
50 COMMUNICATIONS OF THE ACM | JANUARY 2017 | VOL. 60 | NO. 1

practice

OU R THIRD INSTALLMENT of Research for Practice
brings readings spanning programming languages,
compilers, privacy, and the mobile Web.

First, Jean Yang provides an overview of how to use
information flow techniques to build programs that
are secure by construction. As Yang writes, information
flow is a conceptually simple “clean idea”: the flow
of sensitive information across program variables
and control statements can be tracked to determine
whether information may in fact leak. Making
information flow practical is a major challenge,
however. Instead of relying on programmers to track
information flow, how can compilers and language
runtimes be made to do the heavy lifting? How can
application writers easily express their privacy policies
and understand the implications of a given policy for
the set of values that an application user may see?
Yang’s set of papers directly addresses these questions

via a clever mix of techniques from
compilers, systems, and language de-
sign. This focus on theory made practi-
cal is an excellent topic for RfP.

Second, Vijay Janapa Reddi and
Yuhao Zhu provide an overview of the
challenges for the future of the mobile
Web. Mobile represents a major frontier
in personal computing, with extreme
growth in adoption and data volume.
Accordingly, Reddi and Zhu outline
three major ongoing challenges in mo-
bile Web computing: responsiveness
of resource loading, energy efficiency
of computing devices, and making effi-
cient use of data. In their citations, Red-
di and Zhu draw on a set of techniques
spanning browsers, programming lan-
guages, and data proxying to illustrate
the opportunity for “cross-layer optimi-
zation” in addressing these challenges.
Specifically, by redesigning core compo-
nents of the Web stack, such as caches
and resource-fetching logic, systems op-
erators can improve users’ mobile Web
experience. This opportunity for co-de-
sign is not simply theoretical: Reddi and
Zhu’s third citation describes a mobile-
optimized compression proxy that is al-
ready running in production at Google.

As always, our goal in RfP is to al-
low readers to become experts in the
latest, practically oriented topics in
computer science research in a week-
end afternoon’s worth of reading time.
I am grateful to this installment’s ex-
perts for generously contributing such
a strong set of contributions, and, as
always, we welcome your feedback!
— Peter Bailis

Peter Bailis is assistant professor of computer science
at Stanford University. His research in the Future Data
Systems group (http://futuredata.stanford.edu/) focuses
on the design and implementation of next-generation
data-intensive systems.

Research
for Practice:
Web Security and
Mobile Web Computing

DOI:10.1145/2980989

 Article development led by
queue.acm.org

Expert-curated guides
to the best of CS research.

about RfP
Research for Practice combines
the resources of the ACM Digital Library,
the largest collection of computer science
research in the world, with the expertise
of the ACM membership. In every RfP column
two or more experts share a short, curated
selection of papers on a concentrated,
practically oriented topic.

http://dx.doi.org/10.1145/2980989

JANUARY 2017 | VOL. 60 | NO. 1 | COMMUNICATIONS OF THE ACM 51

Practical Information
Flow for Web Security
By Jean Yang
Information leaks have
become so common that
many have given up hope

when it comes to information security.3
Data breaches are inevitable anyway,
some say.1 I don’t even go on the Inter-
net anymore, other (computers) say.6

This despair has led yet others to
the Last Resort: Reasoning about
what our programs actually do. For
years, bugs didn’t matter as long as
your robot could sing. If your pro-
gram can go twice the speed it did
yesterday, who cares what outputs it
gives you? But we are starting to learn
the hard way that no amount of raz-
zle-dazzle can make up for Facebook
leaking your phone number to the
people you didn’t invite to the party.4

This realization is leading us to
a new age, one in which reasoning
techniques that previously seemed
unnecessarily baroque are coming
into fashion. Growing pressure from
regulators is finally making it increas-
ingly popular to use precise program
analysis to ensure software security.5
Growing demand for producing Web
applications quickly makes it relevant
to develop new paradigms—well-
specified ones, at that—for creating
secure-by-construction software.

