
48 IEEE CIRCUITS AND SYSTEMS MAGAZINE 1531-636X/21©2021IEEE SECOND QUARTER 2021

Recent researches on robotics have shown significant improve-
ment, spanning from algorithms, mechanics to hardware architec-
tures. Robotics, including manipulators, legged robots, drones,
and autonomous vehicles, are now widely applied in diverse sce-
narios. However, the high computation and data complexity of
robotic algorithms pose great challenges to its applications. On
the one hand, CPU platform is flexible to handle multiple robotic
tasks. GPU platform has higher computational capacities and
easy-to-use development frameworks, so they have been widely
adopted in several applications. On the other hand, FPGA-based
robotic accelerators are becoming increasingly competitive al-
ternatives, especially in latency-critical and power-limited sce-
narios. With specialized designed hardware logic and algorithm
kernels, FPGA-based accelerators can surpass CPU and GPU

in performance and energy efficiency. In this paper, we give an
overview of previous work on FPGA-based robotic accelerators
covering different stages of the robotic system pipeline. An analy-
sis of software and hardware optimization techniques and main
technical issues is presented, along with some commercial and
space applications, to serve as a guide for future work.

I. Introduction

O ver the last decade, we have seen significant
progress in the development of robotics, span-
ning from algorithms, mechanics to hardware

platforms. Various robotic systems, like manipulators,
legged robots, unmanned aerial vehicles, self-driving cars

Digital Object Identifier 10.1109/MCAS.2021.3071609

Date of current version: 24 May 2021

* These authors contributed equally to this work.
Corresponding author: Shaoshan Liu (email: shaoshan.liu@perceptin.io).

Feature

Abstract

A Survey of FPGA-Based
Robotic Computing
Zishen Wan,* Bo Yu,* Thomas Yuang Li, Jie Tang, Yuhao Zhu,
Yu Wang, Arijit Raychowdhury, and Shaoshan Liu

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 IEEE CIRCUITS AND SYSTEMS MAGAZINE 49

Zishen Wan,* School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA and John A. Paulson School of
Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA. Bo Yu,* Thomas Yuang Li and Shaoshan Liu, PerceptIn Inc, Fremont,
CA 94539 USA. Jie Tang, School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China. Yuhao
Zhu, Department of Computer Science, University of Rochester, Rochester, NY 14627 USA. Yu Wang, Department of Electronic Engineering, Tsinghua
University, Beijing, China. Arijit Raychowdhury, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA.

©
S

H
U

T
T

E
R

S
TO

C
K

.C
O

M
/P

O
P

T
IK

A

have been designed for search and rescue [1], [2], explora-
tion [3], [4], package delivery [5], entertainment [6], [7]
and more applications and scenarios. These robots are
on the rise of demonstrating their full potential. Take
drones, a type of aerial robots, as an example, the num-
ber of drones has grown by 2.83x between 2015 and 2019
based on the U.S. Federal Aviation Administration (FAA)
report [8]. The registered number has reached 1.32 mil-
lion in 2019, and the FFA expects this number will come to
1.59 billion by 2024.

However, robotic systems are pretty complicated
[9]–[11]. They tightly integrate many technologies and

algorithms, including sensing, percep-
tion, mapping, localization, decision
making, control, etc. This complexity
poses many challenges for the design
of robotic edge computing systems [12],
[13]. On the one hand, the robotic system
needs to process an enormous amount
of data in real-time. The incoming data
often comes from multiple sensors and
is highly heterogeneous. However, the
robotic system usually has limited on-
board resources, such as memory stor-
age, bandwidth, and compute capabili-
ties, making it hard to meet the real-time
requirements. On the other hand, the
current state-of-the-art robotic system
usually has strict power constraints on
the edge that cannot support the amount
of computation required for performing
tasks, such as 3D sensing, localization,
navigation, and path planning. Therefore,
the computation and storage complex-
ity, as well as real-time and power con-
straints of the robotic system, hinder its
wide application in latency-critical or
power-limited scenarios [14].

Therefore, it is essential to choose a proper compute
platform for the robotic system. CPU and GPU are two
widely used commercial compute platforms. CPU is de-
signed to handle a wide range of tasks quickly and is of-
ten used to develop novel algorithms. A typical CPU can
achieve 10-100 GFLOPS with below 1GOP/J power effi-
ciency [15]. In contrast, GPU is designed with thousands
of processor cores running simultaneously, which en-
able massive parallelism. A typical GPU can perform up
to 10 TOPS performance and become a good candidate

for high-performance scenarios. Recently, benefiting in
part from the better accessibility provided by CUDA/
OpenCL, GPU has been predominantly used in many
robotic applications. However, conventional CPU and
GPUs usually consume 10 W to 100 W of power, which
are orders of magnitude higher than what is available on
the resource-limited robotic system.

Besides CPU and GPU, FPGAs are attracting attention
and becoming a platform candidate to achieve energy-effi-
cient robotics tasks processing. FPGAs require little pow-
er and are often built into small systems with less memory.
They have the ability to parallel computations massively
and makes use of the properties of perception (e.g., ste-
reo matching), localization (e.g., SLAM), and planning
(e.g., graph search) kernels to remove additional logic
and simplify the implementation. Taking into account
hardware characteristics, several algorithms are pro-
posed which can be run in a hardware-friendly way and
achieve similar software performance. Therefore, FP-
GAs are possible to meet real-time requirements while
achieving high energy efficiency compared to CPUs
and GPUs.

Unlike the ASIC counterparts, FPGA technology pro-
vides the flexibility of on-site programming and re-pro-
gramming without going through re-fabrication with a
modified design. Partial Reconfiguration (PR) takes this
flexibility one step further, allowing the modification of
an operating FPGA design by loading a partial configu-
ration file. Using PR, part of the FPGA can be reconfig-
ured at runtime without compromising the integrity of
the applications running on those parts of the device
that are not being reconfigured. As a result, PR can al-
low different robotic applications to time-share part of
an FPGA, leading to energy and performance efficiency,
and making FPGA a suitable computing platform for dy-
namic and complex robotic workloads.

FPGAs have been successfully utilized in commercial
autonomous vehicles. Particularly, over the past three
years, PerceptIn has built and commercialized autono-
mous vehicles for micromobility, and PerceptIn’s prod-
ucts have been deployed in China, US, Japan and Switzer-
land. In this paper, we review how PerceptIn developed
its computing system by relying heavily on FPGAs, which
perform not only heterogeneous sensor synchroniza-
tions, but also the acceleration of software components
on the critical path. In addition, FPGAs are used heavily
in space robotic applications, for FPGAs offered unprec-
edented flexibility and significantly reduced the design

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

50 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2021

cycle and development cost. In this paper, we also delve
into space-grade FPGAs for robotic applications.

The rest of paper is organized as follows: Section II
introduces the basic workloads of the robotic system.
Section III, IV and V reviews the various perception, local-
ization and motion planning algorithms and their imple-
mentations on FPGA platforms. In section VI, we discuss
about FPGA partial reconfiguration techniques. Section
VII and VIII present robotics FPGA applications in com-
mercial and space areas. Section IX concludes the paper.

II. Overview of Robotics workloads

A. Overview
Robotics is not one technology but rather an integration
of many technologies. As shown in Fig 1, the stack of
the robotic system consists of three major components:
application workloads, including sensing, perception,
localization, motion planning, and control; a software edge
subsystem, including operating system and runtime lay-
er; and computing hardware, including both microcon-
trollers and companion computers.

We focus on the robotic application workloads in this
section. The application subsystem contains multiple algo-
rithms that are used by the robot to extract meaningful in-
formation from raw sensor data to understand the environ-
ment and dynamically make decisions about its actions.

B. Sensing
The sensing stage is responsible for extracting meaning-
ful information from the sensor raw data. To enable intel-
ligent actions and improve reliability, the robot platform
usually supports a wide range of sensors. The number
and type of sensors are heavily dependent on the specifi-
cations of the workload and the capability of the onboard
compute platform. The sensors can include the following:

Cameras. Cameras are usually used for object rec-
ognition and object tracking, such as lane detection in
autonomous vehicles and obstacle detection in drones,
etc. RGB-D camera can also be utilized to determine
object distances and positions. Take autonomous ve-
hicle as an example, the current system usually mounts
eight or more 1080p cameras around the vehicle to de-
tect, recognize and track objects in different directions,
which can greatly improve safety. Usually, these cam-
eras run at 60 Hz, which will process multiple gigabytes
of raw data per second when combined.

GNSS/IMU. The global navigation satellite system
(GNSS) and inertial measurement unit (IMU) system
help the robot localize itself by reporting both inertial
updates and an estimate of the global location at a high
rate. Different robots have different requirements for lo-
calization sensing. For instance, 10 Hz may be enough
for low-speed mobile robots, but high-speed autono-
mous vehicles usually demand 30 Hz or higher for local-
ization, and high-speed drones may need 100 Hz or more
for localization, thus we are facing a broad spectrum of
sensing speeds. Fortunately, different sensors have their
own advantages and drawbacks. GNSS can enable fairly
accurate localization, while it runs at only 10 Hz, thus un-
able to provide real-time updates. By contrast, both ac-
celerometer and gyroscope in IMU can run at 100–200 Hz,
which can satisfy the real-time requirement. However,
IMU suffers bias wandering over time or perturbation by
some thermo-mechanical noise, which may lead to an
accuracy degradation in the position estimates. By com-
bining GNSS and IMU, we can get accurate and real-
time updates for robots.

LiDAR. Light detection and ranging (LiDAR) is used
for evaluating distance by illuminating the obstacles
with laser light and measuring the reflection time. These
pulses, along with other recorded data, can generate
precise and three-dimensional information about the
surrounding characteristics. LiDAR plays an important
role in localization, obstacle detection and avoidance.
As indicated in [16], the choice of sensors dictates the
algorithm and hardware design. Take autonomous driv-
ing as an instance, almost all the autonomous vehicle
companies use LiDAR at the core of their technologies.
Examples include Uber, Waymo, and Baidu. PerceptIn
and Tesla are among the very few that do not use Li-
DAR and, instead, rely on cameras and vision-based
systems, and in particular PerceptIn’s data demon-
strated that for the low-speed autonomous driving sce-
nario, LiDAR processing is slower than camera-based
vision processing, but increases the power consump-
tion and cost.

Radar and Sonar. The Radio Detection and Rang-
ing (Radar) and Sound Navigation and Ranging (Sonar)

GPS/IMU

LiDAR

Camera

Sensing Perception Decision

Path Planning

Action Prediction

Obstacle AvoidanceObject Detection

Object Tracking

Mapping

Localization

Radar/Sonar Feedback Control

Operating System

Hardware Platform

Figure 1. The stack of the robotic system.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 IEEE CIRCUITS AND SYSTEMS MAGAZINE 51

system is used to determine the distance and speed to
a certain object, which usually serves as the last line
of defense to avoid obstacles. Take autonomous vehicle
as an example, a danger of collision may occur when
near obstacles are detected, then the vehicle will apply
brakes or turn to avoid obstacles. Compared to LiDAR,
the Radar and Sonar system is cheaper and smaller, and
their raw data is usually fed to the control processor
directly without going through the main compute pipe-
line, which can be used to implement some urgent func-
tions as swerving or applying the brakes.

C. Perception
The sensor data is then fed into the perception layer
to sense the static and dynamic objects, and build a
reliable and detailed representation of the robot’s envi-
ronment using computer vision techniques (including
deep learning).

The perception layer is responsible for object detec-
tion, segmentation and tracking. There are obstacles,
lane dividers and other objects to detect. Traditionally,
a detection pipeline starts with image pre-processing,
followed by a region of interest detector and then a
classifier that outputs detected objects. In 2005, Dalal
and Triggs [17] proposed an algorithm based on histo-
gram of orientation (HOG) and support vector machine
(SVM) to model both the appearance and shape of the
object under various condition. The goal of segmenta-
tion is to give the robot a structured understanding
of its environment. Semantic segmentation is usually
formulated as a graph labeling problem with vertices
of the graph being pixels or super-pixels. Inference al-
gorithms on graphical models such as conditional ran-
dom field (CRF) [18], [19] are used. The goal of tracking
is to estimate the trajectory of moving obstacles. Track-
ing can be formulated as a sequential Bayesian filter-
ing problem by recursively running the prediction step
and correction step. Tracking can also be formulated
by tracking-by-detection handling with Markovian deci-
sion process (MDP) [20], where an object detector is
applied to consecutive frames and detected objects are
linked across frames.

In recent years, deep neural networks (DNN), also
known as deep learning, have greatly affected computer
vision and made significant progress in solving robot
perception problems. Most state-of-the-art algorithms
now apply one type of neural network based on con-
volution operation. Fast R-CNN [21], Faster R-CNN [22],
SSD [23], YOLO [24], and YOLO9000 [25] were used to
get much better speed and accuracy in object detection.
Most CNN-based semantic segmentation work is based
on Fully Convolutional Networks (FCN) [26], and there
are some recent work in spatial pyramid pooling net-

work [27] and pyramid scene parsing network (PSPNet)
[28] to combine global image-level information with the
locally extracted feature. By using auxiliary natural im-
ages, a stacked autoencoder model can be trained of-
fline to learn generic image features and then applied for
online object tracking [29].

D. Localization
The localization layer is responsible for aggregating
data from various sensors to locate the robot in the en-
vironment model.

GNSS/IMU system is used for localization. The GNSS
consist of several satellite systems, such as GPS, Galileo
and BeiDou, which can provide accurate localization re-
sults but with a slow update rate. In comparison, IMU
can provide a fast update with less accurate rotation
and acceleration results. A mathematical filter, such as
Kalman Filter, can be used to combine the advantages of
the two and minimize the localization error and latency.
However, this sole system has some problems, such as
the signal may bounce off obstacles, introduce more
noise, and fail to work in closed environments.

LiDAR and High-Definition (HD) maps are used for
localization. LiDAR can generate point clouds and pro-
vide a shape description of the environment, while it
is hard to differentiate individual points. HD map has a
higher resolution compared to digital maps and makes
the route familiar to the robot, where the key is to fuse
different sensor information to minimize the errors in
each grid cell. Once the HD map is built, a particle fil-
ter method can be applied to localize the robot in real-
time correlated with LiDAR measurement. However,
the LiDAR performance may be severely affected by
weather conditions (e.g., rain, snow) and bring local-
ization error.

Cameras are used for localization as well. The pipe-
line of vision-based localization is simplified as follows:
1) by triangulating stereo image pairs, a disparity map is
obtained and used to derive depth information for each
point; 2) by matching salient features between successive
stereo image frames in order to establish correlations
between feature points in different frames, the motion
between the past two frames is estimated; and 3) by com-
paring the salient features against those in the known
map, the current position of the robot is derived [30].

Apart from these techniques, sensor fusion strategy
is also often utilized to combine multiple sensors for lo-
calization, which can improve the reliability and robust-
ness of robot [31], [32].

E. Planning and Control
The planning and control layer is responsible for generat-
ing trajectory plans and passing the control commands

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

52 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2021

based on the original and destination of the robot.
Broadly, prediction and routing modules are also in-
cluded here, where their outputs are fed into down-
stream planning and control layers as input. The pre-
diction module is responsible for predicting the future
behavior of surrounding objects identified by the per-
ception layer. The routing module can be a lane-level
routing based on lane segmentation of the HD maps for
autonomous vehicles.

Planning and Control layers usually include behav-
ioral decision, motion planning and feedback control.
The mission of the behavioral decision module is to
make effective and safe decisions by leveraging all
various input data sources. Bayesian models are be-
coming more and more popular and have been applied
in recent works [33], [34]. Among the Bayesian mod-
els, Markov Decision Process (MDP) and Partially Ob-
servable Markov Decision Process (POMDP) are the
widely applied methods in modeling robot behavior.
The task of motion planning is to generate a trajectory
and send it to the feedback control for execution. The
planned trajectory is usually specified and represent-
ed as a sequence of planned trajectory points, and
each of these points contains attributes like location,
time, speed, etc. Low-dimensional motion planning
problems can be solved with grid-based algorithms
(such as Dijkstra [35] or A* [36]) or geometric algo-
rithms. High-dimensional motion planning problems
can be dealt with sampling-based algorithms, such as
Rapidly-exploring Random Tree (RRT) [37] and Prob-
abilistic Roadmap (PRM) [38], which can avoid the
problem of local minima. Reward-based algorithms,
such as the Markov decision process (MDP), can also
generate the optimal path by maximizing cumula-
tive future rewards. The goal of feedback control is
to track the difference between the actual pose and
the pose on the predefined trajectory by continuous
feedback. The most typical and widely used algorithm
in robot feedback control is PID.

While optimization-based approaches enjoy main-
stream appeal in solving motion planning and control
problems, learning-based approaches [39]–[43] are be-
coming increasingly popular with recent developments
in artificial intelligence. Learning-based methods, such
as reinforcement learning, can naturally make full use of
historical data and iteratively interact with the environ-
ment through actions to deal with complex scenarios.
Some model the behavioral level decisions via reinforce-
ment learning [41], [43], while other approaches directly
work on motion planning trajectory output or even
direct feedback control signals [40]. Q-learning [44],
Actor-Critic learning [45], policy gradient [38] are some
popular algorithms in reinforcement learning.

III. Perception on FPGA

A. Overview
Perception is related to many robotic applications where
sensory data and artificial intelligence techniques are
involved. Examples of such applications include stereo
matching, object detection, scene understanding, seman-
tic classification, etc. The recent developments in ma-
chine learning, especially deep learning, have exposed
robotic perception systems to more tasks. In this section,
we will focus on the recent algorithms and FPGA imple-
mentations in the stereo vision system, which is one of
the key components in the robotic perception stage.

Real-time and robust stereo vision systems are in-
creasingly popular and widely used in many percep-
tion applications, e.g., robotics navigation, obstacle
avoidance [46] and scene reconstruction [47]–[49]. The
purpose of stereo vision systems is to obtain 3 D struc-
ture information of the scene using stereoscopic rang-
ing techniques. The system usually has two cameras to
capture images from two points of view within the same
scenario. The disparities between the corresponding
pixels in two stereo images are searched using stereo
matching algorithms. Then the depth information can
be calculated from the inverse of this disparity.

