us to select DOM elements and specify various char-

acteristics. The core of CSS is a set of style rules. Each style rule selects

specific Web application elements and sets their style properties. A style rule

expresses such semantics through two language constructs: a selector, which

selects specific Web application elements, and a set of style declarations, which

are 〈property, value〉 pairs that assign value to property. As an example, the

following CSS rule h1 {font-weight: bold} selects all the h1 elements and

sets their font-weight property to bold.

Traditionally, CSS supports purely visual style properties such as fonts

and colors. Recent development of CSS (e.g., CSS3) lets developers express

134

Table 6.2: Specifications of the GreenWeb APIs. Each API is a new CSS rule
specifying the QoS information when a particular event is triggered on certain
Web application element.

Syntax Semantics

E:QoS {
onevent-qos: continuous

}

As soon as onevent is triggered on

DOM element E, the application must

continuously optimize for frame latency.

Use the PI and PU values in Table 6.1 as

the default QoS target for all frames.

E:QoS {
onevent-qos: single,

short|

long

}

Once onevent is triggered on element

E, the application must optimize for the

latency of the single frame caused by

onevent. Users expext short (long)

latency. Use the PI and PU values in

Table 6.1 as the default QoS target.

E:QoS {
onevent-qos: continuous|

single,

ti-value,

tu-value

}

Explicitly specify PI (ti-value) and

PU values (tu-value) for QoS targets.

Note that both values must either appear

or be ommitted together.

135

richer information such as controlling animations [11] and adapting to different

device form factors [16]. GreenWeb follows this spirit of CSS language evolution

and further expands the CSS semantics scope to allow expressing user QoS

related information.

Figure 6.2 shows the GreenWeb syntax, and Table 6.2 lists the semantics

of each API. Intuitively, each GreenWeb API selects an application element E,

and declares CSS properties to express the QoS type and QoS target informa-

tion when an event onevent is triggered on E. We now describe the details of

the GreenWeb extensions.

Selector To decorate a CSS rule as specifying the QoS informa-

tion of an element, we define a new CSS pseudo-class selector [12] “:QoS.”

An element E is selected using existing selectors, such as ID (#id) and Class

(.class) selectors, before applying the :QoS pseudo-class qualifier. For exam-

ple, div#intro:QoS selects the div element with the ID intro before declaring

QoS information.

Property QoS information is expressed as CSS properties in GreenWeb.

We define a new CSS property called onevent-qos, in which onevent is a

DOM event that GreenWeb supports. In its simplest form, onevent-qos could

be set to continuous (first rule in Table 6.2). The semantics of declaring

onevent-qos: continuous is that as soon as onevent is triggered on element

E, the Web browser runtime must continuously optimize for frame latency until

the last relevant frame is generated.

136

To express the “single” QoS type, the onevent-qos property accepts a

list of two values separated by a comma, one to indicate that the QoS type is

single, and the other to indicate whether users expect a short or long execution

period (second rule in Table 6.2). For instance, the declaration onevent-qos:

single, short expresses that the runtime must optimize for the latency of

the single frame caused by onevent, and users expect short frame latency.

Developers do not have to specify the QoS target values; the GreenWeb

runtime will use the PI and PU values in Table 6.1 as the default QoS target.

However, we also provide the flexibility for developers to overwrite the default

QoS targets. This is achieved by specifying absolute values of PI and PU

(in milliseconds) after single or continuous, as shown in the third rule in

Table 6.2.

6.3.3 Example Usage

The proposed QoS-aware GreenWeb APIs support a wide range of Web

application interaction patterns. We explore different usages using two exam-

ples.

Animations via CSS Transition The first example involves anno-

tating events that achieve animation using a CSS transition. A CSS transition

lets developers specify the initial and end state of an animation and how long

the transition takes, while leaving the transition implementation to the Web

browser [14]. Figure 6.3 shows an example in which the transition of the width

property of a div element is animated. The initial width property is set to

137

<html> <head>
 <style>
 div#example {
 width: 100px;
 transition: width 2s;
 }
 div#ex:QoS {
 ontouchstart-qos: continuous;
 }
 </style>
 <script>
 function animateExpand() {
 var node = document.getElementById(‘ex’)
 node.style.width="500px";
 }
 </script> </head>

 <body>
 <div id=“ex” ontouchstart=“animateExpand()”>
 </div>
 <!-- many elements -->
</body> </html>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Fig. 6.3: Express the QoS type of ontouchstart event as “continuous,” and
use the default PI and PU values.

100px (line 4). The style declaration “transition: width 2s;” at line 5

indicates that whenever the width property is reset, the transition will be-

gin and finish in 2 seconds. Later when users click the <div> element, the

animateExpanding callback is executed (line 19), which sets the width prop-

erty to 500px, triggering the 2-second animation.

Application developers realize that user QoS experience of the ontouchstart

event is dictated by the animation smoothness. Using GreenWeb, developers

138

<html> <head>
 <style>
 body:QoS {
 ontouchmove-qos: continuous, 20, 100;
 }
 </style>
 <script>
 var latestY = 0, ticking = false;
 function animateMove() {
 latestY = window.scrollY;
 if(!ticking)
 requestAnimationFrame(function() {
 ticking = false;
 /* Animation code omitted */
 });
 ticking = true;
 }
 </script> </head>

 <body ontouchmove=“animateMove()”>
 <!-- many elements -->
</body> </html>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Fig. 6.4: Express the QoS type of ontouchmove event as “continuous,” and
use 20 ms and 100 ms as the new QoS targets.

could express such information by specifying that the QoS type of ontouchstart

event is “continuous” (lines 7-9). Without further expressing the QoS targets,

the default values of TI and TU (16.6 ms and 33.3 ms) are used.

Animations via rAF Another common way of achieving animation

is through the requestAnimationFrame (rAF) functions. Figure 6.4 shows the

code snippet. In a nutshell, every time a user moves a finger, rAF is executed

(if not already) to register an anonymous callback function (line 12), which

139

will get executed when the display refreshes (i.e., when a VSync signal [38]

arrives) [23] to achieve animation.

Application developers realize that once move events start, they trigger

a sequence of continuous frames that determine user QoS experience. In addi-

tion, the developers believe that the specific animation in this application does

not require a high FPS. Therefore, they specify the QoS type as “continuous”

and overwrite the default QoS targets with 20 ms and 100 ms, respectively

(lines 3-5).

Modular Design Discussion The GreenWeb API design is modular

in the sense that GreenWeb-annotated program can be integrated with other

non-annotated code while ensuring functionality. After all, GreenWeb exten-

sions concern with QoS and traditional language constructs concern with func-

tionality. This composability ensures a separation of concerns between QoS

and functionality (correctness) in Web programming.

The modularity of GreenWeb also lets developers add QoS annotations

for an event independent of how the event callback is implemented. For exam-

ple, although animations in the above two examples are implemented through

different mechanisms (CSS transition and rAF) and are triggered by different

events (ontouchstart and ontouchmove), developers simply express the QoS

type as “continuous” without having to understand the implementation de-

tails. One can imagine that the modularity of the GreenWeb APIs would also

allow annotating QoS information for functionalities that are implemented by

thirty-party libraries whose source code is not available. Modularity is impor-

140

tant for extending Web languages because Web application implementations

change rapidly. The GreenWeb annotations can remain unchanged as the ap-

plication version evolves and can be removed without interfering the rest of

the application logic.

6.4 Automatic Annotation

To assist programmers in annotating a Web application with QoS in-

formation, we provide a system called AutoGreen, which automatically ap-

plies GreenWeb annotations. The rationale behind designing AutoGreen is

twofold. First, some Web developers may not want to spend the extra effort of

manual annotation, such as for legacy applications. Second, in complex Web

applications with many DOM nodes and events, manually going through all

events could be cumbersome. In both cases, AutoGreen automatically finds

all the events and annotates them with the two QoS abstractions, enabling

QoS-aware energy efficiency optimizations without programmer intervention.

Figure 6.5 gives an overview of AutoGreen. It consists of three major

phases: an instrumentation phase, a profiling phase, and a generation phase.

The instrumentation phase first discovers all DOM nodes and their associated

events in an application, and instruments every event callback to inject QoS

detection code. With the instrumented application, AutoGreen performs

a profiling run of each event by explicitly triggering its callback function.

