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ABSTRACT 
Logical simulation is the primary method to verify the correctness 
of IC designs. However, today’s complex VLSI designs pose ever 
higher demand for the throughput of logic simulators. In this work, 
a parallel logic simulator was developed by leveraging the com-
puting power of modern graphics processing units (GPUs). To 
expose more parallelism, we implemented a conservative parallel 
simulation approach, the CMB algorithm, on NVidia GPUs. The 
simulation processing is mapped to GPU hardware at the finest 
granularity. With carefully designed data structures and data flow 
organizations, our GPU based simulator could overcome many 
problems that hindered efficient implementations of the CMB 
algorithm on traditional parallel computers. In order to efficiently 
use the relatively limited capacity of GPU memory, a novel mem-
ory management mechanism was proposed to dynamically allo-
cate and recycle GPU memory during simulation. We also intro-
duced a CPU/GPU co-processing strategy for the best usage of 
computing resources. Experimental results showed that our GPU 
based simulator could outperform a CPU baseline event driven 
simulator by a factor of 29.2. 

Categories and Subject Descriptors 
B.6.3 [Logic Design]: Design Aids – Simulation; C.1.2 [Proces-
sor Architectures]: Multiple Data Stream Architectures (Multi-
processors) – Parallel Processors 

General Terms. Performance, Verification 

Keywords. Discrete event simulation, CMB algorithm, Gate-
level simulation, GPU 

1. INTRODUCTION 
Today we are still witnessing a rapid increasing in the VLSI de-
sign complexity as the main-stream fabrication process moves to 
the 45nm technology node. For instance, NVidia recently released 
its next generation graphics processing unit (GPU) chip, which 
consists of 3 billion transistors [1]. The large scale of VLSI sys-
tem certainly poses significant challenges to the verification 
process. In addition, the integration capacity now allows the dep-
loyment of all components of a system onto a single chip. The 
heterogeneity of system building blocks as well as the compli-
cated software running on the system make the verification 
process extremely time consuming. In fact, currently the verifica-
tion process would take over 70% of the total design turnaround 

time in a typical System-on-Chip (SoC) design project [2]. 
Among various function verification tools, logic simulation re-
mains to be the major mechanism due to its accuracy and capa-
bility to expose arbitrary internal details. Unfortunately, logic 
simulation can be a lengthy process for large designs. For exam-
ple, the logic simulation of a billion-transistor design could take 
over one month to finish [3].  

As a result, it is essential to accelerate the logic simulation 
process to shorten the design turn-around time. In the past 30 
years, a large body of research has been devoted to developing 
fast simulation algorithms [4]. Among different acceleration tech-
niques, the parallel logic simulation is of key importance, because 
ultimately only such an approach could guarantee the scalability 
for future VLSI circuits [5]. Today as the single CPU perfor-
mance is saturating, it is urgent to develop multi-core or many-
core based parallel simulation solutions so that the momentum of 
IC functionality increase can be maintained. Especially, general 
purpose computing on many-core GPUs is recently rising as an 
exciting new trend to accelerate general purpose applications. For 
applications with proper algorithmic flow and data structures, 
modern GPUs could often outperform CPUs by an order of one or 
two magnitudes [6]. It is thus appealing to investigate how to 
unleash the power of GPUs to help the logic simulation. 

Typically, logic simulation is performed with a discrete event 
driven approach on a sequential computing platform. Within such 
a framework, the simulation events, a.k.a., internal state updates, 
happen at discrete time steps. These events will be stored into a 
queue ordered by their timestamps. At each evaluation step, the 
simulator takes the event with the earliest timestamp (i.e., the 
event at the head of the queue), performs the logic evaluation, and 
then inserts newly created events into the queue. The event driven 
simulation algorithm is simple and highly efficient. It can be im-
plemented on parallel machines by using multiple processors to 
handle different events triggered at the same time step. Of course, 
the efficiency of such a parallel scheme depends on the available 
number of simultaneous events. 

Recently GPUs are emerging as a cost-efficient platform for high 
performance computing. Accordingly, there are already a few 
works on using GPUs to speed up the circuit simulation. Gulati 
and Khatri first developed a fault simulator on GPUs in [7] and 
opened the path to this new direction. In [8], the authors presented 
a GPU based logic simulator by implementing an oblivious algo-
rithm in which all gates have to be evaluated at each simulation 
step. In [9], a novel GPU based event driven simulator was pro-
posed and an average speed-up of 10 folds was attained. 

