
Distributed Time, Conservative Parallel Logic Simulation on GPUs
Bo Wang

Institute of Microelectronics
Tsinghua University

wangb06@mails.tsinghua.edu.cn

Yuhao Zhu

Department of Computer Science
Beihang University

zhuyh@cse.buaa.edu.cn

Yangdong Deng

Institute of Microelectronics
Tsinghua University

dengyd@tsinghua.edu.cn

ABSTRACT
Logical simulation is the primary method to verify the correctness
of IC designs. However, today’s complex VLSI designs pose ever
higher demand for the throughput of logic simulators. In this work,
a parallel logic simulator was developed by leveraging the com-
puting power of modern graphics processing units (GPUs). To
expose more parallelism, we implemented a conservative parallel
simulation approach, the CMB algorithm, on NVidia GPUs. The
simulation processing is mapped to GPU hardware at the finest
granularity. With carefully designed data structures and data flow
organizations, our GPU based simulator could overcome many
problems that hindered efficient implementations of the CMB
algorithm on traditional parallel computers. In order to efficiently
use the relatively limited capacity of GPU memory, a novel mem-
ory management mechanism was proposed to dynamically allo-
cate and recycle GPU memory during simulation. We also intro-
duced a CPU/GPU co-processing strategy for the best usage of
computing resources. Experimental results showed that our GPU
based simulator could outperform a CPU baseline event driven
simulator by a factor of 29.2.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – Simulation; C.1.2 [Proces-
sor Architectures]: Multiple Data Stream Architectures (Multi-
processors) – Parallel Processors

General Terms. Performance, Verification

Keywords. Discrete event simulation, CMB algorithm, Gate-
level simulation, GPU

1. INTRODUCTION
Today we are still witnessing a rapid increasing in the VLSI de-
sign complexity as the main-stream fabrication process moves to
the 45nm technology node. For instance, NVidia recently released
its next generation graphics processing unit (GPU) chip, which
consists of 3 billion transistors [1]. The large scale of VLSI sys-
tem certainly poses significant challenges to the verification
process. In addition, the integration capacity now allows the dep-
loyment of all components of a system onto a single chip. The
heterogeneity of system building blocks as well as the compli-
cated software running on the system make the verification
process extremely time consuming. In fact, currently the verifica-
tion process would take over 70% of the total design turnaround

time in a typical System-on-Chip (SoC) design project [2].
Among various function verification tools, logic simulation re-
mains to be the major mechanism due to its accuracy and capa-
bility to expose arbitrary internal details. Unfortunately, logic
simulation can be a lengthy process for large designs. For exam-
ple, the logic simulation of a billion-transistor design could take
over one month to finish [3].

As a result, it is essential to accelerate the logic simulation
process to shorten the design turn-around time. In the past 30
years, a large body of research has been devoted to developing
fast simulation algorithms [4]. Among different acceleration tech-
niques, the parallel logic simulation is of key importance, because
ultimately only such an approach could guarantee the scalability
for future VLSI circuits [5]. Today as the single CPU perfor-
mance is saturating, it is urgent to develop multi-core or many-
core based parallel simulation solutions so that the momentum of
IC functionality increase can be maintained. Especially, general
purpose computing on many-core GPUs is recently rising as an
exciting new trend to accelerate general purpose applications. For
applications with proper algorithmic flow and data structures,
modern GPUs could often outperform CPUs by an order of one or
two magnitudes [6]. It is thus appealing to investigate how to
unleash the power of GPUs to help the logic simulation.

Typically, logic simulation is performed with a discrete event
driven approach on a sequential computing platform. Within such
a framework, the simulation events, a.k.a., internal state updates,
happen at discrete time steps. These events will be stored into a
queue ordered by their timestamps. At each evaluation step, the
simulator takes the event with the earliest timestamp (i.e., the
event at the head of the queue), performs the logic evaluation, and
then inserts newly created events into the queue. The event driven
simulation algorithm is simple and highly efficient. It can be im-
plemented on parallel machines by using multiple processors to
handle different events triggered at the same time step. Of course,
the efficiency of such a parallel scheme depends on the available
number of simultaneous events.