During the callback execution, the (injected) detection code checks for certain

conditions to determine an event’s QoS type and QoS target. After profiling,

141

DOM Node Set
Callback Set

Instrumented
Application

QoS
Information

GreenWeb-
annotated
Application

HTML

JavaScript
Instrumentation Profiling

Callback
Instrumetation

DOM Node
Discovery

Event
Triggering

Annotation
Generation

Generation

Fig. 6.5: AutoGreen’s workflow to automatically annotate mobile Web ap-
plications with GreenWeb APIs.

AutoGreen generates QoS annotations and injects them back to the original

code.

The detection code determines the QoS type of an event as follows.

An event’s QoS type is set to “continuous” if its callback function triggers a

jQuery animate() function, a rAF, or a CSS transition/animation. Otherwise

the QoS type is set to “single.” To detect animate() and rAF, we overload

their original functions and check in the overloaded function. To detect CSS

transition/animation, we register a transitionend/animationend event [10,

13], which if triggered indicates that a CSS transition/animation exists. As a

proof-of-concept prototype, our current implementation does not yet support

checking other ways of realizing animations, but could be trivially extended

to do so by following a similar detection procedure as described above.

AutoGreen uses the default QoS target values listed in Table 6.1 for

each detected QoS type. Particularly, for events with a “single” QoS type,

AutoGreen always assumes a short duration. This is because AutoGreen

does not understand the semantics of an event callback function and has to

142

make conservative decisions about the QoS target information in favor of sat-

isfying QoS over conserving energy.

6.5 GreenWeb and WebRT Inteplay

GreenWeb and WebRT are independent. On one hand, GreenWeb does

not make any specific assumptions about how the underlying runtime is imple-

mented as long as the runtime is able to make trade-offs between performance

and energy consumption. For example, it is possible to use the ACMP-based

WebRT as a GreenWeb runtime implementation to make QoS-energy trade-offs

at the hardware level. It is also feasible to build a runtime leveraging only

a single big (or little) core capable of DVFS [48, 133]. In addition, one could

implement a GreenWeb runtime using pure software-level techniques, such as

prioritizing resource loading [69] or using power-conserving colors [85].

On the other hand, WebRT does not assume how the QoS requirements

is provided to be able to perform scheduling. If not annotated using GreenWeb

APIs, the QoS information could be defaulted to values that a particular

implementation assumes. That is, the WebRT schedulers can assume a default

QoS target and QoS type for each Loading, Touching, and Moving interaction.

Moreover, the WebRT schedulers could also attempt to infer the QoS type and

QoS target by profiling event executions to identify which category in Table 6.1

that an event falls into.

143

6.6 Evaluation

We evaluate GreenWeb in two different aspects. First, we evaluate the

“effectiveness” of the GreenWeb APIs (Chapter 6.6.1). That is, given the an-

notated QoS information, can a Web runtime effectively optimizes for energy-

efficiency while meeting the QoS expectations? Second, we evaluate the an-

notation effort in apply GreenWeb APIs to Web application (Chapter 6.6.2).

That is, is the annotation effort lightweight enough to incentive developers to

use GreenWeb APIs?

To evaluate GreenWeb we implement a WebRT-based GreenWeb runtime–

although note that WebRT and GreenWeb are independent as discussed in Chap-

ter 6.5. In particular, the WebRT implementation is exactly the same as what

we described in Chapter 5, i.e., based on the ACMP architecture. The soft-

ware and hardware platform we use to the evaluate GreenWeb is the same as

described in Chapter 5.1. In addition, we base our evaluation on the same set

of applications that are used in evaluating EBS in Chapter 5.5.5. The details

of each application in shown in Table 6.3

6.6.1 Energy-Efficiency Improvement

To understand the effectiveness of GreenWeb on individual events, we

design a set of microbenchmarking experiments. The goal is to exercise GreenWeb

on various events that differ in interaction types (LTM), QoS type, and QoS

target. To better understand the behavior of GreenWeb during microbench-

marking, we compare it only against Perf, which always has the highest energy

144

Table 6.3: Applications used for evaluating GreenWeb. They are the same as
the ones used for evaluating EBS in Chapter 5.5.5. “Annotation” indicates
percentage of events that are annotated. “Events” indicates the amount of
events triggered during full interaction. Note: we only annotate and count
events that are directly triggered by mobile user interactions as discussed in
Chapter 5.2. Applications marked with * are manually annotated because they
are developed using libraries that AutoGreen does not currently support.
Their annotation percentage numbers are estimated.

Application Interaction QoS Type QoS Target Events Annotation

BBC Loading Single (1, 10) s 60 20%∗

Google Loading Single (1, 10) s 26 87.5%

CamanJS Tapping Single (1, 10) s 24 100%

LZMA-JS Tapping Single (1, 10) s 39 100%

MSN Tapping Single (100, 300) ms 126 51.2%

Todo Tapping Single (100, 300) ms 26 38.3%

Amazon Moving Continuous (16.6, 33.3) ms 101 33%∗

Craigslist Moving Continuous (16.6, 33.3) ms 22 84.6%

Paper.js Moving Continuous (16.6, 33.3) ms 560 100%

Cnet Tapping Continuous (16.6, 33.3) ms 60 55.3%

Goo.ne.jp Tapping Continuous (16.6, 33.3) ms 23 51.8%

W3Schools Tapping Continuous (16.6, 33.3) ms 59 100%

145

100
80
60
40
20
0N

or
m

. E
ne

rg
y

(%
)

M
S

N

To
do

C
am

an
JS

LZ
M

A
-J

S

G
oo

gl
e

B
B

C

W
3S

ch
oo

l

G
oo

A
m

az
on

C
ne

t

C
ra

ig
sl

is
t

P
ap

er
.js

GreenWeb-U GreenWeb-I
Single Continuous

(a) Energy consumption normalized to Perf. Lower is better.

8

6

4

2

0Q
oS

 V
io

la
tio

n
(%

)

M
S

N

To
do

C
am

an
JS

LZ
M

A
-J

S

G
oo

gl
e

B
B

C

W
3S

ch
oo

l

G
oo

A
m

az
on

C
ne

t

C
ra

ig
sl

is
t

P
ap

er
.js

GreenWeb-U GreenWeb-I
Single Continuous

(b) QoS violations normalized to Perf. Lower is better.

Fig. 6.6: Microbenchmarking results. Energy numbers are normalized to Perf,
which provides the best QoS and consumes the most energy. QoS violations are
presented as additional violations on top of Perf. GreenWeb-I and GreenWeb-
U are GreenWeb under two usage scenarios.

146

and lowest QoS violation.

We construct the microbenchmark set by pairing each application in

Table 6.3 with one of the three primitive interactions (Loading, Tapping, Mov-

ing). For each interaction, we manually apply GreenWeb annotations. The QoS

type and QoS target are determined by the authors visually observing the effect

of each interaction. The “Micro-benchmarking” category in Table 6.3 shows

details about each microbenchmark. Half of the interactions have a QoS type

of “single”, and the other half have a QoS type of “continuous.” Overall,

our microbenchmarks cover user events that have different combinations of

interaction types, QoS types and QoS targets.

Energy Savings Figure 6.6a shows the energy consumption of GreenWeb

under both the imperceptible (GreenWeb-I) and the usable (GreenWeb-U)

usage scenarios. The results are normalized to Perf. For the diverse set of

interactions in our microbenchmark, GreenWeb achieves an average 31.9% and

78.0% energy saving under the two usage scenarios, respectively. Overall, the

energy savings under the usable mode are higher than in the imperceptible

mode because the usable QoS target is lower, which allows GreenWeb to lever-

age low energy ACMP configurations more often.

The greatest energy savings in the imperceptible mode come from

events in the application Todo, CamanJS, and LZMA-JS. All three events

have a “single” QoS type, but with different QoS targets (100 ms and 1 s).

The frame complexity of the three events is low relative to their QoS target

such that GreenWeb can meet the QoS target using only little core configura-

147

tions. Perf wastes energy by constantly using the big core with peak frequency.

This suggests that GreenWeb can adapt to events with different QoS targets.