The construction of secure software
means solving the important problem
of information flow. Most of us have
heard of trapdoor ways to access infor-
mation we should not see. For example,
one researcher showed that it is pos-
sible to discover the phone numbers of
thousands of Facebook users simply by
searching for random phone numbers.2
Many such leaks occur not because a
system shows sensitive values directly,
but because it shows the results of com-
putations—such as search—on sensi-
tive values. Preventing these leaks re-
quires implementing policies not only
on sensitive values themselves, but also
whenever computations may be affect-
ed by sensitive values.

Enforcing policies correctly with
respect to information flow means
reasoning about sensitive values
and policies as they flow through in-
creasingly complex programs, mak-
ing sure to reveal only information
consistent with the privileges associ-

ated with each user. There is a body of
work dedicated to compile-time and
runtime techniques for tracking val-
ues through programs for ensuring
correct information flow.

While information flow is a clean
idea, getting it to work on real pro-
grams and systems requires solving
many hard problems. The three pa-
pers presented here focus on solving
the problem of secure information
flow for Web applications. The first
one describes an approach for tak-
ing trust out of Web applications and
shifting it instead to the framework
and compiler. The second describes a
fully dynamic enforcement technique
implemented in a Web framework
that requires programmers to specify
each policy only once. The third de-
scribes a Web framework that cus-
tomizes program behavior based on
the policies and viewing context.

Shifting Trust to the Framework
and Compiler through Language-
Based Enforcement

Chong, S., Vikram, K. and Myers, A.C.
SIF: Enforcing confidentiality and integrity in
Web applications. Proceedings of the 16th Usenix
Security Symposium, 2007.
https://www.usenix.org/conference/16th-
usenix-security-symposium/sif-enforcing-
confidentiality-and-integrity-Web

In securing Web applications, a major
source of the burden on programmers
involves reasoning about how informa-
tion may be leaked through computa-
tions across different parts of an ap-
plication and across requests. Without
additional checks and balances, the
programmer must be fully trusted to do
this correctly.

This first selection presents a frame-
work that shifts trust from the applica-
tion to the framework and compiler.
The Servlet Information Flow (SIF)
framework follows a line of work in
language-based information flow fo-
cused on checking programs against
specifications of security policies. Built
using the Java servlet framework, SIF
prevents many common sources of
information flow—for example, those
across multiple requests. SIF appli-
cations are written in Jif, a language
that extends Java with programmer-
provided labels specifying policies for
information flow. SIF uses a combina-

tion of compile-time and runtime en-
forcement to ensure security policies
are enforced from the time a request is
submitted to when it is returned, with
modest enforcement overhead. The
major contribution of the SIF work is
in showing how to provide assurance
(much of it at compile time) about in-
formation flow guarantees in complex,
dynamic Web applications.

Mitigating Annotation Burden
through Principled Containment

Giffin, D.B. et al.
Hails: Protecting data privacy in untrusted
Web applications. Proceedings of the 10th Usenix
Symposium on Operating Systems Design and
Implementation, 2012.
https://www.usenix.org/node/170829

While compile-time checking ap-
proaches are great for providing assur-
ance about program security, they often
require nontrivial programmer effort.
The programmer must not only cor-
rectly construct programs with respect
to information flow, but also annotate
the program with the desired policies.

An alternative approach is confine-
ment: running untrusted code in a re-
stricted way to prevent the code from
exhibiting undesired behavior. For in-
formation flow, confinement takes the
form of tagging sensitive values, track-
ing them through computations, and
checking tags at application endpoints.
Such dynamic approaches are often
more popular because they require little
input from the programmer.

This paper presents Hails, a Web
framework for principled contain-
ment. Hails extends the standard MVC
(model-view-controller) paradigm to
include policies, implementing the
MPVC (model-policy-view-controller)
paradigm where the programmer may
specify label-based policies separately
from the rest of the program. Built in
Haskell, Hails uses the LIO (labeled
IO) library to enforce security policies
at the thread/context level and MAC
(mandatory access control) to medi-
ate access to resources such as the
database. It has good performance for
an information flow control frame-
work, handling approximately 47.8K
requests per second.