Recently GPUs are emerging as a cost-efficient platform for high
performance computing. Accordingly, there are already a few
works on using GPUs to speed up the circuit simulation. Gulati
and Khatri first developed a fault simulator on GPUs in [7] and
opened the path to this new direction. In [8], the authors presented
a GPU based logic simulator by implementing an oblivious algo-
rithm in which all gates have to be evaluated at each simulation
step. In [9], a novel GPU based event driven simulator was pro-
posed and an average speed-up of 10 folds was attained.

On the other hand, a digital circuit actually offers a larger degree
of parallelism than that can be directly extracted from simultane-
ous events. In fact, the Chandy-Misra-Bryant, or CMB, algorithm
[10] and [11], defines a different parallel approach to solve the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC’10, June 12-18, 2010, Anaheim, California, USA
Copyright 2010 ACM 978-1-4503-0002-5/10/06...$10.00

761

45.2

logic simulation problem. The key idea of the CMB algorithm is
to decompose the simulated system into many interactive compo-
nents. Such a component is represented as a logic process (LP)
and maintains its local simulation time. A LP would evaluate its
local input events and advance its local time provided that the
global causal relations can be maintained. In other words, two or
more events, which might not happen at the same global time step,
can still be evaluated in parallel as long as they are independent.

Intuitively, CMB algorithm would expose a higher level of paral-
lelism from a simulated VLSI circuit . However, CMB could also
incur deadlock during simulation [12]. Researcher have developed
various mechanisms to avoid or recover from deadlocks. Unfortu-
nately, such mechanism proved to be costly in terms of CPU time.
In fact, a comprehensive evaluation of the CMB based logic simu-
lation on an ideal multiprocessor computer indicated that the
overhead of deadlock prevention through sending null messages
[11] generally overweighed the extra parallelism [13].

Modern GPUs offer a large number of parallel processing ele-
ments (PEs). In addition, communication among these PEs only
brings upon a small overhead, which can be several orders of
magnitude faster than the inter-processor communication on pre-
vious multiprocessors. Accordingly, we believe modern GPUs
provide a vehicle for a truly efficient CMB implementation. In
this paper, we present a fine-grain, gate-level, discrete event si-
mulator on NVidia GPUs. Our simulator implements the original
idea of distributed simulation and employs null messages to avoid
deadlock. Experiments showed that our GPU based CMB simula-
tor could outperform a sequential event driven logic simulator by
a factor of around 29X. We summarize our contributions as fol-
lows.

� To the best of our knowledge, this is the first work of imple-
menting a GPU based CMB algorithm for logic simulation.

� We developed GPU-friendly data structures to store messages
passed among different logical processors.

� A memory management mechanism is proposed for GPU
processing. The dynamic memory allocation and recycling
framework guarantees efficient memory usage in spite of the
irregular memory usage pattern that is prevalent in logic simu-
lations. To our best knowledge, this is the first built-in memo-
ry manager for GPU based applications and it can be dep-
loyed in other applications or GPU runtimes.

� Our simulator integrates both GPU and CPU for concurrent
computations. Through asynchronous computation and zero
copy techniques [14], GPU and CPU could cooperate in a
closely-coupled manner with little overhead.

� We developed a hierarchical optimization strategy to effi-
ciently orchestrate memory accesses. We systematically uti-
lized such techniques as memory coalescing, memory caching,
as well as direct CPU-GPU data copying to achieve a high
memory throughput. Our optimization scheme would be use-
ful for general GPU applications.

The remaining of this paper is organized as follows. In Section 2,
we introduce the background of both GPU computing and the
CMB algorithm. The details of our GPU based logic simulator is
explained in Section 3. Section 4 discusses the optimization tech-
niques. We present experimental results of the simulator in Sec-
tion 5. Section 6 concludes the paper and outlines future research
directions.

2. PRELIMINARIES
In this section, we briefly describe the NVidia GPU architecture
and its programming model, CUDA [14]. A general introduction
to the CMB algorithm is followed.
2.1 GPU Computing
Recently, GPUs are becoming a high performance computing
platform that everybody could afford. While traditionally based
on a graphic pipeline with fixed functional units, modern GPUs
are composed of hundreds of unified processing elements to sup-
port efficient data parallel processing. Meanwhile, major GPU
vendors all released programming tools to ease the GPU pro-
gramming practices.