Throughout the whole pipeline, stereo matching is
the bottleneck and time-consuming stage. The stereo
matching algorithms can be mainly classified into two
categories: local algorithms [50]–[56] and global algo-
rithms [57]–[61]. Local methods compute the dispari-
ties by only processing and matching the pixels around
the points of interest within windows. They are fast
and computationally-cheap, and the lack of pixel de-
pendencies makes them suitable for parallel accelera-
tion. However, they may suffer in textureless areas and
occluded regions, which will result in incorrect dispari-
ties estimation.

In contrast, global methods compute the disparities
by matching all other pixels and minimizing a global
cost function. They can achieve much higher accuracy
than local methods. However, they tend to come at high
computation cost and require much more resources due
to their large and irregular memory access as well as
the sequential nature of algorithms, thus not suitable for
real-time and low-power applications. Many research
works in stereo systems focus on the speed and accu-
racy improvement of stereo matching algorithms, and
some of the implementations are summarized in Tab. I

B. Local Stereo Matching on FPGA
Local algorithms are usually based on correlation, where
the process involves finding matching pixels in the left
and right image patches by aggregating costs within a

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 IEEE CIRCUITS AND SYSTEMS MAGAZINE 53

specific region. There are many ways for cost aggrega-
tion, such as the sum of absolute differences (SAD) [62],
the sum of squared differences (SSD) [63], normalized
cross-correlation (NCC) [64], and census transform
(CT) [65]. Many FPGA implementations are based on
these methods. Jin et al. [66] develop a real-time ste-
reo vision system based on census rank transformation
matching cost for 640 × 480 resolution images. Zhang et
al. [67] propose a real-time high definition stereo match-
ing design on FPGA based on mini-census transform
and cross-based cost aggregation, which achieves 60
fps at 1024 × 768 pixel stereo images. The implementa-
tion of Honegger et al. [68] achieves 127 fps at 376 × 240
pixel resolution with 32 disparity levels based on block
matching. Jin et al. [69] further achieve 507.9 fps for

640 × 480 resolution images by applying fast local consis-
tent dense stereo functions and cost aggregation.

C. Global Stereo Matching on FPGA
Global algorithms can provide state-of-the-art accuracy
and disparity map quality, however, they are usually
processed through high computational-intensive optimi-
zation techniques or massive convolutional neural net-
works, making them difficult to be deployed on resource-
limited embedded systems for real-time applications.
However, some works have attempted to implement glob-
al algorithms on FPGA for better performance. Park et al.
[70] present a trellis-based stereo matching system on
FPGA with a low error rate and achieved 30 fps at 320 × 240
resolution with 128 disparity levels. Sabihuddin et al. [71]

Table I.
Comparison of Stereo Vision Systems on FPGA platforms, across local stereo matching, global stereo matching,
semi-global stereo matching (SGM) and efficient large-scale stereo matching (ELAS) algorithms. The results reported
in each design are evaluated by frame rate (fps), image resolution (width # height), disparity levels, million disparity
estimations per second (MDE/s), power (W), resource utilization (logic% and BRAM%) and hardware platforms, where
MDE/s = width # height # fps # disparity.

Algorithm Reference

Frame
Rate
(FPS)

Image
Resolution
(Width #
Height)

Disparity
Level MDE/s

Power
(W)

Resource(%)
Logic/BRAM FPGA Platform

Local
Stereo
Matching

Jin et al. [66]
Zhang et al.
[67]
Honegger
et al. [68]
Jin et al. [69]

230
60
127
507.9

640 # 480
1024 # 768
376 # 240
640 # 480

64
64
32
60

4522
3020
367
9362

–
1.56
2.8
3.35

34.0/95.0
61.8/67.0
49.0/68.0
81.0/39.7

Xilinx Virtex-4
XC4VLX200-10
Altera EP3SL150
AItera Cyclone III
EP3C80
Xilinx Vertex-6

Global
Stereo
Matching

Park et al. [70]
Sabihuddin et
al. [71]
Jin et al. [72]
Zha et al. [59]
Puglia et al.
[60]

30
63.54
32
30
30

320 # 240
640 # 480
640 # 480
1920 # 1680
1024 # 768

128
128
60
60
64

295
2498
590
5806
1510

–
–
1.40
–
0.17

–/–
23.0/58.0
72.0/46.0
84.8/91.9
57.0/53.0

Xilinx Virtex II
pro-100
Xilinx XC2VP100
Xilinx XC4VLX160
Xilinx Kintex 7
Xilinx Virtex-7
XC7Z020CLG484-1

Semi-
Global
Stereo
Matching

Banz et al. [74]
Wang et al.
[75]
Cambuim
et al. [76]
Rahnama
et al. [77]
Cambuim
et al. [78]
Zhao et al.
[79]

37
42.61
127
72
25
147

640 # 480
1600 # 1200
1024 # 768
1242 # 375
1024 # 768
1242 # 375

128
128
128
128
256
64

1455
10472
12784
4292
5033
4382

2.31
2.79
–
3.94
6.5
9.8

51.2/43.2
93.9/97.3
–/–
75.7/30.7
50.0/38.0
68.7/38.7

Xilinx Virtex-5
Altera 5SGSMD5K2
AItera Cyclone IV
Xilinx ZC706
AItera Cyclone IV
GX, Stratix IV GX
Xilinx Ultrascale +
ZCU102

Efficient
Large-
Scale
Stereo
Matching

Rahnama
et al. [80]
Rahnama
et al. [81]

47
50

1242 # 375
1242 # 375

–
–

–
–

2.91
5

11.9/15.7
70.7/8.7

Xilinx ZC706
Xilinx ZCU104

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

54 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2021

implement a dynamic programming maximum likeli-
hood (DPML) based hardware architecture for dense
binocular disparity estimation and achieved 63.54 fps at
640 × 480 pixel resolution with 128 disparity levels. The
design in Jin et al. [72] uses a tree-structured dynamic
programming method, and achieves 58.7 fps at 640 × 480
resolution as well as a low error rate. Recently, some
other adaptations of global approaches for FPGA-imple-
mentation have been proposed, such as cross-trees [59],
dynamic programming for DNA sequence alignment [60],
and graph cuts [73], where all of these implementations
achieve real-time processing.

D. Semi-Global Matching on FPGA
Semi-global matching (SGM) [82] bridges the gap be-
tween local and global methods, and achieves a notable
improvement in accuracy. SGM calculates the initial
matching disparities by comparing local pixels, and
then approximates an image-wide smoothness con-
straint with global optimization, which can obtain more
robust disparity maps through this combination. There
are several critical challenges for implementing SGM on
hardware, e.g., data dependence, high complexity, and
large storage, so this is an active research field with
recent works proposing FPGA-friendly variants of SGM
[74], [75], [83]–[85].

Banz et al. [74] propose a systolic-array based hard-
ware architecture for SGM disparity estimation along
with a two-dimensional parallelization concept for SGM.
This design achieves 30 fps performance at 640 × 480
pixel images with a 128-disparity range on the Xilinx
Virtex-5 FPGA platform. Wang et al. [75] implement a
complete real-time FPGA-based hardware system that
supports both absolute difference-census cost initial-
ization, cross-based cost aggregation and semi-global
optimization. The system achieves 67 fps at 1024 × 768
resolution with 96 disparity levels on the Altera Stratix-
IV FPGA platform, and 42 fps at 1600 × 1200 resolution
with 128 disparity levels on the Altera Stratix-V FPGA
platform. The design in Cambuim et al. [76] uses a scal-
able systolic-array based architecture for SGM based on
the Cyclone IV FPGA platform, and it achieves a 127 fps
image delivering rate in 1024 × 768 pixel HD resolution
with 128 disparity levels. The key point of this design
is the combination of disparity and multi-level paral-
lelisms such as image line processing to deal with data
dependency and irregular data access pattern problems
in SGM. Later, to improve the robustness of SGM and
achieve a more accurate stereo matching, Cambuim
et al. [78] combine the sampling-insensitive absolute
difference in the pre-processing phase, and propose
a novel streaming architecture to detect noisy and
occluded regions in the post-processing phase. The

design is evaluated in a full stereo vision system using
two heterogeneous platforms, DE2i-150 and DE4, and
achieves a 25 fps processing rate in 1024 × 768 HD maps
with 256 disparity levels.

While most existing SGM designs on FPGA are imple-
mented using the register-transfer level (RTL), some
works leveraged the high-level synthesis (HLS) ap-
proach. Rahnama et al. [77] implement an SGM varia-
tion on FPGA using HLS, which achieves 72 fps speed at
1242 × 375 pixel size with 128 disparity levels. To reduce
the design effort and achieve an appropriate balance
among speed, accuracy and hardware cost, Zhao et al.
[79] recently propose FP-Stereo for building high-perfor-
mance SGM pipelines on FPGAs automatically. A series
of optimization techniques are applied in this system to
exploit parallelism and reduce resource consumption.
Compared to GPU designs [86], it achieves the same ac-
curacy at a competitive speed while consuming much
less energy.

To compare these implementations, the depth qual-
ity of are evaluated on Middlebury Benchmark [87],
with four image pairs Tsukuba, Venus, Teddy, Cones. As
shown in Tab. II, there is a general trade-off between
accuracy and processing speed. The stereo vision sys-
tem designs in Tab. I are drawn as points in Fig. 2 (if
both power and speed number are reported), using
log10 (power) as x-coordinate and log10 (speed) as y-
coordinate (y – x = log10 (energy_efficiency)). Besides
FPGA-based implementations, we also plot GPU and
CPU experimental results as a comparison to FPGA de-
signs’ performance. In general, local and semi-global
stereo matching designs have achieved higher perfor-
mance and energy efficiency than global stereo match-
ing designs. As introduced in section III-C, global stereo
matching algorithms usually involve massive computa-
tional-intensive optimization techniques. Even for the
same design, varying design parameters (e.g., window
size) may result in a 10x difference in energy efficiency.
Compared to GPU and CPU-based designs, FPGA-based
designs have achieved higher energy efficiency, and the
speed of many FPGA implementations have surpassed
general-purpose processors.

E. Efficient Large-Scale Stereo Matching on FPGA
Another popular stereo matching algorithm that offers a
good trade-off between speed and accuracy is Efficient
Large-Scale Stereo Matching (ELAS) [90], which is cur-
rently one of the fastest and accurate CPU algorithms
concerning the resolution on Middlebury dataset. ELAS
implements a slanted plane prior very effectively while
its dense estimation of depth is completely decompos-
able over all pixels, which make it attractive for eas-
ily parallelized.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 IEEE CIRCUITS AND SYSTEMS MAGAZINE 55

Rahnama et al. [80] first implement and evaluate
an FPGA accelerated adaptation of the ELAS algo-
rithm, which achieved a frame rate of 47 fps (up to
30× compared high-end CPU) while consuming un-
der 4 W of power. By taking advantage of different
components on the SoC, several elaboration blocks
such as feature extraction and dense matching are
executed on FPGA, while I/O and other conditional/
sequential blocks are executed on ARM-core CPU.
The authors also reveal the strategy to accelerate
complex and computationally diverse algorithms
for low power and real-time systems by collabora-
tively utilizing different compute components. Lat-
er, by leveraging and combining the best features
of SGM and ELAS-based methods, Rahnama et al.
[81] propose a sophisticated stereo approach and
achieve an 8.7% error rate on the challenging KITTI
2015 dataset at over 50 fps, with a power consump-
tion of only 4.5 W.

F. CNN-Based Stereo Vision System on FPGA
Convolutional neural networks (CNNs) have been
demonstrated to perform very well on many vision
tasks such as image classification, object detec-
tion, and semantic segmentation. Recently, CNN has
also been utilized in stereo estimation [91], [92] and
stereo matching [93]. CNN is applied to determine
SGM penalties [94], estimate real-time optical flow
disparity [95] and predict cost volume computation
and aggregation [96].

CNN has been deployed on FPGA platforms in several
works [97]–[100], with an example of lightweight YO-
LOv2 for object detection [101]. Nakahara et al. imple-
ment a pipelined-based architecture for lightweight
YOLOv2 with a binarized CNN on Xilinx ZCU102 FPGA
platform. This design achieves a 40.81 fps object de-
tection speed, which is 177.4× faster than ARM Cortex-
A57 and 27.5× faster than NVIDIA Pascal embedded
GPU. Many FPGA-based CNN accelerator implementa-
tions have been summarized in [15].

IV. Localization on FPGA

A. Overview
For robots, one of the most critical tasks is localization
and mapping. Simultaneous Localization and Mapping
(SLAM) is an advanced robot navigation algorithm for
constructing or updating a map of unknown surround-
ings while simultaneously keeping tracking the robot’s
location. Localization and mapping are two concur-
rent tasks and cannot be solved independently from
each other. Localizing a robot requires a sufficiently
detailed map, and constructing or updating or a map

Ta
bl

e
II.

A

co
m

pa
ri

so
n

be
tw

ee
n

di
ff

er
en

t d
es

ig
ns

 o
n

pe
rf

or
m

an
ce

 (M
D

E/
s)

 a
nd

 a
cc

ur
ac

y
re

su
lts

 o
n

M
id

dl
eb

ur
y

Be
nc

hm
ar

k.

(T
he

 lo
w

er
 o

f a
ve

ra
ge

 b
ad

 p
ix

el
 ra

te
 m

ea
ns

 th
e

be
tte

r s
te

re
o

m
at

ch
in

g
pe

rf
or

m
an

ce
.)

Re
fe

re
nc

e
M

D
E/

s
Ts

uk
ub

a
Ve

nu
s

Te
dd

y
Co

ne
s

Av
er

ag
e

Ba
d

Pi
xe

l R
at

e

no
no

cc
1

al
l2

di
sc

3
no

no
cc

al
l

di
sc

no
no

cc
al

l
di

sc
no

no
cc

al
l

di
sc

Sh
an

 e
t a

l.
[8

8]

15
43

7
—

24
.5

—

—
15

.7
—

—
15

.1
—

—

14
.1

—

al
l =

 1
7.

3

Sh
an

 e
t a

l.
[8

9]

13
07

6
3.

62

4.
15

14

.0

0.
48

0.

87
2.

79
7.

54

14
.7

19
.4

3.
51

11

.1
9.

64
7.

65

W
an

g
et

 a
l.

[7
5]

10
47

2
2.

39

3.
27

8.

87

0.
38

0.

89
1.

92
6.

08

12
.1

15
.4

2.
12

7.

74
6.

19
5.

61

Ji
n

et
 a

l.
[6

9]

93
62

1.

66

2.
17

7.

64

0.
4

0.
6

1.
95

6.
79

12

.4
17

.1
3.

34

8.
97

9.
62

6.
05

Ji
n

et
 a

l.
[6

6]

45
22

9.

79

11
.6

20

.3

3.
59

5.

27
36

.8
12

.5

21
.5

30
.6

7.
34

17

.6
21

.0
17

.2

Zh
an

g
et

 a
l.

[6
7]

30
20

3.

84

4.
34

14

.2

1.
2

1.
68

5.
62

7.1
7

12
.6

17
.4

5.
41

11

.0
13

.9
8.

2

Ba
nz

 e
t a

l.
[7

4]

14
55

4.

1
—

—
2.

7
—

—
11

.4

—
—

8.
4

—
—

no

no
cc

 =
 6

.7

Ji
n

et
 a

l.
[7

2]

59
0

1.
43

2.

51

6.
6

2.
37

2.

97
13

.1
8.

11

13
.6

15
.5

8.
12

13

.8
16

.4
8.

71

1n
on

oc
c:

 a
ve

ra
ge

 p
er

ce
nt

ag
e

of
 b

ad
 p

ix
el

s
in

 n
on

-o
cc

lu
de

d
re

gi
on

s.
2a

ll:
 a

ve
ra

ge
 p

er
ce

nt
ag

e
of

 b
ad

 p
ix

el
s

in
 a

ll
re

gi
on

s.
3d

is
c:

 a
ve

ra
ge

 p
er

ce
nt

ag
e

of
 b

ad
 p

ix
el

s
in

 d
is

co
nt

in
uo

us
 re

gi
on

s.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

56 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2021

requires accurate landmarks or pose estimates from
known positions.

Many SLAM algorithms have been developed in the
last decades to improve the accuracy and robustness,
and its implementation comes in a diverse set of sizes
and shapes. One end of the spectrum is dense SLAM
algorithms [102]–[105], which can generate high-qual-
ity maps of the environment with complex computa-
tions. Dense SLAM algorithms usually are executed on
powerful and high-performance machines to ensure
real-time performance. At the same time, the intensive
computation characteristic makes dense SLAM hard to
deploy on edge devices. The other end of the spectrum
is sparse SLAM [106]–[109], which is computationally
light by only selecting limited numbers of landmarks
or features.

To form a compromise in terms of compute intensi-
ty and accuracy quality between these two extremes,
a family of works described as semi-dense SLAM has
emerged [110], [111]. They aim to achieve better compu-
tational efficiency compared to dense methods by only
processing a subset of high-quality sensory information
while providing a more dense and informative map com-
pared to sparse methods.

A typical SLAM system includes two components:
the front-end and the back-end, which are with different
computational characteristics. The front-end associates

sensory measurements in consecutive frames to physi-
cal landmarks. It incrementally deduces the robot mo-
tion by applying geometry constraints on the associated
sensory observations. The back-end tries to minimize
errors introduced from sensory measurement noises by
performing optimizations on a batch of observed land-
marks and tracked poses. Filter based (e.g., Extended
Kalman Filter) and numerical optimization based (e.g.,
bundle adjustment) algorithms are two prevalent meth-
ods for SLAM back-end.

A critical challenge to mobile robot localization is
accuracy and efficiency under stringent power and re-
source constraints. To avoid losing tracked features due
to large motions between consecutive frames, SLAM
systems need to process sensory data at a high frame
rate. For example, open data sets for evaluating local-
ization algorithms [112], [113] for drones and vehicles
provide images at 10 to 20 fps. Low power computing
systems are always required to extend the battery life
of mobile robots. Most SLAM algorithms are developed
on CPU or GPU platforms, of which power consump-
tion is hundreds of Watts. To execute SLAM efficiently
on mobile robots and meet real-time and power con-
straints, specialized chips and accelerators have been
developed. FPGA SoCs provide rich sensor interfaces,
dedicated hardware logic and programmability, hence
they have been explored in diverse ways in recent years.