On the other hand, a digital circuit actually offers a larger degree 
of parallelism than that can be directly extracted from simultane-
ous events. In fact, the Chandy-Misra-Bryant, or CMB, algorithm 
[10] and [11], defines a different parallel approach to solve the 
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logic simulation problem. The key idea of the CMB algorithm is 
to decompose the simulated system into many interactive compo-
nents. Such a component is represented as a logic process (LP) 
and maintains its local simulation time. A LP would evaluate its 
local input events and advance its local time provided that the 
global causal relations can be maintained. In other words, two or 
more events, which might not happen at the same global time step, 
can still be evaluated in parallel as long as they are independent. 

Intuitively, CMB algorithm would expose a higher level of paral-
lelism from a simulated VLSI circuit . However, CMB could also 
incur deadlock during simulation [12]. Researcher have developed 
various mechanisms to avoid or recover from deadlocks. Unfortu-
nately, such mechanism proved to be costly in terms of CPU time. 
In fact, a comprehensive evaluation of the CMB based logic simu-
lation on an ideal multiprocessor computer indicated that the 
overhead of deadlock prevention through sending null messages 
[11] generally overweighed the extra parallelism [13]. 

Modern GPUs offer a large number of parallel processing ele-
ments (PEs). In addition, communication among these PEs only 
brings upon a small overhead, which can be several orders of 
magnitude faster than the inter-processor communication on pre-
vious multiprocessors. Accordingly, we believe modern GPUs 
provide a vehicle for a truly efficient CMB implementation. In 
this paper, we present a fine-grain, gate-level, discrete event si-
mulator on NVidia GPUs. Our simulator implements the original 
idea of distributed simulation and employs null messages to avoid 
deadlock. Experiments showed that our GPU based CMB simula-
tor could outperform a sequential event driven logic simulator by 
a factor of around 29X. We summarize our contributions as fol-
lows. 

� To the best of our knowledge, this is the first work of imple-
menting a GPU based CMB algorithm for logic simulation. 

� We developed GPU-friendly data structures to store messages 
passed among different logical processors. 

� A memory management mechanism is proposed for GPU 
processing. The dynamic memory allocation and recycling 
framework guarantees efficient memory usage in spite of the 
irregular memory usage pattern that is prevalent in logic simu-
lations. To our best knowledge, this is the first built-in memo-
ry manager for GPU based applications and it can be dep-
loyed in other applications or GPU runtimes. 

� Our simulator integrates both GPU and CPU for concurrent 
computations. Through asynchronous computation and zero 
copy techniques [14], GPU and CPU could cooperate in a 
closely-coupled manner with little overhead. 

� We developed a hierarchical optimization strategy to effi-
ciently orchestrate memory accesses. We systematically uti-
lized such techniques as memory coalescing, memory caching, 
as well as direct CPU-GPU data copying to achieve a high 
memory throughput. Our optimization scheme would be use-
ful for general GPU applications. 

The remaining of this paper is organized as follows. In Section 2, 
we introduce the background of both GPU computing and the 
CMB algorithm. The details of our GPU based logic simulator is 
explained in Section 3. Section 4 discusses the optimization tech-
niques. We present experimental results of the simulator in Sec-
tion 5. Section 6 concludes the paper and outlines future research 
directions. 

2. PRELIMINARIES 
In this section, we briefly describe the NVidia GPU architecture 
and its programming model, CUDA [14]. A general introduction 
to the CMB algorithm is followed. 
2.1 GPU Computing 
Recently, GPUs are becoming a high performance computing 
platform that everybody could afford. While traditionally based 
on a graphic pipeline with fixed functional units, modern GPUs 
are composed of hundreds of unified processing elements to sup-
port efficient data parallel processing. Meanwhile, major GPU 
vendors all released programming tools to ease the GPU pro-
gramming practices. 

