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Recent researches on robotics have shown significant improve-
ment, spanning from algorithms, mechanics to hardware architec-
tures. Robotics, including manipulators, legged robots, drones, 
and autonomous vehicles, are now widely applied in diverse sce-
narios. However, the high computation and data complexity of 
robotic algorithms pose great challenges to its applications. On 
the one hand, CPU platform is flexible to handle multiple robotic 
tasks. GPU platform has higher computational capacities and 
easy-to-use development frameworks, so they have been widely 
adopted in several applications. On the other hand, FPGA-based 
robotic accelerators are becoming increasingly competitive al-
ternatives, especially in latency-critical and power-limited sce-
narios. With specialized designed hardware logic and algorithm 
kernels, FPGA-based accelerators can surpass CPU and GPU 

in performance and energy efficiency. In this paper, we give an 
overview of previous work on FPGA-based robotic accelerators 
covering different stages of the robotic system pipeline. An analy-
sis of software and hardware optimization techniques and main 
technical issues is presented, along with some commercial and 
space applications, to serve as a guide for future work.

I. Introduction

O ver the last decade, we have seen significant 
progress in the development of robotics, span-
ning from algorithms, mechanics to hardware 

platforms. Various robotic systems, like manipulators, 
legged robots, unmanned aerial vehicles, self-driving cars 
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have been designed for search and rescue [1], [2], explora-
tion [3], [4], package delivery [5], entertainment [6], [7] 
and more applications and scenarios. These robots are 
on the rise of demonstrating their full potential. Take 
drones, a type of aerial robots, as an example, the num-
ber of drones has grown by 2.83x between 2015 and 2019 
based on the U.S. Federal Aviation Administration (FAA) 
report [8]. The registered number has reached 1.32 mil-
lion in 2019, and the FFA expects this number will come to 
1.59 billion by 2024.

However, robotic systems are pretty  complicated 
[9]–[11]. They tightly integrate many technologies and 

algorithms, including sensing, percep-
tion, mapping, localization, decision 
making, control, etc. This complexity 
poses many challenges for the design 
of robotic edge computing systems [12], 
[13]. On the one hand, the robotic system 
needs to process an enormous amount 
of data in real-time. The incoming data 
often comes from multiple sensors and 
is highly heterogeneous. However, the 
robotic system usually has limited on-
board resources, such as memory stor-
age, bandwidth, and compute capabili-
ties, making it hard to meet the real-time 
requirements. On the other hand, the 
current state-of-the-art robotic system 
usually has strict power constraints on 
the edge that cannot support the amount 
of computation required for performing 
tasks, such as 3D sensing, localization, 
navigation, and path planning. Therefore, 
the computation and storage complex-
ity, as well as real-time and power con-
straints of the robotic system, hinder its 
wide application in latency-critical or 
power-limited scenarios [14].

Therefore, it is essential to choose a proper compute 
platform for the robotic system. CPU and GPU are two 
widely used commercial compute platforms. CPU is de-
signed to handle a wide range of tasks quickly and is of-
ten used to develop novel algorithms. A typical CPU can 
achieve 10-100 GFLOPS with below 1GOP/J power effi-
ciency [15]. In contrast, GPU is designed with thousands 
of processor cores running simultaneously, which en-
able massive parallelism. A typical GPU can perform up 
to 10 TOPS performance and become a good candidate 

for high-performance scenarios. Recently, benefiting in 
part from the better accessibility provided by CUDA/
OpenCL, GPU has been predominantly used in many 
robotic applications. However, conventional CPU and 
GPUs usually consume 10 W to 100 W of power, which 
are orders of magnitude higher than what is available on 
the resource-limited robotic system.

Besides CPU and GPU, FPGAs are attracting attention 
and becoming a platform candidate to achieve energy-effi-
cient robotics tasks processing. FPGAs require little pow-
er and are often built into small systems with less memory. 
They have the ability to parallel computations massively 
and makes use of the properties of perception (e.g., ste-
reo matching), localization (e.g., SLAM), and planning 
(e.g., graph search) kernels to remove additional logic 
and simplify the implementation. Taking into account 
hardware characteristics, several algorithms are pro-
posed which can be run in a hardware-friendly way and 
achieve similar software performance. Therefore, FP-
GAs are possible to meet real-time requirements while 
achieving high energy efficiency compared to CPUs 
and GPUs.

Unlike the ASIC counterparts, FPGA technology pro-
vides the flexibility of on-site programming and re-pro-
gramming without going through re-fabrication with a 
modified design. Partial Reconfiguration (PR) takes this 
flexibility one step further, allowing the modification of 
an operating FPGA design by loading a partial configu-
ration file. Using PR, part of the FPGA can be reconfig-
ured at runtime without compromising the integrity of 
the applications running on those parts of the device 
that are not being reconfigured. As a result, PR can al-
low different robotic applications to time-share part of 
an FPGA, leading to energy and performance efficiency, 
and making FPGA a suitable computing platform for dy-
namic and complex robotic workloads.

FPGAs have been successfully utilized in commercial 
autonomous vehicles. Particularly, over the past three 
years, PerceptIn has built and commercialized autono-
mous vehicles for micromobility, and PerceptIn’s prod-
ucts have been deployed in China, US, Japan and Switzer-
land. In this paper, we review how PerceptIn developed 
its computing system by relying heavily on FPGAs, which 
perform not only heterogeneous sensor synchroniza-
tions, but also the acceleration of software components 
on the critical path. In addition, FPGAs are used heavily 
in space robotic applications, for FPGAs offered unprec-
edented flexibility and significantly reduced the design 
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cycle and development cost. In this paper, we also delve 
into space-grade FPGAs for robotic applications.

The rest of paper is organized as follows: Section II 
introduces the basic workloads of the robotic system. 
Section III, IV and V reviews the various perception, local-
ization and motion planning algorithms and their imple-
mentations on FPGA platforms. In section VI, we discuss 
about FPGA partial reconfiguration techniques. Section 
VII and VIII present robotics FPGA applications in com-
mercial and space areas. Section IX concludes the paper.

II. Overview of Robotics workloads

A. Overview
Robotics is not one technology but rather an integration 
of many technologies. As shown in Fig 1, the stack of 
the robotic system consists of three major components: 
application workloads, including sensing, perception, 
localization, motion planning, and control; a software edge 
subsystem, including operating system and runtime lay-
er; and computing hardware, including both microcon-
trollers and companion computers.

We focus on the robotic application workloads in this 
section. The application subsystem contains multiple algo-
rithms that are used by the robot to extract meaningful in-
formation from raw sensor data to understand the environ-
ment and dynamically make decisions about its actions.

B. Sensing
The sensing stage is responsible for extracting meaning-
ful information from the sensor raw data. To enable intel-
ligent actions and improve reliability, the robot platform 
usually supports a wide range of sensors. The number 
and type of sensors are heavily dependent on the specifi-
cations of the workload and the capability of the onboard 
compute platform. The sensors can include the following:

Cameras. Cameras are usually used for object rec-
ognition and object tracking, such as lane detection in 
autonomous vehicles and obstacle detection in drones, 
etc. RGB-D camera can also be utilized to determine 
object distances and positions. Take autonomous ve-
hicle as an example, the current system usually mounts 
eight or more 1080p cameras around the vehicle to de-
tect, recognize and track objects in different directions, 
which can greatly improve safety. Usually, these cam-
eras run at 60 Hz, which will process multiple gigabytes 
of raw data per second when combined.

GNSS/IMU. The global navigation satellite system 
(GNSS) and inertial measurement unit (IMU) system 
help the robot localize itself by reporting both inertial 
updates and an estimate of the global location at a high 
rate. Different robots have different requirements for lo-
calization sensing. For instance, 10 Hz may be enough 
for low-speed mobile robots, but high-speed autono-
mous vehicles usually demand 30 Hz or higher for local-
ization, and high-speed drones may need 100 Hz or more 
for localization, thus we are facing a broad spectrum of 
sensing speeds. Fortunately, different sensors have their 
own advantages and drawbacks. GNSS can enable fairly 
accurate localization, while it runs at only 10 Hz, thus un-
able to provide real-time updates. By contrast, both ac-
celerometer and gyroscope in IMU can run at 100–200 Hz, 
which can satisfy the real-time requirement. However, 
IMU suffers bias wandering over time or perturbation by 
some thermo-mechanical noise, which may lead to an 
accuracy degradation in the position estimates. By com-
bining GNSS and IMU, we can get accurate and real-
time updates for robots.

LiDAR. Light detection and ranging (LiDAR) is used 
for evaluating distance by illuminating the obstacles 
with laser light and measuring the reflection time. These 
pulses, along with other recorded data, can generate 
precise and three-dimensional information about the 
surrounding characteristics. LiDAR plays an important 
role in localization, obstacle detection and avoidance. 
As indicated in [16], the choice of sensors dictates the 
algorithm and hardware design. Take autonomous driv-
ing as an instance, almost all the autonomous vehicle 
companies use LiDAR at the core of their technologies. 
Examples include Uber, Waymo, and Baidu. PerceptIn 
and Tesla are among the very few that do not use Li-
DAR and, instead, rely on cameras and vision-based 
systems, and in particular PerceptIn’s data demon-
strated that for the low-speed autonomous driving sce-
nario, LiDAR processing is slower than camera-based 
vision processing, but increases the power consump-
tion and cost.

Radar and Sonar. The Radio Detection and Rang-
ing (Radar) and Sound Navigation and Ranging (Sonar) 
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Figure 1. The stack of the robotic system.
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system is used to determine the distance and speed to 
a certain object, which usually serves as the last line 
of defense to avoid obstacles. Take autonomous vehicle 
as an example, a danger of collision may occur when 
near obstacles are detected, then the vehicle will apply 
brakes or turn to avoid obstacles. Compared to LiDAR, 
the Radar and Sonar system is cheaper and smaller, and 
their raw data is usually fed to the control processor 
directly without going through the main compute pipe-
line, which can be used to implement some urgent func-
tions as swerving or applying the brakes.

C. Perception
The sensor data is then fed into the perception layer 
to sense the static and dynamic objects, and build a 
reliable and detailed representation of the robot’s envi-
ronment using computer vision techniques (including 
deep learning).

The perception layer is responsible for object detec-
tion, segmentation and tracking. There are obstacles, 
lane dividers and other objects to detect. Traditionally, 
a detection pipeline starts with image pre-processing, 
followed by a region of interest detector and then a 
classifier that outputs detected objects. In 2005, Dalal 
and Triggs [17] proposed an algorithm based on histo-
gram of orientation (HOG) and support vector machine 
(SVM) to model both the appearance and shape of the 
object under various condition. The goal of segmenta-
tion is to give the robot a structured understanding 
of its environment. Semantic segmentation is usually 
formulated as a graph labeling problem with vertices 
of the graph being pixels or super-pixels. Inference al-
gorithms on graphical models such as conditional ran-
dom field (CRF) [18], [19] are used. The goal of tracking 
is to estimate the trajectory of moving obstacles. Track-
ing can be formulated as a sequential Bayesian filter-
ing problem by recursively running the prediction step 
and correction step. Tracking can also be formulated 
by tracking-by-detection handling with Markovian deci-
sion process (MDP) [20], where an object detector is 
applied to consecutive frames and detected objects are 
linked across frames.