For all events whose QoS type is “continuous,” we see a large differ-

ence in energy savings between the imperceptible and usable scenarios. This

suggests that in general GreenWeb must spend a substantial amount of time

on the big core in order to meet the imperceptible QoS target (16.6 ms), but

it can use little core configurations most of the time to meet the usable QoS

target (33.3 ms).

QoS Violation QoS violation is defined as the percentage by which a

frame latency exceeds the QoS target. For example, a frame latency of 200 ms

leads to an 100% QoS violation under a 100 ms QoS target. For events with a

“continuous” QoS type, we report the geometric mean of all associated frames.

It is worth noting that although Perf behaves the same under the two usage

scenarios, its QoS violations are different because the QoS targets are different.

Figure 6.6b shows the QoS violation of GreenWeb on top of Perf. On

average, GreenWeb introduces 1.3% and 1.2% more QoS violations than Perf

under the imperceptible and usable usage scenario, respectively. In the im-

perceptible mode, three application events (MSN, LZMA-JS and BBC) whose

QoS type is “single” have relatively high QoS violations. The high QoS vi-

olation is primarily introduced by GreenWeb’s profiling runs to construct the

predictive models (see Chapter 5.5.3). For example, MSN’s interaction re-

quires peak performance to minimize QoS violations. GreenWeb takes two

profiling runs, one of which is using the minimum frequency, to adapt to the

148

peak performance. The minimal frequency run causes significant QoS viola-

tions. In contrast, events that have a “continuous” QoS type trigger a large

amount of frames. Therefore, the profiling overhead is effectively amortized,

and their QoS violations are negligible.

Some events that have a “continuous” QoS type have relatively high

QoS violations under the usable mode. Outstanding examples are W3School

and Cnet. Our analysis shows that most of the QoS violations come from

frame complexity surges in a continuous frame sequence. GreenWeb aggres-

sively scales down performance when the QoS target is low, and did not always

react to the sudden frame complexity increase quickly. This suggests that the

GreenWeb runtime could be better enhanced to capture the pattern of frame

fluctuation in an event, potentially through offline profiling [133].

6.6.2 Annotation Effort

It is important to keep the annotation process lightweight because a

GreenWeb-based system requires Web applications to be explicitly annotated.

Manually annotating the QoS information of each event is time consuming for

two reasons. First, real Web applications typically contain tens or even hun-

dreds of events, as shown in Table 6.3. Second, one would have to understand

the event callback semantics to determine the QoS type and QoS target of

each event, which makes it difficult to annotate unfamiliar code, which in turn

makes GreenWeb impractical to use in real Web development.

Through our experience with evaluating GreenWeb on real Web applica-

149

tions, we find that the best practice is to use a combination of AutoGreen

and manual annotation. We use AutoGreen because it greatly improves

productivity. Throughout all benchmarked applications, AutoGreen fin-

ishes annotations under 1 minute for an entire annotation.

The downside of AutoGreen is that it does not always annotate QoS

targets correctly because it conservatively assumes short response latency for

events with a “single” QoS type (see discussion in Chapter 6.4). Therefore, we

manually correct the QoS target for events that should have a long response

latency. Overall, we find that the percentage of events whose QoS type is

“single” is below 20% for all applications. Most application events have a QoS

type of “continuous”, corroborating the prevalence of animation in today’s

Web applications. The “Annotation” column in Table 6.3 shows that in the

end we annotate over 50% of all events in most applications. Unannotated

events are not directly triggered by mobile user interactions and therefore are

not the optimization target of GreenWeb, as discussed in Chapter 5.2.

Overall, it took us about 5 ∼10 minutes to annotate each application

with the combined manual and automatic approach. While we are not famil-

iar with each application’s codebase, the annotation is not a labor-intensive

process. We expect the overhead to be even lower for experienced developers

who are more familiar with their own applications.

150

6.7 Discussion

Manual Annotation vs. Runtime Mechanism As an alternative

to receiving QoS annotations (e.g., using GreenWeb APIs) from developers, the

Web runtime could try to detect QoS information at runtime without language

hints. One implementation is to implement the exact logic of AutoGreen

within the Web runtime. However, there are three major drawbacks of such a

runtime-based approach.

First, implementing the QoS detection at runtime is not scalable. For

example, whenever the Web standard introduces a new method of implement-

ing animation (i.e., “continuous” QoS type) the browser runtime has to be

extended to support it. In contrast, with developers directly specifying the

QoS type the runtime can confidently optimize for the “continuous” QoS type

without having to know how an animation is implemented. Second, a pure run-

time strategy cannot precisely detect the QoS target information of an event

for exactly the same reason that AutoGreen cannot precisely detect QoS

target. Third, detecting QoS at runtime also introduces runtime performance

and energy overhead that could potentially offset the energy saving benefits.

Effectiveness in a Multi-application Environment The ACMP-

based GreenWeb runtime implementation presented here assumes that all CPU

resources in a SoC are available to the foreground Web application during

scheduling. We believe that this ACMP-based runtime design is also applicable

when multiple mobile applications are concurrently consuming CPU resources.

The reason is two-fold.

151

First, today’s ACMP systems have ample CPU resources, e.g., four big

and four small cores in the Exynos 5410 SoC with each core cluster having

DVFS capability. If there is a background application occupying some CPU

resources, the GreenWeb runtime system will still have a large trade-off space

to schedule, although with fewer resources. Second, today’s mobile SoCs are

on the verge of supporting fine-grained power management techniques such as

per-core DVFS using integrated voltage regulators (IVRs) [117]. Therefore,

the scheduling space will become larger to further accommodate concurrent

applications in the near future.

Defense Against Mis-annotation One potential vulnerability of

exposing GreenWeb hints to developers is that developers might place hints

that lead to inefficient system decisions. For example, a developer could set

every event’s QoS target to an extremely low value, which causes the Web

runtime always to operate at the highest performance with maximal energy

consumption. Such a mis-annotation could be introduced either inadvertently

as a program energy bug or intentionally as an adversarial attack.

The notion of user-agent intervention (UAI) [94] in the Web commu-

nity can be used to defend against such an issue. In short, UAI contends

that a Web platform should correct application behaviors that are deemed

harmful or undesired. Most of today’s Web runtime systems have already im-

plemented plenty of UAI policies such as blocking malicious third-party scripts

or re-prioritizing resource loading order under latency/bandwidth constraints.

Similarly, a Web runtime could adopt a GreenWeb-specific UAI policy. One

152

candidate is to specify an energy budget of any Web application and ignores

overly aggressive GreenWeb annotations once the energy budget is consumed.

We leave it as future work to define, express, and implement such a UAI policy.

Composability of QoS Abstractions Although the QoS type and

QoS target abstractions are sufficient for expressing predominant QoS spec-

ifications on today ’s mobile devices, in the long term we will see new user

interaction forms (e.g., using visible light [128]) and new ways that users as-

sess QoS experience. Therefore, it is important to design “primitive” QoS

abstractions, based on which complex, higher-level QoS abstractions can be

easily composed.

The composability of QoS abstractions is critical because enumerating

every single possible kind of QoS experience in a Web programming model is

not scalable. Instead, the Web programming model should ideally provide a

QoS primitive library that lets developers construct different QoS specifica-

tions in a completely customized way. To achieve this goal will likely involve

extensively surveying future human-computer interaction forms and new QoS

specifications. We leave it for the next phase of research.

6.8 Related Work

We first discuss GreenWeb in the context of prior work on language

support for Web performance (Chapter 6.8.1). Although there exists little

prior work on language support for Web energy-efficiency, language extensions

for general energy optimizations do exist, which we compare and contrast

153

GreenWeb against in (Chapter 6.8.2). Finally, we discuss why the two QoS

abstractions we propose are more comprehensive than prior work on mobile

QoS characterizations (Chapter 6.8.3).

6.8.1 Language Support for Web Performance

The Web community has a long tradition of providing language exten-

sions that allow developers to specify “hints” for browsers. The focus, however,

has been primarily on performance optimizations. GreenWeb, to the best of

our knowledge, is the first Web language extension that specifically targets

energy.