In this work, we use NVidia GPUs and its CUDA programming 
environment[14]. The CUDA-enabled GPUs all have a similar 
architecture but a varying number of cores installed. The latest 
commercially released NVidia GPU, GTX 280, installs 30 multi-
processors, each comprising 8 streaming processors. CUDA fol-
lows a single program, multiple data (SPMD) execution model 
and could launch up to tens of thousands of threads concurrently. 
Note that the number of threads is usually much larger than the 
number of basic processors so that the hardware resource can be 
efficiently used even in the case of long memory stalls. During 
execution, every 32 threads on a multiprocessor are organized 
into a warp and follow exactly the same instruction schedule. If 
threads in a warp take diverge execution branches at a conditional 
statement, both branches have to be executed sequentially. Such 
an overhead can seriously drag down program performance in the 
cases of complex branch structures. 

GPUs are backed up by a memory hierarchy with varying latency 
and capacity at each layer. It takes 400~600 cycles to access the 
off-chip global memory with a capacity of up to 4GB, while only 
1 cycle to on-chip registers and shared memory with relatively 
lower capacity. In current NVidia GPUs, there is no cache for the 
global memory and thus the long latency has to be carefully ma-
naged. Fortunately, GPUs are enhanced with a memory coalesc-
ing mechanism. If a half-warp of threads access data residing in 
the same 128-byte segment of the memory space, these memory 
requests can be merged into a single memory operation and all 
required data can be made available after one latency. Meanwhile, 
the texture memory and constant memory, both located in the off-
chip memory, can be cached to hide the latency. Besides the la-
tency, the bandwidth between the host and device memories could 
also become a performance bottleneck. The corresponding data 
transfer between them should be maintained at a reasonable level. 
Furthermore, it could deliver relatively higher bandwidth by leve-
raging pinned or page-locked memory. 

2.2 Discrete Event Simulation and the CMB Algorithm 
The discrete event simulation model assumes that the simulated 
system only changes its states at discrete time points. Such a 
change of system state is designated as an event. There are two 
major mechanisms for parallel discrete event simulation, the con-
servative and optimistic approaches [4]. In this paper, we choose 
the conservative parallel simulation strategy, or CMB algorithm, 
which was firstly proposed by Chandy, Misra [10] and Bryant [11] 
in two independent works.  

According to the CMB algorithm, a simulated system is modeled 
as a group of interacting logic processes (LPs). Different LPs 
maintain their own local simulation time and do not share a global 
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clock. LPs communicate with each other to transfer events via 
messages. A message is composed of a logical value indicating 
the content of an event and a timestamp indicating when this 
event would happen. In this paper, the concepts of a message and 
a event are used interchangeably hereafter. A LP has several in-
puts and an output. At each simulation step, a LP may receive 
several new messages from its inputs and generate one message at 
its output. In digital circuits, it can be guaranteed that the messag-
es received by the same input are chronological, i.e., a later re-
ceived message would always happen later than previous ones. 
When evaluating a LP, the simulator extracts the messages with 
the latest timestamp from all input channels and identifies the 
smallest one, Tmin, among them. Then the local time of this LP 
will be updated to Tmin and we can safely evaluate all messages 
received before Tmin. 

Care must be taken for the CMB algorithm to prevent deadlocks. 
For instance, a cyclic dependency among LPs may lead to dead-
lock. The most commonly used deadlock avoidance technique is 
through the introduction of null messages.[10] At a certain time 
step, a LP, A, would send a null message with timestamp Tnull to 
another LP, B. Upon receiving the message, LP B would know 
that there is no other message with timestamp smaller than Tnull to 
be sent from A to B. With null messages, it could be formally 
proved that CMB algorithm would correctly proceed until com-
pletion [10]. 

An implementation of the CMB algorithm needs the following 
data structures for each LP: (1) state variables, (2) a message 
priority queue containing all pending messages, (3) the local si-
mulation time and the timestamps of latest received messages in 
each input channel. 

3. GPU BASED LOGIC SIMULATOR 
To simulate a circuit, our simulator loops through three consecu-
tive phases: primary input update, input pin update and gate eval-
uation. In the primary input update phase, the primary input sig-
nals are extracted from the primary input queue and inserted into 
the message queues of the pins on first-level gates. In the input 
pin update phase, the output signals generated by each gate are 
fetched and inserted into the input pins driven by that gate. Final-
ly, in the gate evaluation phase, the earliest events in the input pin 
FIFOs are extracted and then the new states of gate outputs are 
calculated according to the gate types and input pin values. Simi-
lar to [7], the logic evaluation can be done efficiently through 
looking up a truth table of all gates already stored in the constant 
memory. These phases are organized as three GPU kernel func-
tions coordinated by the CPU. 