105 MDE/J

104 MDE/J

102 MDE/J

103 MDE/J

[72]

[67]

[68]

[69]

NVIDIA Tegra X1 [86]

NVIDIA Jetson TX2 [79]

Intel Core i7 [86]
[77]

[77] [77]

[77]

[74]

[75]

[85]

[77]

[78]
[77]

[79]

[84]

[83]

[79]

[78]
[79]
[79] [79]

NVIDIA Titan X [79]

NVIDIA Titan X [86]

NVIDIA Titan X [86]

NVIDIA Titan X [86]

4.5

4

3.5

3

2.5

Lo
g1

0
(S

pe
ed

/M
D

E
/s

)

0.5 1 1.5
Log10 (Power/W)

2 2.5

Local Stereo Matching Global Stereo Matching Semi-Global Stereo Matching GPU CPU

Figure 2. A comparison between different designs for perception tasks on a logarithm coordinate of power (W) and performance
(MDE/s).

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 IEEE CIRCUITS AND SYSTEMS MAGAZINE 57

We summarize and discuss FPGA-based accelerators for
SLAMs in the following sections.

B. Dense SLAM on FPGA
Dense SLAM can construct high quality and complete
models of the environment, and most of them are run-
ning in high-end hardware platforms (especially GPU).
One of the representative real-time dense SLAM algo-
rithms is KinectFusion [114], which was released by Mi-
crosoft in 2011. As a scene reconstruction algorithm, it
continuously updates the global 3D map and tracks the
location of depth cameras within the surrounding envi-
ronment. KinectFusion is generally composed of three
algorithms: ray-casting algorithm for generating graph-
ics from surface information, iterative closest point
(ICP) algorithm for camera-tracking and volumetric in-
tegration (VI) algorithm for integrating depth streams
into the 3D surface. Several works have attempted to
implement real-time dense SLAM algorithms on a het-
erogeneous system with FPGA embedded.

Several works implement computationally inten-
sive components of dense SLAMs, such as ICP and VI,
on FPGA to accelerate the critical path. Belshaw [102]
presents an FPGA implementation of the ICP algorithm,
which achieves over 200 fps tracking speed with low
tracking errors. This design divides the ICP algorithm
into filtering, nearest neighbor, transform recovery and
transform application stages. It leverages fixed-point
arithmetic and the power of two data points to utilize
FPFA logic efficiently. Williams [103] notices that the
nearest neighbor search takes up the majority of ICP
runtime, and then proposes two hybrid CPU-FPGA
architectures to accelerate the bottleneck of the ICP-
SLAM algorithm. The implementation is performed with
Vivado HLS, a high-level synthesis tool from Xilinx, and
achieves a maximum 17.22× speedup over the ARM soft-
ware implementation. Hoorick [104] presents an FPGA-
based heterogeneous framework using a similar HLS
method to accelerate the KinectFusion algorithm and
explored various ways of dataflow and data manage-
ment patterns. Gautier et al. [105] embed both ICP and
VI algorithms on an Altera Stratix V FPGA by using the
OpenCL language and the Altera OpenCL SDK. This de-
sign was a heterogeneous system with NVIDIA GTX 760
GPU and Altera Stratix V FPGA. By distributing different
workloads on different parts of SoC, the entire system
achieves up to 28 fps real-time speed.

C. Sparse SLAM on FPGA
Sparse SLAM algorithms usually use a small set of fea-
tures to track and maintain a sparse map of surround-
ing environments. These algorithms exhibit lower power
consumption but are limited to the localization accuracy.

1) EKF-SLAM
EKF-SLAM [106] is a class of algorithms that utilizes
the extended Kalman Filter (EKF) for SLAM. EKF-SLAM
algorithms are typically feature-based and use the
maximum likelihood algorithm for data association.
Several heterogeneous architectures using multi-core
CPUs, GPUs, DSPs, and FPGAs are proposed to acceler-
ate the complex computation in EKF-SLAM algorithms.
Bonato et al. [115] presents the first FPGA-based ar-
chitecture for the EKF-SLAM based algorithm that is
capable of processing 2 D maps at up to 1800 features
at real-time with a frequency of 14 Hz, compared to
572 features with Pentium CPU and 131 features with
ARM. They analyze the computational complexity and
memory bandwidth requirements for FPGA-based
EKF-SLAM, and then propose an architecture with a
parallel memory access pattern to accelerate the ma-
trix multiplication. This design achieves two orders of
magnitude more power-efficient than a general-pur-
pose processor.

Similarly, Tertei et al. [116] propose an efficient FP-
GA-SoC hardware architecture for matrix multiplication
with systolic arrays to accelerate EKF-SLAM algorithms.
The setup of this design is a PLB peripheral to PPC440
hardcore embedded processor on a Virtex5 FPGA, and
it achieves a 7.3× speedup with a processing frequency
of 44 Hz compared to the pure software implementation.
Later, taking into account the symmetry in cross-cova-
riance matrix-related computations, Tertei et al. [117]
improve the previous implementation to further reduce
the computational time and on-chip memory storage on
Zynq-7020 FPGA.

DSP is also leveraged in some works to accelerate
EKF-SLAM algorithms. Vincke et al. [118] implement
an efficient implementation of EKF-SLAM on a low-cost
heterogeneous architecture system consisting of a sin-
gle-core ARM processor with a SIMD coprocessor and
a DSP core. The EKF-SLAM program is partitioned into
different functional blocks based on the profiling char-
acteristics results. Compared to a non-optimized ARM
implementation, this design achieved 4.7× speed up
from 12 fps to 57 fps. In a later work, Vincke et al. [119]
replace the single-core ARM with a double-core ARM to
optimize the non-optimized blocks using the OpenMP
library. This design achieves a 2.75× speedup compared
to non-optimized implementation.

2) ORB-SLAM
ORB-SLAM [107] is an accurate and widely-used sparse
SLAM algorithm for monocular, stereo, and RGB-D cam-
eras. Its framework usually consists of five main proce-
dures: feature extraction, feature matching, pose esti-
mation, pose optimization and map updating. Based on

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

58 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2021

the profiling results on a quad-core ARM v8 mobile SoC,
feature extraction is the most computation-intensive
stage in the ORB-SLAM system, which consumes more
than half of CPU resources and energy budget [120].

ORB based feature extraction algorithm usually
consists of two parts, namely Oriented Feature from
Accelerated Segment Test (oFAST) [121] based feature
detection and Binary Robust Independent Elementary
(BRIEF) [122] based feature descriptors computation.
To accelerate this bottleneck, Fang et al. [120] design
and implement a hardware ORB feature extractor and
achieved a great balance between performance and en-
ergy consumption, which outperforms ARM Krait by 51%
and Intel Core i5 by 41% in computation latency as well
as outperforms ARM Krait by 10% and Intel Core i5 by
83% in energy consumption. Liu et al. [123] propose an
energy-efficient FPGA implementation eSLAM to acceler-
ate both feature extraction and feature matching stages.
This design achieves up to 3× and 31× speedup in fram-
erate, as well as up to 71× and 25× in energy efficiency
improvement compared to Intel i7 and ARM Cortex-A9
CPUs, respectively. This eSLAM design utilizes a rota-
tionally symmetric ORB descriptor pattern to make the
algorithm more hardware-friendly, resulting in a 39%
less latency compared to [120]. Rescheduling and par-
allelizing optimization techniques are also exploited to
improve the computation throughput in eSLAM design.

Scale-invariant feature transform (SIFT) and Harris
corner detector are also commonly-used feature extrac-
tion methods. SIFT is invariant to rotation and transla-
tion. Gu et al. [109] implement SIFT-feature based SLAM
algorithm on FPGA and accelerate the matrix computa-
tion part to achieve speedup. Harris corner detector is
used to extract corners and features of an image, and
Schulz et al. [124] propose an implementation of Harris
and Stephen corner detector optimized for an embed-
ded SoC platform that integrates a multicore ARM pro-
cessor with Zynq-7000 FPGA. Taking into account I/O
requirements and the advantage of parallelization and
pipeline, this design achieves a speedup of 1.77 com-
pared to dual-core ARM processors.

3) Fast-SLAM
One of the key limitations of EKF-SLAM is its computation-
al complexity since EKF-SLAM requires time quadratic in
the number of landmarks to incorporate each sensor
update. In 2002, Montemerlo et al. [108] propose an ef-
ficient SLAM algorithm called Fast-SLAM. Fast-SLAM
decomposes the SLAM problem into a robot localiza-
tion problem and a landmark estimation problem. It
recursively estimates the full posterior distribution
over landmark positions and robot path with a loga-
rithmic scale.

Abouzahir et al. [125] implement Fast-SLAM 2.0 on
a CPU-GPGPU-based SoC architecture. The algorithm
is partitioned into function blocks, and each of them is
implemented on the CPU or GPU accordingly. This op-
timized and efficient CPU-GPGPU partitioning enables
accurate localization and a 37× execution speedup com-
pared to non-optimized implementation on a single-core
CPU. Further, Abouzahir et al. [126] perform a complete
study of the processing time of different SLAM algo-
rithms under popular embedded devices, and demon-
strate that Fast-SLAM2.0 allowed a compromise between
the consistency of localization results and computation
time. This algorithm is then optimized and implemented
on GPU and FPGA using HLS and parallel computing
frameworks OpenCL and OpenGL. It is observed that
the global processing time of FastSLAM2.0 on FPGA
implementations achieves 7.5× acceleration compared
to high-end GPU. The processing frequency achieves
102 fps and meets the real-time performance constraints
of an operated robot.

4) VO-SLAM
The visual odometry based SLAM algorithm (VO-SLAM)
also belongs to the Sparse SLAM class with low com-
putational complexity. Gu et al. [109] implement the
VO-SLAM algorithm on a DE3 board (Altera Stratix III)
to perform drift-free pose estimation, resulting in lo-
calization results accurate to 1-2cm. A Nios II soft-core
is used as a master processor. The authors design a
dedicated matrix accelerator and propose a hierarchi-
cal matrix computing mechanism to support applica-
tion requirements. This design achieves a processing
speed of 31 fps with 30000 global map features, and 10×
energy saving for each frame processing compared to
Intel i7 CPU.

D Semi-Dense SLAM on FPGA
Semi-dense SLAM algorithms have emerged to provide a
compromise between sparse SLAM and dense SLAM al-
gorithms, which attempt to achieve improved efficiency
and dense point clouds. However, they are still usually
computationally intensive and require multicore CPUs
for real-time processing.

Large-Scale Direct Monocular SLAM (LSD-SLAM)
is one of the state-of-the-art and widely-used semi-
dense SLAM algorithms, and it directly operates on
image intensities for both tracking and mapping prob-
lems. The camera is tracked by direct image align-
ment, while geometry is estimated from semi-dense
depth maps acquired by filtering over multiple stereo
pixel-wise comparisons.

Several works have explored LSD-SLAM FPGA-SoC
implementation. Boikos et al. [127] investigate the

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 IEEE CIRCUITS AND SYSTEMS MAGAZINE 59

performance and acceleration opportunities for LSD-
SLAM in the SoC system. This design achieves an aver-
age framerate of more than 4 fps for a resolution of 320 ×
240 with an estimated power of less than 1 W, which is a
2× acceleration and more than 4.3× energy efficiency com-
pared to a software version running on embedded CPUs.
The author also notes that the communication between
two accelerators is via DDR memory since the produced
intermediate data is too large to be fully cached on the
FPGA. Hence, it is important to optimize the memory ar-
chitecture (e.g., data movement and caching techniques)
to ensure the scalability and compatibility of the design.

To further improve the performance of [127], Boikos
et al. [128] re-implement the design using a dataflow ar-
chitecture and distributed asynchronous blocks to al-
low the memory system and the custom hardware pipe-
lines to function at peak efficiency. This implementation
can process and track more than 22 fps with an embed-
ded power budget and achieves a 5× speedup over [127].

Furthermore, Boikos et al. [129] combine a scalable
depth estimation with direct semi-dense SLAM architec-
ture and propose a complete accelerator for semi-dense
SLAM on FPGA. This architecture achieved more than
60 fps at the resolution of 640 × 480 and an order of mag-
nitude power consumption improvement compared to
Intel i7-4770 CPU. This implementation leverages multi-
rate and multi-modal units to deal with LSD-SLAM’s
complex control flow. A new dataflow paradigm is also
proposed where the kernel is linked with a single con-
sumer and a single producer to achieve high efficiency.

E. CNN-Based SLAM on FPGA
Recently, CNNs have made significant progress in the
perception and localization ability of the robots com-
pared to handcrafted methods. Take one of the main
SLAM components, feature extraction, as an exam-
ple, the CNN-based approach SuperPoint [130] can
achieve 10%-30% higher matching accuracy compared
to handcrafted ORB. Other CNN-based methods, such
as DeepDesc [131] and GeM [132], also present sig-
nificant improvements in feature extraction and de-
scriptor generation stage. However, CNN has a much
higher computational complexity and requires more
memory footprint.

Several works have explored to deploy CNN on FP-
GAs. Xilinx DPU [133] is one of the state-of-the-art pro-
grammable dedicated to CNN, which has a specialized
instruction set and works efficiently across various CNN
topologies. Xu et al. [134] propose a hardware architec-
ture to accelerate CNN-based feature extraction Super-
Point on the Xilinx ZCU102 platform and achieve 20 fps
in a real-time SLAM system. The key point of this design
is an optimized software dataflow to deal with the ex-

tra post-processing operations within CNN-based fea-
ture extraction networks. 8-bit fixed-point numerics are
leveraged in the post-processing operations and CNN
backbone. Similar hardware-oriented model compres-
sion techniques (e.g., data quantization and weight re-
duction) have been widely adopted in robotics and CNN
related designs [135]–[142].

Yu et al. [143] build a CNN-based monocular decen-
tralized-SLAM (DSLAM) on the Xilinx ZCU102 MPSoC
platform with DPU. DSLAM is usually used in multi-ro-
bot applications that can share environment informa-
tion and locations between agents. To accelerate the
main components in DSLAM, namely visual odometry
(VO) and decentralized place recognition (DPR), the
authors adopt CNN-based Depth-VO-Feat [144] and Net-
VLAD [145] to replace handcrafted approaches and pro-
pose a cross-component pipeline scheduling algorithm
to improve the performance.

To enable multi-tasking processing in embedded ro-
bots on CNN accelerators, Yu et al. [146] further propose
an INterruptible CNN accelerator (INCA) with a novel
virtual-instruction-based interrupt method. Feature ex-
traction and place recognition of DSLAM are deployed
and accelerated on the same CNN accelerator of the
embedded FPGA system, and the interrupt response la-
tency is reduced by 1%.

F. Bundle Adjustment on FPGA
Besides the hardware implementation of the frontend of
the SLAM system, several works investigate to acceler-
ate the backend of the SLAM system, mainly Bundle Ad-
justment (BA). BA is heavily used in robot localization
[107], [147], autonomous driving [148], space exploration
missions [149] and some commercial products [150],
where it is usually employed in the last stage of the pro-
cessing pipeline to refine camera trajectories and 3D
structures further.

Essentially, BA is a massive joint non-linear optimiza-
tion problem that usually consumes a significant amount
of power and processing time in both offline visual re-
construction and real-time localization applications.

Several works aim to accelerate BA on multi-core
CPUs or GPUs using parallel or distributed computing
techniques. Jeong et al. [151] exploit efficient memory
handling and fast block-based linear solving, and pro-
pose a novel embedded point iterations method, which
substantially improves the BA performance on CPU.
Wu et al. [152] present a multi-core parallel process-
ing solution running on CPUs and GPUs. The matrix-
vector product is carefully restructured in this design
to reduce memory requirements and compute latency
substantially. Eriksson et al. [153] propose a distributed
approach for very large scale global bundle adjustment

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

60 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2021

computation to achieve BA performance improve-
ment. The authors present a consensus framework
using the proximal splitting method to reduce the
computational cost. Similarly, Zhang et al. [154] pro-
pose a distributed formulation to accelerate the global
BA computation without much distributed computing
communication overhead.

To better deploy BA in embedded systems with strict
power and real-time constraints, recent works explore
BA algorithm acceleration using specialized hardware.
The design in [155] implements both the image frontend
and BA backend of a VIO algorithm on a single-chip for
nano-drone scale applications. Liu et al. [156] propose a
hardware-software co-designed BA hardware accelera-
tor and its implementation on an embedded FPGA-SoC
to achieve higher performance and power efficiency
simultaneously. Especially, a co-observation optimiza-
tion technique and a hardware-friendly differentiation
method are proposed to accelerate BA operations with
optimized usage of memory and computation resourc-
es. Sun et al. [157] present a hardware architecture run-
ning local BA on FPGAs, which works without external
memory access and refines both cameras poses and 3D
map points simultaneously.

G. Discussion
We summarize FPGA based SLAM systems in Tab. III. It
only includes works that implement the whole SLAM on
an FPGA and provide overall performance and power
evaluation. The works in the table adopt a similar FPGA-
SoC architecture that accelerates computationally inten-
sive components by FPGA fabrics and offloads others
works to embedded processors on FPGAs. Compared
with sparse method, the semi-dense implementation
has lower frame rate, which is mainly due to the high
resolution data processed in the pipeline. Due to the
high frame rates and low power consumption, sparse
SLAM FPGA have been used in drones and autonomous
vehicles [16]. The two sparse SLAM implementations
achieve similar performance in terms of frame rate.
Compared with the ORB design, the VO SLAM design
includes pre-processing and outliers removal hardware,
such as image rectification and RANSAC, which lead to
a more accurate but power inefficient implementation.

V. Planning and Control on FPGA

A. Overview
Planning and control are the modules that compute how
the robot should maneuver itself. They usually include
behavioral decision, motion planning and feedback con-
trol kernels. Without loss of generality, we focus on the
motion planning algorithms and their FPGA implemen-
tations in this section.