The most classical example of performance hint is link prefetch [93],

which lets Web developers use an HTML tag to specify that a particular

link will likely be fetched in the near future. With such information, a Web

browser could prefetch the link when there are no on-demand network requests.

Another example is the CSS willChange property [15], which hints browsers

about what visual changes to expect from an element so that the browser

could perform a computationally intensive task ahead of time. Similar to

willChange, GreenWeb introduces a new CSS property onevent-qos, which

allows providing QoS-related hints.

6.8.2 Language Support for Energy Efficiency

Language support for energy efficiency has recently become a major

research thrust. Most work targets sensor-based applications and approximate

154

computing whereas GreenWeb, to the best of our knowledge, is the first to focus

on Web applications. In addition, most previously proposed language systems

require developers to annotate applications manually. We show that GreenWeb

annotations can be automatically applied without programmer intervention.

We now compare GreenWeb with prior language proposals in greater detail.

Eon [165] provides language constructs that let developers express al-

ternative program control flow paths and associate energy states with control

flows, based on which the runtime selects control flow paths that are suitable

given the device energy level. Green [60] provides APIs that let developers

specify multiple approximate versions of a function and QoS loss constraints,

which guide the runtime to save energy without violating QoS. Both pro-

posals rely on developers supplying alternative implementations, which is an

optimization not immediately applicable to Web applications. In the future,

however, it would be interesting to evaluate such an optimization strategy in

the Web domain.

Energy Types [81] and EnerJ [157] take the language support for energy-

efficiency a step further by designing general type systems. Both work ensures

sound and safe energy optimizations by enforcing static type checking. Both

type systems target imperative programming, and therefore are not imme-

diately applicable to Web programming which is inherently declarative. In

the future, however, it would be interesting to study how to decorate DOM

elements with different type qualifiers to guide the energy optimizations.

LAB [116] identifies latency, accuracy, and battery as fundamental ab-

155

stractions for improving energy efficiency in sensor-based applications. Sim-

ilarly, GreenWeb identifies the QoS type and QoS target abstractions for en-

abling energy-efficient Web applications.

6.8.3 Mobile QoS Characterization

The two QoS abstractions and the design of GreenWeb APIs is driven

by understanding application QoS requirements from an application events

perspective, which is not the focus in the majority of existing mobile workload

suite and benchmark [5, 8, 9, 18, 24, 27, 34, 39, 113, 148, 155]. Other benchmarks

consider only a particular form of QoS. For example, BBench [101] considers

the webpage load time as the QoS constraint for Web browsing; the Web

latency benchmark [40] considers the event latency of user actions to webpage

elements; the GFXBench [19] and BaseMark [7] benchmarks consider FPS.

However, our QoS abstractions lead to a general methodology to identify QoS

requirements of a wide range of applications.

156

Chapter 7

Retrospective and Prospective Remarks

This chapter provides retrospective and prospective views of my dis-

sertation work. The retrospective part (Chapter 7.1) distills three principles

developed from my work on building a high-performance while energy-efficient

mobile Web computing system. The prospective part (Chapter 7.2) suggests

next steps for generalizing the principles and outlines lucrative research items.

7.1 Retrospective

As a promising first step, my proposal explores the feasibility of a holis-

tic system design to improve the energy-efficiency of mobile Web computing

while delivering user satisfaction. It argues that the traditional interfaces

across the Web computing stack should be enhanced with new abstractions

for QoS and hardware. Overall, it demonstrates three general principles:

• Empowering Web Developers Without Overburdening Them

Web developers today must be conscious of energy-efficiency because

of increasing user awareness. Current application/runtime abstractions,

however, do not provide developers opportunities to optimize for energy-

efficiency. Pure runtime-based techniques are QoS-agnostic. A key prin-

157

ciple in my work is that developers should be integrated into the energy

optimization loop. GreenWeb (Chapter 6) demonstrates a first step by

empowering developers to express user QoS expectations as program an-

notations. The QoS annotations guide the runtime to make a calculated

trade-off between performance and energy consumption. Meanwhile, to

incentivize a wide usage of GreenWeb-like annotations, it is critical to

ease developers’ manual annotation efforts. AutoGreen framework

explores the feasibility of automatic annotation with promising results.

• Exposing Architecture Details Without Losing Generality

Mobile system-on-chips (SoC) undergo rapid design iterations with each

generation incorporating more complex cores and IP blocks. A Web run-

time system must embrace, but does not overly couple with, the unprece-

dented hardware complexity. A guiding principle for system designers

is that the runtime/architecture interface should be enhanced with new

abstractions—abstractions that expose enough hardware details while

not imposing too strict constraints on runtime implementation. WebRT

(Chapter 5) is a concrete example of this principle where processor core

type and core frequency in an ACMP architecture are exposed as two

new abstractions to the Web runtime. The two new hardware abstrac-

tions enable a large performance-energy scheduling space while do not

impose any constraints how the scheduling should be implemented.

• Balancing Programmability With Domain Specialization Ul-

timately mobile processor architecture designs will have to improve both

158

the performance and energy-efficiency simultaneously, not just making

trade-offs between the two design goals. Architectural specialization

comes as the first choice to achieve both improvements. However, I

argue that retaining the general-purpose programmability during the

specialization process is of critical importance for the Web stack because

of its inherent complexity. WebCore (Chapter 4) demonstrates one ap-

proach of balancing programmability and specialization by starting from

a (well-customized) general-purpose design and incrementally incorpo-

rating modest specializations for the most lucrative software targets.

7.2 Prospective

The future of mobile Web computing is undoubtedly exciting. It is ex-

citing not only because of the intellectual challenges it poses, but also because

of its applicability to our everyday life and its profound impact on our society.

Guided by the principles described in the previous chapter, I outline a few

open problems that are critical to the next era of mobile Web computing.

• Composability of QoS Abstractions As mobile application do-

mains such as virtual reality and augment reality become more main-

stream, new forms of user interaction (e.g., through nose [50], visible

light [128]) will emerge and as such users will have new ways of assessing

their QoS experience. Although the QoS type and QoS target abstrac-

tions proposed in this work are sufficient for expressing QoS specifications

159

in today ’s mobile applications, it is not clear how to express a new QoS

abstraction in the context of future mobile applications.

To express semantics of new QoS specifications, the next step of Web

language research should understand how to design “primitive” QoS ab-

stractions, based on which complex, higher-level QoS abstractions can

be easily composed. The composability of QoS abstractions is critical

because enumerating every single possible kind of QoS experience in a

Web programming model is not scalable. Instead, the Web programming

model should ideally provide a QoS primitive library that lets developers

construct different QoS specifications in a completely customized way.

To achieve this goal will likely involve an intimate collaboration between

the system and human-computer interaction community. Breakthroughs

in neuropsychology research that seeks to construct fundamental human

perception models will also play an important role.

• Scalable Web Runtime If today’s hardware systems that a mobile

Web runtime has to manage, e.g., an ACMP architecture, are already

complex, the complexity in tomorrow’s mobile hardware will be unprece-

dented. ITRS projects that the number of specialized IP blocks will reach

upwards of 100X more than today by 2022. What further adds to the

hardware complexity is the fragmentation issue where, for instance, one

IoT device will have non-standard, vendor-customized, and application-

specific hardware components that are not found in any other devices.

160

Future mobile Web runtime should effectively manage the hardware com-

plexity in order to fully take advantage of the hardware capability. The

challenge of the runtime design is one of scalability. On one hand, a

monolithic design that appeals to all existing IP blocks is unscalable be-

cause the performance and energy overheads accumulate as the number

of IP blocks surges. On the other hand, a completely customized runtime

tailored for the specifics of a particular device is unscalable either. This

is because software vendors would have to distribute different runtimes

based on different device capabilities, essentially transferring the burden

of managing hardware complexity to managing software complexity.

An ideal mobile Web runtime should strike a balance between the two ex-

tremes, allowing one piece of software to be distributed across all devices

while providing flexibilities to support hardware components unique to

each device. One promising approach is to borrow the principles of the

microkernel-based OS design: a minimal runtime kernel equipped with

extensible modules, each dealing with one or one group of hardware IPs.

The extensibility, i.e., the ability to (un)load a runtime module with iso-

lated concerns, is what makes this runtime design scalable. The research

challenge is to carefully select what tasks go into the runtime kernel and

to define what the abstractions at the kernel-module interface should be.