In this work, we use NVidia GPUs and its CUDA programming
environment[14]. The CUDA-enabled GPUs all have a similar
architecture but a varying number of cores installed. The latest
commercially released NVidia GPU, GTX 280, installs 30 multi-
processors, each comprising 8 streaming processors. CUDA fol-
lows a single program, multiple data (SPMD) execution model
and could launch up to tens of thousands of threads concurrently.
Note that the number of threads is usually much larger than the
number of basic processors so that the hardware resource can be
efficiently used even in the case of long memory stalls. During
execution, every 32 threads on a multiprocessor are organized
into a warp and follow exactly the same instruction schedule. If
threads in a warp take diverge execution branches at a conditional
statement, both branches have to be executed sequentially. Such
an overhead can seriously drag down program performance in the
cases of complex branch structures.

GPUs are backed up by a memory hierarchy with varying latency
and capacity at each layer. It takes 400~600 cycles to access the
off-chip global memory with a capacity of up to 4GB, while only
1 cycle to on-chip registers and shared memory with relatively
lower capacity. In current NVidia GPUs, there is no cache for the
global memory and thus the long latency has to be carefully ma-
naged. Fortunately, GPUs are enhanced with a memory coalesc-
ing mechanism. If a half-warp of threads access data residing in
the same 128-byte segment of the memory space, these memory
requests can be merged into a single memory operation and all
required data can be made available after one latency. Meanwhile,
the texture memory and constant memory, both located in the off-
chip memory, can be cached to hide the latency. Besides the la-
tency, the bandwidth between the host and device memories could
also become a performance bottleneck. The corresponding data
transfer between them should be maintained at a reasonable level.
Furthermore, it could deliver relatively higher bandwidth by leve-
raging pinned or page-locked memory.

2.2 Discrete Event Simulation and the CMB Algorithm
The discrete event simulation model assumes that the simulated
system only changes its states at discrete time points. Such a
change of system state is designated as an event. There are two
major mechanisms for parallel discrete event simulation, the con-
servative and optimistic approaches [4]. In this paper, we choose
the conservative parallel simulation strategy, or CMB algorithm,
which was firstly proposed by Chandy, Misra [10] and Bryant [11]
in two independent works.

According to the CMB algorithm, a simulated system is modeled
as a group of interacting logic processes (LPs). Different LPs
maintain their own local simulation time and do not share a global

762

45.2

clock. LPs communicate with each other to transfer events via
messages. A message is composed of a logical value indicating
the content of an event and a timestamp indicating when this
event would happen. In this paper, the concepts of a message and
a event are used interchangeably hereafter. A LP has several in-
puts and an output. At each simulation step, a LP may receive
several new messages from its inputs and generate one message at
its output. In digital circuits, it can be guaranteed that the messag-
es received by the same input are chronological, i.e., a later re-
ceived message would always happen later than previous ones.
When evaluating a LP, the simulator extracts the messages with
the latest timestamp from all input channels and identifies the
smallest one, Tmin, among them. Then the local time of this LP
will be updated to Tmin and we can safely evaluate all messages
received before Tmin.

Care must be taken for the CMB algorithm to prevent deadlocks.
For instance, a cyclic dependency among LPs may lead to dead-
lock. The most commonly used deadlock avoidance technique is
through the introduction of null messages.[10] At a certain time
step, a LP, A, would send a null message with timestamp Tnull to
another LP, B. Upon receiving the message, LP B would know
that there is no other message with timestamp smaller than Tnull to
be sent from A to B. With null messages, it could be formally
proved that CMB algorithm would correctly proceed until com-
pletion [10].

An implementation of the CMB algorithm needs the following
data structures for each LP: (1) state variables, (2) a message
priority queue containing all pending messages, (3) the local si-
mulation time and the timestamps of latest received messages in
each input channel.