In recent years, deep neural networks (DNN), also 
known as deep learning, have greatly affected computer 
vision and made significant progress in solving robot 
perception problems. Most state-of-the-art algorithms 
now apply one type of neural network based on con-
volution operation. Fast R-CNN [21], Faster R-CNN [22], 
SSD [23], YOLO [24], and YOLO9000 [25] were used to 
get much better speed and accuracy in object detection. 
Most CNN-based semantic segmentation work is based 
on Fully Convolutional Networks (FCN) [26], and there 
are some recent work in spatial pyramid pooling net-

work [27] and pyramid scene parsing network (PSPNet) 
[28] to combine global image-level information with the 
locally extracted feature. By using auxiliary natural im-
ages, a stacked autoencoder model can be trained of-
fline to learn generic image features and then applied for 
online object tracking [29].

D. Localization
The localization layer is responsible for aggregating 
data from various sensors to locate the robot in the en-
vironment model.

GNSS/IMU system is used for localization. The GNSS 
consist of several satellite systems, such as GPS, Galileo 
and BeiDou, which can provide accurate localization re-
sults but with a slow update rate. In comparison, IMU 
can provide a fast update with less accurate rotation 
and acceleration results. A mathematical filter, such as 
Kalman Filter, can be used to combine the advantages of 
the two and minimize the localization error and latency. 
However, this sole system has some problems, such as 
the signal may bounce off obstacles, introduce more 
noise, and fail to work in closed environments.

LiDAR and High-Definition (HD) maps are used for 
localization. LiDAR can generate point clouds and pro-
vide a shape description of the environment, while it 
is hard to differentiate individual points. HD map has a 
higher resolution compared to digital maps and makes 
the route familiar to the robot, where the key is to fuse 
different sensor information to minimize the errors in 
each grid cell. Once the HD map is built, a particle fil-
ter method can be applied to localize the robot in real-
time correlated with LiDAR measurement. However, 
the LiDAR performance may be severely affected by 
weather conditions (e.g., rain, snow) and bring local-
ization error.

Cameras are used for localization as well. The pipe-
line of vision-based localization is simplified as follows: 
1) by triangulating stereo image pairs, a disparity map is 
obtained and used to derive depth information for each 
point; 2) by matching salient features between successive 
stereo image frames in order to establish correlations 
between feature points in different frames, the motion 
between the past two frames is estimated; and 3) by com-
paring the salient features against those in the known 
map, the current position of the robot is derived [30].

Apart from these techniques, sensor fusion strategy 
is also often utilized to combine multiple sensors for lo-
calization, which can improve the reliability and robust-
ness of robot [31], [32].

E. Planning and Control
The planning and control layer is responsible for generat-
ing trajectory plans and passing the control commands 
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based on the original and destination of the robot. 
Broadly, prediction and routing modules are also in-
cluded here, where their outputs are fed into down-
stream planning and control layers as input. The pre-
diction module is responsible for predicting the future 
behavior of surrounding objects identified by the per-
ception layer. The routing module can be a lane-level 
routing based on lane segmentation of the HD maps for 
autonomous vehicles.

Planning and Control layers usually include behav-
ioral decision, motion planning and feedback control. 
The mission of the behavioral decision module is to 
make effective and safe decisions by leveraging all 
various input data sources. Bayesian models are be-
coming more and more popular and have been applied 
in recent works [33], [34]. Among the Bayesian mod-
els, Markov Decision Process (MDP) and Partially Ob-
servable Markov Decision Process (POMDP) are the 
widely applied methods in modeling robot behavior. 
The task of motion planning is to generate a trajectory 
and send it to the feedback control for execution. The 
planned trajectory is usually specified and represent-
ed as a sequence of planned trajectory points, and 
each of these points contains attributes like location, 
time, speed, etc. Low-dimensional motion planning 
problems can be solved with grid-based algorithms 
(such as Dijkstra [35] or A* [36]) or geometric algo-
rithms. High-dimensional motion planning problems 
can be dealt with sampling-based algorithms, such as 
Rapidly-exploring Random Tree (RRT) [37] and Prob-
abilistic Roadmap (PRM) [38], which can avoid the 
problem of local minima. Reward-based algorithms, 
such as the Markov decision process (MDP), can also 
generate the optimal path by maximizing cumula-
tive future rewards. The goal of feedback control is 
to track the difference between the actual pose and 
the pose on the predefined trajectory by continuous  
feedback. The most typical and widely used algorithm 
in robot feedback control is PID.

While optimization-based approaches enjoy main-
stream appeal in solving motion planning and control 
problems, learning-based approaches [39]–[43] are be-
coming increasingly popular with recent developments 
in artificial intelligence. Learning-based methods, such 
as reinforcement learning, can naturally make full use of 
historical data and iteratively interact with the environ-
ment through actions to deal with complex scenarios. 
Some model the behavioral level decisions via reinforce-
ment learning [41], [43], while other approaches directly 
work on motion planning trajectory output or even 
direct feedback control signals [40]. Q-learning [44], 
Actor-Critic learning [45], policy gradient [38] are some 
popular algorithms in reinforcement learning.

III. Perception on FPGA

A. Overview
Perception is related to many robotic applications where 
sensory data and artificial intelligence techniques are 
involved. Examples of such applications include stereo 
matching, object detection, scene understanding, seman-
tic classification, etc. The recent developments in ma-
chine learning, especially deep learning, have exposed 
robotic perception systems to more tasks. In this section, 
we will focus on the recent algorithms and FPGA imple-
mentations in the stereo vision system, which is one of 
the key components in the robotic perception stage.

Real-time and robust stereo vision systems are in-
creasingly popular and widely used in many percep-
tion applications, e.g., robotics navigation, obstacle 
avoidance [46] and scene reconstruction [47]–[49]. The 
purpose of stereo vision systems is to obtain 3 D struc-
ture information of the scene using stereoscopic rang-
ing techniques. The system usually has two cameras to 
capture images from two points of view within the same 
scenario. The disparities between the corresponding 
pixels in two stereo images are searched using stereo 
matching algorithms. Then the depth information can 
be calculated from the inverse of this disparity.

Throughout the whole pipeline, stereo matching is 
the bottleneck and time-consuming stage. The stereo 
matching algorithms can be mainly classified into two 
categories: local algorithms [50]–[56] and global algo-
rithms [57]–[61]. Local methods compute the dispari-
ties by only processing and matching the pixels around 
the points of interest within windows. They are fast 
and computationally-cheap, and the lack of pixel de-
pendencies makes them suitable for parallel accelera-
tion. However, they may suffer in textureless areas and 
occluded regions, which will result in incorrect dispari-
ties estimation.

In contrast, global methods compute the disparities 
by matching all other pixels and minimizing a global 
cost function. They can achieve much higher accuracy 
than local methods. However, they tend to come at high 
computation cost and require much more resources due 
to their large and irregular memory access as well as 
the sequential nature of algorithms, thus not suitable for 
real-time and low-power applications. Many research 
works in stereo systems focus on the speed and accu-
racy improvement of stereo matching algorithms, and 
some of the implementations are summarized in Tab. I

B. Local Stereo Matching on FPGA
Local algorithms are usually based on correlation, where 
the process involves finding matching pixels in the left 
and right image patches by aggregating costs within a 
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specific region. There are many ways for cost aggrega-
tion, such as the sum of absolute differences (SAD) [62], 
the sum of squared differences (SSD) [63], normalized 
cross-correlation (NCC) [64], and census transform 
(CT) [65]. Many FPGA implementations are based on 
these methods. Jin et al. [66] develop a real-time ste-
reo vision system based on census rank transformation 
matching cost for 640 × 480 resolution images. Zhang et 
al. [67] propose a real-time high definition stereo match-
ing design on FPGA based on mini-census transform 
and cross-based cost aggregation, which achieves 60 
fps at 1024 × 768 pixel stereo images. The implementa-
tion of Honegger et al. [68] achieves 127 fps at 376 × 240 
pixel resolution with 32 disparity levels based on block 
matching. Jin et al. [69] further achieve 507.9 fps for 

640 × 480 resolution images by applying fast local consis-
tent dense stereo functions and cost aggregation.

C. Global Stereo Matching on FPGA
Global algorithms can provide state-of-the-art accuracy 
and disparity map quality, however, they are usually 
processed through high computational-intensive optimi-
zation techniques or massive convolutional neural net-
works, making them difficult to be deployed on resource-
limited embedded systems for real-time applications. 
However, some works have attempted to implement glob-
al algorithms on FPGA for better performance. Park et al. 
[70] present a trellis-based stereo matching system on 
FPGA with a low error rate and achieved 30 fps at 320 × 240 
resolution with 128 disparity levels. Sabihuddin et al. [71]  

Table I.  
Comparison of Stereo Vision Systems on FPGA platforms, across local stereo matching, global stereo matching, 
semi-global stereo matching (SGM) and efficient large-scale stereo matching (ELAS) algorithms. The results reported 
in each design are evaluated by frame rate (fps), image resolution (width # height), disparity levels, million disparity 
estimations per second (MDE/s), power (W), resource utilization (logic% and BRAM%) and hardware platforms, where 
MDE/s = width # height # fps # disparity.