• Programmable Accelerators for Mobile Machine Learning

Machine learning techniques are making a foray into mobile/edge com-

puting, and will be an indispensable component in future mobile Web ap-

161

plications with the help of extensive library support (e.g., ConvNetJS [51]).

Most research in the architecture community focuses on accelerating a

rather narrow set of machine learning techniques (e.g., convolutional neu-

ral networks) and application domains (e.g., image processing). There

is wider space of algorithms (e.g., unsupervised learning, recurrent neu-

ral networks) and application domains (e.g., speech, language) for which

computational characteristics are yet to be well-understood and hard-

ware solutions are yet to be found.

There is a need to design architectures that offer better performance

and energy-efficiency on a broad set of machine learning tasks. The de-

sign should be guided by the same principle of WebCore, i.e., to balance

general-purpose programmability with specialization. One particularly

promising approach is to start by designing accelerator building blocks,

which are then composed together to form a high-level architecture. The

building blocks should exploit the fundamental computational character-

istics and communication patterns common to various machine learning

techniques. The composition process should allow flexible reconfigura-

tion of different building blocks without losing much efficiency.

The idea is closely related to prior explorations of configurable processors

(e.g. CCA [79], CGRA [96], LSSD [143]). However, the unique charac-

teristics of machine learning tasks, especially the extremely high memory

pressure, will most certainly yield new design insights and trade-offs.

162

Bibliography

[1] 3G/4G Wireless Network Latency: How did Verizon, AT&T, Sprint and

T-Mobile Compare in July 2014? http://goo.gl/JTFvbg.

[2] 9 Causes of Bad App Reviews. http://goo.gl/ejQ69m.

[3] Android CPUFreq Governors. https://goo.gl/K6Ce4V.

[4] Android WebView APIs. http://goo.gl/kRR49d.

[5] Antutu benchmark. http://goo.gl/hNA8oa.

[6] Are Smartphones Getting Larger Because They Have To? http://goo.gl/EvrtDF.

[7] Basemark x. https://www.basemark.com/.

[8] Browsermark benchmark. http://goo.gl/XJVZu7.

[9] Browsing Bench. http://goo.gl/lDJ45s.

[10] CSS animationend Event. https://goo.gl/VKUdsA.

[11] CSS Animations. http://www.w3.org/TR/css3-animations/.

[12] CSS Pseudo-classes. http://www.w3.org/TR/selectors/#pseudo-classes.

[13] CSS transitionend Event. https://goo.gl/G57QT5.

163

[14] CSS Transitions. http://www.w3.org/TR/css3-transitions/.

[15] CSS Will Change Module Level 1. http://goo.gl/V6jx5e.

[16] CSS3 Media Queries. http://www.w3.org/TR/css3-mediaqueries/.

[17] Document Object Model (DOM). http://www.w3.org/DOM/.

[18] Geekbench 3.0 benchmark. http://goo.gl/TJzTCW.

[19] Gfxbench benchmark. https://gfxbench.com/.

[20] Heterogeneous Multi-Processing Solution of Exynos 5 Octa with ARM

big.LITTLE Technology. In Samsung Whitepaper.

[21] HTTrack. https://www.httrack.com/.

[22] iOS Developer Library: UIWebView. https://goo.gl/x1bezW.

[23] Jank Busting for Better Rendering Performance. http://goo.gl/vILunD.

[24] Kraken benchmark. http:goo.gl/HoUDrE.

[25] LTE Subscriptions to Surpass 1 Billion This Year. http://goo.gl/bO8Sfs.

[26] NVidia: Adaptive VSync Technology. http://goo.gl/IvHym4.

[27] Octane benchmark 2.0. http://goo.gl/d2BxmQ.

[28] OOKLA Speedtest for Android. http://www.speedtest.net/mobile/android/.

[29] Optimizing your pages for speculative parsing. https://goo.gl/KnsNtN.

164

[30] Power profiles for android. https://source.android.com/devices/tech/power.html.

[31] R software. http://www.r-project.org.

[32] Rd2: “the three second rule”. http://goo.gl/pynBl.

[33] Speed, Performance, and Human Perception. http://goo.gl/5PbOnR.

[34] SunSpider Benchmark. https://www.webkit.org/perf/sunspider/sunspider.html.

[35] Survey: Exploring the Reasons Users Complain about Apps. http://goo.gl/270TOD.

[36] The Evolution of the Web. http://www.evolutionoftheweb.com/.

[37] Timing Control for Script-based Animations. http://goo.gl/hQdm6D.

[38] V-sync. https://en.wikipedia.org/wiki/Screen tearing#V-sync.

[39] Vellamo benchmark. https://goo.gl/g9VRus.

[40] Web latency benchmark. http:goo.gl/B4fZEh.

[41] Webkit2. http://trac.webkit.org/wiki/WebKit2.

[42] The Evolution of HTML5. http://goo.gl/y6E2d7, 2012.

[43] Big.LITTLE Processing with ARM Cortex-A15 & Cortex-A7. In ARM

Whitepaper, 2013.

[44] big.LITTLE Technology: The Future of Mobile. In ARM Whitepaper,

2013.

165

[45] Nvidia Tegra 4 Family CPU Architecture: 4-PLUS-1 Quad core. In

Nvidia Whitepaper, 2013.

[46] Power Efficiency in OS X. https://goo.gl/60XEji, 2013.

[47] Smartphone Screen Sizes Keep On Growing—But Not For Much Longer.

http://goo.gl/lOhVay, 2013.

[48] Variable SMP - A Multi-Core CPU Architecture for Low Power and High

Performance. In Nvidia Whitepaper, 2013.

[49] GPU Accelerated Compositing in Chrome. http://goo.gl/sIuf7g, 2014.

[50] Apple Watch Users Discover Another Way to Go “Hands Free”. http://goo.gl/RnyujX,

2015.

[51] ConvNetJS. https://github.com/karpathy/convnetjs, 2016.

[52] Your Favourite App isn’t Native. http://goo.gl/B7VABO, 2016.

[53] 7-cpu. ARM Cortex-A15 Specification. http://goo.gl/CXYook, 2017.

[54] Vikas Agarwal, M.S. Hrishikesh, Stephen W. Keckler, and Doug Burger.

Clock Rate versus IPC: The End of the Road for Conventional Microar-

chitectures. In Proc. of ISCA, 2000.

[55] Alexa. Alexa. http://www.alexa.com/, 2017.

[56] ARM. Exploring the Design of the Cortex-A15 Processor. http://goo.gl/Pc8hPe,

2012.

166

[57] ARM. ARM DS-5. http://ds.arm.com/ds-5/optimize/, 2015.

[58] O. Azizi, A. Mahesri, B.C. Lee, S. J. Patel, and M. Horowitz. Energy

Performance Tradeoffs in Processor Architecture and Circuit Design: A

Marginal Cost Analysis. In Proc. of ISCA, 2010.

[59] Carmen Badea, Mohammad R. Haghighat, Alexandru Nicolau, and Alexan-

der V. Veidenbaum. Towards Parallelizing the Layout Engine of Firefox.

In Proc. of USENIX HotPar, 2010.

[60] Woongki Baek and Trishul M Chilimbi. Green: a framework for sup-

porting energy-conscious programming using controlled approximation.

In Proc. of PLDI, 2010.

[61] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and

Peter Marwedel. Scratchpad Memory: Design Alternative for Cache

On-chip Memory in Embedded Systems. In Proc. of CODES+ISSS,

2002.

[62] Battery University. Battery Statistics. http://goo.gl/90mMeb, 2011.

[63] Vikram Bhatt, Nathan Goulding-Hotta, Qiaoshi Zheng, Jack Sampson,

Steven Swanson, and Michael Bedford Taylor. SiChrome: Mobile Web

Browsing in Hardware to Save Energy. DaSi: First Dark Silicon Work-

shop, 2012.

167

[64] Joshua Bixby. 2012 Predictions: The Average Web Page Will Hit 1 MB,

Google and Siri Will Face Off, and Chrome, Windows 7, and RUM will

rise. http://goo.gl/WmcTsx, 2011.