3. GPU BASED LOGIC SIMULATOR
To simulate a circuit, our simulator loops through three consecu-
tive phases: primary input update, input pin update and gate eval-
uation. In the primary input update phase, the primary input sig-
nals are extracted from the primary input queue and inserted into
the message queues of the pins on first-level gates. In the input
pin update phase, the output signals generated by each gate are
fetched and inserted into the input pins driven by that gate. Final-
ly, in the gate evaluation phase, the earliest events in the input pin
FIFOs are extracted and then the new states of gate outputs are
calculated according to the gate types and input pin values. Simi-
lar to [7], the logic evaluation can be done efficiently through
looking up a truth table of all gates already stored in the constant
memory. These phases are organized as three GPU kernel func-
tions coordinated by the CPU.

Since GPUs are designed for data-level parallel execution, we
mapped the CMB algorithm to GPU in the finest granularity. In
the primary input update phase, one thread is responsible for han-
dling a primary input. In the input pin update phase, one thread is
assigned to manage an input pin. In the gate evaluation phase, a
thread is employed to evaluate a different gate. Figure 1 presents
the pseudo-code of our algorithmic flow, in which the “for each”
primitive indicates that the following operation can be executed in
parallel. The advantages of such a fine-grained mapping strategy
are twofold. First, the computation of each thread can be simpli-
fied and thus prevents the memory accessing overhead and redun-
dant computations introduced by complex logic. Secondly, diver-
gent branches would be minimized due to a higher level of struc-

tural regularity in the fine-grained objects. In the remaining of this
section, we explain the details of the simulator.
3.1 Fundamental Data Structures
In our simulator, we store the simulation status in three linear
arrays, namely gate_output_array, pin_FIFO_array and
gate_status_array. The gate_output_array array stores messages
generated by each gate. The pin_FIFO_array array keeps track of
the messages received on each pin. The gate_status_array array
stores related information, including the current logic value of a
gate and the time of the last received message among input pins.
Figure 2(a) is a simple circuit and its corresponding data struc-
tures are shown in Figure 2(b). It is worth noting that we do not
use a priority queue for each gate, which is required in the tradi-
tional implementation of CMB. The data stored in the priority
queue are distributed to the pin_FIFO_array array. The reason for
such a data organization will be discussed in Section 3.3.

while not finish
 // kernel 1: primary input update
 for each primary input(PI) do
 extract the first message in the PI queue;
 insert the message into the PI output array;
 end for each

 // kernel 2: input pin update
 for each input pin do
 insert messages from output array to input pin;
 end for each

 // kernel 3: gate evaluation
 for each gate do
 extract the earliest message from its pins;
 evaluate the message and update gate status;
 write the gate output to the output array;

end while
Figure 1. Processing flow of GPU based logic simulation

PI[0]

PI[1]

PI[2]

PI[3]

PI[4]

gate[0]

gate[1]

gate[2]

gate[3]

pin[0]

pin[1]

pin[2]

pin[3]

pin[4]

pin[5]

pin[6]

pin[7]
output[0]

output[1]

output[2]

output[3]
pin[8]

pin[9]

pin[10]

PO[0]

PO[1]

PO[2]

(a) A sample circuit

gate[0]

gate[1]

gate[2]

gate[3]

PO[0]

PO[1]

PO[2]

...

...

pin[0]

pin[1]

pin[2]

pin[3]

pin[4]

pin[5]

pin[6]

pin[7]
pin[8]

pin[9]

pin[10]

...

output[0]

output[1]
output[2]

output[3]

PI[1]

PI[2]

PI[3]
PI[4]

PI[0]

...

...

gate_output_array
pin_FIFO_array

gate_status_array

(b) The data structure corresponding to the sample circuit
Figure 2. Fundamental data structures for simulation

763

45.2

3.2 Message Passing on GPUs
Simulated objects (gates in our case) rely on messages to interact
in a distributed simulation process. However, current GPUs are
only equipped with a shared memory mechanism. Accordingly,
we designed a mapping strategy to convert the message passing
pattern into a shared memory pattern through a global array with
fixed entries for every gate output. During each simulation itera-
tion, the message transmitted by one gate is written to its corres-
ponding entry in the array. Then in the update kernel, the message
is read from that position and inserted into the message FIFO of
corresponding input pins.
3.3 Message Queue Management
As described in Section 3.1, a priority queue for each gate is re-
quired in the original CMB algorithm. Generally speaking, a
priority queue can be realized as a minimum heap [15]. However,
maintaining a heap involves unpredictable branches and loops,
which hinder the efficient mapping onto GPU’s SIMD execution
model. To overcome this problem, we separated the priority
queue of a gate into multiple lightweight FIFOs so that each pin
has its own FIFO. These FIFOs store messages in a distributed
manner. Figure 3 is an illustration.