Algorithm Reference 

Frame 
Rate 
(FPS) 

Image 
Resolution 
(Width # 
Height) 

Disparity 
Level MDE/s 

Power 
(W) 

Resource(%) 
Logic/BRAM FPGA Platform 

Local 
Stereo 
Matching 

Jin et al. [66] 
Zhang et al. 
[67] 
Honegger  
et al. [68]
Jin et al. [69] 

230 
60 
127
507.9 

640 # 480 
1024 # 768 
376 # 240
640 # 480 

64 
64 
32 
60 

4522 
3020 
367 
9362 

– 
1.56 
2.8 
3.35 

34.0/95.0 
61.8/67.0 
49.0/68.0 
81.0/39.7 

Xilinx Virtex-4 
XC4VLX200-10 
Altera EP3SL150 
AItera Cyclone III 
EP3C80 
Xilinx Vertex-6 

Global 
Stereo 
Matching 

Park et al. [70] 
Sabihuddin et 
al. [71] 
Jin et al. [72] 
Zha et al. [59] 
Puglia et al. 
[60] 

30 
63.54 
32 
30 
30 

320 # 240 
640 # 480 
640 # 480 
1920 # 1680 
1024 # 768 

128 
128 
60 
60 
64 

295 
2498 
590 
5806 
1510 

– 
– 
1.40 
– 
0.17 

–/– 
23.0/58.0 
72.0/46.0 
84.8/91.9 
57.0/53.0 

Xilinx Virtex II 
pro-100 
Xilinx XC2VP100 
Xilinx XC4VLX160 
Xilinx Kintex 7 
Xilinx Virtex-7 
XC7Z020CLG484-1 

Semi-
Global 
Stereo 
Matching 

Banz et al. [74] 
Wang et al. 
[75] 
Cambuim  
et al. [76] 
Rahnama  
et al. [77] 
Cambuim  
et al. [78] 
Zhao et al. 
[79]

37 
42.61 
127 
72 
25 
147

640 # 480 
1600 # 1200 
1024 # 768 
1242 # 375 
1024 # 768 
1242 # 375

128 
128 
128 
128 
256 
64

1455 
10472 
12784 
4292 
5033 
4382

2.31 
2.79 
– 
3.94 
6.5 
9.8

51.2/43.2 
93.9/97.3 
–/– 
75.7/30.7 
50.0/38.0 
68.7/38.7

Xilinx Virtex-5 
Altera 5SGSMD5K2 
AItera Cyclone IV 
Xilinx ZC706 
AItera Cyclone IV 
GX, Stratix IV GX 
Xilinx Ultrascale + 
ZCU102

Efficient 
Large-
Scale 
Stereo 
Matching

Rahnama  
et al. [80] 
Rahnama  
et al. [81] 

47 
50 

1242 # 375 
1242 # 375 

– 
– 

– 
– 

2.91
5 

11.9/15.7 
70.7/8.7 

Xilinx ZC706 
Xilinx ZCU104 
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implement a dynamic programming maximum likeli-
hood (DPML) based hardware architecture for dense 
binocular disparity estimation and achieved 63.54 fps at 
640 × 480 pixel resolution with 128 disparity levels. The 
design in Jin et al. [72] uses a tree-structured dynamic 
programming method, and achieves 58.7 fps at 640 × 480 
resolution as well as a low error rate. Recently, some 
other adaptations of global approaches for FPGA-imple-
mentation have been proposed, such as cross-trees [59], 
dynamic programming for DNA sequence alignment [60], 
and graph cuts [73], where all of these implementations 
achieve real-time processing.

D. Semi-Global Matching on FPGA
Semi-global matching (SGM) [82] bridges the gap be-
tween local and global methods, and achieves a notable 
improvement in accuracy. SGM calculates the initial 
matching disparities by comparing local pixels, and 
then approximates an image-wide smoothness con-
straint with global optimization, which can obtain more 
robust disparity maps through this combination. There 
are several critical challenges for implementing SGM on 
hardware, e.g., data dependence, high complexity, and 
large storage, so this is an active research field with 
recent works proposing FPGA-friendly variants of SGM 
[74], [75], [83]–[85].

Banz et al. [74] propose a systolic-array based hard-
ware architecture for SGM disparity estimation along 
with a two-dimensional parallelization concept for SGM. 
This design achieves 30 fps performance at 640 × 480 
pixel images with a 128-disparity range on the Xilinx 
Virtex-5 FPGA platform. Wang et al. [75] implement a 
complete real-time FPGA-based hardware system that 
supports both absolute difference-census cost initial-
ization, cross-based cost aggregation and semi-global 
optimization. The system achieves 67 fps at 1024 × 768 
resolution with 96 disparity levels on the Altera Stratix-
IV FPGA platform, and 42 fps at 1600 × 1200 resolution 
with 128 disparity levels on the Altera Stratix-V FPGA 
platform. The design in Cambuim et al. [76] uses a scal-
able systolic-array based architecture for SGM based on 
the Cyclone IV FPGA platform, and it achieves a 127 fps 
image delivering rate in 1024 × 768 pixel HD resolution 
with 128 disparity levels. The key point of this design 
is the combination of disparity and multi-level paral-
lelisms such as image line processing to deal with data 
dependency and irregular data access pattern problems 
in SGM. Later, to improve the robustness of SGM and 
achieve a more accurate stereo matching, Cambuim 
et al. [78] combine the sampling-insensitive absolute 
difference in the pre-processing phase, and propose 
a novel streaming architecture to detect noisy and 
occluded regions in the post-processing phase. The 

design is evaluated in a full stereo vision system using 
two heterogeneous platforms, DE2i-150 and DE4, and 
achieves a 25 fps processing rate in 1024 × 768 HD maps 
with 256 disparity levels.

While most existing SGM designs on FPGA are imple-
mented using the register-transfer level (RTL), some 
works leveraged the high-level synthesis (HLS) ap-
proach. Rahnama et al. [77] implement an SGM varia-
tion on FPGA using HLS, which achieves 72 fps speed at 
1242 × 375 pixel size with 128 disparity levels. To reduce 
the design effort and achieve an appropriate balance 
among speed, accuracy and hardware cost, Zhao et al. 
[79] recently propose FP-Stereo for building high-perfor-
mance SGM pipelines on FPGAs automatically. A series 
of optimization techniques are applied in this system to 
exploit parallelism and reduce resource consumption. 
Compared to GPU designs [86], it achieves the same ac-
curacy at a competitive speed while consuming much 
less energy.

To compare these implementations, the depth qual-
ity of are evaluated on Middlebury Benchmark [87], 
with four image pairs Tsukuba, Venus, Teddy, Cones. As 
shown in Tab. II, there is a general trade-off between 
accuracy and processing speed. The stereo vision sys-
tem designs in Tab. I are drawn as points in Fig. 2 (if 
both power and speed number are reported), using 
log10 (power) as x-coordinate and log10 (speed) as y-
coordinate (y – x = log10 (energy_efficiency)). Besides 
FPGA-based implementations, we also plot GPU and 
CPU experimental results as a comparison to FPGA de-
signs’ performance. In general, local and semi-global 
stereo matching designs have achieved higher perfor-
mance and energy efficiency than global stereo match-
ing designs. As introduced in section III-C, global stereo 
matching algorithms usually involve massive computa-
tional-intensive optimization techniques. Even for the 
same design, varying design parameters (e.g., window 
size) may result in a 10x difference in energy efficiency. 
Compared to GPU and CPU-based designs, FPGA-based 
designs have achieved higher energy efficiency, and the 
speed of many FPGA implementations have surpassed 
general-purpose processors.

E. Efficient Large-Scale Stereo Matching on FPGA
Another popular stereo matching algorithm that offers a 
good trade-off between speed and accuracy is Efficient 
Large-Scale Stereo Matching (ELAS) [90], which is cur-
rently one of the fastest and accurate CPU algorithms 
concerning the resolution on Middlebury dataset. ELAS 
implements a slanted plane prior very effectively while 
its dense estimation of depth is completely decompos-
able over all pixels, which make it attractive for eas-
ily parallelized.
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Rahnama et al. [80] first implement and evaluate 
an FPGA accelerated adaptation of the ELAS algo-
rithm, which achieved a frame rate of 47 fps (up to 
30× compared high-end CPU) while consuming un-
der 4 W of power. By taking advantage of different 
components on the SoC, several elaboration blocks 
such as feature extraction and dense matching are 
executed on FPGA, while I/O and other conditional/
sequential blocks are executed on ARM-core CPU. 
The authors also reveal the strategy to accelerate 
complex and computationally diverse algorithms 
for low power and real-time systems by collabora-
tively utilizing different compute components. Lat-
er, by leveraging and combining the best features 
of SGM and ELAS-based methods, Rahnama et al. 
[81] propose a sophisticated stereo approach and 
achieve an 8.7% error rate on the challenging KITTI 
2015 dataset at over 50 fps, with a power consump-
tion of only 4.5 W.

F. CNN-Based Stereo Vision System on FPGA
Convolutional neural networks (CNNs) have been 
demonstrated to perform very well on many vision 
tasks such as image classification, object detec-
tion, and semantic segmentation. Recently, CNN has 
also been utilized in stereo estimation [91], [92] and 
stereo matching [93]. CNN is applied to determine 
SGM penalties [94], estimate real-time optical flow 
disparity [95] and predict cost volume computation 
and aggregation [96].

CNN has been deployed on FPGA platforms in several 
works [97]–[100], with an example of lightweight YO-
LOv2 for object detection [101]. Nakahara et al. imple-
ment a pipelined-based architecture for lightweight 
YOLOv2 with a binarized CNN on Xilinx ZCU102 FPGA 
platform. This design achieves a 40.81 fps object de-
tection speed, which is 177.4× faster than ARM Cortex-
A57 and 27.5× faster than NVIDIA Pascal embedded 
GPU. Many FPGA-based CNN accelerator implementa-
tions have been summarized in [15].

IV. Localization on FPGA

A. Overview
For robots, one of the most critical tasks is localization 
and mapping. Simultaneous Localization and Mapping 
(SLAM) is an advanced robot navigation algorithm for 
constructing or updating a map of unknown surround-
ings while simultaneously keeping tracking the robot’s 
location. Localization and mapping are two concur-
rent tasks and cannot be solved independently from 
each other. Localizing a robot requires a sufficiently 
detailed map, and constructing or updating or a map 
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requires accurate landmarks or pose estimates from 
known positions.

Many SLAM algorithms have been developed in the 
last decades to improve the accuracy and robustness, 
and its implementation comes in a diverse set of sizes 
and shapes. One end of the spectrum is dense SLAM 
algorithms [102]–[105], which can generate high-qual-
ity maps of the environment with complex computa-
tions. Dense SLAM algorithms usually are executed on 
powerful and high-performance machines to ensure 
real-time performance. At the same time, the intensive 
computation characteristic makes dense SLAM hard to 
deploy on edge devices. The other end of the spectrum 
is sparse SLAM [106]–[109], which is computationally 
light by only selecting limited numbers of landmarks 
or features.

To form a compromise in terms of compute intensi-
ty and accuracy quality between these two extremes, 
a family of works described as semi-dense SLAM has 
emerged [110], [111]. They aim to achieve better compu-
tational efficiency compared to dense methods by only 
processing a subset of high-quality sensory information 
while providing a more dense and informative map com-
pared to sparse methods.

A typical SLAM system includes two components: 
the front-end and the back-end, which are with different 
computational characteristics. The front-end associates 

sensory measurements in consecutive frames to physi-
cal landmarks. It incrementally deduces the robot mo-
tion by applying geometry constraints on the associated 
sensory observations. The back-end tries to minimize 
errors introduced from sensory measurement noises by 
performing optimizations on a batch of observed land-
marks and tracked poses. Filter based (e.g., Extended 
Kalman Filter) and numerical optimization based (e.g., 
bundle adjustment) algorithms are two prevalent meth-
ods for SLAM back-end.