[65] Joshua Bixby. The relationship between faster mobile sites and business

kpis: Case studies from the mobile frontier. http://goo.gl/shnlDF, 2011.

[66] Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam. Power

Struggles: Revisiting the RISC vs. CISC Debate on Contemporary ARM

and x86 Architectures. In Proc. of HPCA, 2013.

[67] James Bornholt, Todd Mytkowicz, and Kathryn S. McKinley. The

Model is Not Enough: Understanding Energy Consumption in Mobile

Devices. In Poster of HotChip, 2012.

[68] Edward A Burton, Gerhard Schrom, Fabrice Paillet, James Douglas,

William J Lambert, Krishnaja Radhakrishnan, and Michael J Hill. Fivr:

Fully integrated voltage regulators on 4th generation intel core socs. In

Proc. of APEC, 2014.

[69] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V Madhyastha,

and Vyas Sekar. Klotski: Reprioritizing web content to improve user

experience on mobile devices. In Proc. of NSDI, 2015.

[70] Michael Butler, Tse-Yu Yeh, Yalt Patt, Mitch Alsup, Hunter Scales, and

Michael Shebanow. Single Instruction Stream Parallelism Is Greater

than Two. In Proc. of ISCA, 1991.

168

[71] Ting Cao, Tiejin Gao, Stephen M. Blackburn, and Kathryn S. McKinley.

The Yin and Yang of Power and Performance for Asymmetric Hardware

and Managed Software. In Proc. of ISCA, 2012.

[72] Stuart K. Card, George G. Robertson, and Jock D. Mackinlay. The

Information Visualizer: An Information Workspace. In Proc. of CHI,

1991.

[73] Aaron Carroll and Gernot Heiser. An Analysis of Power Consumption

in a Smartphone. In Proc. of USENIX ATC, 2010.

[74] Aaron Carroll and Gernot Heiser. An Analysis of Power Consumption

in a Smartphone. In Proc. of USENIX ATC, 2010.

[75] Calin Cascaval, Seth Fowler, Pablo Montesinos Ortego, Wayne Piekarski,

Mehrdad Reshadi, Behnam Robatmili, Michael Weber, and Vrajesh Bhavsar.

Zoomm: A Parallel Web Browser Engine for Multicore Mobile Devices.

In Proc. of PPoPP, 2013.

[76] Gaurav Chadha, Scott Mahlke, and Satish Narayanasamy. EFetch:

Optimizing Instruction Fetch for Event-driven Web Applications. In

Proc. of PACT, 2014.

[77] Gaurav Chadha, Scott Mahlke, and Satish Narayanasamy. Accelerating

Asynchronous Programs through Event Sneak Peek. In Proc. of ISCA,

2015.

169

[78] Xiang Chen, Yiran Chen, Zhan Ma, and Felix CA Fernandes. How Is

Energy Consumed In Smartphone Display Applications? In Proc. of

HotMobile, 2013.

[79] Nathan T. Clark, Hongtao Zhong, and Scott A. Mahlke. Automated

Custom Instruction Generation for Domain-Specific Processor Acceler-

ation. In IEEE Transactions on Computers, 2005.

[80] Mark Claypool, Kajal Claypool, and Feissal Damaa. The Effects of

Frame Rate and Resolution on Users Playing First Person Shooter Games.

In Proc. of Multimedia Computing and Networking, 2006.

[81] Michael Cohen, Haitao Steve Zhu, Senem Ezgi Emgin, and Yu David

Liu. Energy types. In Proc. of OOPSLA, 2012.

[82] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez,

and Joel Emer. Scheduling Heterogeneous Multi-cores through Perfor-

mance Impact Estimation (PIE). In Proc. of ISCA, 2012.

[83] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanaa, and C. Le. RAPL:

Memory Power Estimation and Capping. In Proc. of ISLPED, 2010.

[84] Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous,

and Andre R LeBlanc. Design of Ion–Implanted MOSFET’s With Very

Small Physical Dimensions. In IEEE Journal of Solid-State Circuits,

1974.

170

[85] Mian Dong and Lin Zhong. Chameleon: a color-adaptive web browser

for mobile oled displays. In Proc. of MobiSys, 2012.

[86] G. Dunteman. Principal Component Analysis. Sage Publications, 1989.

[87] Kit Eaton. How 1s Could Cost Amazon $1.6 Billion in Sales. http://goo.gl/qG0M2Q,

2013.

[88] Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt. Techniques for Bandwidth-

Efficient Prefetching of Linked Data Structures in Hybrid Prefetching

Systems. In Proc. of HPCA, 2009.

[89] Y. Endo, Z. Wang, J. Chen, and M. Seltzer. Using Latency to Evaluate

Interactive System Performance. In Proc. of OSDI, 1996.

[90] Hadi Esmaeilzadeh, Emily Blem, Rene St. Amant, Karthikeyan Sankar-

alingam, and Doug Burger. Dark Silicon and the End of Multicore

Scaling. In ISCA, 2011.

[91] Dave Evans. The Internet of Things: How the Next Evolution of the

Internet is Changing Everything. In Cisco Whitepaper, 2011.

[92] Carlos Flores Fajardo, Zhen Fang, Ravi Iyer, German Fabila Garcia,

Seung Eun Lee, and Li Zhao. Buffer-Integrated-Cache: A Cost-effective

SRAM Architecture for Handheld and Embedded Platforms. In Proc.

of DAC, 2011.

171

[93] Darin Fisher and Gagan Saksena. Link prefetching in mozilla: A server-

driven approach. In Web content caching and distribution, pages 283–

291. Springer, 2004.

[94] Dimitri Glazkov. User Agent Intervention. http://bit.ly/user-agent-

intervention.

[95] Ricardo Gonzalez and Mark Horowitz. Energy Dissipation in General

Purpose Microprocessors. In IEEE Journal of Solid-State Circuits, 1996.

[96] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankar-

alingam, and C. Kim. DySER: Unifying functionality and parallelism

specialization for energy efficient computing. In IEEE MICRO, 2012.

[97] Ilya Grigorik. High Performance Browser Networking. O’Reilly, 2013.

[98] D. Grunwald, P. Levis, K. Farkas, C.B. Morrey III, and M. Neufeld.

Policies for Dynamic Clock Scheduling. In Proc. of OSDI, 2000.

[99] Dirk Grunwald, Charles B. Morrey, III, Philip Levis, Michael Neufeld,

and Keith I. Farkas. Policies for dynamic clock scheduling. In Proc. of

OSDI, 2000.

[100] Qi Guo, Tianshi Chen, Yunji Chen, Zhihua Zhou, Weiwu Hu, and Zhiwei

Xu. Effective and Efficient Microprocessor Design Space Exploration

Using Unlabeled Design Configurations. In Proc. of IJCAI, 2011.

172

[101] A. Gutierrez, R. Dreslinski, A. Saidi, C. Emmons, N. Paver, T. Wenisch,

and T. Mudge. Full-System Analysis and Characterization of Interactive

Smartphone Applications. In Proc. of IISWC, 2011.

[102] Erik G. Hallnor and Steven K. Reinhardt. A Fully Associative Software-

managed Cache Design. In Proc. of ISCA, 2000.

[103] Matthew Halpern, Yuhao Zhu, Ramesh Peri, and Vijay Janapa Reddi.

Mosaic: Cross-platform user-interaction record and replay for the frag-

mented android ecosystem. In Proc. of ISPASS, 2015.

[104] Matthew Halpern, Yuhao Zhu, and Vijay Janapa Reddi. Mobile CPU’s

Rise to Power: Quantifying the Impact of Generational Mobile CPU

Design Trends on Performance, Energy, and User Satisfaction. In Proc.

of HPCA, 2016.

[105] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solo-

matnikov, Benjamin C. Lee, Stephen Richardson, Christos Kozyrakis,

and Mark Horowitz. Understanding Sources of Inefficiency in General-

Purpose Chips. In Proc. of ISCA, 2010.

[106] Shuai Hao, Ding Li, William GJ Halfond, and Ramesh Govindan. Esti-

mating mobile application energy consumption using program analysis.

In Proc. of ICSE, 2013.

[107] Hardkernel. ODROID-XU+E Development Board. http://goo.gl/Ige0Jp,

2015.