With this transformation from a gate-wise priority queue to a
group of distributed FIFOs, the insert operation for a priority
queue is no longer needed, because messages arrive at the same
input pin are automatically chronological. The newly arrived mes-
sage can thus be safely placed at the end of the FIFO. Meanwhile,
if a newly arrived message has the same logical value as the latest
one in the FIFO, it will not be added into the FIFO. This mechan-
ism greatly reduces the number of messages during the simulation
and is proved to be essential in the experiments.

The proof of correctness for the transformation can be outlined as
follows. In the traditional CMB algorithm, a message extracted
for the evaluation of a gate has the smallest timestamp among all
the messages received by the gate. After transformation, we now
pick up a message with the smallest timestamp among all messag-
es at the head of each pin FIFO. Because messages delivered to
the same pin are arranged chronologically, the message at the
head of FIFO always has the smallest timestamp. This “minimum
of minimum” approach automatically guarantees the correctness.

3.4 Dynamic GPU Memory Management
The distributed FIFO structure in Section 4.1 well fits the SIMD
architecture of GPU. However, it is difficult to decide the most
appropriate FIFO size for each pin before simulation. Small FI-
FOs suffer from frequent overflows, while large ones result in
excessive usage of the GPU memory. In our experiments, we
observed considerable irregularity in the message distribution at
different pins. The number of messages of those “hot” input pins
can be orders of magnitude more than that of the “cold” input
pins. For a more efficient memory usage, we introduced a paging
mechanism to allocate and release GPU memory dynamically.

Our dynamic memory management functions as follows. First, a
large bulk of memory is allocated on GPU and uniformly divided
into a large number of small pages of the same size, e.g., 128
bytes in this work. A page would be the minimum unit of memory
management. Each FIFO for an input pin can have up to
MAX_PAGE_NUM pages. During runtime, the available pages
are assigned to each FIFO upon request. An assigned page is re-
cycled when it is empty. The FIFO structure is defined in Figure 4.

Before the simulation starts, each FIFO is pre-allocated with a
single page. The indexes of all other empty pages are inserted into
a global available_pages FIFO. When the pre-allocated page i in
FIFO j is full during the simulation, the GPU kernel will check
the j-th element in the page_to_allocate array to find a new page
and mark this page as used. When an allocated page k in FIFO j is
empty, it will be released to the global available_pages FIFO by
writing the index k to the j-th element in page_to_release array.

When one iteration finishes, the control flow returns to the host
thread, which would then pick out all used elements in
page_to_allocate array, fetch new empty pages from availa-
ble_pages and write their indexes into the corresponding entries
marked at used in page_to_allocate. The host thread also checks
the page_to_release array and recycles the released pages. Newly
released pages are re-inserted into the available_pages FIFO.

A dynamic memory management mechanism is crucial for GPU
computing, because all modern real-world applications depend on
runtime memory manipulations. Accordingly, our implementation
can be also deployed into other GPU applications or a GPU run-
time to improve the efficiency of memory usage. Although we
independently proposed and developed the GPU memory manag-
er, we found that NVidia also developed a similar memory alloca-
tion system during writing of this paper. In our future work, we
are going to compare the performance of these two memory man-
agement implementations.
3.5 Adaptive Issuing of Input Patterns
In most cases, the message generation speed is higher than the
message consumption rate. For large designs with long sequences

20

1

1 7 12

20
1272

19
9 10

282422 23
4 5 6 8 10 11 13 14 150

17 18 21 25 26 27 29 30 3116
...