Since GPUs are designed for data-level parallel execution, we 
mapped the CMB algorithm to GPU in the finest granularity. In 
the primary input update phase, one thread is responsible for han-
dling a primary input. In the input pin update phase, one thread is 
assigned to manage an input pin. In the gate evaluation phase, a 
thread is employed to evaluate a different gate. Figure 1 presents 
the pseudo-code of our algorithmic flow, in which the “for each” 
primitive indicates that the following operation can be executed in 
parallel. The advantages of such a fine-grained mapping strategy 
are twofold. First, the computation of each thread can be simpli-
fied and thus prevents the memory accessing overhead and redun-
dant computations introduced by complex logic. Secondly, diver-
gent branches would be minimized due to a higher level of struc-

tural regularity in the fine-grained objects. In the remaining of this 
section, we explain the details of the simulator. 
3.1 Fundamental Data Structures 
In our simulator, we store the simulation status in three linear 
arrays, namely gate_output_array, pin_FIFO_array and 
gate_status_array. The gate_output_array array stores messages 
generated by each gate. The pin_FIFO_array array keeps track of 
the messages received on each pin. The gate_status_array array 
stores related information, including the current logic value of a 
gate and the time of the last received message among input pins. 
Figure 2(a) is a simple circuit and its corresponding data struc-
tures are shown in Figure 2(b). It is worth noting that we do not 
use a priority queue for each gate, which is required in the tradi-
tional implementation of CMB. The data stored in the priority 
queue are distributed to the pin_FIFO_array array. The reason for 
such a data organization will be discussed in Section 3.3. 

while not finish 
    // kernel 1: primary input update 
    for each primary input(PI) do 
        extract the first message in the PI queue; 
        insert the message into the PI output array; 
    end for each 

    // kernel 2: input pin update 
    for each input pin do 
       insert messages from output array to input pin; 
    end for each 

    // kernel 3: gate evaluation 
    for each gate do 
        extract the earliest message from its pins; 
        evaluate the message and update gate status; 
        write the gate output to the output array; 

end while 
Figure 1. Processing flow of GPU based logic simulation  
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(b) The data structure corresponding to the sample circuit 
Figure 2. Fundamental data structures for simulation 
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3.2 Message Passing on GPUs 
Simulated objects (gates in our case) rely on messages to interact 
in a distributed simulation process. However, current GPUs are 
only equipped with a shared memory mechanism. Accordingly, 
we designed a mapping strategy to convert the message passing 
pattern into a shared memory pattern through a global array with 
fixed entries for every gate output. During each simulation itera-
tion, the message transmitted by one gate is written to its corres-
ponding entry in the array. Then in the update kernel, the message 
is read from that position and inserted into the message FIFO of 
corresponding input pins. 
3.3 Message Queue Management 
As described in Section 3.1, a priority queue for each gate is re-
quired in the original CMB algorithm. Generally speaking, a 
priority queue can be realized as a minimum heap [15]. However, 
maintaining a heap involves unpredictable branches and loops, 
which hinder the efficient mapping onto GPU’s SIMD execution 
model. To overcome this problem, we separated the priority 
queue of a gate into multiple lightweight FIFOs so that each pin 
has its own FIFO. These FIFOs store messages in a distributed 
manner. Figure 3 is an illustration. 

With this transformation from a gate-wise priority queue to a 
group of distributed FIFOs, the insert operation for a priority 
queue is no longer needed, because messages arrive at the same 
input pin are automatically chronological. The newly arrived mes-
sage can thus be safely placed at the end of the FIFO. Meanwhile, 
if a newly arrived message has the same logical value as the latest 
one in the FIFO, it will not be added into the FIFO. This mechan-
ism greatly reduces the number of messages during the simulation 
and is proved to be essential in the experiments. 

The proof of correctness for the transformation can be outlined as 
follows. In the traditional CMB algorithm, a message extracted 
for the evaluation of a gate has the smallest timestamp among all 
the messages received by the gate. After transformation, we now 
pick up a message with the smallest timestamp among all messag-
es at the head of each pin FIFO. Because messages delivered to 
the same pin are arranged chronologically, the message at the 
head of FIFO always has the smallest timestamp. This “minimum 
of minimum” approach automatically guarantees the correctness. 