A critical challenge to mobile robot localization is 
accuracy and efficiency under stringent power and re-
source constraints. To avoid losing tracked features due 
to large motions between consecutive frames, SLAM 
systems need to process sensory data at a high frame 
rate. For example, open data sets for evaluating local-
ization algorithms [112], [113] for drones and vehicles 
provide images at 10 to 20 fps. Low power computing 
systems are always required to extend the battery life 
of mobile robots. Most SLAM algorithms are developed 
on CPU or GPU platforms, of which power consump-
tion is hundreds of Watts. To execute SLAM efficiently 
on mobile robots and meet real-time and power con-
straints, specialized chips and accelerators have been 
developed. FPGA SoCs provide rich sensor interfaces, 
dedicated hardware logic and programmability, hence 
they have been explored in diverse ways in recent years. 
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We summarize and discuss FPGA-based accelerators for 
SLAMs in the following sections.

B. Dense SLAM on FPGA
Dense SLAM can construct high quality and complete 
models of the environment, and most of them are run-
ning in high-end hardware platforms (especially GPU). 
One of the representative real-time dense SLAM algo-
rithms is KinectFusion [114], which was released by Mi-
crosoft in 2011. As a scene reconstruction algorithm, it 
continuously updates the global 3D map and tracks the 
location of depth cameras within the surrounding envi-
ronment. KinectFusion is generally composed of three 
algorithms: ray-casting algorithm for generating graph-
ics from surface information, iterative closest point 
(ICP) algorithm for camera-tracking and volumetric in-
tegration (VI) algorithm for integrating depth streams 
into the 3D surface. Several works have attempted to 
implement real-time dense SLAM algorithms on a het-
erogeneous system with FPGA embedded.

Several works implement computationally inten-
sive components of dense SLAMs, such as ICP and VI, 
on FPGA to accelerate the critical path. Belshaw [102] 
presents an FPGA implementation of the ICP algorithm, 
which achieves over 200 fps tracking speed with low 
tracking errors. This design divides the ICP algorithm 
into filtering, nearest neighbor, transform recovery and 
transform application stages. It leverages fixed-point 
arithmetic and the power of two data points to utilize 
FPFA logic efficiently. Williams [103] notices that the 
nearest neighbor search takes up the majority of ICP 
runtime, and then proposes two hybrid CPU-FPGA 
architectures to accelerate the bottleneck of the ICP-
SLAM algorithm. The implementation is performed with 
Vivado HLS, a high-level synthesis tool from Xilinx, and 
achieves a maximum 17.22× speedup over the ARM soft-
ware implementation. Hoorick [104] presents an FPGA-
based heterogeneous framework using a similar HLS 
method to accelerate the KinectFusion algorithm and 
explored various ways of dataflow and data manage-
ment patterns. Gautier et al. [105] embed both ICP and 
VI algorithms on an Altera Stratix V FPGA by using the 
OpenCL language and the Altera OpenCL SDK. This de-
sign was a heterogeneous system with NVIDIA GTX 760 
GPU and Altera Stratix V FPGA. By distributing different 
workloads on different parts of SoC, the entire system 
achieves up to 28 fps real-time speed.

C. Sparse SLAM on FPGA
Sparse SLAM algorithms usually use a small set of fea-
tures to track and maintain a sparse map of surround-
ing environments. These algorithms exhibit lower power 
consumption but are limited to the localization accuracy.

1) EKF-SLAM
EKF-SLAM [106] is a class of algorithms that utilizes 
the extended Kalman Filter (EKF) for SLAM. EKF-SLAM 
algorithms are typically feature-based and use the 
maximum likelihood algorithm for data association. 
Several heterogeneous architectures using multi-core 
CPUs, GPUs, DSPs, and FPGAs are proposed to acceler-
ate the complex computation in EKF-SLAM algorithms. 
Bonato et al. [115] presents the first FPGA-based ar-
chitecture for the EKF-SLAM based algorithm that is 
capable of processing 2 D maps at up to 1800 features 
at real-time with a frequency of 14 Hz, compared to 
572 features with Pentium CPU and 131 features with 
ARM. They analyze the computational complexity and 
memory bandwidth requirements for FPGA-based 
EKF-SLAM, and then propose an architecture with a 
parallel memory access pattern to accelerate the ma-
trix multiplication. This design achieves two orders of 
magnitude more power-efficient than a general-pur-
pose processor.

Similarly, Tertei et al. [116] propose an efficient FP-
GA-SoC hardware architecture for matrix multiplication 
with systolic arrays to accelerate EKF-SLAM algorithms. 
The setup of this design is a PLB peripheral to PPC440 
hardcore embedded processor on a Virtex5 FPGA, and 
it achieves a 7.3× speedup with a processing frequency 
of 44 Hz compared to the pure software implementation. 
Later, taking into account the symmetry in cross-cova-
riance matrix-related computations, Tertei et al. [117] 
improve the previous implementation to further reduce 
the computational time and on-chip memory storage on 
Zynq-7020 FPGA.

DSP is also leveraged in some works to accelerate 
EKF-SLAM algorithms. Vincke et al. [118] implement 
an efficient implementation of EKF-SLAM on a low-cost 
heterogeneous architecture system consisting of a sin-
gle-core ARM processor with a SIMD coprocessor and 
a DSP core. The EKF-SLAM program is partitioned into 
different functional blocks based on the profiling char-
acteristics results. Compared to a non-optimized ARM 
implementation, this design achieved 4.7× speed up 
from 12 fps to 57 fps. In a later work, Vincke et al. [119] 
replace the single-core ARM with a double-core ARM to 
optimize the non-optimized blocks using the OpenMP 
library. This design achieves a 2.75× speedup compared 
to non-optimized implementation.

2) ORB-SLAM
ORB-SLAM [107] is an accurate and widely-used sparse 
SLAM algorithm for monocular, stereo, and RGB-D cam-
eras. Its framework usually consists of five main proce-
dures: feature extraction, feature matching, pose esti-
mation, pose optimization and map updating. Based on 
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the profiling results on a quad-core ARM v8 mobile SoC, 
feature extraction is the most computation-intensive 
stage in the ORB-SLAM system, which consumes more 
than half of CPU resources and energy budget [120].

ORB based feature extraction algorithm usually 
consists of two parts, namely Oriented Feature from 
Accelerated Segment Test (oFAST) [121] based feature 
detection and Binary Robust Independent Elementary 
(BRIEF) [122] based feature descriptors computation. 
To accelerate this bottleneck, Fang et al. [120] design 
and implement a hardware ORB feature extractor and 
achieved a great balance between performance and en-
ergy consumption, which outperforms ARM Krait by 51% 
and Intel Core i5 by 41% in computation latency as well 
as outperforms ARM Krait by 10% and Intel Core i5 by 
83% in energy consumption. Liu et al. [123] propose an 
energy-efficient FPGA implementation eSLAM to acceler-
ate both feature extraction and feature matching stages. 
This design achieves up to 3× and 31× speedup in fram-
erate, as well as up to 71× and 25× in energy efficiency 
improvement compared to Intel i7 and ARM Cortex-A9 
CPUs, respectively. This eSLAM design utilizes a rota-
tionally symmetric ORB descriptor pattern to make the 
algorithm more hardware-friendly, resulting in a 39% 
less latency compared to [120]. Rescheduling and par-
allelizing optimization techniques are also exploited to 
improve the computation throughput in eSLAM design.

Scale-invariant feature transform (SIFT) and Harris 
corner detector are also commonly-used feature extrac-
tion methods. SIFT is invariant to rotation and transla-
tion. Gu et al. [109] implement SIFT-feature based SLAM 
algorithm on FPGA and accelerate the matrix computa-
tion part to achieve speedup. Harris corner detector is 
used to extract corners and features of an image, and 
Schulz et al. [124] propose an implementation of Harris 
and Stephen corner detector optimized for an embed-
ded SoC platform that integrates a multicore ARM pro-
cessor with Zynq-7000 FPGA. Taking into account I/O 
requirements and the advantage of parallelization and 
pipeline, this design achieves a speedup of 1.77 com-
pared to dual-core ARM processors.

3) Fast-SLAM
One of the key limitations of EKF-SLAM is its computation-
al complexity since EKF-SLAM requires time quadratic in 
the number of landmarks to incorporate each sensor 
update. In 2002, Montemerlo et al. [108] propose an ef-
ficient SLAM algorithm called Fast-SLAM. Fast-SLAM 
decomposes the SLAM problem into a robot localiza-
tion problem and a landmark estimation problem. It 
recursively estimates the full posterior distribution 
over landmark positions and robot path with a loga-
rithmic scale.

Abouzahir et al. [125] implement Fast-SLAM 2.0 on 
a CPU-GPGPU-based SoC architecture. The algorithm 
is partitioned into function blocks, and each of them is 
implemented on the CPU or GPU accordingly. This op-
timized and efficient CPU-GPGPU partitioning enables 
accurate localization and a 37× execution speedup com-
pared to non-optimized implementation on a single-core 
CPU. Further, Abouzahir et al. [126] perform a complete 
study of the processing time of different SLAM algo-
rithms under popular embedded devices, and demon-
strate that Fast-SLAM2.0 allowed a compromise between 
the consistency of localization results and computation 
time. This algorithm is then optimized and implemented 
on GPU and FPGA using HLS and parallel computing 
frameworks OpenCL and OpenGL. It is observed that 
the global processing time of FastSLAM2.0 on FPGA 
implementations achieves 7.5× acceleration compared  
to high-end GPU. The processing frequency achieves  
102 fps and meets the real-time performance constraints 
of an operated robot.

4) VO-SLAM
The visual odometry based SLAM algorithm (VO-SLAM) 
also belongs to the Sparse SLAM class with low com-
putational complexity. Gu et al. [109] implement the 
VO-SLAM algorithm on a DE3 board (Altera Stratix III) 
to perform drift-free pose estimation, resulting in lo-
calization results accurate to 1-2cm. A Nios II soft-core 
is used as a master processor. The authors design a 
dedicated matrix accelerator and propose a hierarchi-
cal matrix computing mechanism to support applica-
tion requirements. This design achieves a processing 
speed of 31 fps with 30000 global map features, and 10× 
energy saving for each frame processing compared to 
Intel i7 CPU.

D Semi-Dense SLAM on FPGA
Semi-dense SLAM algorithms have emerged to provide a 
compromise between sparse SLAM and dense SLAM al-
gorithms, which attempt to achieve improved efficiency 
and dense point clouds. However, they are still usually 
computationally intensive and require multicore CPUs 
for real-time processing.

Large-Scale Direct Monocular SLAM (LSD-SLAM) 
is one of the state-of-the-art and widely-used semi-
dense SLAM algorithms, and it directly operates on 
image intensities for both tracking and mapping prob-
lems. The camera is tracked by direct image align-
ment, while geometry is estimated from semi-dense 
depth maps acquired by filtering over multiple stereo 
pixel-wise comparisons.

Several works have explored LSD-SLAM FPGA-SoC 
implementation. Boikos et al. [127] investigate the 
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performance and acceleration opportunities for LSD-
SLAM in the SoC system. This design achieves an aver-
age framerate of more than 4 fps for a resolution of 320 × 
240 with an estimated power of less than 1 W, which is a 
2× acceleration and more than 4.3× energy efficiency com-
pared to a software version running on embedded CPUs. 
The author also notes that the communication between 
two accelerators is via DDR memory since the produced 
intermediate data is too large to be fully cached on the 
FPGA. Hence, it is important to optimize the memory ar-
chitecture (e.g., data movement and caching techniques) 
to ensure the scalability and compatibility of the design.