20
12

FIFO for pin[i]
size

*page_queue
head_page
tail_page
head_offset
tail_offset

6 4 8 1350 11

page_to_release 3 - - --- -

page_to_allocate

3

3
main memory

release page

allocate page

16 15 17 211814 ...
available_pages

page queue

3

Figure 5. Illustration of a sample memory layout

12,2,0
13,1,0
17,1,1
20,2,1

input 1

input 2
output

output
input 1

input 2

13,1,0
17,1,1

head

tail

12,2,0
20,2,1

tail

head

Figure 3. The mapping from a gate-wise priority queue
to distributed FIFOs. Each message consists of a time-
stamp, a pin index, and a value.

struct{
 unsigned int size;
 unsigned int *page_queue;
 unsigned int head_page;
 unsigned int head_offset;
 unsigned int tail_page;
 unsigned int tail_offset;
}fifo_t;

Figure 4. FIFO Structure

764

45.2

of input patterns, the GPU memory might be fully occupied. To
prevent such a situation, the stimuli are not issued in a single shot,
but in multiple passes. When to pause the issuing is determined by
the occupation of the available_pages FIFO. The issue of stimuli
is paused if the number of available pages in the available_pages
FIFO is lower than the pause threshold,.

While the stimuli issuing are paused, the primary inputs will send
null messages with the timestamp the same as the last message
from this input. As the simulation continues, some occupied pages
may be released gradually. When the number of available pages is
higher than the resume threshold, the issuing process resumes.

4. PERFORMANCE OPTIMIZATION
With techniques presented in Section 3, we can build a function-
correct parallel simulator. However, it still requires extensive
optimizations to guarantee a desirable simulation performance. In
this section, we describe our strategies to improve our simulator
for a higher throughput.
4.1 CPU and GPU Co-Processing
In our simulation flow, CPU thread needs to update the
page_to_release, page_to_allocate, and available_pages FIFOs.
It is worth noting that the input pin update phase only needs
memory allocation operations, while the gate evaluation phase
only requires memory release actions. As a result, we can overlap
the updating of page_to_allocate array with the gate evaluation,
and the updating of page_to_release array with the input pin up-
date. The overlapped processing can be realized using CUDA’s
stream mechanism. By asynchronously initializing GPU kernels
in a stream, CPU can work simultaneously.

To further reduce CPU processing time, we adopted a group flag
strategy. Pins of gates are distributed into small groups of 32 (i.e.,
warp size) according to the pin index. Each group is then marked
with a flag. A flag is set to be true if any pins in this group require
new pages or release free pages within the current simulation
iteration. When processing the page_to_allocate array or the
page_to_release array on CPU, only the group whose flags are
true will be examined and processed. This strategy delivers
around a 10x speed-up of the CPU operation in the experiment.

4.2 Low Overhead Dynamic Memory Management
The dynamic GPU memory management is essential for large
circuits simulation. However, the CPU/GPU co-processing re-
quires explicit memory copy of the page_to_allocate and
page_to_release arrays between the host and device in each itera-
tion. Though these two arrays are not very big, the explicit memo-
ry transferring incurs a large overhead. To work against the inef-
ficiency, we took advantage of a new GPU feature, zero copy [14],
which enables the access to host memory be automatically over-
lapped with kernel execution. The timing of zero-copy is illu-
strated in Figure 6.

4.3 Memory Optimization
Uncoalesced accesses to the global memory are time-consuming
and should be avoided as much as possible. For more efficient
memory accesses, we stored all input pin FIFO descriptive va-
riables (i.e., head, tail pointers and size value) as a structure of
arrays (SOA). Coalesced accesses are guaranteed because pins are
assigned to threads in order.

We also store the read-only data in the texture memory and con-
stant memory, because they are cached. The data for truth tables
and gate delays, which can be determined offline, are located in
constant memory. The circuit topological information extracted at
runtime are saved in texture memory. This storage pattern signifi-
cantly reduces the latency of irregular memory accesses.

5. EXPERIMENTAL RESULTS
We selected a group of open-source IC designs publicly available
from OpenCores.org[16] and ITC99 Benchmarks (2nd release)[17]
as the test cases. These designs cover a wide range of typical cir-
cuit styles, ranging from random combinational logic, regular
datapaths, to control logic. The characteristics of these circuits are
listed in Table 1. The ITC99 circuits are released as gate level
netlists. The other designs are downloaded as RTL Veri-
log/VHDL code. We then synthesized the designs by Synopsys
Design Compiler with a 0.13um TSMC standard cell library. The
testbenches used in experiments are released with the designs.
The only exception is b18, we use randomly generated stimuli to
check the average behavior of input patterns.