3.4 Dynamic GPU Memory Management 
The distributed FIFO structure in Section 4.1 well fits the SIMD 
architecture of GPU. However, it is difficult to decide the most 
appropriate FIFO size for each pin before simulation. Small FI-
FOs suffer from frequent overflows, while large ones result in 
excessive usage of the GPU memory. In our experiments, we 
observed considerable irregularity in the message distribution at 
different pins. The number of messages of those “hot” input pins 
can be orders of magnitude more than that of the “cold” input 
pins. For a more efficient memory usage, we introduced a paging 
mechanism to allocate and release GPU memory dynamically. 

Our dynamic memory management functions as follows. First, a 
large bulk of memory is allocated on GPU and uniformly divided 
into a large number of small pages of the same size, e.g., 128 
bytes in this work. A page would be the minimum unit of memory 
management. Each FIFO for an input pin can have up to 
MAX_PAGE_NUM pages. During runtime, the available pages 
are assigned to each FIFO upon request. An assigned page is re-
cycled when it is empty. The FIFO structure is defined in Figure 4. 

Before the simulation starts, each FIFO is pre-allocated with a 
single page. The indexes of all other empty pages are inserted into 
a global available_pages FIFO. When the pre-allocated page i in 
FIFO j is full during the simulation, the GPU kernel will check 
the j-th element in the page_to_allocate array to find a new page 
and mark this page as used. When an allocated page k in FIFO j is 
empty, it will be released to the global available_pages FIFO by 
writing the index k to the j-th element in page_to_release array. 

When one iteration finishes, the control flow returns to the host 
thread, which would then pick out all used elements in 
page_to_allocate array, fetch new empty pages from availa-
ble_pages and write their indexes into the corresponding entries 
marked at used in page_to_allocate. The host thread also checks 
the page_to_release array and recycles the released pages. Newly 
released pages are re-inserted into the available_pages FIFO. 

A dynamic memory management mechanism is crucial for GPU 
computing, because all modern real-world applications depend on 
runtime memory manipulations. Accordingly, our implementation 
can be also deployed into other GPU applications or a GPU run-
time to improve the efficiency of memory usage. Although we 
independently proposed and developed the GPU memory manag-
er, we found that NVidia also developed a similar memory alloca-
tion system during writing of this paper. In our future work, we 
are going to compare the performance of these two memory man-
agement implementations. 
3.5 Adaptive Issuing of Input Patterns 
In most cases, the message generation speed is higher than the 
message consumption rate. For large designs with long sequences 
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Figure 5. Illustration of a sample memory layout  
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Figure 3. The mapping from a gate-wise priority queue 
to distributed FIFOs. Each message consists of a time-
stamp, a pin index, and a value. 

struct{ 
      unsigned int  size; 
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      unsigned int  head_page; 
      unsigned int  head_offset; 
      unsigned int  tail_page; 
      unsigned int  tail_offset; 
}fifo_t; 

Figure 4. FIFO Structure 

764

45.2



of input patterns, the GPU memory might be fully occupied. To 
prevent such a situation, the stimuli are not issued in a single shot, 
but in multiple passes. When to pause the issuing is determined by 
the occupation of the available_pages FIFO. The issue of stimuli 
is paused if the number of available pages in the available_pages 
FIFO is lower than the pause threshold,. 

While the stimuli issuing are paused, the primary inputs will send 
null messages with the timestamp the same as the last message 
from this input. As the simulation continues, some occupied pages 
may be released gradually. When the number of available pages is 
higher than the resume threshold, the issuing process resumes. 

4. PERFORMANCE OPTIMIZATION 
With techniques presented in Section 3, we can build a function-
correct parallel simulator. However, it still requires extensive 
optimizations to guarantee a desirable simulation performance. In 
this section, we describe our strategies to improve our simulator 
for a higher throughput. 
4.1 CPU and GPU Co-Processing 
In our simulation flow, CPU thread needs to update the 
page_to_release, page_to_allocate, and available_pages FIFOs. 
It is worth noting that the input pin update phase only needs 
memory allocation operations, while the gate evaluation phase 
only requires memory release actions. As a result, we can overlap 
the updating of page_to_allocate array with the gate evaluation, 
and the updating of page_to_release array with the input pin up-
date. The overlapped processing can be realized using CUDA’s 
stream mechanism. By asynchronously initializing GPU kernels 
in a stream, CPU can work simultaneously. 