To further improve the performance of [127], Boikos 
et al. [128] re-implement the design using a dataflow ar-
chitecture and distributed asynchronous blocks to al-
low the memory system and the custom hardware pipe-
lines to function at peak efficiency. This implementation 
can process and track more than 22 fps with an embed-
ded power budget and achieves a 5× speedup over [127].

Furthermore, Boikos et al. [129] combine a scalable 
depth estimation with direct semi-dense SLAM architec-
ture and propose a complete accelerator for semi-dense 
SLAM on FPGA. This architecture achieved more than 
60 fps at the resolution of 640 × 480 and an order of mag-
nitude power consumption improvement compared to 
Intel i7-4770 CPU. This implementation leverages multi-
rate and multi-modal units to deal with LSD-SLAM’s 
complex control flow. A new dataflow paradigm is also 
proposed where the kernel is linked with a single con-
sumer and a single producer to achieve high efficiency.

E. CNN-Based SLAM on FPGA
Recently, CNNs have made significant progress in the 
perception and localization ability of the robots com-
pared to handcrafted methods. Take one of the main 
SLAM components, feature extraction, as an exam-
ple, the CNN-based approach SuperPoint [130] can 
achieve 10%-30% higher matching accuracy compared 
to handcrafted ORB. Other CNN-based methods, such 
as DeepDesc [131] and GeM [132], also present sig-
nificant improvements in feature extraction and de-
scriptor generation stage. However, CNN has a much 
higher computational complexity and requires more 
memory footprint.

Several works have explored to deploy CNN on FP-
GAs. Xilinx DPU [133] is one of the state-of-the-art pro-
grammable dedicated to CNN, which has a specialized 
instruction set and works efficiently across various CNN 
topologies. Xu et al. [134] propose a hardware architec-
ture to accelerate CNN-based feature extraction Super-
Point on the Xilinx ZCU102 platform and achieve 20 fps 
in a real-time SLAM system. The key point of this design 
is an optimized software dataflow to deal with the ex-

tra post-processing operations within CNN-based fea-
ture extraction networks. 8-bit fixed-point numerics are 
leveraged in the post-processing operations and CNN 
backbone. Similar hardware-oriented model compres-
sion techniques (e.g., data quantization and weight re-
duction) have been widely adopted in robotics and CNN 
related designs [135]–[142].

Yu et al. [143] build a CNN-based monocular decen-
tralized-SLAM (DSLAM) on the Xilinx ZCU102 MPSoC 
platform with DPU. DSLAM is usually used in multi-ro-
bot applications that can share environment informa-
tion and locations between agents. To accelerate the 
main components in DSLAM, namely visual odometry 
(VO) and decentralized place recognition (DPR), the 
authors adopt CNN-based Depth-VO-Feat [144] and Net-
VLAD [145] to replace handcrafted approaches and pro-
pose a cross-component pipeline scheduling algorithm 
to improve the performance.

To enable multi-tasking processing in embedded ro-
bots on CNN accelerators, Yu et al. [146] further propose 
an INterruptible CNN accelerator (INCA) with a novel 
virtual-instruction-based interrupt method. Feature ex-
traction and place recognition of DSLAM are deployed 
and accelerated on the same CNN accelerator of the 
embedded FPGA system, and the interrupt response la-
tency is reduced by 1%.

F. Bundle Adjustment on FPGA
Besides the hardware implementation of the frontend of 
the SLAM system, several works investigate to acceler-
ate the backend of the SLAM system, mainly Bundle Ad-
justment (BA). BA is heavily used in robot localization 
[107], [147], autonomous driving [148], space exploration 
missions [149] and some commercial products [150], 
where it is usually employed in the last stage of the pro-
cessing pipeline to refine camera trajectories and 3D 
structures further.

Essentially, BA is a massive joint non-linear optimiza-
tion problem that usually consumes a significant amount 
of power and processing time in both offline visual re-
construction and real-time localization applications.

Several works aim to accelerate BA on multi-core 
CPUs or GPUs using parallel or distributed computing 
techniques. Jeong et al. [151] exploit efficient memory 
handling and fast block-based linear solving, and pro-
pose a novel embedded point iterations method, which 
substantially improves the BA performance on CPU. 
Wu et al. [152] present a multi-core parallel process-
ing solution running on CPUs and GPUs. The matrix-
vector product is carefully restructured in this design 
to reduce memory requirements and compute latency 
substantially. Eriksson et al. [153] propose a distributed 
approach for very large scale global bundle adjustment 
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computation to achieve BA performance improve-
ment. The authors present a consensus framework 
using the proximal splitting method to reduce the 
computational cost. Similarly, Zhang et al. [154] pro-
pose a distributed formulation to accelerate the global 
BA computation without much distributed computing 
communication overhead.

To better deploy BA in embedded systems with strict 
power and real-time constraints, recent works explore 
BA algorithm acceleration using specialized hardware. 
The design in [155] implements both the image frontend 
and BA backend of a VIO algorithm on a single-chip for 
nano-drone scale applications. Liu et al. [156] propose a 
hardware-software co-designed BA hardware accelera-
tor and its implementation on an embedded FPGA-SoC 
to achieve higher performance and power efficiency 
simultaneously. Especially, a co-observation optimiza-
tion technique and a hardware-friendly differentiation 
method are proposed to accelerate BA operations with 
optimized usage of memory and computation resourc-
es. Sun et al. [157] present a hardware architecture run-
ning local BA on FPGAs, which works without external 
memory access and refines both cameras poses and 3D 
map points simultaneously.

G. Discussion
We summarize FPGA based SLAM systems in Tab. III. It 
only includes works that implement the whole SLAM on 
an FPGA and provide overall performance and power 
evaluation. The works in the table adopt a similar FPGA-
SoC architecture that accelerates computationally inten-
sive components by FPGA fabrics and offloads others 
works to embedded processors on FPGAs. Compared 
with sparse method, the semi-dense implementation 
has lower frame rate, which is mainly due to the high 
resolution data processed in the pipeline. Due to the 
high frame rates and low power consumption, sparse 
SLAM FPGA have been used in drones and autonomous 
vehicles [16]. The two sparse SLAM implementations 
achieve similar performance in terms of frame rate. 
Compared with the ORB design, the VO SLAM design 
includes pre-processing and outliers removal hardware, 
such as image rectification and RANSAC, which lead to 
a more accurate but power inefficient implementation.

V. Planning and Control on FPGA

A. Overview
Planning and control are the modules that compute how 
the robot should maneuver itself. They usually include 
behavioral decision, motion planning and feedback con-
trol kernels. Without loss of generality, we focus on the 
motion planning algorithms and their FPGA implemen-
tations in this section.

As a fundamental problem in the robotic system, mo-
tion planning aims to find the optimal collision-free path 
from the current position to a goal position for a robot 
in complex surroundings. Generally, motion planning 
contains three steps, namely roadmap construction, 
collision detection and graph search [38], [158]. Motion 
planning will become a relatively complicated problem 
when robots work with a high degree of freedom (DOF) 
configurations since the search space will be exponen-
tially increased. Typically, state-of-the-art CPU-based 
approaches take a few seconds to find a collision-free 
trajectory [159]–[161], making the existing motion plan-
ning algorithms too slow to meet the real-time require-
ment for complex robot tasks and environments. Sev-
eral works have investigated approaches to speed up 
motion planning, either for each stage or whole pipeline.

B. Roadmap Construction
In the roadmap construction step, the planner generates 
a set of states in the robot’s configuration space and 
then connects them with edges to construct a general-
purpose roadmap in the obstacle-free space. Each state 
represents a robot’s configuration, and each edge rep-
resents a possible robot movement. Conventional algo-
rithms build the roadmap by randomly sampling poses 
from configuration space at runtime to navigate around 
the obstacles present at that time.

Several works explore roadmap construction acceler-
ation. Yershova et al. [162] improve the nearest neighbor 
search to accelerate roadmap construction by orders 
of magnitude compared to the naive nearest-neighbor 
searching. Wang et al. [163] reduce the computation 
workload by trimming roadmap edges and keeping the 
roadmap to a reasonable size to achieve speedup. Differ-
ent from online runtime approaches, Murray et al. [164] 

completely remove the 
runtime latency by con-
ducting the roadmap 
construction only once 
at the design time. A 
more general and much 
larger roadmap is pre-
computed and allows 
for fast and successive 

Table III.  
Comparison of FPGA SLAM Systems.

Method Platform Frame Rate Power Indoor Error

Boikos et al. [127] Semi Dense Xilinx Zynq 7020 SoC 4.5 fps 2.5 W na 

Liu et al. [123] ORB Xilinx Zynq 7000 SoC 31 fps 1.9 W 4.5 cm 

Gu et al. [109] VO Altera Stratix III 31 fps 5.9 W 2 cm 
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queries in complex environments without reprogram-
ming the accelerator during runtime.

C. Collision Detection
In the collision detection step, the planner determines 
whether there are potential collisions with the environ-
ment or the robot itself during movement. Specifically, 
collision detection is the primary challenge in motion 
planning, which often comprises 90% of the process-
ing time [165].

Several works leverage data parallelization comput-
ing on GPUs to achieve speedup [165]–[167]. For exam-
ple, Bialkowski et al. [165] divide the RRT* algorithm 
of collision detection tasks into three parallel dimen-
sions and construct thread block grids to execute col-
lision computations simultaneously. However, GPU 
can only provide a constant speedup factor due to the 
core limitations, which is still hard to achieve the real-
time requirement.

Recently, [168]–[170] develop high-efficiency custom 
hardware implementations based on the FPGA system. 
Atay and Bayazit [168] focus on directly accelerating the 
PRM algorithm on FPGA by creating functional units to 
perform the random sampling, nearest neighbor search 
and parallelizing triangle-triangle testing. However, 
this design cannot be reconfigured at runtime, and the 
huge resource demands make it fail to support a large 
roadmap. Murray et al. [169] present a novel microar-
chitecture for an FPGA-based accelerator to speed up 
collision detection by creating a specialized circuit for 
each motion in the roadmap. This solution achieves 
sub-millisecond speed for motion planning query and 
improves the power consumption by more than one or-
der of magnitude, which is sufficient to enable real-time 
robotics applications.