Table 1. Designs for simulation
Design # Gates Description
AES 13118 AES encryption core
DES3 53131 DES3 encryption core
R2000 8284 MIPS 2000 CPU core
M1 14850 3-stage ARM core
JPEG 117701 JPEG image encoder
NOC 64095 mesh routing switches for a NOC
SHA1 5616 Secure Hashing algorithm core
b18 72712 2 Viper processors and 6 80386 processors

5.1 Irregular Distribution of Pin Activities
In our simulation experiments, we observed significant variation
in the peak FIFO sizes at different pins. In fact, the maximum
number of messages in a FIFO could vary by several orders of
magnitude over a design. In Table 2, we list the distribution of
pins with regard to their peak message numbers, which are di-
vided into 5 levels shown in the first column. The data were col-
lected on 5 randomly selected designs after 50,000 simulation
iterations. It can be seen that most pins receive less than 1000
messages during the simulation, but there do exist hot pins that
have over 10,000 messages in its FIFO. Such an observation
clearly justifies the indispensability of our dynamic memory allo-
cation mechanism.

Table 2. Pin Count of Peak Message Number
Peak number of

messages DES3 R2000 M1 JPEG NOC

0-9 68170 15747 24788 178728 157891
10-99 63895 11567 16506 117820 23297

100-999 3960 53 663 2913 590
1000-9999 2253 2 3 202 0

10000-50000 85 0 4 0 15

update PI update pin evaluate gate

update
page_to_release

update
page_to_allocate

GPU execution

CPU execution

zero copy

access page_to_allocate access page_to_release
Figure 6. CPU/GPU co-processing

765

45.2

5.2 Efficiency of Dynamic Memory Management
Our dynamic memory management makes it possible to recycle
FIFO memory in the GPU global memory space. Such recycling
behaviors include page allocation and page release, both executed
under the control of a host side arbitrator detailed in Section 3.4.
As a result, we are able to free unused pages for future allocation
and thus keep GPU memory usage under control. Table 3 shows
the number of allocation calls, the number of release calls, and the
ratio of the latter to the former in all 8 designs. On average, our
mechanism would recycle 47.64% of the allocated pages, which
can be directly translated into the same portion of reduction in
GPU memory usage.

Table 3. Memory release and allocation calls
Design Allocation Release Ratio
AES 26646 11321 42.4%

DES3 9998 8004 80.1%
SHA1 2745 3 0.11%
R2000 222377 179445 89.7%
JPEG 26594 8350 31.4%
NOC 571550 20545 3.6%
M1 137657 118657 86.2%
b18 1069742 978 < 0.1%

5.3 Performance Evaluation
Using the benchmark circuits, we compared the simulation per-
formance of our GPU simulator against a baseline CPU simulator.
Rather than the CMB algorithm, the CPU simulator implements a
centralized-time, event-driven algorithm, because the CMB algo-
rithm on CPU is generally slower [13]. The results were gathered
on a 2.66GHz Intel Core2 Duo server with a NVIDIA GTX 280
graphics card. The GPU program was compiled with CUDA 2.2,
and the baseline simulator was compiled by gcc 4.2.4 with -O3
optimization. Our baseline CPU simulator outperforms Synopsys
VCS simulator [18] by a factor of 1.4~2.0X because VCS handles
complex verification features that are not implemented by us.

The simulation performance is reported in Table 4. The GPU
simulator outperforms the CPU simulator on all test cases. On one
half of all designs, the GPU simulations are at least one order of
magnitude faster than their CPU counterparts. On average, our
work brings about a speedup of 29.2X.

Obviously, the speedup values vary considerably among different
designs. Such an irregularity is mainly caused by the structure of
the stimuli applied to circuits. The stimuli for R2000, M1, JPEG,
and b18 have large gaps between neighboring patterns. Such a
sparse stimuli results in a low activity ratio. Therefore, many
threads have to be idle during gate evaluation. The current sche-
duling mechanism of CUDA cannot intelligently adapt to such a
computation pattern. On the other hand, those stimuli with much
shorter intervals between input patterns exhibit more parallelism
and can efficiently take advantage of GPU hardware.