To further reduce CPU processing time, we adopted a group flag 
strategy. Pins of gates are distributed into small groups of 32 (i.e., 
warp size) according to the pin index. Each group is then marked 
with a flag. A flag is set to be true if any pins in this group require 
new pages or release free pages within the current simulation 
iteration. When processing the page_to_allocate array or the 
page_to_release array on CPU, only the group whose flags are 
true will be examined and processed. This strategy delivers 
around a 10x speed-up of the CPU operation in the experiment. 

4.2 Low Overhead Dynamic Memory Management  
The dynamic GPU memory management is essential for large 
circuits simulation. However, the CPU/GPU co-processing re-
quires explicit memory copy of the page_to_allocate and 
page_to_release arrays between the host and device in each itera-
tion. Though these two arrays are not very big, the explicit memo-
ry transferring incurs a large overhead. To work against the inef-
ficiency, we took advantage of a new GPU feature, zero copy [14], 
which enables the access to host memory be automatically over-
lapped with kernel execution. The timing of zero-copy is illu-
strated in Figure 6. 

4.3 Memory Optimization 
Uncoalesced accesses to the global memory are time-consuming 
and should be avoided as much as possible. For more efficient 
memory accesses, we stored all input pin FIFO descriptive va-
riables (i.e., head, tail pointers and size value) as a structure of 
arrays (SOA). Coalesced accesses are guaranteed because pins are 
assigned to threads in order. 

We also store the read-only data in the texture memory and con-
stant memory, because they are cached. The data for truth tables 
and gate delays, which can be determined offline, are located in 
constant memory. The circuit topological information extracted at 
runtime are saved in texture memory. This storage pattern signifi-
cantly reduces the latency of irregular memory accesses. 

5. EXPERIMENTAL RESULTS 
We selected a group of open-source IC designs publicly available 
from OpenCores.org[16] and ITC99 Benchmarks (2nd release)[17] 
as the test cases. These designs cover a wide range of typical cir-
cuit styles, ranging from random combinational logic, regular 
datapaths, to control logic. The characteristics of these circuits are 
listed in Table 1. The ITC99 circuits are released as gate level 
netlists. The other designs are downloaded as RTL Veri-
log/VHDL code. We then synthesized the designs by Synopsys 
Design Compiler with a 0.13um TSMC standard cell library. The 
testbenches used in experiments are released with the designs. 
The only exception is b18, we use randomly generated stimuli to 
check the average behavior of input patterns. 

Table 1. Designs for simulation 
Design # Gates Description 
AES  13118 AES encryption core 
DES3 53131 DES3 encryption core 
R2000 8284 MIPS 2000 CPU core 
M1 14850 3-stage ARM core 
JPEG 117701 JPEG image encoder 
NOC  64095 mesh routing switches for a NOC 
SHA1 5616 Secure Hashing algorithm core 
b18 72712 2 Viper processors and 6 80386 processors 

5.1 Irregular Distribution of Pin Activities 
In our simulation experiments, we observed significant variation 
in the peak FIFO sizes at different pins. In fact, the maximum 
number of messages in a FIFO could vary by several orders of 
magnitude over a design. In Table 2, we list the distribution of 
pins with regard to their peak message numbers, which are di-
vided into 5 levels shown in the first column. The data were col-
lected on 5 randomly selected designs after 50,000 simulation 
iterations. It can be seen that most pins receive less than 1000 
messages during the simulation, but there do exist hot pins that 
have over 10,000 messages in its FIFO. Such an observation 
clearly justifies the indispensability of our dynamic memory allo-
cation mechanism. 