Besides real-time constraint, motion planning algo-
rithms also have flexibility requirements to make the 
robots adapt to dynamic environments. Dadu-P [170] 
build a scalable motion planning accelerator to attain 
both high efficiency and flexibility, where a motion 
plan can be solved in around 300 microseconds in a 
dynamic environment. A hardware-friendly data struc-
ture representing roadmap edges is adopted to achieve 
flexibility, and a batched processing as well as a priori-
ty-rating method are proposed to achieve high efficien-
cy. But this design comprises a 25× latency increase to 
make it retargetable to different robots and scenarios 
due to the external memory access. Murray et al. [164] 
develop a fully retargetable microarchitecture of colli-
sion detection and graph search accelerator that can 
perform motion planning in less than 3 ms with a mod-
est power consumption of 35 W. This design divides 
the collision detection workflow into two stages. The 

collision detection results for the discretized roadmap 
are precomputed in the first stage before runtime, and 
then the collision detection accelerator streams in the 
voxels of obstacles and the edges of flags which are in 
collision at runtime.

D. Graph Search
After collision detection, the planner will try to find the 
shortest and safe path from the start position to the 
target position based on the obtained collision-free 
roadmap through graph search. Several works explore 
graph search accelerations. Bondhugula et al. [171] 
employ a parallel FPGA-based design using a blocked 
algorithm to solve large instances of All-Pairs Shortest-
Paths (APSP) problem, which achieves a 15× speedup 
over an optimized CPU-based implementation. Srid-
haran et al. [172] present an architecture-efficient so-
lution based on Dijkstra’s algorithm to accelerate the 
shortest path search, and Takei et al. [173] extend this 
for a high degree of parallelism and large-scale graph 
search. Recently, Murray et al. [164] accelerate graph 
search with the Bellman-Ford algorithm. By leveraging 
a precomputed roadmap and bounding specific robot 
quantities, this design enables a more compact and ef-
ficient storage structure, dataflows and a low-cost in-
terconnection network.

VI. Partial Reconfiguration
FPGA technology provides the flexibility of on-site pro-
gramming and re-programming without going through 
re-fabrication with a modified design. Partial Re-
configuration (PR) takes this flexibility one step fur-
ther, allowing the modification of an operating FPGA 
design by loading a partial configuration file, usu-
ally a partial BIT file [174]. Using PR, after a full BIT 
file configures the FPGA, partial BIT files can be down-
loaded to modify reconfigurable regions in the FPGA 
without compromising the integrity of the applica-
tions running on those parts of the device that are 
not being reconfigured.

A major performance bottleneck for PR is the con-
figuration overhead, which seriously limits the useful-
ness of PR. To address this problem, in [175], the authors 
propose a combination of two techniques to minimize 
the overhead. First, the authors design and implement 
fully streaming DMA engines to saturate the configura-
tion throughput. Second, the authors exploit a simple 
form of data redundancy to compress the configura-
tion bitstreams, and implement an intelligent internal 
configuration access port (ICAP) controller to perform 
decompression at runtime. This design achieves an ef-
fective configuration data transfer throughput of up to 
1.2 Gbytes/s, which actually well surpasses the  theoretical 
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 upper bound of the data transfer throughput, 400 Mbytes/s. 
Specifically, the proposed fully streaming DMA engines 
reduce the configuration time from the range of sec-
onds to the range of milliseconds, a more than 1000-fold 
improvement. In addition, the proposed compression 
scheme achieves up to a 75% reduction in bitstream size 
and results in a decompression circuit with negligible 
hardware overhead.

Another problem of PR is that it may incur additional 
energy consumption. In [176], the authors investigate 
whether PR can be used to reduce FPGA energy con-
sumption. The core idea is that there are a number of 
independent circuits within a hardware design, and 
some can be idle for long periods of time. Idle circuits 
still consume power though, especially through clock 
oscillation and static leakage. Using PR, one can replace 
these circuits during their idle time with others that 
consume much less power. Since the reconfiguration 
process itself introduces energy overhead, it is unclear 
whether this approach actually leads to an overall en-
ergy saving or to a loss. This study identifies the precise 
conditions under which partial reconfiguration reduces 
the total energy consumption, and proposes solutions 
to minimize the configuration energy overhead. In this 
study, PR is compared against clock gating to evaluate 
its effectiveness. The authors apply these techniques 
to an existing embedded microprocessor design, and 
successfully demonstrate that FPGAs can be used to 
accelerate application performance while also reducing 
overall energy consumption.

Further, PerceptIn demonstrate in their commercial 
product that Runtime partial reconfiguration (RPR) is 
useful for robotic computing, especially computing for 
autonomous vehicles, because many on-vehicle tasks 
usually have multiple versions where each is used in 
a particular scenario [16]. For instance, in PerceptIn’s 
design, the localization algorithm relies on salient 
features; features in key frames are extracted by a 
feature extraction algorithm (based on ORB features 
[177]), whereas features in non-key frames are tracked 
from previous frames (using optical flow [178]); the 
latter executes in 10 ms, 50% faster than the former. 
Spatially sharing the FPGA is not only area-inefficient, 
but also power-inefficient as the unused portion of the 
FPGA consumes non-trivial static power. In order to 
temporally share the FPGA and “hot-swap” different 
algorithms, PerceptIn develop a partial reconfigura-
tion engine (PRE) that dynamically reconfigures part 
of the FPGA at runtime. The PRE achieves a 400 MB/sec 
reconfiguration throughput (i.e., bitstream program-
ming rate). Both the feature extraction and tracking 
bitstreams are less than 4 MB. Thus, the reconfigura-
tion delay is less than 1 ms.

VII. Commercial Applications of FPGAs in 
Autonomous Vehicles

Over the past three years, PerceptIn has built and com-
mercialized autonomous vehicles for micromobility. Our 
products have been deployed in China, US, Japan and 
Switzerland. We summarize system design constraints, 
workloads and their performance characteristics from 
the real products. A custom computing system is de-
veloped by taking into account the inherent task-level 
parallisim, cost, safety and programmability [16], [179]. 
FPGA plays a critical role in our system, which synchro-
nizes various sensors and accelerates the component 
on the critical path.

A. Computing system
Software pipeline. Fig. 3 shows the block diagram of 
the processing pipeline in our vehicle, which consists 
of three parts: sensing, perception and planning. The 
sensing module bridges sensors and computing sys-
tem. It synchronizes various sensor samples for the 
downstream perception module, which performs two 
fundamental tasks: 1) locating the vehicle itself in a 
global map and 2) understanding the surroundings 
through depth estimation and object detection. The 
planning module uses the perception results to devise 
a driveable route, and then converts the planed path 
into a sequence of control commands, which will drive 
the vehicle along the path. The control commands are 
sent to the vehicle’s Engine Control Unit (ECU) via the 
CAN bus interface.

Sensing, perception and planning are serialized. They 
are all on the critical path of the end-to-end latency. We 
pipeline the three modules to improve the throughput. 
Within perception, localization and scene understand-
ing are independent and could execute in parallel. While 
there are multiple tasks within scene understanding, 
they are mostly independent with the only exception 
that object tracking must be serialized with object de-
tection. The task-level parallelisms influence how the 
tasks are mapped to the hardware platform.

Algorithm. Our localization module is based on Vi-
sual Inertial Odometry algorithms [180], [181], which 
fuses camera images, IMU and GPS samples to esti-
mate the vehicle pose in the global map. The depth es-
timation employs traditional stereo vision algorithms, 
which calculates depths according to the principal of 
triangulation [182]. In particular, our method is based 
on the classic ELAS algorithm, which uses hand-
crafted features [183]. While DNN models for depth 
estimation exist, they are orders of magnitude more 
compute-intensive than non-DNN algorithms [184] 
while providing only marginal accuracy improvements 
to our use-cases. We detect objects using DNN models, 
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such as YOLO [24]. We use the Kernelized Correla-
tion Filter (KCF) [185] to track detected objects. 
The planning algorithm is formulated as Model 
Predictive Control (MPC) [186].

Hardware architecture. Fig. 4 is the hardware 
system designed for our autonomous vehicles. The 
sensing hardware consists of stereo cameras, IMU 
and GPS. In particular, our system uses stereo cam-
eras for depth estimation. One of the cameras is 
also used for semantic tasks such as object detec-
tion. The cameras along with the IMU and the GPS 
drive the VIO-based localization task.

Considering the cost, compute requirements 
and power budget, our computing platform is com-
posed of a Xilinx Zynq Ultrascale+ FPGA and an on-
vehicle PC equipped with an Intel Coffe Lake CPU 
and an Nvidia GTX 1060 GPU. The PC is the main 
computing platform, while the FPGA plays a critical 
role, which bridges sensors and the PC, and provides 
an acceleration platform. To optimize the end-to-end 
latency, explore the task level parallelism and ease 
practical development and deployment, planning 
and scene understanding are mapped onto the CPU 
and the GPU respectively, and sensing and localiza-
tion are implemented on the FPGA platform.

B. Sensing on FPGA
We map sensing on the Zynq FPGA platform. The 
FPGA processes sensor data and transfer sensor 
data to the PC for subsequent processing. The 
reason that sensing is mapped to FPGA is three-
fold. First, embedded FPGA platforms today are 
built with rich sensor interface (e.g. standard MIPI 
Camera Serial Interface) and sensor pre-process-
ing hardware (e.g. ISP). Second, by having the 
FPGA directly process sensor data in situ, we al-
low accelerators on the FPGA to directly process 
sensor data without involving the power-hungry 
CPU for data movement and task coordination. 
Finally, processing sensor data on the FPGA natu-
rally leads to a design of hardware-assisted mul-
tiple sensor synchronization mechanism.

Sensor Synchronization Sensor  synchronization 
is critical to perception algorithms that fuse multiple 
sensors. Sensor fusion algorithms assume sen-
sor samples have been well synchronized. For exam-
ple, widely adopted datasets, such as KITTI, provide 
synchronized data so that researchers could focus 
on algorithmic development.

An ideal synchronization ensures that 1) various 
sensor samples have a unified timing system, and 2) 
timestamps of samples precisely record the time of 
events triggering the sensors. GPS synchronization is 
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now wildly adopted to unify various measurements in a 
global timing domain. Software-based synchronization 
associates samples with timestamps at the application 
or the driver layer. This approach is inaccurate due to 
the software processing before the timestamp stage. 
The software processing introduces variable latency 
that is non-deterministic.

To obtain more precise synchronization, we uses a 
hardware synchronizer implemented by FPGA fabrics. 
The hardware synchronizer triggers the camera sen-
sors and the IMU using a common timer initialized by 
the satellite atomic time provided by the GPS device. It 
records the triggering time of each sensor sample, and 
then pack the timestamp with the corresponding sensor 
data. In terms of costs, the synchronizer is extremely 
lightweight in design with only 1,443 LUTs and 1,587 reg-
isters and consumes 5mW of power.

C. Perception on FPGA
For our autonomous vehicles, the perception tasks 
includes scene understanding (depth estimation and 
objection detection) and localization, which are inde-
pendent. The slower one dictates the overall percep-
tion latency.

We evaluate our perception algorithms on the CPU, 
GPU and Zynq FPGA platform. Fig. 5 compares the la-

tency of each perception tasks on the FPGA platform 
with the GPU. Due to the available resources, the 
FPGA platform is faster than the GPU only for localiza-
tion, which is more lightweight than other tasks. We 
offload localization to the FPGA while leaving other 
perception task on the GPU. This partitioning frees 
more GPU resources for depth estimation and object 
detection, which is benefit for reducing the percep-
tion pipeline’s latency.