Hails has been used to build several
Web applications, and the startup Intrin-
sic is using a commercial version of Hails.

https://www.usenix.org/conference/16th-usenix-security-symposium/sif-enforcing-confidentiality-and-integrity-Web
https://www.usenix.org/conference/16th-usenix-security-symposium/sif-enforcing-confidentiality-and-integrity-Web
https://www.usenix.org/conference/16th-usenix-security-symposium/sif-enforcing-confidentiality-and-integrity-Web
https://www.usenix.org/node/170829

52 COMMUNICATIONS OF THE ACM | JANUARY 2017 | VOL. 60 | NO. 1

practice

major challenge is the responsiveness of
Web applications. It is estimated that
a one-second delay in Web page load
time costs Amazon $1.6 billion in annual
sales lost, since mobile users abandon a
Web service altogether if the Web page
takes too long to load. Google loses eight
million searches from a four-tenths-of-a-
second slowdown in search-results gen-
eration. A key bottleneck of mobile Web
responsiveness is resource loading. The
number of objects in today’s Web pages
is already on the order of hundreds, and
it continues to grow steadily. Future
mobile Web computing systems must
improve resource-loading performance,
which is the focus of the first paper.

The second major challenge is energy
efficiency. Mobile devices are severely
constrained by the battery. While com-
puting capability driven by Moore’s Law
advances approximately every two years,
battery capacity doubles every 10 years—
creating a widening gap between com-
putational horsepower and the energy
needed to power the device. Therefore,
future mobile Web computing must be
energy efficient. The second paper in our
selection proposes Web programming
language support for energy efficiency.

The third major challenge is data us-
age. A significant amount of future mo-
bile Web usage will come from emerging
markets in developing countries where
the cost of mobile data is prohibitively
large. To accelerate the Web’s growth
in emerging markets, future mobile
Web computing infrastructure must
serve data consciously. The final paper
discusses how to design a practical and
efficient HTTP data compression proxy
service that operates at Google’s scale.

Developers and system architects
must optimize for RED (responsive-
ness, energy efficiency, and data us-
age), ideally together, to usher in a new
generation of mobile Web computing.

Intelligent Resource Loading
For Responsiveness

Netravali et al.
Polaris: Faster page loads using fine-grained
dependency tracking. Proceedings of the 13th
Usenix Symposium on Networked Systems
Design and Implementation, 2016.
https://www.usenix.org/conference/nsdi16/
technical-sessions/presentation/netravali

A key bottleneck for mobile Web re-
sponsiveness is resource loading. The

The Hails work shows it is possible to en-
force information flow in Web applica-
tions with negligible overhead, without
requiring programmers to change how
they have been programming.

Shifting Implementation
Burden to the Framework

Yang, J., et al.
Precise, dynamic information flow for
database-backed applications. Proceedings
of the 37th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, 2016, 631–647.
http://dl.acm.org/citation.cfm?id=2908098

With the previous two approaches, the
programmer remains burdened with
constructing programs correctly with
respect to information flow. Without
a change in the underlying execution
model, the most any framework can do
is raise exceptions or silently fail when
policies are violated.

This paper looks at what the Web
programming model might look like
if information flow policies could be
factored out of programs the way mem-
ory-managed languages factor out allo-
cation and deallocation. The paper pres-
ents Jacqueline, an MPVC framework
that allows programmers to specify how
to compute an alternative default for
each data value; and high-level policies
about when to show each value that may
contain database queries and/or depend
on sensitive values.

A plausible default for a sensitive lo-
cation value is the corresponding city.
A valid policy is allowing a viewer to see
the location only if the viewer is within
some radius of the location. This paper
presents an implementation strategy
for Jacqueline that works with existing
SQL databases. While the paper focuses
more on demonstrating feasibility than
on the nuts and bolts of Web security, it
de-risks the approach for practitioners
who may want to adopt it.