As a fundamental problem in the robotic system, mo-
tion planning aims to find the optimal collision-free path
from the current position to a goal position for a robot
in complex surroundings. Generally, motion planning
contains three steps, namely roadmap construction,
collision detection and graph search [38], [158]. Motion
planning will become a relatively complicated problem
when robots work with a high degree of freedom (DOF)
configurations since the search space will be exponen-
tially increased. Typically, state-of-the-art CPU-based
approaches take a few seconds to find a collision-free
trajectory [159]–[161], making the existing motion plan-
ning algorithms too slow to meet the real-time require-
ment for complex robot tasks and environments. Sev-
eral works have investigated approaches to speed up
motion planning, either for each stage or whole pipeline.

B. Roadmap Construction
In the roadmap construction step, the planner generates
a set of states in the robot’s configuration space and
then connects them with edges to construct a general-
purpose roadmap in the obstacle-free space. Each state
represents a robot’s configuration, and each edge rep-
resents a possible robot movement. Conventional algo-
rithms build the roadmap by randomly sampling poses
from configuration space at runtime to navigate around
the obstacles present at that time.

Several works explore roadmap construction acceler-
ation. Yershova et al. [162] improve the nearest neighbor
search to accelerate roadmap construction by orders
of magnitude compared to the naive nearest-neighbor
searching. Wang et al. [163] reduce the computation
workload by trimming roadmap edges and keeping the
roadmap to a reasonable size to achieve speedup. Differ-
ent from online runtime approaches, Murray et al. [164]

completely remove the
runtime latency by con-
ducting the roadmap
construction only once
at the design time. A
more general and much
larger roadmap is pre-
computed and allows
for fast and successive

Table III.
Comparison of FPGA SLAM Systems.

Method Platform Frame Rate Power Indoor Error

Boikos et al. [127] Semi Dense Xilinx Zynq 7020 SoC 4.5 fps 2.5 W na

Liu et al. [123] ORB Xilinx Zynq 7000 SoC 31 fps 1.9 W 4.5 cm

Gu et al. [109] VO Altera Stratix III 31 fps 5.9 W 2 cm

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 IEEE CIRCUITS AND SYSTEMS MAGAZINE 61

queries in complex environments without reprogram-
ming the accelerator during runtime.

C. Collision Detection
In the collision detection step, the planner determines
whether there are potential collisions with the environ-
ment or the robot itself during movement. Specifically,
collision detection is the primary challenge in motion
planning, which often comprises 90% of the process-
ing time [165].

Several works leverage data parallelization comput-
ing on GPUs to achieve speedup [165]–[167]. For exam-
ple, Bialkowski et al. [165] divide the RRT* algorithm
of collision detection tasks into three parallel dimen-
sions and construct thread block grids to execute col-
lision computations simultaneously. However, GPU
can only provide a constant speedup factor due to the
core limitations, which is still hard to achieve the real-
time requirement.

Recently, [168]–[170] develop high-efficiency custom
hardware implementations based on the FPGA system.
Atay and Bayazit [168] focus on directly accelerating the
PRM algorithm on FPGA by creating functional units to
perform the random sampling, nearest neighbor search
and parallelizing triangle-triangle testing. However,
this design cannot be reconfigured at runtime, and the
huge resource demands make it fail to support a large
roadmap. Murray et al. [169] present a novel microar-
chitecture for an FPGA-based accelerator to speed up
collision detection by creating a specialized circuit for
each motion in the roadmap. This solution achieves
sub-millisecond speed for motion planning query and
improves the power consumption by more than one or-
der of magnitude, which is sufficient to enable real-time
robotics applications.

Besides real-time constraint, motion planning algo-
rithms also have flexibility requirements to make the
robots adapt to dynamic environments. Dadu-P [170]
build a scalable motion planning accelerator to attain
both high efficiency and flexibility, where a motion
plan can be solved in around 300 microseconds in a
dynamic environment. A hardware-friendly data struc-
ture representing roadmap edges is adopted to achieve
flexibility, and a batched processing as well as a priori-
ty-rating method are proposed to achieve high efficien-
cy. But this design comprises a 25× latency increase to
make it retargetable to different robots and scenarios
due to the external memory access. Murray et al. [164]
develop a fully retargetable microarchitecture of colli-
sion detection and graph search accelerator that can
perform motion planning in less than 3 ms with a mod-
est power consumption of 35 W. This design divides
the collision detection workflow into two stages. The

collision detection results for the discretized roadmap
are precomputed in the first stage before runtime, and
then the collision detection accelerator streams in the
voxels of obstacles and the edges of flags which are in
collision at runtime.

D. Graph Search
After collision detection, the planner will try to find the
shortest and safe path from the start position to the
target position based on the obtained collision-free
roadmap through graph search. Several works explore
graph search accelerations. Bondhugula et al. [171]
employ a parallel FPGA-based design using a blocked
algorithm to solve large instances of All-Pairs Shortest-
Paths (APSP) problem, which achieves a 15× speedup
over an optimized CPU-based implementation. Srid-
haran et al. [172] present an architecture-efficient so-
lution based on Dijkstra’s algorithm to accelerate the
shortest path search, and Takei et al. [173] extend this
for a high degree of parallelism and large-scale graph
search. Recently, Murray et al. [164] accelerate graph
search with the Bellman-Ford algorithm. By leveraging
a precomputed roadmap and bounding specific robot
quantities, this design enables a more compact and ef-
ficient storage structure, dataflows and a low-cost in-
terconnection network.

VI. Partial Reconfiguration
FPGA technology provides the flexibility of on-site pro-
gramming and re-programming without going through
re-fabrication with a modified design. Partial Re-
configuration (PR) takes this flexibility one step fur-
ther, allowing the modification of an operating FPGA
design by loading a partial configuration file, usu-
ally a partial BIT file [174]. Using PR, after a full BIT
file configures the FPGA, partial BIT files can be down-
loaded to modify reconfigurable regions in the FPGA
without compromising the integrity of the applica-
tions running on those parts of the device that are
not being reconfigured.

A major performance bottleneck for PR is the con-
figuration overhead, which seriously limits the useful-
ness of PR. To address this problem, in [175], the authors
propose a combination of two techniques to minimize
the overhead. First, the authors design and implement
fully streaming DMA engines to saturate the configura-
tion throughput. Second, the authors exploit a simple
form of data redundancy to compress the configura-
tion bitstreams, and implement an intelligent internal
configuration access port (ICAP) controller to perform
decompression at runtime. This design achieves an ef-
fective configuration data transfer throughput of up to
1.2 Gbytes/s, which actually well surpasses the theoretical

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

62 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2021

 upper bound of the data transfer throughput, 400 Mbytes/s.
Specifically, the proposed fully streaming DMA engines
reduce the configuration time from the range of sec-
onds to the range of milliseconds, a more than 1000-fold
improvement. In addition, the proposed compression
scheme achieves up to a 75% reduction in bitstream size
and results in a decompression circuit with negligible
hardware overhead.

Another problem of PR is that it may incur additional
energy consumption. In [176], the authors investigate
whether PR can be used to reduce FPGA energy con-
sumption. The core idea is that there are a number of
independent circuits within a hardware design, and
some can be idle for long periods of time. Idle circuits
still consume power though, especially through clock
oscillation and static leakage. Using PR, one can replace
these circuits during their idle time with others that
consume much less power. Since the reconfiguration
process itself introduces energy overhead, it is unclear
whether this approach actually leads to an overall en-
ergy saving or to a loss. This study identifies the precise
conditions under which partial reconfiguration reduces
the total energy consumption, and proposes solutions
to minimize the configuration energy overhead. In this
study, PR is compared against clock gating to evaluate
its effectiveness. The authors apply these techniques
to an existing embedded microprocessor design, and
successfully demonstrate that FPGAs can be used to
accelerate application performance while also reducing
overall energy consumption.

Further, PerceptIn demonstrate in their commercial
product that Runtime partial reconfiguration (RPR) is
useful for robotic computing, especially computing for
autonomous vehicles, because many on-vehicle tasks
usually have multiple versions where each is used in
a particular scenario [16]. For instance, in PerceptIn’s
design, the localization algorithm relies on salient
features; features in key frames are extracted by a
feature extraction algorithm (based on ORB features
[177]), whereas features in non-key frames are tracked
from previous frames (using optical flow [178]); the
latter executes in 10 ms, 50% faster than the former.
Spatially sharing the FPGA is not only area-inefficient,
but also power-inefficient as the unused portion of the
FPGA consumes non-trivial static power. In order to
temporally share the FPGA and “hot-swap” different
algorithms, PerceptIn develop a partial reconfigura-
tion engine (PRE) that dynamically reconfigures part
of the FPGA at runtime. The PRE achieves a 400 MB/sec
reconfiguration throughput (i.e., bitstream program-
ming rate). Both the feature extraction and tracking
bitstreams are less than 4 MB. Thus, the reconfigura-
tion delay is less than 1 ms.

VII. Commercial Applications of FPGAs in
Autonomous Vehicles

Over the past three years, PerceptIn has built and com-
mercialized autonomous vehicles for micromobility. Our
products have been deployed in China, US, Japan and
Switzerland. We summarize system design constraints,
workloads and their performance characteristics from
the real products. A custom computing system is de-
veloped by taking into account the inherent task-level
parallisim, cost, safety and programmability [16], [179].
FPGA plays a critical role in our system, which synchro-
nizes various sensors and accelerates the component
on the critical path.

A. Computing system
Software pipeline. Fig. 3 shows the block diagram of
the processing pipeline in our vehicle, which consists
of three parts: sensing, perception and planning. The
sensing module bridges sensors and computing sys-
tem. It synchronizes various sensor samples for the
downstream perception module, which performs two
fundamental tasks: 1) locating the vehicle itself in a
global map and 2) understanding the surroundings
through depth estimation and object detection. The
planning module uses the perception results to devise
a driveable route, and then converts the planed path
into a sequence of control commands, which will drive
the vehicle along the path. The control commands are
sent to the vehicle’s Engine Control Unit (ECU) via the
CAN bus interface.

Sensing, perception and planning are serialized. They
are all on the critical path of the end-to-end latency. We
pipeline the three modules to improve the throughput.
Within perception, localization and scene understand-
ing are independent and could execute in parallel. While
there are multiple tasks within scene understanding,
they are mostly independent with the only exception
that object tracking must be serialized with object de-
tection. The task-level parallelisms influence how the
tasks are mapped to the hardware platform.

Algorithm. Our localization module is based on Vi-
sual Inertial Odometry algorithms [180], [181], which
fuses camera images, IMU and GPS samples to esti-
mate the vehicle pose in the global map. The depth es-
timation employs traditional stereo vision algorithms,
which calculates depths according to the principal of
triangulation [182]. In particular, our method is based
on the classic ELAS algorithm, which uses hand-
crafted features [183]. While DNN models for depth
estimation exist, they are orders of magnitude more
compute-intensive than non-DNN algorithms [184]
while providing only marginal accuracy improvements
to our use-cases. We detect objects using DNN models,

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 IEEE CIRCUITS AND SYSTEMS MAGAZINE 63

such as YOLO [24]. We use the Kernelized Correla-
tion Filter (KCF) [185] to track detected objects.
The planning algorithm is formulated as Model
Predictive Control (MPC) [186].

Hardware architecture. Fig. 4 is the hardware
system designed for our autonomous vehicles. The
sensing hardware consists of stereo cameras, IMU
and GPS. In particular, our system uses stereo cam-
eras for depth estimation. One of the cameras is
also used for semantic tasks such as object detec-
tion. The cameras along with the IMU and the GPS
drive the VIO-based localization task.

Considering the cost, compute requirements
and power budget, our computing platform is com-
posed of a Xilinx Zynq Ultrascale+ FPGA and an on-
vehicle PC equipped with an Intel Coffe Lake CPU
and an Nvidia GTX 1060 GPU. The PC is the main
computing platform, while the FPGA plays a critical
role, which bridges sensors and the PC, and provides
an acceleration platform. To optimize the end-to-end
latency, explore the task level parallelism and ease
practical development and deployment, planning
and scene understanding are mapped onto the CPU
and the GPU respectively, and sensing and localiza-
tion are implemented on the FPGA platform.

B. Sensing on FPGA
We map sensing on the Zynq FPGA platform. The
FPGA processes sensor data and transfer sensor
data to the PC for subsequent processing. The
reason that sensing is mapped to FPGA is three-
fold. First, embedded FPGA platforms today are
built with rich sensor interface (e.g. standard MIPI
Camera Serial Interface) and sensor pre-process-
ing hardware (e.g. ISP). Second, by having the
FPGA directly process sensor data in situ, we al-
low accelerators on the FPGA to directly process
sensor data without involving the power-hungry
CPU for data movement and task coordination.
Finally, processing sensor data on the FPGA natu-
rally leads to a design of hardware-assisted mul-
tiple sensor synchronization mechanism.

Sensor Synchronization Sensor synchronization
is critical to perception algorithms that fuse multiple
sensors. Sensor fusion algorithms assume sen-
sor samples have been well synchronized. For exam-
ple, widely adopted datasets, such as KITTI, provide
synchronized data so that researchers could focus
on algorithmic development.

An ideal synchronization ensures that 1) various
sensor samples have a unified timing system, and 2)
timestamps of samples precisely record the time of
events triggering the sensors. GPS synchronization is

S
en

so
r

S
yn

ch
ro

ni
za

tio
n

G
P

S

In
er

tia
l

M
ea

su
re

m
en

t
U

ni
t (

IM
U

)

S
te

re
o

C
am

er
a

S
en

si
ng

E
go

-M
ot

io
n

E
st

im
at

io
n

V
is

ua
l I

ne
rt

ia
l

O
do

m
et

ry
 (

V
IO

)
G

P
S

 F
us

io
n

S
ce

ne
 U

nd
er

st
an

di
ng

D
ep

th
 E

st
im

at
io

n

O
bj

ec
t D

et
ec

tio
n

T
ra

ck
in

g

P
er

ce
pt

io
n

P
os

iti
on

 in
 G

lo
ba

l
C

oo
rd

in
at

es

O
bj

ec
t V

el
oc

ity
,

P
os

iti
on

, C
la

ss

C
ol

lis
io

n
D

et
ec

tio
n

T
ra

ffi
c

P
re

di
ct

io
n

P
at

h
G

en
er

at
io

n

C
on

tr
ol

 C
om

m
an

d

P
la

nn
in

g

F
ig

u
re

 3
. P

ro
ce

ss
in

g
pi

pe
lin

e
of

 P
er

ce
pt

In
’s

 o
n-

ve
hi

cl
e

pr
oc

es
si

ng
 s

ys
te

m
.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

64 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2021

now wildly adopted to unify various measurements in a
global timing domain. Software-based synchronization
associates samples with timestamps at the application
or the driver layer. This approach is inaccurate due to
the software processing before the timestamp stage.
The software processing introduces variable latency
that is non-deterministic.

To obtain more precise synchronization, we uses a
hardware synchronizer implemented by FPGA fabrics.
The hardware synchronizer triggers the camera sen-
sors and the IMU using a common timer initialized by
the satellite atomic time provided by the GPS device. It
records the triggering time of each sensor sample, and
then pack the timestamp with the corresponding sensor
data. In terms of costs, the synchronizer is extremely
lightweight in design with only 1,443 LUTs and 1,587 reg-
isters and consumes 5mW of power.

C. Perception on FPGA
For our autonomous vehicles, the perception tasks
includes scene understanding (depth estimation and
objection detection) and localization, which are inde-
pendent. The slower one dictates the overall percep-
tion latency.

We evaluate our perception algorithms on the CPU,
GPU and Zynq FPGA platform. Fig. 5 compares the la-

tency of each perception tasks on the FPGA platform
with the GPU. Due to the available resources, the
FPGA platform is faster than the GPU only for localiza-
tion, which is more lightweight than other tasks. We
offload localization to the FPGA while leaving other
perception task on the GPU. This partitioning frees
more GPU resources for depth estimation and object
detection, which is benefit for reducing the percep-
tion pipeline’s latency.

As with classic SLAM algorithms, our localization
algorithm consists of a front-end and a back-end. The
front-end uses the ORB features and descriptors for de-
tecting and tracking key points [120], [187]. The back-
end uses Levenberg-Marquardt’s (LM) algorithm, a non-
linear optimization algorithm, to optimize the position
of 3 D key points and the pose of the camera [156], [188].

The ORB feature extraction/matching and the LM
optimizer are the most time-consuming parts of our
SLAM algorithm, which take up nearly all the execution
time. We accelerate ORB feature extraction/matching
and the non-linear optimizer on FPGA fabrics. The rest
lightweight parts are implemented on the ARM core of
the Zyqn platform. We use independent hardware for
each camera to extract features and compute descrip-
tors. Hamming distance and Sum of Absoluated Differ-
ence (SAD) matching are implemented to obtain stable
matching results. Compared with the CPU implementa-
tion, our FPGA implementation achieves a 2.2× speedup
and 44 fps, and saves 83% energy.

We use LM algorithm to optimize features and pos-
es over a fixe-size sliding window. To solve the non-lin-
ear optimization problem, the LM algorithm iteratively
use Jacobbian to linearize the problem and solve the
linear equation at each iteration. Schur elimination is
used to reduce the dimension of the linear equation,
thus reduce the complexity of solving the equation.
Cholesky factorization is employed to solve the linear
equation. For sliding-window based vSLAM, the Jacobian

103

102

La
te

nc
y

(m
s)

12,892

Depth Detection Localization

CPU
GPU
FPGA

Figure 5. Performance comparison of different platforms run-
ning three perception tasks.

Sensors

Stereo Camera

IMU

GPS

FPGA Platform

Sensor
Synchronizer

Localization
Accelerator

Sensor Interf.

Image Signal
Processor

CPU

DMA DRAM
DRAM

Mem.
Controller

On-Vehicle PC

Multicore CPUs

GPU

Figure 4. The computing system in our autonomous vehicle.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 IEEE CIRCUITS AND SYSTEMS MAGAZINE 65

and Schur elimination are the most time-consuming
parts. By profiling our algorithm on datasets [189],
Schur and Jacobian computations account for 29.8%
and 48.27% of total time. We implemented Schur elimi-
nation and Jacobian updates on FGPA fabrics [156].
Compared with the CPU implementation, the FPGA
achieves 4× and 27× speedup for Schur and Jacobbian,
and saves 76% energy.