As with classic SLAM algorithms, our localization 
algorithm consists of a front-end and a back-end. The 
front-end uses the ORB features and descriptors for de-
tecting and tracking key points [120], [187]. The back-
end uses Levenberg-Marquardt’s (LM) algorithm, a non-
linear optimization algorithm, to optimize the position 
of 3 D key points and the pose of the camera [156], [188].

The ORB feature extraction/matching and the LM 
optimizer are the most time-consuming parts of our 
SLAM algorithm, which take up nearly all the execution 
time. We accelerate ORB feature extraction/matching 
and the non-linear optimizer on FPGA fabrics. The rest 
lightweight parts are implemented on the ARM core of 
the Zyqn platform. We use independent hardware for 
each camera to extract features and compute descrip-
tors. Hamming distance and Sum of Absoluated Differ-
ence (SAD) matching are implemented to obtain stable 
matching results. Compared with the CPU implementa-
tion, our FPGA implementation achieves a 2.2× speedup 
and 44 fps, and saves 83% energy.

We use LM algorithm to optimize features and pos-
es over a fixe-size sliding window. To solve the non-lin-
ear optimization problem, the LM algorithm iteratively 
use Jacobbian to linearize the problem and solve the 
linear equation at each iteration. Schur elimination is 
used to reduce the dimension of the linear equation, 
thus reduce the complexity of solving the equation. 
Cholesky factorization is employed to solve the linear 
equation. For sliding-window based vSLAM, the Jacobian 
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and Schur elimination are the most time-consuming 
parts. By profiling our algorithm on datasets [189], 
Schur and Jacobian computations account for 29.8% 
and 48.27% of total time. We implemented Schur elimi-
nation and Jacobian updates on FGPA fabrics [156]. 
Compared with the CPU implementation, the FPGA 
achieves 4× and 27× speedup for Schur and Jacobbian, 
and saves 76% energy.

VIII. Application of FPGAs in Space Robotics
In the 1980s, field-programmable gate arrays (FPGA) 
emerged as a result of increasing integration in elec-
tronics. Before the use of FPGA, glue-logic designs 
were based on individual boards with fixed compo-
nents interconnected via a shared standard bus, 
which has various drawbacks, such as hindrance of 
high volume data processing and higher susceptibil-
ity to radiation-induced errors, in addition to inflex-
ibility. The utilization of FPGAs in space applications 
began in 1992, for FPGAs offered unprecedented flex-
ibility and significantly reduced the design cycle and 
development cost [190].

FPGAs can be categorized by the type of their pro-
grammable interconnection switches: antifuse, SRAM, 
and Flash. Each of the three technologies comes with 
trade-offs. Antifuse FPGAs are non-volatile and have 
minimal delay due to routing, resulting in a faster speed 
and lower power consumption. The drawback is evident 
as they have a relatively more complicated fabrication 
process and are only one time programmable. SRAM-
based FPGAs are the most common type employed in 
space missions. They are field reprogrammable and use 
the standard fabrication process that foundries put in 
significant effort in optimizing, resulting in a faster rate 
of performance increase. However, based on SRAM, 
these FPGAs are volatile and may not hold configuration 
if a power glitch occurs. Also, they have more substan-
tial routing delay, require more power, and have a higher 
susceptibility to bit errors. Flash-based FPGAs are non-
volatile and reprogrammable, and also have low power 
consumption and route delay. The major drawback is 
that in-flight reconfiguration is not recommended for 
flash-based FPGAs due to the potentially destructive re-
sults if radiation effects occur during the reconfigura-
tion process [191]. Also, the stability of stored charge on 
the floating gate is of concern: it is a function including 
factors such as operating temperature, the electric fields 
that might disturb the charge. As a result, flash-based 
FPGAs are not as frequently used in space missions [192].

A. Radiation Tolerance for Space Computing
For electronics intended to operate in space, the harsh 
space radiation present is an essential factor to con-

sider. Radiation has various effects on electronics, but 
the commonly focused two are total ionizing dose effect 
(TID) and single event effects (SEE). TID results from 
the accumulation of ionizing radiation over time, which 
causes permanent damage by creating electron-hole 
pairs in the silicon dioxide layers of MOS devices. 
The effect of TID is that electronics gradually de-
grade in their performance parameters and eventually 
fail to function. Electronics intended for application 
in space are tested for the total amount of radiation, 
measured in kRads, they can endure before failure. 
Usually, electronics that can withstand 100 kRads are 
sufficient for low earth orbit missions to use for sev-
eral years [191].

SEE occurs when high-energy particles from space 
radiation strike electronics and leave behind an ionized 
trail. The results are various types of SEEs [193], which 
can be categorized as either soft errors, which usually 
do not cause permanent damage, or hard errors, which 
often cause permanent damage. Examples of soft er-
ror include single event upset (SEU), and single event 
transient (SET). In SEU, a radiation particle struck a 
memory element, causing a bit flip. Noteworthy is that 
as the cell density and clock rate of modern devices in-
creases, multiple cell upset (MCU), corruption of two 
or more memory cells in a single particle strike, is in-
creasingly becoming a concern. A special type of SEU is 
single event functional interrupt (SEFI), where the upset 
leads to loss of normal function of the device by affect-
ing control registers or the clock. In SET, a radiation par-
ticle passes through a sensitive node, which generates a 
transient voltage pulse, causing wrong logic state at the 
combinatorial logic output. Depending on whether the 
impact occurs during an active clock edge or not, the 
error may or may not propagate. Some examples of hard 
error include single event latch-up (SEL), in which en-
ergized particle activates parasitic transistor and then 
cause a short across the device, and single event burn-
out (SEB), in which radiation induces high local power 
dissipation, leading to device failure. In these hard error 
cases, radiation effects may cause the failure of an en-
tire space mission.

Space-grade FPGAs can withstand considerable lev-
els of TID and have been designed against most de-
structive SEEs [194]. However, SEU susceptibility is per-
vasive. For the most part, radiation effects on FPGA are 
not different from those of other CMOS based ICs. The 
primary anomaly stems from FPGAs’ unique structure, 
involving programmable interconnections. Depending 
on their type, FPGAs have different susceptibility to-
ward SEU in their configuration. SRAM FPGAs are des-
ignated by NASA as the most susceptible ones due to 
their volatile nature. Even after the radiation hardening 
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process, the configuration of SRAM FPGAs is only des-
ignated as “hardened” or simply having embedded SEE 
mitigation techniques rather than “hard,”which means 
close to immune [191]. Configuration SRAM is not used 
in the same way as the traditional SRAM. A bit flip in 
configuration causes an instantaneous effect without 
the need for a read-write cycle. Moreover, instead of 
producing one single error in the output, the bit flip 
shifts the user logic directly, changing the device’s be-
havior. Scrubbing is needed to rectify SRAM configu-
ration. Antifuse and flash FPGAs are less susceptible 
to effects in configuration and are designated “hard” 
against SEEs in their configuration without applying 
radiation hardening techniques [191].

Design based SEU/fault mitigation techniques are 
commonly used, for, in contrast to fabrication level ra-
diation hardening techniques, they can be readily ap-
plied to commercial off the shelf (COTS) FPGAs. These 
techniques can be classified into static and dynamic. 
Static techniques rely on fault-masking, toleration of 
error without requiring active fixing. One such exam-
ple is passive redundancy with voting mechanisms. 
Dynamic techniques, in contrast, detect faults and act 
to correct them. The common SEU Mitigation Methods 
include [195], [196]:

1) Hardware Redundancy: functional blocks are rep-
licated to detect/tolerate faults. Triple modular re-
dundancy (TMR) is perhaps the most widely used 
mitigation technique. It can be applied to entire 
processors or parts of circuits. At a circuit level, 
registers are implemented using three or more flip 
flops or latches. Then, voters compare the values 
and output the majority, reducing the likelihood 
of error due to SEU. As internal voters are also 
susceptible to SEU, they are sometimes triplicated 
also. For mission-critical applications, global sig-
nals may be triplicated to mitigate SEUs further. 
TMR can be implemented at ease with the help 
supporting HDLs [197]. It is important to note that 
a limitation of TMR is that one fault, at most, can 
be tolerated per voter stage. As a result, TMR is 
often used with other techniques, such as scrub-
bing, to prevent error accumulation.

2) Scrubbing: The vast majority of memory cells in 
reprogrammable FPGAs contain configuration 
information. As discussed earlier, configuration 
memory upset may lead to alteration routing net-
work, loss of function, and other critical effects. 
Scrubbing, refreshing and restoration of configu-
ration memory to a known-good state, is therefore 
needed [196]. The reference configuration memo-
ry is usually stored in radiation-hardened mem-
ory cells either off or on the device. Scrubbers, 

processors or configuration controllers, carry out 
scrubbing. Some advanced SRAM FPGAs, includ-
ing ones made by Xilinx, support partial reconfig-
uration, which allows memory repairs to be made 
without interrupting the operation of the whole 
device. Scrubbing can be done in frame-level (par-
tial) or device-level (full), which will inevitably 
lead to some downtime; some devices may not be 
able to tolerate such an interruption. Blind scrub-
bing is the most straightforward way of implemen-
tation: individual frames are scrubbed periodical-
ly without error detection. Blind scrubbing avoids 
the complexity required in error detection, but ex-
tra scrubbing may increase vulnerability to SEUs 
as errors may be written into frames during the 
scrubbing process. An alternative to blind scrub-
bing is readback scrubbing, where scrubbers 
actively detect errors in configuration through 
error-correcting code or cyclic redundancy check 
[195]. If an error is found, scrubber initiates frame-
level scrubbing.

Currently, the majority of space-grade FPGA comes 
from Xilinx and Microsemi. Xilinx offers the Virtex fam-
ily and Kintex. Both are SRAM based, which have high 
flexibility. Microsemi offers antifuse based RTAX and 
Flash-based RTG4, RT PolarFire, which have lower sus-
ceptibility against SEE and power consumption. 20 nm 
Kintex and 28 nm RT PolarFire are the latest generations. 
The European market is offered with Atmel devices and 
NanoXplore space-grade FPGAs [198]. Table IV shows 
the specifications of the above devices.

B. FPGAs in Space Missions
For space robotics, processing power is of particular 
importance, given the range of information required to 
accurately and efficiently process. Many of the current 
and previous space missions are packed with sophisti-
cated algorithms that are mostly static. They serve to 
increase the efficiency of data transmission; neverthe-
less, data processing is done mainly on the ground. As 
the travel distance of missions increases, transmitting 
all data to, and processing it on the ground is no longer 
an efficient or even viable option due to transmission 
delay. As a result, space robots need to become more 
adaptable and autonomous. They will also need to pre-
process on-board a large amount of data collected and 
compress it before sending it back to Earth [199].