Final Thoughts
The past few years have seen a gradual
movement toward the adoption of prac-
tical information flow: first with con-
tainment, then with microcontainers
and microsegmentation. These tech-
niques control which devices and ser-
vices can interact with policies for soft-
ware-defined infrastructures such as
iptables and software-defined network-

ing. Illumio, vArmour, and GuardiCore
are three among the many startups in
the microsegmentation space. This evo-
lution toward finer-grained approaches
shows that people are becoming more
open to the system re-architecting and
runtime overheads that come with in-
formation flow control approaches. As
security becomes even more important
and information flow techniques be-
come more practical, the shift toward
more adoption will continue.

Acknowledgments. Thanks to A. Au-
frichtig, S. Chong, V. Iozzo, L. Meyerov-
ich, and D. Stefan.

References
1. Balluck, K. Corporate data breaches ‘inevitable,’ expert

says. The Hill (Nov. 30 2014); http://thehill.com/policy/
cybersecurity/225550-cybersecurity-expert-data-
breaches-inevitable.

2. Cunningham, M. Facebook security flaw could leak
your personal info to criminals. Komando.com (Aug.
10, 2015); http://bit.ly/2fRXp8L

3. Information is beautiful. World’s biggest data
breaches, 2016; http://www.informationisbeautiful.net/
visualizations/worlds-biggest-data-breaches-hacks/.

4. Gellman, B. and Poitras, L. U.S., British intelligence
mining data from nine U.S. Internet companies in
broad, secret program. Washington Post (June 7,
2013); http://wapo.st/1LcAw6p

5. Open Web Application Security Project (OWASP).
Static code analysis, 2016; https://www.owasp.org/
index.php/Static_Code_Analysis.

6. Zetter, K. Hacker lexicon: What is an air gap? Wired
(Dec. 8, 2014); http://www.wired.com/2014/12/hacker-
lexicon-air-gap/.

Jean Yang is an assistant professor in the computer
science department at Carnegie Mellon University.
 In 2015 she cofounded the Cybersecurity Factory
accelerator to bridge the gap between research and
practice in cybersecurity.

The Red Future of
Mobile Web Computing
By Vijay Janapa Reddi
and Yuhao Zhu
The Web is on the cusp of a new evolu-
tion, driven by today’s most pervasive
personal computing platform—mobile
devices. At present, there are more than
three billion Web-connected mobile
devices. By 2020, there will be 50 billion
such devices. In many markets around
the world mobile Web traffic volume
exceeds desktop Web traffic, and it con-
tinues to grow in double digits.

Three significant challenges stand in
the way of the future mobile Web. The
papers selected here focus on carefully
addressing these challenges. The first

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/netravali
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/netravali
http://thehill.com/policy/cybersecurity/225550-cybersecurity-expert-data-breaches-inevitable
http://thehill.com/policy/cybersecurity/225550-cybersecurity-expert-data-breaches-inevitable
http://thehill.com/policy/cybersecurity/225550-cybersecurity-expert-data-breaches-inevitable
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
https://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
https://www.owasp.org/index.php/Static_Code_Analysis
https://www.owasp.org/index.php/Static_Code_Analysis
http://www.wired.com/2014/12/hacker-lexicon-air-gap/
http://www.wired.com/2014/12/hacker-lexicon-air-gap/

JANUARY 2017 | VOL. 60 | NO. 1 | COMMUNICATIONS OF THE ACM 53

practice

bottleneck stems from the increasing
number of objects (for example, im-
ages and Cascading Style Sheets files)
on a Web page. According to the HTTP
Archive, over the past three years alone,
Web pages have doubled in size. There-
fore, improving resource-loading per-
formance is crucial for improving the
overall mobile Web experience.

Resource loading is largely deter-
mined by the critical path of the resourc-
es that Web browsers load to render a
page. This critical path, in the form of
a resource-dependency graph, is not re-
vealed to Web browsers statically. There-
fore, today’s browsers make conserva-
tive decisions during resource loading.
To avoid resource-dependency viola-
tions, a Web browser typically constrains
its resource-loading concurrency, which
results in reduced performance.