Table 2. Pin Count of Peak Message Number 
Peak number of 

messages DES3 R2000 M1 JPEG NOC 

0-9 68170 15747 24788 178728 157891 
10-99 63895 11567 16506 117820 23297 

100-999 3960 53 663 2913 590 
1000-9999 2253 2 3 202 0 

10000-50000 85 0 4 0 15 

update PI update pin evaluate gate

update 
page_to_release

update 
page_to_allocate

GPU execution

CPU execution

zero copy

access page_to_allocate access page_to_release  
Figure 6. CPU/GPU co-processing 
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5.2 Efficiency of Dynamic Memory Management  
Our dynamic memory management makes it possible to recycle 
FIFO memory in the GPU global memory space. Such recycling 
behaviors include page allocation and page release, both executed 
under the control of a host side arbitrator detailed in Section 3.4. 
As a result, we are able to free unused pages for future allocation 
and thus keep GPU memory usage under control. Table 3 shows 
the number of allocation calls, the number of release calls, and the 
ratio of the latter to the former in all 8 designs. On average, our 
mechanism would recycle 47.64% of the allocated pages, which 
can be directly translated into the same portion of reduction in 
GPU memory usage. 

Table 3. Memory release and allocation calls 
Design Allocation Release Ratio 
AES 26646 11321 42.4% 

DES3 9998 8004 80.1% 
SHA1 2745 3 0.11% 
R2000 222377 179445 89.7% 
JPEG 26594 8350 31.4% 
NOC 571550 20545 3.6% 
M1 137657 118657 86.2% 
b18 1069742 978 < 0.1% 

5.3 Performance Evaluation 
Using the benchmark circuits, we compared the simulation per-
formance of our GPU simulator against a baseline CPU simulator. 
Rather than the CMB algorithm, the CPU simulator implements a 
centralized-time, event-driven algorithm, because the CMB algo-
rithm on CPU is generally slower [13]. The results were gathered 
on a 2.66GHz Intel Core2 Duo server with a NVIDIA GTX 280 
graphics card. The GPU program was compiled with CUDA 2.2, 
and the baseline simulator was compiled by gcc 4.2.4 with -O3 
optimization. Our baseline CPU simulator outperforms Synopsys 
VCS simulator [18] by a factor of 1.4~2.0X because VCS handles 
complex verification features that are not implemented by us. 

The simulation performance is reported in Table 4. The GPU 
simulator outperforms the CPU simulator on all test cases. On one 
half of all designs, the GPU simulations are at least one order of 
magnitude faster than their CPU counterparts. On average, our 
work brings about a speedup of 29.2X. 

Obviously, the speedup values vary considerably among different 
designs. Such an irregularity is mainly caused by the structure of 
the stimuli applied to circuits. The stimuli for R2000, M1, JPEG, 
and b18 have large gaps between neighboring patterns. Such a 
sparse stimuli results in a low activity ratio. Therefore, many 
threads have to be idle during gate evaluation. The current sche-
duling mechanism of CUDA cannot intelligently adapt to such a 
computation pattern. On the other hand, those stimuli with much 
shorter intervals between input patterns exhibit more parallelism 
and can efficiently take advantage of GPU hardware. 

Table 4. Simulation performance 
Design Simulated 

cycles 
CPU simulation 

time (s) 
GPU simulation 

time (s) Speedup 

AES 42,935,000 109.90 4.45 24.70 
DES3 30,730,000 183.11 4.50 40.66 
SHA1 2,275,000 56.66 0.41 138.20 
R2000 28,678,308 9.20 3.15 2.92 
JPEG 26,132,000 136.33 43.09 3.16 
NOC 1,000,000 5389.42 347.95 15.49 
M1 99,998,019 118.48 22.43 5.28 
b18 19,125,000 37.30 11.49 3.25 

6. CONCLUSION AND FUTURE WORK 
In this paper, we proposed the first GPU based, conservative pa-
rallel logic simulator using the CMB algorithm. The algorithmic 
mapping is realized at the finest granularity to best match the 
hardware pattern. We developed new data structures and algo-
rithmic flows to efficiently handle messages. A novel GPU mem-
ory manager is developed to dynamically recycle memory pages. 
As a generic technique, this memory management system can be 
used by many GPU applications with intensive memory opera-
tions. We also adopted a CPU/GPU co-processing strategy as well 
as other memory optimization techniques to enhance the perfor-
mance. In our experiment, an average speed-up of 29.2X is 
achieved against a CPU baseline event-driven simulator. 
In the future, we will study the scalability of our simulator on 
large, industry-strength circuits. Especially, we will also explore 
new techniques to combine task-level and data-level parallelism 
by using 4-GPU Tesla workstations and Fermi GPUs. We are also 
going to apply our techniques to solve problems such as system 
level SystemC-based simulation and network simulation. 
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