173

[108] Frank E Harrell. Regression Modeling Strategies. Springer, 2001.

[109] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements

of Statistical Learning. Springer, 2009.

[110] Urs Hoelzle. The Google Gospel of Speed. https://goo.gl/fTd0f0, 2012.

[111] Junxian Huang, Feng Qian, Alexandre Gerber, Z. Morley Mao, Sub-

habrata Sen, and Oliver Spatscheck. A Close Examination of Perfor-

mance and Power Characteristics of 4G LTE Networks. In Proc. of

MobiSys, 2012.

[112] Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley Mao, Sub-

habrata Sen, and Oliver Spatscheck. A close examination of perfor-

mance and power characteristics of 4g lte networks. In Proc. of MobiSys,

2012.

[113] Yongbing Huang, Zhongbin Zha, Mingyu Chen, and Lixin Zhang. Moby:

A Mobile Benchmark Suite for Architectural Simulators. 2014.

[114] Jos A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt. Bot-

tleneck Identification and Scheduling in Multithreaded Applications. In

Proc. of ASPLOS, 2012.

[115] Jos A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt. Utility-

Based Acceleration of Multithreaded Applications on Asymmetric CMPs.

In Proc. of ISCA, 2013.

174

[116] Aman Kansal, Scott Saponas, A.J. Bernheim Brush, Kathryn S. McKin-

ley, Todd Mytkowicz, and Ryder Ziola. The latency, accuracy, and bat-

tery (lab) abstraction: Programmer productivity and energy efficiency

for continuous mobile context sensing. In Proc. of OOPSLA, 2013.

[117] Wonyoung Kim, Meeta S. Gupta, Gu-Yeon Wei, and David Brooks.

System level analysis of fast, per-core dvfs using on-chip switching reg-

ulators. In Proc. of HPCA, 2008.

[118] Johnson Kin, Munish Gupta, and William H. Mangione-Smith. The Fil-

ter Cache: an Energy Efficient Memory Structure. In Proc. of MICRO,

1997.

[119] Brian Klug and Anand Lal Shimpi. Krait cache and memory hierarchy.

http://goo.gl/ZuO7X2, 2011.

[120] Theo Kluter, Philip Brisk, Edoardo Charbon, and Paolo Ienne. Way

Stealing: A Unified Data Cache and Architecturally Visible Storage for

Instruction Set Extensions. In IEEE Transactions on VLSI, 2013.

[121] KPCB. KPCB 2015 Internet Trends. http://www.kpcb.com/blog/2015-

internet-trends, 2015.

[122] Kssmetrics. Speed is a killer. http://goo.gl/4PfsJL, 2011.

[123] AV Kumar. Mobile Computing Techniques in Emerging Markets: Sys-

tems, Applications and Services: Systems, Applications and Services.

IGI Global, 2012.

175

[124] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ran-

ganathan, and Dean M. Tullsen. Single-ISA Heterogeneous Multi-Core

Architectures: The Potential for Processor Power Reduction. In Proc.

of MICRO, 2003.

[125] Benjamin C. Lee and David M. Brooks. Accurate and Efficient Regres-

sion Modeling for Microarchitectural Performance and Power Prediction.

In Proc. of ASPLOS, 2006.

[126] Paul Lewis. Rendering performance. https://goo.gl/Ff5HrD, 2014.

[127] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M.

Tullsen, and Norman P. Jouppi. McPAT: An Integrated Power, Area,

and Timing Modeling Framework for Multicore and Manycore Architec-

tures. In Proc. of MICRO, 2009.

[128] Tianxing Li, Chuankai An, Zhao Tian, Andrew T. Campbell, and Xia

Zhou. Human sensing using visible light communication. In Proc. of

MobiCom, 2015.

[129] Yingmin Li, Mark Hempstead, Patrick Mauro, David Brooks, Zhigang

Hu, and Kevin Skadron. Power and Thermal Effects of SRAM vs. Latch

Mux Design Styles and Clocking Gating Choices. In Proc. of ISLPED,

2005.

[130] Dan Lin, Nigel Medforth, Kenneth S Herdy, Arrvindh Shriraman, and

Rob Cameron. Parabix: Boosting the Efficiency of Text Processing on

176

Commodity Processors. In Proc. of HPCA, 2012.

[131] Yuan Lin, Hyunseok Lee, Mark Woh, Yoav Harel, Scott Mahlke, Trevor

Mudge, Chaitali Chakrabarti, and Krisztian Flautner. SODA: A Low-

power Architecture For Software Radio. In Proc. of ISCA, 2006.

[132] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Rocco

Oliveto, Massimiliano Di Penta, and Denys Poshyvanyk. Mining energy-

greedy api usage patterns in android apps: an empirical study. In Proc.

of MSR, 2014.

[133] Daniel Lo, Taejoon Song, and G. Edward Suh. Prediction-guided

performance-energy trade-off for interactive applications. In Proc. of

MICRO, 2015.

[134] Andrew Lukefahr, Shruti Padmanabha, Reetuparna Das, Faissal M.

Sleiman, Ronald Dreslinski, Thomas F. Wenisch, and Scott Mahlke.

Composite Cores: Pushing Heterogeneity into a Core. In MICRO, 2012.

[135] Dimitrios Lymberopoulos, Oriana Riva, Karin Strauss, Akshay Mittal,

and Alexandros Ntoulas. PocketWeb: Instant Web Browsing for Mobile

Devices. In Proc. of ASPLOS, 2012.

[136] Haohui Mai, Shuo Tang, Samuel T. King, Calin Cascaval, and Mon-

tesinos Pablo. A Case for Parallelizing Web Pages. In Proc. of USENIX

HotPar, 2012.

177

[137] Leo A. Meyerovich and Rastislav. Bodik. Fast and Parallel Webpage

Layout. In Proc. of WWW, 2010.

[138] Leo A. Meyerovich and Rastislav Bodik. FTL: Synthesizing a Parallel

Layout Engine. In Proc. of ECOOP, 2012.

[139] Rustam Miftakhutdinov, Eiman Ebrahimi, and Yale N. Patt. Predicting

Performance Impact of DVFS for Realistic Memory Systems. In Proc.

of MICRO, 2012.

[140] R. B. Miller. Response Time in Man-computer Conversational Trans-

actions. In AFIPS Fall Joint Computer Conference, 1968.

[141] B. A. Myers. The Importance of Percent-done Progress Indicators for

Computer-human Interfaces. In Proc. of CHI, 1985.

[142] Jakob Nielsen. Usability Engineering. Morgan Kaufmann, 1993.

[143] Tony Nowatzki, Vinay Gangadhar, Karthikeyan Sankaralingam, and

Greg Wright. Pushing the Limits of Accelerator Efficiency while Re-

taining Programmability. In Proc. of HPCA, 2016.

[144] Adam J Oliner, Anand P Iyer, Ion Stoica, Eemil Lagerspetz, and Sasu

Tarkoma. Carat: Collaborative energy diagnosis for mobile devices. In

Proc. of Sensys, 2013.

[145] OpenHub. Chromium Project Summary: Languages. https://goo.gl/XQb3EO,

2017.

178

[146] Shruti Padmanabha, Andrew Lukefahr, Reetuparna Das, and Scott Mahlke.

Trace Based Phase Prediction For Tightly-Coupled Heterogeneous Cores.

In MICRO, 2013.

[147] Venkatesh Pallipadi and Alexey Starikovskiy. The Ondemand Governor:

Past, Present, and Future. In Linux Symposium, 2006.

[148] Dhinakaran Pandiyan, Shin-Ying Lee, and Carole-Jean Wu. Perfor-

mance, Energy Characterizations and Architectural Implications of an

Emerging Mobile Platform Benchmark Suite-MobileBench. In Proc. of

IISWC, 2013.

[149] Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. MARSS:

A Full System Simulator for Multicore x86 CPUs. In Proc. of DAC,

2011.

[150] Abhinav Pathak, Y Charlie Hu, and Ming Zhang. Where is the energy

spent inside my app?: Fine grained energy accounting on smartphones

with eprof. In Proc. of EuroSys, 2012.