VIII. Application of FPGAs in Space Robotics
In the 1980s, field-programmable gate arrays (FPGA)
emerged as a result of increasing integration in elec-
tronics. Before the use of FPGA, glue-logic designs
were based on individual boards with fixed compo-
nents interconnected via a shared standard bus,
which has various drawbacks, such as hindrance of
high volume data processing and higher susceptibil-
ity to radiation-induced errors, in addition to inflex-
ibility. The utilization of FPGAs in space applications
began in 1992, for FPGAs offered unprecedented flex-
ibility and significantly reduced the design cycle and
development cost [190].

FPGAs can be categorized by the type of their pro-
grammable interconnection switches: antifuse, SRAM,
and Flash. Each of the three technologies comes with
trade-offs. Antifuse FPGAs are non-volatile and have
minimal delay due to routing, resulting in a faster speed
and lower power consumption. The drawback is evident
as they have a relatively more complicated fabrication
process and are only one time programmable. SRAM-
based FPGAs are the most common type employed in
space missions. They are field reprogrammable and use
the standard fabrication process that foundries put in
significant effort in optimizing, resulting in a faster rate
of performance increase. However, based on SRAM,
these FPGAs are volatile and may not hold configuration
if a power glitch occurs. Also, they have more substan-
tial routing delay, require more power, and have a higher
susceptibility to bit errors. Flash-based FPGAs are non-
volatile and reprogrammable, and also have low power
consumption and route delay. The major drawback is
that in-flight reconfiguration is not recommended for
flash-based FPGAs due to the potentially destructive re-
sults if radiation effects occur during the reconfigura-
tion process [191]. Also, the stability of stored charge on
the floating gate is of concern: it is a function including
factors such as operating temperature, the electric fields
that might disturb the charge. As a result, flash-based
FPGAs are not as frequently used in space missions [192].

A. Radiation Tolerance for Space Computing
For electronics intended to operate in space, the harsh
space radiation present is an essential factor to con-

sider. Radiation has various effects on electronics, but
the commonly focused two are total ionizing dose effect
(TID) and single event effects (SEE). TID results from
the accumulation of ionizing radiation over time, which
causes permanent damage by creating electron-hole
pairs in the silicon dioxide layers of MOS devices.
The effect of TID is that electronics gradually de-
grade in their performance parameters and eventually
fail to function. Electronics intended for application
in space are tested for the total amount of radiation,
measured in kRads, they can endure before failure.
Usually, electronics that can withstand 100 kRads are
sufficient for low earth orbit missions to use for sev-
eral years [191].

SEE occurs when high-energy particles from space
radiation strike electronics and leave behind an ionized
trail. The results are various types of SEEs [193], which
can be categorized as either soft errors, which usually
do not cause permanent damage, or hard errors, which
often cause permanent damage. Examples of soft er-
ror include single event upset (SEU), and single event
transient (SET). In SEU, a radiation particle struck a
memory element, causing a bit flip. Noteworthy is that
as the cell density and clock rate of modern devices in-
creases, multiple cell upset (MCU), corruption of two
or more memory cells in a single particle strike, is in-
creasingly becoming a concern. A special type of SEU is
single event functional interrupt (SEFI), where the upset
leads to loss of normal function of the device by affect-
ing control registers or the clock. In SET, a radiation par-
ticle passes through a sensitive node, which generates a
transient voltage pulse, causing wrong logic state at the
combinatorial logic output. Depending on whether the
impact occurs during an active clock edge or not, the
error may or may not propagate. Some examples of hard
error include single event latch-up (SEL), in which en-
ergized particle activates parasitic transistor and then
cause a short across the device, and single event burn-
out (SEB), in which radiation induces high local power
dissipation, leading to device failure. In these hard error
cases, radiation effects may cause the failure of an en-
tire space mission.

Space-grade FPGAs can withstand considerable lev-
els of TID and have been designed against most de-
structive SEEs [194]. However, SEU susceptibility is per-
vasive. For the most part, radiation effects on FPGA are
not different from those of other CMOS based ICs. The
primary anomaly stems from FPGAs’ unique structure,
involving programmable interconnections. Depending
on their type, FPGAs have different susceptibility to-
ward SEU in their configuration. SRAM FPGAs are des-
ignated by NASA as the most susceptible ones due to
their volatile nature. Even after the radiation hardening

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

66 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2021

process, the configuration of SRAM FPGAs is only des-
ignated as “hardened” or simply having embedded SEE
mitigation techniques rather than “hard,”which means
close to immune [191]. Configuration SRAM is not used
in the same way as the traditional SRAM. A bit flip in
configuration causes an instantaneous effect without
the need for a read-write cycle. Moreover, instead of
producing one single error in the output, the bit flip
shifts the user logic directly, changing the device’s be-
havior. Scrubbing is needed to rectify SRAM configu-
ration. Antifuse and flash FPGAs are less susceptible
to effects in configuration and are designated “hard”
against SEEs in their configuration without applying
radiation hardening techniques [191].

Design based SEU/fault mitigation techniques are
commonly used, for, in contrast to fabrication level ra-
diation hardening techniques, they can be readily ap-
plied to commercial off the shelf (COTS) FPGAs. These
techniques can be classified into static and dynamic.
Static techniques rely on fault-masking, toleration of
error without requiring active fixing. One such exam-
ple is passive redundancy with voting mechanisms.
Dynamic techniques, in contrast, detect faults and act
to correct them. The common SEU Mitigation Methods
include [195], [196]:

1) Hardware Redundancy: functional blocks are rep-
licated to detect/tolerate faults. Triple modular re-
dundancy (TMR) is perhaps the most widely used
mitigation technique. It can be applied to entire
processors or parts of circuits. At a circuit level,
registers are implemented using three or more flip
flops or latches. Then, voters compare the values
and output the majority, reducing the likelihood
of error due to SEU. As internal voters are also
susceptible to SEU, they are sometimes triplicated
also. For mission-critical applications, global sig-
nals may be triplicated to mitigate SEUs further.
TMR can be implemented at ease with the help
supporting HDLs [197]. It is important to note that
a limitation of TMR is that one fault, at most, can
be tolerated per voter stage. As a result, TMR is
often used with other techniques, such as scrub-
bing, to prevent error accumulation.

2) Scrubbing: The vast majority of memory cells in
reprogrammable FPGAs contain configuration
information. As discussed earlier, configuration
memory upset may lead to alteration routing net-
work, loss of function, and other critical effects.
Scrubbing, refreshing and restoration of configu-
ration memory to a known-good state, is therefore
needed [196]. The reference configuration memo-
ry is usually stored in radiation-hardened mem-
ory cells either off or on the device. Scrubbers,

processors or configuration controllers, carry out
scrubbing. Some advanced SRAM FPGAs, includ-
ing ones made by Xilinx, support partial reconfig-
uration, which allows memory repairs to be made
without interrupting the operation of the whole
device. Scrubbing can be done in frame-level (par-
tial) or device-level (full), which will inevitably
lead to some downtime; some devices may not be
able to tolerate such an interruption. Blind scrub-
bing is the most straightforward way of implemen-
tation: individual frames are scrubbed periodical-
ly without error detection. Blind scrubbing avoids
the complexity required in error detection, but ex-
tra scrubbing may increase vulnerability to SEUs
as errors may be written into frames during the
scrubbing process. An alternative to blind scrub-
bing is readback scrubbing, where scrubbers
actively detect errors in configuration through
error-correcting code or cyclic redundancy check
[195]. If an error is found, scrubber initiates frame-
level scrubbing.

Currently, the majority of space-grade FPGA comes
from Xilinx and Microsemi. Xilinx offers the Virtex fam-
ily and Kintex. Both are SRAM based, which have high
flexibility. Microsemi offers antifuse based RTAX and
Flash-based RTG4, RT PolarFire, which have lower sus-
ceptibility against SEE and power consumption. 20 nm
Kintex and 28 nm RT PolarFire are the latest generations.
The European market is offered with Atmel devices and
NanoXplore space-grade FPGAs [198]. Table IV shows
the specifications of the above devices.

B. FPGAs in Space Missions
For space robotics, processing power is of particular
importance, given the range of information required to
accurately and efficiently process. Many of the current
and previous space missions are packed with sophisti-
cated algorithms that are mostly static. They serve to
increase the efficiency of data transmission; neverthe-
less, data processing is done mainly on the ground. As
the travel distance of missions increases, transmitting
all data to, and processing it on the ground is no longer
an efficient or even viable option due to transmission
delay. As a result, space robots need to become more
adaptable and autonomous. They will also need to pre-
process on-board a large amount of data collected and
compress it before sending it back to Earth [199].

The rapid development of new generation FPGAs
may fill the need in space robotics. FPGAs enable robot-
ic systems to be reconfigurable in real-time, making the
systems more adaptable by allowing them to respond
more efficiently to changes in environment and data. As
a result, autonomous reconfiguration and performance

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 IEEE CIRCUITS AND SYSTEMS MAGAZINE 67

optimization can be achieved. Also, the FPGAs have a
high capability for parallel processing, which is useful
in boosting processing performance. The use of FPGA
is present in various space robots. Some of the most
prominent examples of the application are the NASA
Mars rovers. Since the first pair of rovers were launched
in 2003, the presence of FPGAs have steadily increased
in the later rovers.

1) Mars Exploration Rover Missions
Beginning in the early 2000s, NASA have been us-
ing FPGAs in exploration rover control and lander con-
trol. In Opportunity and Spirit, the two Mars rovers
launched in 2003, two Xilinx Virtex XQVR1000s were
in the motor control board [200], which operates mo-
tors on instruments as well as rover wheels. In addi-
tion, an Actel RT 1280 FPGA was used in each of the
20 cameras on the rovers to receive and dispatch
hardware commands. The camera electronics consist
of clock driver that provides timing pulses through
the charge-coupled device (CCD), an IC containing an
array of linked or coupled capacitors. Also, there are
signal chains that amplify the CCD output and convert
it from analog to digital. The Actel FPGA provides the
timing, logic, and control functions in the CCD signal
chain and inserts a camera ID into camera telemetry
to simplify processing [201].

Selected electronic parts have to undergo a multi-
step flight consideration process before utilized in any
space exploration mission [200], [202]. The first step is
the general flight approval, during which the manufac-
turers perform additional space-grade verification tests
beyond the normal commercial evaluation, and NASA
meticulously examines the results. Additional device

parameters, such as temperature considerations and
semiconductor characteristics are verified in these
tests. What follows is flight-specific approval. In this
step, NASA engineers examine the device compatibility
with the mission. For instance, considerations of the op-
erating environment including factors like temperature
and radiation. Also included are a variety of mission-
specific situations that the robot may encounter and the
associated risk assessment. Depending on the specific
application of the device, whether mission critical or
not, and the expected mission lifetime, the risk stan-
dards varies. Finally, parts go through specific design
consideration to ensure all the design requirements
have been met. Parts are examined for their designs ad-
dressing issues such as SEL, SEU, SEFI. The Xilinx FP-
GAs used addressed some of the SEE through the follow-
ing methods [201]:

1) Fabrication processes largely prevents SEL
2) TMR reduces SEU frequency
3) Scrubbing allows device recovery from single event

functional interrupts
MER went successful and despite being designed for

only 90 Martian days (1 Martian day = 24.6 hours), con-
tinued until 2019. The implementation of mitigation tech-
niques was also proven to be effective as the observed
error rate was very similar to that predicted [200].

2) Mars Science Laboratory Mission
Launched in 2011, Mars Science Lab (MSL) was the new
Rover sent on to Mars. FPGAs were heavily used in its
key components, mainly responsible for scientific instru-
ment control, image processing, and communications.

Curiosity has 17 cameras on board: four navigation
cameras, eight hazard cameras, the Mars Hand Lens

Table IV.
Specifications of Space-Grade FPGAs.

Device Logic Memory DSPs Technology Rad. Tolerance

Xilinx Virtex-5QV 81.9 K LUT6 12.3 Mb 320 65 nm SRAM SEE immune up to LET > 100 MeV/(mg · cm2) and
1 Mrad TID

Xilinx RT Kintex
UltraScale

331 K LUT6 38 Mb 2760 20 nm SRAM SEE immune up to LET > 80 MeV/(mg · cm2) and
100-120 Krads TID

Microsemi RTG4 150 K LE 5 Mb 462 65 nm Flash SEE immune up to LET > 37 MeV(mg · cm2) and TID
> 100 Krads

Microsemi RT
PolarFire

481 K LE 33 Mb 1480 28 nm Flash SEE immune up to LET > 63 MeV(mg · cm2) and
300 Krads

Microsemi RTAX 4 M gates 0.5 Mb 120 150 nm
antifuse

SEE immune up to LET > 37 MeV(mg · cm2) and
300 Krads TID

Atmel ATFEE560 560 K gates 0.23 Mb – 180 nm
SRAM

SEL immune up to 95 MeV(mg · cm2) and 60 Krads
TID

NanoXplore NG-
LARGE

137 K LUT4 9.2 Mb 384 65 nm SRAM SEL immune up to 60 MeV(mg · cm2) and 100
Krads TID

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

68 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2021

Imager (MAHLI), two Mast Cameras, the Mars De-
scent Imager (MARDI), and the ChemCam Remote Mi-
croscopic Imager [203]. MAHLI, the mast cameras, and
MARDI share the same electronics design. Similar to
the system used on MER, an Actel FPGA provides the
timing, logic, and control functions in the CCD signal
chain and transmits pixels to the digital electronics
assembly (DEA), which interfaces the camera heads
with the rover electronics, transmitting command to
the camera heads and data back to the rover. There is
one DEA dedicated to each of the imagers above. Each
is has a Virtex-II FPGA that contains a Microblaze soft-
processor core. All of the core functionalities of the
DEA, including timing, interface, and compression,
are implemented in the FPGA as logic peripherals of
the Microblaze. Specifically, the DEA provides an im-
age processing pipeline that includes 12 to 8-bit com-
manding of input pixels, horizontal subframing, and
lossless or JPEG image compression [203]. What runs
on the Microblaze is the DEA flight software, which
coordinates DEA hardware functions such as camera
movements. It receives and executes commands, and
transmits command from the Earth. The flight software
also implements image acquisition algorithms, includ-
ing autofocus and autoexposure, performs error cor-
rection of flash memory, and mechanism control fault
protection [203]. In total, the flight software consists
of 10,000 lines of ANSI C code, all implemented on the
FPGA. Additionally, FPGAs power communication box-
es (Electra-Lite) to provide critical communication to
Earth from the rovers through a Mars relay network
[204]. They are responsible for a variety of high speed
bulk signal processing.

3) Mars 2020 Mission
Perseverance is NASA’s latest launched Mars rover. The
presence of FPGA continued and increased. FPGA was
used in the autonomous driving system as a coproces-
sor for algorithm acceleration for the first time in NASA’s
planetary rovers. Perseverance runs on the GESTALT
(grid-based estimation of surface traversability applied
to local terrain) AutoNav algorithm same as Curiosity
[205]. Added was the FPGA based accelerator, called
Vision Compute Element (VCE). During landing, VCE
serves to provide sufficient computing power for the
Lander Vision System (LVS), which performs an inten-
sive task of estimates the landing location in 10 seconds
by fusing data from the designed landing location, IMU,
and landmark matches. After landing, the connection
between VCE and LVS is severed. Instead, VCE is repur-
posed for the GESTALT driving algorithm. The VCE has
three cards plugged into a PCI backplane: a CPU card
with BAE RAD750 processor, a Compute Element Power

Conditioning Unit (CEPCU), and a Computer Vision Ac-
celeration Card (CVAC). While the former two parts were
inherited from the MLS mission, the CVAC is new. It has
two FPGAs. One is called the Vision Processor–a Xilinx
Virtex 5QV that contains image processing modules for
matching landmarks to estimate position. The other is
called the Housekeeping FPGA–a Microsemi RTAX 2000
antifuse FPGA that handles tasks such as synchroniza-
tion with the spacecraft, power management, Vision
Processor configuration.

Through more than two decades of use in space, FPGAs
have shown their reliability and applicability for space ro-
botic missions. The properties of FPGAs make them good
onboard processors, ones that have high reliability,
adaptability, processing power, and power efficiency:
FPGAs have been used for space robotic missions for
decades and are proven in reliability; they have unri-
valed adaptability and can even be reconfigured in run
time; their capability for high degree parallel process-
ing allow significant acceleration in executing many
complex algorithms; hardware/software co-design
method makes them potentially more power-efficient.
They may finally help us close the two-decade perfor-
mance gap between commercial processors and space-
grade ASICs. As a direct result, the achievements that
the world has made in fields such as deep learning and
computer vision, which were often too computationally
intense for space-grade processors to be used, may be-
come applicable for robots in space in the near future.
The implementation of those new technologies will be
of great benefit for space robots, boosting their auton-
omy and capabilities and allowing us to explore farther
and faster.

IX. Conclusion
In this paper, we review the state-of-the-art FPGA-based
robotic computing accelerator designs and summarize
their adopted optimized techniques. According to the
results shown in Section III, IV and V, by co-designing
both the software and hardware, FPGA can achieve
more than 10× better performance and energy efficiency
compared to the CPU and GPU implementations. We also
review the partial reconfiguration methodology in FPGA
implementation to further improve the design flexibility
and reduce the overhead. Finally, by presenting some
recent FPGA-based robotics applications in commercial
and space areas, we demonstrate that FPGA has excel-
lent potential and is a promising candidate for robotic
computing acceleration due to its high reliability, adapt-
ability and power efficiency.