The rapid development of new generation FPGAs 
may fill the need in space robotics. FPGAs enable robot-
ic systems to be reconfigurable in real-time, making the 
systems more adaptable by allowing them to respond 
more efficiently to changes in environment and data. As 
a result, autonomous reconfiguration and performance 
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optimization can be achieved. Also, the FPGAs have a 
high capability for parallel processing, which is useful 
in boosting processing performance. The use of FPGA 
is present in various space robots. Some of the most 
prominent examples of the application are the NASA 
Mars rovers. Since the first pair of rovers were launched 
in 2003, the presence of FPGAs have steadily increased 
in the later rovers.

1) Mars Exploration Rover Missions
Beginning in the early 2000s, NASA have been us-
ing FPGAs in exploration rover control and lander con-
trol. In Opportunity and Spirit, the two Mars rovers 
launched in 2003, two Xilinx Virtex XQVR1000s were 
in the motor control board [200], which operates mo-
tors on instruments as well as rover wheels. In addi-
tion, an Actel RT 1280 FPGA was used in each of the 
20 cameras on the rovers to receive and dispatch 
hardware commands. The camera electronics consist 
of clock driver that provides timing pulses through 
the charge-coupled device (CCD), an IC containing an 
array of linked or coupled capacitors. Also, there are 
signal chains that amplify the CCD output and convert 
it from analog to digital. The Actel FPGA provides the 
timing, logic, and control functions in the CCD signal 
chain and inserts a camera ID into camera telemetry 
to simplify processing [201].

Selected electronic parts have to undergo a multi-
step flight consideration process before utilized in any 
space exploration mission [200], [202]. The first step is 
the general flight approval, during which the manufac-
turers perform additional space-grade verification tests 
beyond the normal commercial evaluation, and NASA 
meticulously examines the results. Additional device 

parameters, such as temperature considerations and 
semiconductor characteristics are verified in these 
tests. What follows is flight-specific approval. In this 
step, NASA engineers examine the device compatibility 
with the mission. For instance, considerations of the op-
erating environment including factors like temperature 
and radiation. Also included are a variety of mission-
specific situations that the robot may encounter and the 
associated risk assessment. Depending on the specific 
application of the device, whether mission critical or 
not, and the expected mission lifetime, the risk stan-
dards varies. Finally, parts go through specific design 
consideration to ensure all the design requirements 
have been met. Parts are examined for their designs ad-
dressing issues such as SEL, SEU, SEFI. The Xilinx FP-
GAs used addressed some of the SEE through the follow-
ing methods [201]:

1) Fabrication processes largely prevents SEL
2) TMR reduces SEU frequency
3) Scrubbing allows device recovery from single event 

functional interrupts
MER went successful and despite being designed for 

only 90 Martian days (1 Martian day = 24.6 hours), con-
tinued until 2019. The implementation of mitigation tech-
niques was also proven to be effective as the observed 
error rate was very similar to that predicted [200].

2) Mars Science Laboratory Mission
Launched in 2011, Mars Science Lab (MSL) was the new 
Rover sent on to Mars. FPGAs were heavily used in its 
key components, mainly responsible for scientific instru-
ment control, image processing, and communications.

Curiosity has 17 cameras on board: four navigation 
cameras, eight hazard cameras, the Mars Hand Lens 

Table IV.  
Specifications of Space-Grade FPGAs.

Device Logic Memory DSPs Technology Rad. Tolerance 

Xilinx Virtex-5QV 81.9 K LUT6 12.3 Mb 320 65 nm SRAM SEE immune up to LET > 100 MeV/(mg · cm2) and 
1 Mrad TID 

Xilinx RT Kintex 
UltraScale

331 K LUT6 38 Mb 2760 20 nm SRAM SEE immune up to LET > 80 MeV/(mg · cm2) and 
100-120 Krads TID 

Microsemi RTG4 150 K LE 5 Mb 462 65 nm Flash SEE immune up to LET > 37 MeV(mg · cm2) and TID 
> 100 Krads

Microsemi RT 
PolarFire 

481 K LE 33 Mb 1480 28 nm Flash SEE immune up to LET > 63 MeV(mg · cm2) and 
300 Krads 

Microsemi RTAX 4 M gates 0.5 Mb 120 150 nm 
antifuse

SEE immune up to LET > 37 MeV(mg · cm2) and 
300 Krads TID 

Atmel ATFEE560 560 K gates 0.23 Mb – 180 nm 
SRAM 

SEL immune up to 95 MeV(mg · cm2) and 60 Krads 
TID 

NanoXplore NG-
LARGE 

137 K LUT4 9.2 Mb 384 65 nm SRAM SEL immune up to 60 MeV(mg · cm2) and 100 
Krads TID 
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Imager (MAHLI), two Mast Cameras, the Mars De-
scent Imager (MARDI), and the ChemCam Remote Mi-
croscopic Imager [203]. MAHLI, the mast cameras, and 
MARDI share the same electronics design. Similar to 
the system used on MER, an Actel FPGA provides the 
timing, logic, and control functions in the CCD signal 
chain and transmits pixels to the digital electronics 
assembly (DEA), which interfaces the camera heads 
with the rover electronics, transmitting command to 
the camera heads and data back to the rover. There is 
one DEA dedicated to each of the imagers above. Each 
is has a Virtex-II FPGA that contains a Microblaze soft-
processor core. All of the core functionalities of the 
DEA, including timing, interface, and compression, 
are implemented in the FPGA as logic peripherals of 
the Microblaze. Specifically, the DEA provides an im-
age processing pipeline that includes 12 to 8-bit com-
manding of input pixels, horizontal subframing, and 
lossless or JPEG image compression [203]. What runs 
on the Microblaze is the DEA flight software, which 
coordinates DEA hardware functions such as camera 
movements. It receives and executes commands, and 
transmits command from the Earth. The flight software 
also implements image acquisition algorithms, includ-
ing autofocus and autoexposure, performs error cor-
rection of flash memory, and mechanism control fault 
protection [203]. In total, the flight software consists 
of 10,000 lines of ANSI C code, all implemented on the 
FPGA. Additionally, FPGAs power communication box-
es (Electra-Lite) to provide critical communication to 
Earth from the rovers through a Mars relay network 
[204]. They are responsible for a variety of high speed 
bulk signal processing.

3) Mars 2020 Mission
Perseverance is NASA’s latest launched Mars rover. The 
presence of FPGA continued and increased. FPGA was 
used in the autonomous driving system as a coproces-
sor for algorithm acceleration for the first time in NASA’s 
planetary rovers. Perseverance runs on the GESTALT 
(grid-based estimation of surface traversability applied 
to local terrain) AutoNav algorithm same as Curiosity 
[205]. Added was the FPGA based accelerator, called 
Vision Compute Element (VCE). During landing, VCE 
serves to provide sufficient computing power for the 
Lander Vision System (LVS), which performs an inten-
sive task of estimates the landing location in 10 seconds 
by fusing data from the designed landing location, IMU, 
and landmark matches. After landing, the connection 
between VCE and LVS is severed. Instead, VCE is repur-
posed for the GESTALT driving algorithm. The VCE has 
three cards plugged into a PCI backplane: a CPU card 
with BAE RAD750 processor, a Compute Element Power 

Conditioning Unit (CEPCU), and a Computer Vision Ac-
celeration Card (CVAC). While the former two parts were 
inherited from the MLS mission, the CVAC is new. It has 
two FPGAs. One is called the Vision Processor–a Xilinx 
Virtex 5QV that contains image processing modules for 
matching landmarks to estimate position. The other is 
called the Housekeeping FPGA–a Microsemi RTAX 2000 
antifuse FPGA that handles tasks such as synchroniza-
tion with the spacecraft, power management, Vision 
Processor configuration.

Through more than two decades of use in space, FPGAs 
have shown their reliability and applicability for space ro-
botic missions. The properties of FPGAs make them good 
onboard processors, ones that have high reliability, 
adaptability, processing power, and power efficiency: 
FPGAs have been used for space robotic missions for 
decades and are proven in reliability; they have unri-
valed adaptability and can even be reconfigured in run 
time; their capability for high degree parallel process-
ing allow significant acceleration in executing many 
complex algorithms; hardware/software co-design 
method makes them potentially more power-efficient. 
They may finally help us close the two-decade perfor-
mance gap between commercial processors and space-
grade ASICs. As a direct result, the achievements that 
the world has made in fields such as deep learning and 
computer vision, which were often too computationally 
intense for space-grade processors to be used, may be-
come applicable for robots in space in the near future. 
The implementation of those new technologies will be 
of great benefit for space robots, boosting their auton-
omy and capabilities and allowing us to explore farther 
and faster.

IX. Conclusion
In this paper, we review the state-of-the-art FPGA-based 
robotic computing accelerator designs and summarize 
their adopted optimized techniques. According to the 
results shown in Section III, IV and V, by co-designing 
both the software and hardware, FPGA can achieve 
more than 10× better performance and energy efficiency 
compared to the CPU and GPU implementations. We also 
review the partial reconfiguration methodology in FPGA 
implementation to further improve the design flexibility 
and reduce the overhead. Finally, by presenting some 
recent FPGA-based robotics applications in commercial 
and space areas, we demonstrate that FPGA has excel-
lent potential and is a promising candidate for robotic 
computing acceleration due to its high reliability, adapt-
ability and power efficiency.

The authors believe that FPGAs are the best com-
pute substrate for robotic applications for several rea-
sons: first, robotic algorithms are still evolving rapidly, 
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and thus any ASIC-based accelerators will be months or 
even years behind the state-of-the-art algorithms; on 
the other hand, FPGAs can be dynamically updated as 
needed. Second, robotic workloads are highly diverse, 
thus it is difficult for any ASIC-based robotic comput-
ing accelerator to reach economies of scale in the near 
future; on the other hand, FPGAs are a cost-effective 
and energy-effective alternative before one type of ac-
celerator reaches economies of scale. Third, compared 
to SoCs that have reached economies of scale, e.g., 
mobile SoCs, FPGAs deliver a significant performance 
advantage. Fourth, partial reconfiguration allows mul-
tiple robotic workloads to time-share an FPGA, thus al-
lowing one chip to serve multiple applications, leading 
to overall cost and energy reduction.

However, FPGAs are still not the mainstream com-
puting substrate for robotic workloads, for several 
reasons: first, FPGA programming is still much more 
challenging than regular software programming, and 
the supply of FPGA engineers is still limited. Second, 
although there is significant progress in the past few 
years in the FPGA High-Level Synthesis (HLS) auto-
mation, such as [206], HLS is still not able to produce 
optimized code, and IP supports for robotic work-
loads are still extremely limited. Third, commercial 
software support for robotic workloads on FPGAs 
is still missing. For instance, there is no official ROS 
support on any commercial FPGA platform today. For 
robotic companies to fully exploit the power of FP-
GAs, these problems need to be first addressed, and 
the authors use these problems to motivate our fu-
ture research work.
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