[151] Michael Pradel, Parker Schuh, George Necula, and Koushik Sen. Event-

break: Analyzing the responsiveness of user interfaces through performance-

guided test generation. In Proc. of OOPSLA, 2014.

[152] Wajahat Qadeer, Rehan Hameed, Ofer Shacham, Preethi Venkatesan,

Christos Kozyrakis, and Mark A. Horowitz. Convolution Engine: Bal-

179

ancing Efficiency & Flexibility in Specialized Computing. In Proc. of

ISCA, 2013.

[153] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely., and

Joel Emer. Adaptive Insertion Policies for High Performance Caching.

In Proc. of ISCA, 2007.

[154] Krishna K. Rangan, Gu-Yeon Wei, and David Brooks. Thread Motion:

Fine-Grained Power Management for Multi-Core Systems. In ISCA,

2009.

[155] Gregor Richards, Andreas Gal, Brendan Eich, and Jan Vitek. Auto-

mated Construction of JavaScript Benchmarks. In Proc. of OOPSLA,

2011.

[156] Kunihiko Sakamoto. Time-to-first-x-paint metrics: Status and refine-

ment plans. https://goo.gl/xyab3A, 2015.

[157] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapra-

gasam, Luis Ceze, and Dan Grossman. Enerj: Approximate data types

for safe and general low-power computation. In Proc. of PLDI, 2011.

[158] Fred Schlachter. No moore’s law for batteries. In Proc. of National

Academy of Science of the United States of America, 2013.

[159] Clayton Shepard, Ahmad Rahmati, Chad Tossell, Lin Zhong, and Phillip

Kortum. Livelab: Measuring wireless networks and smartphone users

in the field. In SIGMETRICS Performance Evaluation Review, 2011.

180

[160] Ben Shneiderman. Designing the User Interface. Addison-Wesley, 1992.

[161] Open Signal. Android Fragmentation Visualized. http://goo.gl/ODlx4z,

2014.

[162] Shikhir Singh. HTML5 On The Rise: No Longer Ahead Of Its Time.

http://goo.gl/yuEVCy, 2015.

[163] Mac Slocum. You can’t get away with a bad mobile experience anymore.

http://goo.gl/T3812z, 2011.

[164] Michael D. Smith. Overcoming the Challenges to Feedback-Directed

Optimization (Keynote Talk). In Proc. of DYNAMO, 2000.

[165] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Bren-

nan, Mark D. Corner, and Emery D. Berger. Eon: A language and

runtime system for perpetual systems. In Proc. of SenSys, 2007.

[166] M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N.

patt. Accelerating Critical Section Execution with Asymmetric Multi-

Core Architectures. In Proc. of ASPLOS, 2009.

[167] M Aater Suleman, Yale N Patt, Eric Sprangle, Anwar Rohillah, An-

war Ghuloum, and Doug Carmean. Asymmetric Chip Multiprocessors:

Balancing Hardware Efficiency and Programmer Efficiency. Technical

Report TR-HPS-2007-001, The University of Texas as Austin, 2007.

181

[168] Narendran Thiagarajan, Gaurav Aggarwal, Angela Nicoara, Dan Boneh,

and Jatinder Pal Singh. Who Killed My Battery?: Analyzing Mobile

Browser Energy Consumption. In Proc. of WWW, 2012.

[169] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and

Norman P. Jouppi. CACTI 5.1. Number HPL-2008-20, 2008.

[170] Po-Hsien Tseng, Pi-Cheng Hsiu, Chin-Chiang Pan, and Tei-Wei Kuo.

User-Centric Energy-Efficient Scheduling on Multi-Core Mobile Devices.

In DAC, 2014.

[171] W3C. CSS Cascading Order. https://goo.gl/PkKg92, 2014.

[172] Zhen Wang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor Chishtie. Why

are Web Browsers Slow on Smartphones? In Proc. of HotMobile, 2011.

[173] WebKit. Webkit. http://www.webkit.org, 2015.

[174] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for Re-

duced CPU Energy. In Proc. of OSDI, 1994.

[175] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling

for reduced CPU energy. In Proc. of OSDI, 1994.

[176] Mark Woh, Sangwon Seo, Scott Mahlke, Trevor Mudge, Chaitali Chakrabarti,

and Krisztian Flautner. AnySP: Anytime Anywhere Anyway Signal

Processing. In Proc. of ISCA, 2009.

182

[177] Qiang Wu, V.J. Reddi, Youfeng Wu, Jin Lee, Dan Connors, David

Brooks, Margaret Martonosi, and Douglas W. Clark. A Dynamic Com-

pilation Framework for Controlling Microprocessor Energy and Perfor-

mance. In Proc. of MICRO, 2005.

[178] Fen Xie, Margaret Martonosi, and Sharad Malik. Compile-time Dy-

namic Voltage Scaling Settings: Opportunities and Limits. In Proc. of

PLDI, 2003.

[179] Ye Xu, Mu Lin, Hong Lu, Giuseppe Cardone, Nicholas D. Lane, Zhenyu

Chen, Andrew T. Campbell, and Tanzeem Choudhury. Preference, Con-

text and Communities: A Multi-faceted Approach to Predicting Smart-

phone App Usage Patterns. In Proc. of ISWC, 2013.

[180] Allan Yogasingam. Teardown: Samsung galaxy s4. http://goo.gl/BQl4Dg,

2013.

[181] Kaimin Zhang, Lu Wang, Aimin Pan, and Bin Benjamin Zhu. Smart

Caching for Web Browsers. In Proc. of WWW, 2010.

[182] Zhijia Zhao, Mingzhou Zhou, and Xipeng Shen. SatScore: Uncovering

and Avoiding a Principled Pitfall in Responsiveness Measurements of

App Launches. In Proc. of UbiComp, 2014.

[183] Yuhao Zhu, Matthew Halpern, and Vijay Janapa Reddi. Event-based

Scheduling for Energy-Efficient QoS (eQoS) in Mobile Web Applications.

In Proc. of HPCA, 2015.

183

[184] Yuhao Zhu, Matthew Halpern, and Vijay Janapa Reddi. The Role of

the CPU in Energy-Efficient Mobile Web Browsing. In Micro, IEEE,

2015.

[185] Yuhao Zhu and Vijay Janapa Reddi. High-Performance and Energy-

Efficient Mobile Web Browsing on Big/Little Systems. In Proc. of

HPCA, 2013.

[186] Yuhao Zhu and Vijay Janapa Reddi. WebCore: Architectural Support

for Mobile Web Browsing. In Proc. of ISCA, 2014.

[187] Yuhao Zhu and Vijay Janapa Reddi. GreenWeb: Language Extensions

for QoS-aware Energy-Efficient Mobile Web Computing. In Proc. of

PLDI, 2016.

[188] Yuhao Zhu and Vijay Janapa Reddi. Optimizing General-Purpose CPUs

for Energy-Efficient Mobile Web Computing. In ACM Transactions on

Computer Systems, 2017.

[189] Yuhao Zhu, Aditya Srikanth, Jingwen Leng, and Vijay Janapa Reddi.

Exploiting Webpage Characteristics for Energy-Efficient Mobile Web

Browsing. In Computer Architecture Letters, 2014.

184

Vita

Yuhao Zhu was born in Wuxi, Jiangsu, P.R. China. He received the

Bachelor of Science degree in Computer Science and Engineering from Bei-

hang University (previously known as Beijing University of Aeronautics and

Astronautics), Beijing, China in 2010. He worked as an undergraduate re-

searcher in the last year of the college at Tsinghua University, working with

Yangdong Deng on GPGPU, parallel EDA algorithms, and IP router microar-

chitectures. He is now a graduate researcher and Ph.D. candidate at the

Electrical and Computer Engineering Department in The University of Texas

at Austin, Austin, TX, working with Vijay Janapa Reddi. He is on track to

graduate in May 2017. Since Aug 2016, he has also been a Research Fellow

visiting the School of Applied Engineering and Science in Harvard University,

Cambridge, MA. His Ph.D. research has been supported by the Google Ph.D.

fellowship and the Microelectronics and Computer Development Fellowship at

UT Austin. He was a research intern/Co-op engineer at STMicroelectronics,

AMD Research, and Google Inc.

Permanent email address: yzhu@utexas.edu.

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

185