The authors believe that FPGAs are the best com-
pute substrate for robotic applications for several rea-
sons: first, robotic algorithms are still evolving rapidly,

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 IEEE CIRCUITS AND SYSTEMS MAGAZINE 69

and thus any ASIC-based accelerators will be months or
even years behind the state-of-the-art algorithms; on
the other hand, FPGAs can be dynamically updated as
needed. Second, robotic workloads are highly diverse,
thus it is difficult for any ASIC-based robotic comput-
ing accelerator to reach economies of scale in the near
future; on the other hand, FPGAs are a cost-effective
and energy-effective alternative before one type of ac-
celerator reaches economies of scale. Third, compared
to SoCs that have reached economies of scale, e.g.,
mobile SoCs, FPGAs deliver a significant performance
advantage. Fourth, partial reconfiguration allows mul-
tiple robotic workloads to time-share an FPGA, thus al-
lowing one chip to serve multiple applications, leading
to overall cost and energy reduction.

However, FPGAs are still not the mainstream com-
puting substrate for robotic workloads, for several
reasons: first, FPGA programming is still much more
challenging than regular software programming, and
the supply of FPGA engineers is still limited. Second,
although there is significant progress in the past few
years in the FPGA High-Level Synthesis (HLS) auto-
mation, such as [206], HLS is still not able to produce
optimized code, and IP supports for robotic work-
loads are still extremely limited. Third, commercial
software support for robotic workloads on FPGAs
is still missing. For instance, there is no official ROS
support on any commercial FPGA platform today. For
robotic companies to fully exploit the power of FP-
GAs, these problems need to be first addressed, and
the authors use these problems to motivate our fu-
ture research work.

Zishen Wan (Student Member, IEEE) is
currently a Ph.D. student in Electrical
and Computer Engineering at Georgia
Institute of Technology, Atlanta, GA,
U.S.A. He received the M.S. degree from
Harvard University, Cambridge, MA, in

2020, and the B.S. degree from Harbin Institute of Tech-
nology, Harbin, China, in 2018, both in Electrical Engi-
neering. He has a broad research interest in VLSI design,
computer architecture, and edge intelligence, with a fo-
cus on energy-efficient and robust hardware and system
design for autonomous machines. He has received the
Best Paper Award in DAC 2020 and CAL 2020.

Bo Yu (Senior Member, IEEE) received
the B.S. degree in electronic technology
and science from Tianjin University,
Tianjin, China, in 2006, and the Ph.D. de-
gree from the Institute of Microelec-
tronics, Tsinghua University, Beijing,

China, in 2013. He is currently the CTO of PerceptIn, Fre-
mont, CA, U.S.A., a company focusing on providing visu-
al perception solutions for robotics and autonomous
driving. His current research interests include algorithm
and systems for robotics and autonomous vehicles. Dr.
Yu is also a Founding Member of the IEEE Special Techni-
cal Community on Autonomous Driving.

Thomas Yuang Li (Student Member, IEEE)
is a research intern at PerceptIn, U.S.A.
and a student member of the IEEE. His re-
search interests include building autono-
mous space explorers for future commer-
cial robotic space-exploration missions

as well as space robotics and computing related topics.

Jie Tang (Senior Member, IEEE) is cur-
rently an associate professor in School
of Computer Science and Engineering
of South China University of Technol-
ogy, Guangzhou, China. She received
her B.E. degree From University of De-

fense Technology and Ph.D. degree from the Beijing In-
stitute of Technology, both in Computer Science. She
was previously a visiting researcher at the Embedded
Systems Center at University of California, Irvine, USA,
and a research scientist at Intel China Runtime Tech-
nology Lab. Dr. Tang is mainly doing research on Com-
puting Systems for Autonomous Machines. She is a
founding member and secretary of the IEEE Computer
Society Special Technical Community on Autonomous
Driving Technologies.

Yuhao Zhu (Member, IEEE) is an Assis-
tant Professor of Computer Science at
University of Rochester, U.S.A. His re-
search group focuses on applications
and computer systems for visual com-
puting. His work is recognized by the

Honorable Mention of the 2018 ACM SIGARCH/IEEE-CS
TCCA Outstanding Dissertation Award and multiple
IEEE Micro Top Picks designations. He is a recipient
of the NSF CAREER Award in 2020.

Yu Wang (Senior Member, IEEE) recei -
ved his B.S. degree in 2002 and Ph.D.
degree (with honor) in 2007 from Tsing-
hua University, Beijing, China. He is cur-
rently a Tenured Professor and Chair
with the Department of Electronic Engi-

neering, Tsinghua University. His research interests in-
clude application specific hardware computing, parallel
circuit analysis, and power/reliability aware system

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

70 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2021

design methodology. Dr. Wang has authored and coau-
thored over 250 papers in refereed journals and con-
ferences. He has received Best Paper Award in ASPDAC
2019, FPGA 2017, NVMSA17, ISVLSI 2012, and Best Post-
er Award in HEART 2012 with 9 Best Paper Nomina-
tions. He is a recipient of DAC Under-40 Innovator
Award in 2018. He served as TPC chair for ICFPT 2019,
ISVLSI 2018, ICFPT 2011 and Finance Chair of ISLPED
2012-2016, and served as the program committee mem-
ber for leading conferences in EDA/FPGA area. Cur-
rently he serves as Associate Editor for IEEE Trans on
CAS for Video Technology, IEEE Transactions on CAD,
and ACM TECS. He is an IEEE/ACM senior member. He
is the co-founder of Deephi Tech (acquired by Xilinx in
2018), which is a leading deep learning computing plat-
form provider

Arijit Raychowdhury (Senior Member,
IEEE) is currently a Professor in the
School of Electrical and Computer En-
gineering at the Georgia Institute of
Technology, U.S.A., where he joined in
January 2013. From 2013 to July 2019

he was an Associate Professor and held the ON Semi-
conductor Junior Professorship in the department. He
received his Ph.D. degree in Electrical and Computer
Engineering from Purdue University (2007) and his
B.E. in Electrical and Telecommunication Engineering
from Jadavpur University, India (2001). His industry
experience includes five years as a Staff Scientist in
the Circuits Research Lab, Intel Corporation, and a
year as an Analog Circuit Researcher with Texas In-
struments Inc. His research interests include low pow-
er digital and mixed-signal circuit design, design of
power converters, sensors and exploring interactions
of circuits with device technologies. Dr. Raychowd-
hury holds more than 25 U.S. and international patents
and has published over 200 articles in journals and ref-
ereed conferences. He currently serves on the Techni-
cal Program Committees of ISSCC, VLSI Circuit Sympo-
sium, CICC, and DAC. He was the Associate Editor of
the IEEE Transactions on Computer Aided Design from
2013-2018 and the Editor of the Microelectronics Jour-
nal, Elsevier Press from 2013 to 2017. He is the winner
of Qualcomm Faculty Award, 2020; IEEE/ACM Innova-
tor under 40 award; the NSF CISE Research Initiation
Initiative Award (CRII), 2015; Intel Labs Technical Con-
tribution Award, 2011; Dimitris N. Chorafas Award
for outstanding doctoral research, 2007; the Best The-
sis Award, College of Engineering, Purdue University,
2007; SRC Technical Excellence Award, 2005; Intel
Foundation Fellowship, 2006; NASA INAC Fellowship,
2004; the Meissner Fellowship 2002. He and his stu-

dents have won several fellowships and eleven best
paper awards over the years. Dr. Raychowdhury is a
Senior Member of the IEEE.

Shaoshan Liu (Senior Member, IEEE) is
Founder and CEO of PerceptIn (www
.perceptin.io) U.S.A., a company focus-
ing on providing visual perception so-
lutions for autonomous robots and ve-
hicles. Dr. Shaoshan Liu received his

Ph.D. in Computer Engineering from University of Cali-
fornia, Irvine and M.P.A. from Harvard University. His
research focuses on Computing Systems for Autono-
mous Machines. Dr. Shaoshan Liu has published over 80
research papers and holds over 150 U.S. international
patents on autonomous machines. Dr. Shaoshan Liu is
an ACM Distinguished Speaker, and an IEEE Computer
Society Distinguished Speaker.

References
[1] A. Qiantori, A. B. Sutiono, H. Hariyanto, H. Suwa, and T. Ohta, “An
emergency medical communications system by low altitude platform at
the early stages of a natural disaster in Indonesia,” J. Med. Syst., vol. 36,
no. 1, pp. 41–52, 2012. doi: 10.1007/s10916-010-9444-9.
[2] A. Ryan and J. K. Hedrick, “A mode-switching path planner for uav-
assisted search and rescue,” in Proc. 44th IEEE Conf. Decision and Con-
trol, 2005, pp. 1471–1476.
[3] N. Smolyanskiy, A. Kamenev, J. Smith, and S. Birchfield, “Toward
low-flying autonomous MAV trail navigation using deep neural net-
works for environmental awareness,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots and Syst. (IROS), 2017, pp. 4241–4247.
[4] A. Giusti et al., “A machine learning approach to visual perception of
forest trails for mobile robots,” IEEE Robot. Automat. Lett., vol. 1, no. 2,
pp. 661–667, 2015. doi: 10.1109/LRA.2015.2509024.
[5] J. K. Stolaroff, C. Samaras, E. R. O’Neill, A. Lubers, A. S. Mitchell, and
D. Ceperley, “Energy use and life cycle greenhouse gas emissions of
drones for commercial package delivery,” Nature Commun., vol. 9, no. 1,
pp. 1–13, 2018. doi: 10.1038/s41467-017-02411-5.
[6] S. J. Kim, Y. Jeong, S. Park, K. Ryu, and G. Oh, “A survey of drone
use for entertainment and AVR (augmented and virtual reality),” in Aug-
mented Reality and Virtual Reality. Springer-Verlag, 2018, pp. 339–352.
[7] S. Jung, S. Cho, D. Lee, H. Lee, and D. H. Shim, “A direct visual
serving-based framework for the 2016 IROS autonomous drone racing
challenge,” J. Field Robot., vol. 35, no. 1, pp. 146–166, 2018. doi: 10.1002/
rob.21743.
[8] “Fact sheet—The Federal Aviation Administration (FAA) aerospace
forecast fiscal years (FY) 2020–2040,” 2020. https://www.faa.gov/news/
fact_sheets/news_story.cfm?newsId=24756
[9] S. Liu, L. Li, J. Tang, S. Wu, and J.-L. Gaudiot, “Creating autonomous
vehicle systems,” Synthesis Lectures Comput. Sci., vol. 6, no. 1, pp. 1–186,
2017. doi: 10.2200/S00787ED1V01Y201707CSL009.
[10] S. Krishnan et al., “The sky is not the limit: A visual performance
model for cyber-physical co-design in autonomous machines,” IEEE
Comput. Arch. Lett., vol. 19, no. 1, pp. 38–42, 2020. doi: 10.1109/LCA.2020.
2981022.
[11] S. Krishnan et al., “Machine learning-based automated design space
exploration for autonomous aerial robots,” 2021, arXiv:2102.02988.
[12] S. Liu and J.-L. Gaudiot, “Autonomous vehicles lite self-driving
technologies should start small, go slow,” IEEE Spectr., vol. 57, no. 3, pp.
36–49, 2020. doi: 10.1109/MSPEC.2020.9014458.
[13] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing
for autonomous driving: Opportunities and challenges,” Proc. IEEE, vol.
107, no. 8, pp. 1697–1716, 2019. doi: 10.1109/JPROC.2019.2915983.
[14] S. Liu, J. Tang, Z. Zhang, and J.-L. Gaudiot, “Computer architectures
for autonomous driving,” Computer, vol. 50, no. 8, pp. 18–25, 2017. doi:
10.1109/MC.2017.3001256.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 IEEE CIRCUITS AND SYSTEMS MAGAZINE 71

[15] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “[DL] a survey of FPGA-
based neural network inference accelerators,” ACM Trans. Reconfigu-
rable Technol. Syst. (TRETS), vol. 12, no. 1, pp. 1–26, 2019. doi: 10.1145/
3289185.
[16] B. Yu, W. Hu, L. Xu, J. Tang, S. Liu, and Y. Zhu, “Building the comput-
ing system for autonomous micromobility vehicles: Design constraints
and architectural optimizations,” in Proc. 53rd Annu. IEEE/ACM Int.
Symp. Microarch. (MICRO), 2020. doi: 10.1109/MICRO50266.2020.00089.
[17] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE Comput. Soc. Conf. Comput. Vision and Pattern
Recogn. (CVPR’05), 2005, vol. 1, pp. 886–893.
[18] X He, R. S. Zemel, and M. A. Carreira-Perpinan, “Multiscale con-
ditional random fields for image labeling,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vision and Pattern Recogn. (CVPR 2004), 2004, vol. 2, p. II.
[19] X. He, R. S. Zemel, and D. Ray, “Learning and incorporating top-
down cues in image segmentation,” in Proc. Comput. Vision – ECCV 2006,
A. Leonardis, H. Bischof, and A. Pinz, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 338–351.
[20] Y. Xiang, A. Alahi, and S. Savarese, “Learning to track: Online multi-
object tracking by decision making,” in Proc. IEEE Int. Conf. Comput. Vi-
sion (ICCV), 2015, pp. 4705–4713. doi: 10.1109/ICCV.2015.534.
[21] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vision
(ICCV), Dec. 2015. doi: 10.1109/ICCV.2015.169.
[22] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” CoRR, vol.
abs/1506.01497, 2015.
[23] W. Liu et al., “SSD: Single shot multibox detector,” CoRR, vol. abs/
1512.02325, 2015.
[24] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only
look once: Unified, real-time object detection,” CoRR, vol. abs/1506.
02640, 2015.
[25] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,”
CoRR, vol. abs/1612.08242, 2016.
[26] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” CoRR, vol. abs/1411.4038, 2014.
[27] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep
convolutional networks for visual recognition,” CoRR, vol. abs/1406.
4729, 2014.
[28] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” CoRR, vol. abs/1612.01105, 2016.
[29] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S.
Torr, “Fully-convolutional Siamese networks for object tracking,” CoRR,
vol. abs/1606.09549, 2016.
[30] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and
mapping: Part I,” IEEE Robot. Automat. Mag., vol. 13, no. 2, pp. 99–110,
2006. doi: 10.1109/MRA.2006.1638022.
[31] M. Montemerlo et al., “Junior: The Stanford entry in the urban
challenge,” J. Field Robot., vol. 25, no. 9, pp. 569–597, 2008. doi: 10.1002/
rob.20258.
[32] J. Ziegler et al., “Making bertha drive—an autonomous journey on
a historic route,” IEEE Intell. Transp. Syst. Mag., vol. 6, no. 2, pp. 8–20,
2014. doi: 10.1109/MITS.2014.2306552.
[33] C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka, “Real-time mo-
tion planning methods for autonomous on-road driving: State-of-the-
art and future research directions,” Transp. Res. C, Emerg. Technol., vol.
60, pp. 416–442, 2015. doi: 10.1016/j.trc.2015.09.011.
[34] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey
of motion planning and control techniques for self-driving urban ve-
hicles,” IEEE Trans. Intell. Veh., vol. 1, no. 1, pp. 33–55, 2016. doi: 10.1109/
TIV.2016.2578706.
[35] Y. Deng, Y. Chen, Y. Zhang, and S. Mahadevan, “Fuzzy dijkstra
algorithm for shortest path problem under uncertain environment,”
Appl. Soft Comput., vol. 12, no. 3, pp. 1231–1237, 2012. doi: 10.1016/j.asoc.
2011.11.011.
[36] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Trans. Syst. Sci.
Cybern., vol. 4, no. 2, pp. 100–107, 1968. doi: 10.1109/TSSC.1968.300136.
[37] S. M. LaValle and J. J. Kuffner Jr., “Randomized kinodynamic plan-
ning,” Int. J. Robot. Res., vol. 20, no. 5, pp. 378–400, 2001. doi: 10.1177/
02783640122067453.
[38] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Autom. (1989–June 2004), vol. 12, no. 4, pp.
566–580, 1996. doi: 10.1109/70.508439.