Table 4. Simulation performance
Design Simulated

cycles
CPU simulation

time (s)
GPU simulation

time (s) Speedup

AES 42,935,000 109.90 4.45 24.70
DES3 30,730,000 183.11 4.50 40.66
SHA1 2,275,000 56.66 0.41 138.20
R2000 28,678,308 9.20 3.15 2.92
JPEG 26,132,000 136.33 43.09 3.16
NOC 1,000,000 5389.42 347.95 15.49
M1 99,998,019 118.48 22.43 5.28
b18 19,125,000 37.30 11.49 3.25

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed the first GPU based, conservative pa-
rallel logic simulator using the CMB algorithm. The algorithmic
mapping is realized at the finest granularity to best match the
hardware pattern. We developed new data structures and algo-
rithmic flows to efficiently handle messages. A novel GPU mem-
ory manager is developed to dynamically recycle memory pages.
As a generic technique, this memory management system can be
used by many GPU applications with intensive memory opera-
tions. We also adopted a CPU/GPU co-processing strategy as well
as other memory optimization techniques to enhance the perfor-
mance. In our experiment, an average speed-up of 29.2X is
achieved against a CPU baseline event-driven simulator.
In the future, we will study the scalability of our simulator on
large, industry-strength circuits. Especially, we will also explore
new techniques to combine task-level and data-level parallelism
by using 4-GPU Tesla workstations and Fermi GPUs. We are also
going to apply our techniques to solve problems such as system
level SystemC-based simulation and network simulation.

ACKNOWLEDGEMENT
This work was partially supported by Tsinghua CUDA Center of
Excellence and an Intel University program. The authors also
appreciate hardware donation from NVidia.

REFERENCES
[1] NVidia White Paper, NVIDIA’s Next Generation CUDATM

Compute Architecture: Fermi.
[2] Rashinkar, P.,Paterson, P., Singh, L. System-on-a-Chip Veri-

fication: Methodology and Techniques. Springer, Ed 1, 2000.
[3] ESNUG Industry Discussion,

 http://www.deepchip.com/items/0421-01.html.
[4] R. M. Fujimoto, Parallel and Distributed Simulation Systems.

Wiley-Interscience. 2000.
[5] M. L. Bailey, J. V. Briner Jr., and R. D. Chamberlain, Paral-

lel logic Simulation of VLSI Systems. ACM Computing
Surveys. Vol. 26, No. 3, pp. 255-294, Sep. 1994

[6] D. Blythe,. Rise of the Graphics Processor. Proceeding of
IEEE, Vol. 96, No. 5, pp. 761– 778 , 2008

[7] K. Gulati and S. Khatri. Towards Acceleration of Fault Si-
mulation Using Graphics Processing Units. Proc. DAC, 2008.

[8] D.Chatterjee, A.DeOrio, V.Bertacco. GCS: High Perfor-
mance Gate-Level Simulation with GPUs. In Proc. DATE’09

[9] D.Chatterjee, A.DeOrio, V.Bertacco. Event-Driven Gate-
Level Simulation with GPUs. in Proc.DAC, pp.557-562,2009.

[10] K.M.Chandy, J.Misra, Distributed Simulation: A Case Study
in Design and Verification of Distributed Programs. IEEE
Trans. on Software. Eng., SE-5, No.5, pp.440~452, Sep.1979.

[11] Bryant, R.E. Simulation of Packet Communications Archi-
tecture Computer System. MIT-LCS-TR-188, MIT, 1977

[12] K. M. Chandy, J. Misra, and V. Holmes, Distributed Simula-
tion of Networks. Comput. Netw. 3, pp. 105-113, 1979

[13] L.Soule, A.Gupta, An Evaluation of the Chandy-Misra-
Bryant Algorithm for Digital Logic Simulation. ACM Trans.
On Modeling and Computer Simulations. Oct. 1991.

[14] NVidia, CUDA Programming Guide 2.2.
[15] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduc-

tion to Algorithms, The MIT Press, 1990.
[16] OpenCores, http://www.opencores.org/
[17] ITC99 Benchmarks, http://www.cad.polito.it/tools/itc99.html
[18] Synopsys VCS simulator (Apr. 2008 release).

766

45.2