[39] S. Shalev-Shwartz, N. Ben-Zrihem, A. Cohen, and A. Shashua, “Long-
term planning by short-term prediction,” 2016, arXiv:1602.01580.
[40] M. Gómez, R. González, T. Martínez-Marín, D. Meziat, and S. Sán-
chez, “Optimal motion planning by reinforcement learning in autono-
mous mobile vehicles,” Robotica, vol. 30, no. 2, pp. 159, 2012. doi: 10.1017/
S0263574711000452.
[41] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-agent,
reinforcement learning for autonomous driving,” 2016, arXiv:1610.03295.
[42] M. Bojarski et al., “End to end learning for self-driving cars,” 2016,
arXiv:1604.07316.
[43] X. Geng, H. Liang, B. Yu, P. Zhao, L. He, and R. Huang, “A scenario-
adaptive driving behavior prediction approach to urban autonomous
driving,” Appl. Sci., vol. 7, no. 4, p. 426, 2017. doi: 10.3390/app7040426.
[44] C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, no.
3-4, pp. 279–292, 1992. doi: 10.1023/A:1022676722315.
[45] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advanc-
es Neural Inf. Process. Syst., 2000, pp. 1008–1014.
[46] S. L. Hicks, I. Wilson, L. Muhammed, J. Worsfold, S. M. Downes, and
C. Kennard, “A depth-based head-mounted visual display to aid naviga-
tion in partially sighted individuals,” PloS One, vol. 8, no. 7, p. e67695,
2013. doi: 10.1371/journal.pone.0067695.
[47] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and S. Leu-
tenegger, “Elasticfusion: Real-time dense slam and light source estima-
tion,” Int. J. Robot. Res., vol. 35, no. 14, pp. 1697–1716, 2016. doi: 10.1177/
0278364916669237.
[48] V. A. Prisacariu et al., “Infinitam v3: A framework for large-scale 3d
reconstruction with loop closure,” 2017, arXiv:1708.00783.
[49] S. Golodetz, T. Cavallari, N. A. Lord, V. A. Prisacariu, D. W. Murray,
and P. H. Torr, “Collaborative large-scale dense 3d reconstruction with
online inter-agent pose optimisation,” IEEE Trans. Vis. Comput. Graph-
ics, vol. 24, no. 11, pp. 2895–2905, 2018. doi: 10.1109/TVCG.2018.2868533.
[50] M. Pérez-Patricio and A. Aguilar-González, “FPGA implementation
of an efficient similarity-based adaptive window algorithm for real-time
stereo matching,” J. Real-Time Image Process., vol. 16, no. 2, pp. 271–287,
2019. doi: 10.1007/s11554-015-0530-6.
[51] D.-W. Yang, L.-C. Chu, C.-W. Chen, J. Wang, and M.-D. Shieh, “Depth-
reliability-based stereo-matching algorithm and its VLSI architecture
design,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 6, pp. 1038–
1050, 2014. doi: 10.1109/TCSVT.2014.2361419.
[52] A. Aguilar-González and M. Arias-Estrada, “An FPGA stereo match-
ing processor based on the sum of hamming distances,” in Proc. Int.
Symp. Appl. Reconfigurable Comput., 2016, pp. 66–77.
[53] M. Pérez-Patricio, A. Aguilar-González, M. Arias-Estrada, H.-R. Her-
nandez-de Leon, J.-L. Camas-Anzueto, and J. de Jesús Osuna-Coutiño,
“An FPGA stereo matching unit based on fuzzy logic,” Microprocessors
Microsyst., vol. 42, pp. 87–99, 2016. doi: 10.1016/j.micpro.2015.10.011.
[54] G. Cocorullo, P. Corsonello, F. Frustaci, and S. Perri, “An efficient
hardware-oriented stereo matching algorithm,” Microprocessors Micro-
syst., vol. 46, pp. 21–33, 2016. doi: 10.1016/j.micpro.2016.09.010.
[55] P. M. Santos, J. C. Ferreira, and J. S. Matos, “Scalable hardware ar-
chitecture for disparity map computation and object location in real-
time,” J. Real-Time Image Process., vol. 11, no. 3, pp. 473–485, 2016. doi:
10.1007/s11554-013-0338-1.
[56] K. M. Ali, R. B. Atitallah, N. Fakhfakh, and J.-L. Dekeyser, “Exploring
HLS optimizations for efficient stereo matching hardware implementa-
tion,” in Proc. Int. Symp. Appl. Reconfigurable Comput., 2017, pp. 168–176.
[57] B. McCullagh, “Real-time disparity map computation using the cell
broadband engine,” J. Real-Time Image Process., vol. 7, no. 2, pp. 87–93,
2012. doi: 10.1007/s11554-010-0155-8.
[58] L. Li, X. Yu, S. Zhang, X. Zhao, and L. Zhang, “3d cost aggregation
with multiple minimum spanning trees for stereo matching,” Appl. Opt.,
vol. 56, no. 12, pp. 3411–3420, 2017. doi: 10.1364/AO.56.003411.
[59] D. Zha, X. Jin, and T. Xiang, “A real-time global stereo-matching
on FPGA,” Microprocessors Microsyst., vol. 47, pp. 419–428, 2016. doi:
10.1016/j.micpro.2016.08.005.
[60] L. Puglia, M. Vigliar, and G. Raiconi, “Real-time low-power FPGA ar-
chitecture for stereo vision,” IEEE Trans. Circuits Syst. II, Express Briefs,
vol. 64, no. 11, pp. 1307–1311, 2017. doi: 10.1109/TCSII.2017.2691675.
[61] A. Kjær-Nielsen et al., “A two-level real-time vision machine com-
bining coarse-and fine-grained parallelism,” J. Real-Time Image Pro-
cess., vol. 5, no. 4, pp. 291–304, 2010. doi: 10.1007/s11554-010-0159-4.
[62] S. Wong, S. Vassiliadis, and S. Cotofana, “A sum of absolute differ-
ences implementation in FPGA hardware,” in Proc. 28th Euromicro Conf.,
2002, pp. 183–188.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

72 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2021

[63] M. Hisham, S. N. Yaakob, R. A. Raof, A. A. Nazren, and N. W. Em-
bedded, “Template matching using sum of squared difference and
normalized cross correlation,” in Proc. IEEE Student Conf. Res. De-
velopment (SCOReD), 2015, pp. 100–104. doi: 10.1109/SCORED.2015
.7449303.
[64] J.-C. Yoo and T. H. Han, “Fast normalized cross-correlation,” Cir-
cuits Syst. Signal Process., vol. 28, no. 6, p. 819, 2009. doi: 10.1007/s00034-
009-9130-7.
[65] B. Froba and A. Ernst, “Face detection with the modified census
transform,” in Proc. 6th IEEE Int. Conf. Automatic Face and Gesture Recogn.,
2004, pp. 91–96.
[66] S. Jin et al., “FPGA design and implementation of a real-time stereo
vision system,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 1,
pp. 15–26, 2009.
[67] L. Zhang, K. Zhang, T. S. Chang, G. Lafruit, G. K. Kuzmanov, and D.
Verkest, “Real-time high-definition stereo matching on FPGA,” in Proc.
19th ACM/SIGDA Int. Symp. Field Programmable Gate Arrays, 2011, pp.
55–64. doi: 10.1145/1950413.1950428.
[68] D. Honegger, P. Greisen, L. Meier, P. Tanskanen, and M. Pollefeys,
“Real-time velocity estimation based on optical flow and disparity
matching,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst., 2012, pp.
5177–5182.
[69] M. Jin and T. Maruyama, “Fast and accurate stereo vision system
on FPGA,” ACM Trans. Reconfigurable Technol. Syst. (TRETS), vol. 7, no.
1, pp. 1–24, 2014. doi: 10.1145/2567659.
[70] S. Park and H. Jeong, “Real-time stereo vision FPGA chip with low
error rate,” in Proc. Int. Conf. Multimedia and Ubiquitous Eng. (MUE’07),
2007, pp. 751–756.
[71] S. Sabihuddin, J. Islam, and W. J. MacLean, “Dynamic programming
approach to high frame-rate stereo correspondence: A pipelined archi-
tecture implemented on a field programmable gate array,” in Proc. Ca-
nadian Conf. Electr. Comput. Eng., pp. 1461–1466, 2008.
[72] M. Jin and T. Maruyama, “A real-time stereo vision system us-
ing a tree-structured dynamic programming on FPGA,” in Proc.ACM/
SIGDA Int. Symp. Field Programmable Gate Arrays, 2012, pp. 21–24. doi:
10.1145/2145694.2145698.
[73] R. Kamasaka, Y. Shibata, and K. Oguri, “An FPGA-oriented graph
cut algorithm for accelerating stereo vision,” in Proc. Int. Conf. ReCon-
Figurable Comput. FPGAs (ReConFig), 2018, pp. 1–6. doi: 10.1109/RE-
CONFIG.2018.8641737.
[74] C. Banz, S. Hesselbarth, H. Flatt, H. Blume, and P. Pirsch, “Real-time
stereo vision system using semi-global matching disparity estimation:
Architecture and FPGA-implementation,” in Proc. Int. Conf. Embedded
Comput. Syst., Arch., Model. Simulation, 2010, pp. 93–101.
[75] W. Wang, J. Yan, N. Xu, Y. Wang, and F.-H. Hsu, “Real-time high-
quality stereo vision system in FPGA,” IEEE Trans. Circuits Syst. Video
Technol., vol. 25, no. 10, pp. 1696–1708, 2015. doi: 10.1109/TCSVT.2015.
2397196.
[76] L. F. Cambuim, J. P. Barbosa, and E. N. Barros, “Hardware module
for low-resource and real-time stereo vision engine using semi-global
matching approach,” in Proc.30th Symp. Integrated Circuits Syst. Des.,
Chip Sands. 2017, pp. 53–58. doi: 10.1145/3109984.3109992.
[77] O. Rahnama, T. Cavalleri, S. Golodetz, S. Walker, and P. Torr, “R3sgm:
Real-time raster-respecting semi-global matching for power-constrained
systems,” in Proc. Int. Conf. Field-Programmable Technol. (FPT), 2018,
pp. 102–109. doi: 10.1109/FPT.2018.00025.
[78] L. F. Cambuim, L. A. Oliveira, E. N. Barros, and A. P. Ferreira, “An FPGA-
based real-time occlusion robust stereo vision system using semi-global
matching,” J. Real-Time Image Process., vol. 17, no. 5, pp. 1–22, 2019. doi: 10.1007/
s11554-019-00902-w.
[79] J. Zhao et al., “FP-stereo: Hardware-efficient stereo vision for em-
bedded applications,” 2020, arXiv:2006.03250.
[80] O. Rahnama, D. Frost, O. Miksik, and P. H. Torr, “Real-time dense
stereo matching with ELAS on FPGA-accelerated embedded devices,”
IEEE Robot. Automat. Lett., vol. 3, no. 3, pp. 2008–2015, 2018. doi: 10.1109/
LRA.2018.2800786.
[81] O. Rahnama et al., “Real-time highly accurate dense depth on a
power budget using an FPGA-CPU hybrid soc,” IEEE Trans. Circuits and
Syst. II: Express Briefs, vol. 66, no. 5, pp. 773–777, 2019. doi: 10.1109/TC-
SII.2019.2909169.
[82] H. Hirschmuller, “Accurate and efficient stereo processing by semi-
global matching and mutual information,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vision and Pattern Recogn. (CVPR’05), 2005, vol. 2, pp.
807–814.

[83] D. Honegger, H. Oleynikova, and M. Pollefeys, “Real-time and low
latency embedded computer vision hardware based on a combination
of FPGA and mobile CPU,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots and
Syst., 2014, pp. 4930–4935.
[84] S. Mattoccia and M. Poggi, “A passive RGBD sensor for accurate
and real-time depth sensing self-contained into an FPGA,” in Proc.
9th Int. Conf. Distrib. Smart Cameras, 2015, pp. 146–151. doi: 10.1145/
2789116.2789148.
[85] S. K. Gehrig, F. Eberli, and T. Meyer, “A real-time low-power stereo
vision engine using semi-global matching,” in Proc. Int. Conf. Comput.
Vision Syst., 2009, pp. 134–143.
[86] D. Hernandez-Juarez, A. Chacón, A. Espinosa, D. Vázquez, J. C.
Moure, and A. M. López, “Embedded real-time stereo estimation via
semi-global matching on the GPU,” Procedia Comput. Sci., vol. 80, pp.
143–153, 2016. doi: 10.1016/j.procs.2016.05.305.
[87] H. Hirschmuller and D. Scharstein, “Evaluation of cost functions
for stereo matching,” in Proc. IEEE Conf. Comput. Vision and Pattern
Recogn., 2007, pp. 1–8. doi: 10.1109/CVPR.2007.383248.
[88] Y. Shan et al., “FPGA based memory efficient high resolution stereo
vision system for video tolling,” in Proc. Int. Conf. Field-Programmable
Technol., 2012, pp. 29–32.
[89] Y. Shan et al., “Hardware acceleration for an accurate stereo vi-
sion system using mini-census adaptive support region,” ACM Trans.
Embedded Comput. Syst. (TECS), vol. 13, no. 4s, pp. 1–24, 2014. doi:
10.1145/2584659.
[90] A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo
matching,” in Proc. Asian Conf. Comput. Vision, 2010, pp. 25–38.
[91] S. Zagoruyko and N. Komodakis, “Learning to compare image
patches via convolutional neural networks,” in Proc. IEEE Conf. Comput.
Vision and Pattern Recogn., 2015, pp. 4353–4361.
[92] J. Žbontar and Y. LeCun, “Stereo matching by training a convolu-
tional neural network to compare image patches,” J. Mach. Learn. Res.,
vol. 17, no. 1, pp. 2287–2318, 2016.
[93] W. Luo, A. G. Schwing, and R. Urtasun, “Efficient deep learning
for stereo matching,” in Proc. IEEE Conf. Comput. Vision and Pattern
Recogn., 2016, pp. 5695–5703.
[94] A. Seki and M. Pollefeys, “SGM-Nets: Semi-global matching with
neural networks,” in Proc. IEEE Conf. Comput. Vision and Pattern Recogn.,
2017, pp. 231–240.
[95] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy,
and T. Brox, “A large dataset to train convolutional networks for dispar-
ity, optical flow, and scene flow estimation,” in Proc. IEEE Conf. Comput.
Vision and Pattern Recogn., 2016, pp. 4040–4048.
[96] A. Kuzmin, D. Mikushin, and V. Lempitsky, “End-to-end learning of
cost-volume aggregation for real-time dense stereo,” in Proc. IEEE 27th
Int. Workshop on Mach. Learn. Signal Process. (MLSP), 2017, pp. 1–6. doi:
10.1109/MLSP.2017.8168183.
[97] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang, “A high per-
formance FPGA-based accelerator for large-scale convolutional neural
networks,” in Proc. 26th Int. Conf. Field Programmable Logic and Appl.
(FPL), 2016, pp. 1–9.
[98] J. Qiu et al., “Going deeper with embedded FPGA platform for
convolutional neural network,” in Proc. ACM/SIGDA Int. Symp. Field-
Programmable Gate Arrays, 2016, pp. 26–35. doi: 10.1145/2847263
.2847265.
[99] K. Guo et al., “Angel-eye: A complete design flow for mapping CNN
onto embedded FPGA,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 37, no. 1, pp. 35–47, 2017. doi: 10.1109/TCAD.2017.2705069.
[100] J. Yu et al., “Instruction driven cross-layer CNN accelerator for fast
detection on FPGA,” ACM Trans. Reconfigurable Technol. Syst. (TRETS,),
vol. 11, no. 3, pp. 1–23, 2018. doi: 10.1145/3283452.
[101] H. Nakahara, H. Yonekawa, T. Fujii, and S. Sato, “A lightweight YO-
LOv2: A binarized CNN with a parallel support vector regression for an
FPGA,” in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays,
2018, pp. 31–40.
[102] M. S. Belshaw, “A high-speed iterative closest point tracker on an
FPGA platform,” PhD thesis, 2008.
[103] B. Williams, “Evaluation of a soc for real-time 3d slam,” 2017.
[104] B. Van Hoorick, “FPGA-based simultaneous localization and map-
ping (slam) using high-level synthesis,” 2019.
[105] Q. Gautier et al., “Real-time 3d reconstruction for FPGAs: A case
study for evaluating the performance, area, and programmability
trade-offs of the Altera OpenCL SDK,” in Proc. Int. Conf. Field-Program-
mable Technol. (FPT), 2014, pp. 326–329. doi: 10.1109/FPT.2014.7082810.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2021 IEEE CIRCUITS AND SYSTEMS MAGAZINE 73

[106] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consis-
tency of the EKF-SLAM algorithm,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots and Syst., 2006, pp. 3562–3568.
[107] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A
versatile and accurate monocular slam system,” IEEE Trans. Robot., vol.
31, no. 5, pp. 1147–1163, 2015. doi: 10.1109/TRO.2015.2463671.
[108] M. Montemerlo et al., “FastSLAM: A factored solution to the simul-
taneous localization and mapping problem,” AAAI/IAAI, vol. 593598, 2002.
[109] M. Gu, K. Guo, W. Wang, Y. Wang, and H. Yang, “An FPGA-based
real-time simultaneous localization and mapping system,” in Proc.
Int. Conf. Field Programmable Technol. (FPT), 2015, pp. 200–203. doi:
10.1109/FPT.2015.7393150.
[110] C. Cadena et al., “Past, present, and future of simultaneous local-
ization and mapping: Toward the robust-perception age,” IEEE Trans.
Robot., vol. 32, no. 6, pp. 1309–1332, 2016. doi: 10.1109/TRO.2016.2624754.
[111] J. Engel, J. Sturm, and D. Cremers, “Semi-dense visual odometry for a
monocular camera,” in Proc. IEEE Int. Conf. Comput. Vision, 2013, pp. 1449–1456.
[112] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robot-
ics: The KITTI dataset,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1231–1237,
2013. doi: 10.1177/0278364913491297.
[113] M. Burri et al., “The EuRoC micro aerial vehicle datasets,” Int. J. Robot.
Res., vol. 35, no. 10, pp. 1157–1163, 2016. doi: 10.1177/0278364915620033.
[114] R. A. Newcombe et al., “KinectFusion: Real-time dense surface
mapping and tracking,” in Proc. 10th IEEE Int. Symp. Mixed and Augment-
ed Reality, 2011, pp. 127–136.
[115] V. Bonato, E. Marques, and G. A. Constantinides, “A floating-point ex-
tended Kalman filter implementation for autonomous mobile robots,” J. Signal
Process. Syst., vol. 56, no. 1, pp. 41–50, 2009. doi: 10.1007/s11265-008-0257-8.
[116] D. T. Tertei, J. Piat, and M. Devy, “FPGA design and implementation
of a matrix multiplier based accelerator for 3d EKF SLAM,” in Proc. Int.
Conf. ReConFigurable Comput. and FPGAs (ReConFig14), 2014, pp. 1–6.
[117] D. T. Tertei, J. Piat, and M. Devy, “FPGA design of EKF block accel-
erator for 3d visual slam,” Comput. Electr. Eng., vol. 55, pp. 123–137, 2016.
doi: 10.1016/j.compeleceng.2016.05.003.
[118] B. Vincke, A. Elouardi, and A. Lambert, “Real time simultaneous
localization and mapping: towards low-cost multiprocessor embedded
systems,” EURASIP J. Embedded Syst., vol. 2012, no. 1, p. 5, 2012. doi:
10.1186/1687-3963-2012-5.
[119] B. Vincke, A. Elouardi, A. Lambert, and A. Dine, “SIMD and
OpenMP optimization of EKF-SLAM,” in Proc. Int. Conf. Multimedia Com-
puti. Syst. (ICMCS), 2014, pp. 712–716. doi: 10.1109/ICMCS.2014.6911157.
[120] W. Fang, Y. Zhang, B. Yu, and S. Liu, “FPGA-based ORB feature ex-
traction for real-time visual slam,” in Proc. Int. Conf. Field Programmable
Technol. (ICFPT), 2017, pp. 275–278. doi: 10.1109/FPT.2017.8280159.
[121] Y. Biadgie and K.-A. Sohn, “Feature detector using adaptive acceler-
ated segment test,” in Proc. Int. Conf. Inf. Sci. Appl. (ICISA), 2014, pp. 1–4.
[122] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary ro-
bust independent elementary features,” in Proc. European Conf. Com-
put. Vision, 2010, pp. 778–792.
[123] R. Liu, J. Yang, Y. Chen, and W. Zhao, “eSLAM: An energy-efficient
accelerator for real-time ORB-slam on FPGA platform,” in Proc. 56th
Annu. Des. Automat. Conf., 2019, pp. 1–6.
[124] V. H. Schulz, F. G. Bombardelli, and E. Todt, “A Harris corner detec-
tor implementation in SoC-FPGA for visual slam,” in Robotics. Springer-
Verlag, 2016, pp. 57–71.
[125] M. Abouzahir, A. Elouardi, S. Bouaziz, R. Latif, and A. Tajer,
“Large-scale monocular FastSLAM2. 0 acceleration on an embedded
heterogeneous architecture,” EURASIP J. Adv. Signal Process., vol. 2016,
no. 1, p. 88, 2016. doi: 10.1186/s13634-016-0386-3.
[126] M. Abouzahir, A. Elouardi, R. Latif, S. Bouaziz, and A. Tajer, “Em-
bedding SLAM algorithms: Has it come of age?” Robot. Autonom. Syst.,
vol. 100, pp. 14–26, 2018. doi: 10.1016/j.robot.2017.10.019.
[127] K. Boikos and C.-S. Bouganis, “Semi-dense SLAM on an FPGA
SoC,” in Proc. 26th Int. Conf. Field Programmable Logic Appl. (FPL), 2016,
pp. 1–4. doi: 10.1109/FPL.2016.7577365.
[128] K. Boikos and C.-S. Bouganis, “A high-performance system-on-chip
architecture for direct tracking for slam,” in Proc. 27th Int. Conf. Field Pro-
grammable Logic Appl. (FPL), 2017, pp. 1–7. doi: 10.23919/FPL.2017.8056831.
[129] K. Boikos and C.-S. Bouganis, “A scalable FPGA-based architec-
ture for depth estimation in SLAM,” in Proc. Int. Symp. Appl. Reconfigu-
rable Comput., 2019, pp. 181–196.
[130] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superpoint: Self-su-
pervised interest point detection and description,” in Proc. IEEE Conf.
Comput. Vision and Pattern Recogn. Workshops, 2018, pp. 224–236.

[131] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-
Noguer, “Discriminative learning of deep convolutional feature point de-
scriptors,” in Proc. IEEE Int. Conf. Comput. Vision, 2015, pp. 118–126.
[132] F. Radenović, G. Tolias, and O. Chum, “Fine-tuning CNN image re-
trieval with no human annotation,” IEEE Trans. Pattern Anal. Mach. In-
tell., vol. 41, no. 7, pp. 1655–1668, 2018. doi: 10.1109/TPAMI.2018.2846566.
[133] Xilinx. “DPU for convolutional neural network.”
[134] Z. Xu, J. Yu, C. Yu, H. Shen, Y. Wang, and H. Yang, “CNN-based
feature-point extraction for real-time visual slam on embedded FPGA,”
in Proc. IEEE 28th Annu. Int. Symp. Field-Programmable Custom Comput.
Mach. (FCCM), 2020, pp. 33–37. doi: 10.1109/FCCM48280.2020.00014.
[135] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” 2015, arXiv:1510.00149.
[136] S. Krishnan, S. Chitlangia, M. Lam, Z. Wan, A. Faust, and V. J. Reddi,
“Quantized reinforcement learning (QUARL),” 2019, arXiv:1910.01055.
[137] H. F. Langroudi, V. Karia, J. L. Gustafson, and D. Kudithipudi,
“Adaptive posit: Parameter aware numerical format for deep learning
inference on the edge,” in Proc. IEEE/CVF Conf. Comput. Vision and Pat-
tern Recogn. Workshops, 2020, pp. 726–727.
[138] T. Tambe et al., “Algorithm-hardware co-design of adaptive
floating-point encodings for resilient deep learning inference,” in Proc.
57th ACM/IEEE Des. Automat. Conf. (DAC), 2020, pp. 1–6. doi: 10.1109/
DAC18072.2020.9218516.
[139] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” 2016, arX-
iv:1605.04711.
[140] J. Choi, S. Venkataramani, V. Srinivasan, K. Gopalakrishnan, Z.
Wang, and P. Chuang, “Accurate and efficient 2-bit quantized neural net-
works,” in Proc. 2nd SysML Conf., 2019, vol. 2019.
[141] J. Kim, K. Yoo, and N. Kwak, “Position-based scaled gradient for model
quantization and pruning,” Adv. Neural Inform. Process. Syst., vol. 33, 2020.
[142] T. Tambe et al., “Adaptivfloat: A floating-point based data type for
resilient deep learning inference,” 2019, arXiv:1909.13271.
[143] J. Yu et al., “CNN-based monocular decentralized SLAM on em-
bedded FPGA,” 2020.
[144] H. Zhan, R. Garg, C. Saroj Weerasekera, K. Li, H. Agarwal, and I.
Reid, “Unsupervised learning of monocular depth estimation and vi-
sual odometry with deep feature reconstruction,” in Proc. IEEE Conf.
Comput. Vision and Pattern Recogn., 2018, pp. 340–349.
[145] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “Net-
VLAD: CNN architecture for weakly supervised place recognition,” in
Proc. IEEE Conf. Comput. Vision and Pattern Recogn., 2016, pp. 5297–5307.
[146] J. Yu et al., “INCA: Interruptible CNN accelerator for multi-tasking
in embedded robots,” in Proc. 57th ACM/ESDA/IEEE Des. Automat. Conf.
(DAC), 2020.
[147] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An open-source slam
system for monocular, stereo, and RGB-D cameras,” IEEE Trans. Robot.,
vol. 33, no. 5, pp. 1255–1262, 2017. doi: 10.1109/TRO.2017.2705103.
[148] S. Liu, Engineering Autonomous Vehicles and Robots: The Dragon-
Fly Modular-based Approach, 1st ed. Wiley-IEEE Press, Mar. 2020.
[149] M. Maimone, Y. Cheng, and L. Matthies, “Two years of visual
odometry on the mars exploration rovers,” J. Field Robot., vol. 24, no. 3,
pp. 169–186, 2007. doi: 10.1002/rob.20184.
[150] B. Klingner, D. Martin, and J. Roseborough, “Street view motion-
from-structure-from-motion,” in Proc. IEEE Int. Conf. Comput. Vision,
2013, pp. 953–960.
[151] Y. Jeong, D. Nister, D. Steedly, R. Szeliski, and I.-S. Kweon, “Pushing the
envelope of modern methods for bundle adjustment,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 8, pp. 1605–1617, 2011. doi: 10.1109/TPAMI.2011.256.
[152] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz, “Multicore bundle
adjustment,” in Proc. CVPR 2011, 2011, pp. 3057–3064.
[153] A. Eriksson, J. Bastian, T.-J. Chin, and M. Isaksson, “A consensus-
based framework for distributed bundle adjustment,” in Proc. IEEE
Conf. Comput. Vision and Pattern Recogn., 2016, pp. 1754–1762.
[154] R. Zhang, S. Zhu, T. Fang, and L. Quan, “Distributed very large
scale bundle adjustment by global camera consensus,” in Proc. IEEE Int.
Conf. Comput. Vision, 2017, pp. 29–38.
[155] A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, and V. Sze, “Navion:
A 2-mw fully integrated real-time visual-inertial odometry accelerator
for autonomous navigation of nano drones,” IEEE J. Solid-State Circuits,
vol. 54, no. 4, pp. 1106–1119, 2019. doi: 10.1109/JSSC.2018.2886342.
[156] Q. Liu, S. Qin, B. Yu, J. Tang, and S. Liu, “π-ba: Bundle adjustment
hardware accelerator based on distribution of 3d-point observations,”
IEEE Trans. Comput., 2020.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

74 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2021

[157] R. Sun, P. Liu, J. Xue, S. Yang, J. Qian, and R. Ying, “BAX: A bundle
adjustment accelerator with decoupled access/execute architecture
for visual odometry,” IEEE Access, vol. 8, pp. 75,530–75,542, 2020. doi:
10.1109/ACCESS.2020.2988527.
[158] P. Leven and S. Hutchinson, “A framework for real-time path plan-
ning in changing environments,” Int. J. Robot. Res., vol. 21, no. 12, pp.
999–1030, 2002. doi: 10.1177/0278364902021012001.
[159] S. Karaman and E. Frazzoli, “Sampling-based algorithms for opti-
mal motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894, 2011.
doi: 10.1177/0278364911406761.
[160] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed
trees (bit*): Sampling-based optimal planning via the heuristically
guided search of implicit random geometric graphs,” in Proc. IEEE Int.
Conf. Robot. Automat. (ICRA), 2015, pp. 3067–3074.
[161] K. Hauser, “Lazy collision checking in asymptotically-optimal
motion planning,” in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), 2015, pp.
2951–2957.
[162] A. Yershova and S. M. LaValle, “Improving motion-planning algo-
rithms by efficient nearest-neighbor searching,” IEEE Trans. Robot., vol.
23, no. 1, pp. 151–157, 2007. doi: 10.1109/TRO.2006.886840.
[163] W. Wang, D. Balkcom, and A. Chakrabarti, “A fast online spanner
for roadmap construction,” Int. J. Robot. Res., vol. 34, no. 11, pp. 1418–
1432, 2015. doi: 10.1177/0278364915576491.
[164] S. Murray, W. Floyd-Jones, G. Konidaris, and D. J. Sorin, “A pro-
grammable architecture for robot motion planning acceleration,” in
Proc. IEEE 30th Int. Conf. Appl.-Specific Syst., Arch. Process. (ASAP), 2019,
vol. 2160, pp. 185–188.
[165] J. Bialkowski, S. Karaman, and E. Frazzoli, “Massively parallelizing
the RRT and the RRT,” in Proc. IEEE/RSJ Int, Conf. Intell. Robots and Syst.,
2011, pp. 3513–3518.
[166] J. Pan and D. Manocha, “GPU-based parallel collision detection for
fast motion planning,” Int. J. Robot. Res., vol. 31, no. 2, pp. 187–200, 2012.
doi: 10.1177/0278364911429335.
[167] J. Pan, C. Lauterbach, and D. Manocha, “G-planner: Real-time mo-
tion planning and global navigation using GPUs,” in AAAI, 2010.
**[168] N. Atay and B. Bayazit, “A motion planning processor on re-
configurable hardware,” in Proc. IEEE Int. Conf. Robot. Automat. (ICRA
2006), 2006, pp. 125–132.
[169] S. Murray, W. Floyd-Jones, Y. Qi, G. Konidaris, and D. J. Sorin, “The
microarchitecture of a real-time robot motion planning accelerator,”
in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarch. (MICRO), 2016, pp.
1–12. doi: 10.1109/MICRO.2016.7783748.
[170] S. Lian, Y. Han, X. Chen, Y. Wang, and H. Xiao, “DADU-P: A scalable
accelerator for robot motion planning in a dynamic environment,” in
Proc. 55th ACM/ESDA/IEEE Design Automat. Conf. (DAC), 2018, pp. 1–6.
doi: 10.1109/DAC.2018.8465785.
[171] U. Bondhugula et al., “Hardware/software integration for FPGA-
based all-pairs shortest-paths,” in Proc. 14th Annu. IEEE Symp. Field-
Programmable Custom Comput. Mach., 2006, pp. 152–164. doi: 10.1109/
FCCM.2006.48.
[172] K. Sridharan, T. Priya, and P. R. Kumar, “Hardware architecture
for finding shortest paths,” in Proc. TENCON 2009 IEEE Region 10 Conf.,
pp. 1–5.
[173] Y. Takei, M. Hariyama, and M. Kameyama, “Evaluation of an FP-
GA-based shortest-path-search accelerator,” in Proc. Int. Conf. Parallel
Distrib. Process. Techn. Appl. (PDPTA), The Steering Committee of The
World Congress in Computer Science, Computer Engineering and Ap-
plied Computing (WorldComp), 2015 p. 613.
[174] K. Vipin and S. A. Fahmy, “FPGA dynamic and partial reconfigura-
tion: A survey of architectures, methods, and applications,” ACM Com-
put. Surveys (CSUR), vol. 51, no. 4, pp. 1–39, 2018. doi: 10.1145/3193827.
[175] S. Liu, R. N. Pittman, and A. Forin, “Minimizing partial reconfigura-
tion overhead with fully streaming DMA engines and intelligent ICAP
controller,” in FPGA, 2010, p. 292.
[176] S. Liu, R. N. Pittman, A. Forin, and J.-L. Gaudiot, “Achieving energy
efficiency through runtime partial reconfiguration on reconfigurable
systems,” ACM Trans. Embedded Comput. Syst. (TECS), vol. 12, no. 3, p.
72, 2013. doi: 10.1145/2442116.2442122.
[177] E. Rublee, V. Rabaud, K. Konolige, and G. R. Bradski, “Orb: An ef-
ficient alternative to sift or surf,” in ICCV, vol. 11, p. 2, 2011.
[178] B. D. Lucas and T. Kanade, “An iterative image registration tech-
nique with an application to stereo vision,” in Proc. 7th Int. Joint Conf.
Artif. Intell., 1981.

[179] W. Fang, Y. Zhang, B. Yu, and S. Liu, “Dragonfly+: FPGA-based
quad-camera visual slam system for autonomous vehicles,” Proc. IEEE
HotChips, p. 1, 2018.
[180] T. Qin, P. Li, and, and S. Shen, “VINS-MONO: A robust and versatile
monocular visual-inertial state estimator,” IEEE Trans. Robot., vol. 34,
no. 4, pp. 1004–1020, 2018. doi: 10.1109/TRO.2018.2853729.
[181] K. Sun et al., “Robust stereo visual inertial odometry for fast au-
tonomous flight,” IEEE Robot. Automat. Lett., vol. 3, no. 2, pp. 965–972,
2018. doi: 10.1109/LRA.2018.2793349.
[182] R. Szeliski, “Computer vision: Algorithms and applications,” in
Texts in Computer Science. London: Springer-Verlag, 2010.
[183] A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo
matching,” in Proc. 10th Asian Conf. Comput. Vision, 2010.
[184] Y. Feng, P. Whatmough, and Y. Zhu, “ASV: Accelerated stereo vi-
sion system,” in Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarch. (MI-
CRO ‘52), 2019, p. 643–656.
[185] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-
speed tracking with kernelized correlation filters,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 37, no. 3, pp. 583–596, Mar. 2015. doi: 10.1109/
TPAMI.2014.2345390.
[186] A. Kelly, Mobile Robotics: Mathematics, Models, and Methods. Cam-
bridge Univ. Press, 2013.
[187] J. Tang, B. Yu, S. Liu, Z. Zhang, W. Fang, and Y. Zhang, “π-soc: Het-
erogeneous soc architecture for visual inertial slam applications,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst. (IROS), 2018, pp. 8302–
8307. doi: 10.1109/IROS.2018.8594181.
[188] S. Qin, Q. Liu, B. Yu, and S. Liu, “π-ba: Bundle adjustment accelera-
tion on embedded FPGAs with co-observation optimization,” in Proc.
27th IEEE Annu. Int. Symp. Field-Programmable Custom Comput. Mach.
(FCCM 2019), San Diego, CA, Apr. 28–May 1, 2019, pp. 100–108.
[189] https://grail.cs.washington.edu/projects/bal/
[190] P. L. Mckerracher, R. P. Cain, J. C. Barnett, W. S. Green, and J. D.
Kinnison, “Design and test of field programmable gate arrays in space
applications,” 1992.
[191] M. Berg, “FPGA mitigation strategies for critical applications,”
2019.
[192] D. Sheldon, “Flash-based FPGA NEPP FY12 summary report,”
[193] R. Gaillard, “Single event effects: Mechanisms and classification,”
in Soft Errors in Modern Electronic Systems. Springer-Verlag, 2011, pp.
27–54.
[194] M. Wirthlin, “FPGAs operating in a radiation environment: lessons
learned from FPGAs in space,” J. Instrumentation, vol. 8, no. 2, p. C02020,
2013. doi: 10.1088/1748-0221/8/02/C02020.
[195] F. Brosser and E. Milh, “SEU mitigation techniques for advanced
reprogrammable FPGA in space,” Master’s thesis, 2014.
[196] B. Ahmed and C. Basha, “Fault mitigation strategies for reliable
FPGA architectures,” Ph.D. thesis, Rennes 1, 2016.
[197] S. Habinc, “Suitability of reprogrammable FPGAs in space applica-
tions,” Gaisler Research, Feasibility Rep., 2002.
[198] G. Lentaris et al., “High-performance embedded computing in space:
Evaluation of platforms for vision-based navigation,” J. Aerospace Inform.
Syst., vol. 15, no. 4, pp. 178–192, 2018. doi: 10.2514/1.I010555.
[199] T. Y. Li and S. Liu, “Enabling commercial autonomous robotic
space explorers,” IEEE Potentials., vol. 39, no. 1, pp. 29–36, 2019. doi:
10.1109/MPOT.2019.2935338.
[200] D. Ratter, “FPGAs on Mars,” Xcell J., vol. 50, pp. 8–11, 2004.
[201] J. F. Bell III et al., “Mars exploration rover athena panoramic cam-
era (pancam) investigation,” J. Geophys. Res. Planets, vol. 108, 2003. doi:
10.1029/2003JE002070.
[202] “Space flight system design and environmental test.” https://
www.nasa.gov/sites/default/files/atoms/files/std8070.1.pdf (accessed
Sept. 1, 2020)
[203] M. C. Malin et al., “The Mars Science Laboratory (MSL) mast cam-
eras and descent imager: Investigation and instrument descriptions,” Earth
Space Sci., vol. 4, no. 8, pp. 506–539, 2017. doi: 10.1002/2016EA000252.
[204] C. D. Edwards, T. C. Jedrey, A. Devereaux, R. DePaula, and M. Dapore,
“The electra proximity link payload for Mars relay telecommunications
and navigation,” 2003. doi: 10.2514/6.IAC-03-Q.3.a.06.
[205] A. Johnson et al., “The lander vision system for Mars 2020 entry
descent and landing,” 2017.
[206] “Vivado high-level synthesis.” https://www.xilinx.com/products/
design-tools/vivado/integration/esl-design.html (accessed Sept. 10,
2020)

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 13,2022 at 02:01:07 UTC from IEEE Xplore. Restrictions apply.