Polaris is a system for speeding up the
loading of Web page resources, an impor-
tant step in coping with the surge in mo-
bile Web resources. Polaris constructs a
precise resource-dependency graph of-
fline, and it uses the graph at runtime to
determine an optimal resource-loading
schedule. The resulting schedule maxi-
mizes concurrency and, therefore, dras-
tically improves mobile Web perfor-
mance. Polaris also stands out because
of its transparent design. It runs on top
of unmodified Web browsers without
the intervention of either Web applica-
tion or browser developers. Such a de-
sign minimizes the deployment incon-
venience and increases its chances of
adoption, two factors that are essential
for deploying the Web effectively.

Web Language Support
for Energy Efficiency

Zhu, Y., Reddi, J.
GreenWeb: Language extensions for energy-
efficient mobile Web computing.
Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design
and Implementation, 2016, 145–160.
http://dl.acm.org/citation.cfm?id=2908082

Energy efficiency is the single most criti-
cal constraint on mobile devices that
lack an external power supply. Web
runtimes (typically the browser engine)
must start to budget Web application
energy usage wisely, informed by user
QoS constraints. End-user QoS informa-
tion, however, is largely unaccounted for
in today’s Web programming languages.

The philosophy behind GreenWeb
is that application developers provide
minimal yet vital QoS information to
guide the browser’s runtime energy
optimizations. Empowering a new
generation of energy-conscious Web
application developers necessitates
new programming abstractions at the
language level. GreenWeb proposes
two new language constructs, QoS type
and QoS target, to capture the critical
aspects of user QoS experience. With
the developer-assisted QoS informa-
tion, a GreenWeb browser determines
how to deliver the specified user QoS
expectation while minimizing the de-
vice’s energy consumption.

GreenWeb does not enforce any par-
ticular runtime implementation. As an
example, the authors demonstrate one
implementation using ACMP (asym-
metric chip-multiprocessor) hardware.
ACMP is an energy-efficient heteroge-
neous architecture that mobile hard-
ware vendors such as ARM, Samsung,
and Qualcomm have widely adopted—
you probably have one in your pocket.
Leveraging the language annotations
as hints, the GreenWeb browser dy-
namically schedules execution on the
ACMP hardware to achieve energy sav-
ings and prolong battery life.

Data Consciousness
in Emerging Markets

Agababov, V. et al.
Flywheel: Google’s data compression proxy
for the mobile Web. Proceedings of the 12th
Usenix Symposium on Networked Systems
Design and Implementation, 2015;
http://research.google.com/pubs/pub43447.html

The mobile Web is crucial in emerging
markets. The first order of impedance
for the mobile Web in emerging mar-
kets is the high cost of data, more so
than performance or energy efficiency.
It is not uncommon for spending on
mobile data to be more than half of an
individual’s income in developing coun-
tries. Therefore, reducing the amount
of data transmitted is essential.

Flywheel from Google is a com-
pression proxy system to make the
mobile Web conscious of data us-
age. Compression proxies to reduce
data usage (and to improve latency)
are not a new idea. Flywheel, howev-
er, demonstrates that while the core
of the proxy server is compression,

there are many design concerns to
consider that demand a significant
amount of engineering effort, espe-
cially to make such a system practical
at Google scale. Examples of the de-
sign concerns include fault tolerance
and availability upon request anoma-
lies, safe browsing, robustness against
middlebox optimizations, and so on.
Moreover, drawing from large-scale
measurement results, the authors
present interesting performance re-
sults that might not have been observ-
able from small-scale experiments.
For example, the impact of data
compression on latency reduction is
highly dependent on the user popu-
lation, metric of interest, and Web
page characteristics.

Conclusion
We advocate addressing the RED chal-
lenge holistically. This will entail opti-
mizations that span the different sys-
tem layers synergistically. The three
papers in our selection are a first step
toward such cross-layer optimization
efforts. With additional synergy we will
likely uncover more room for optimiza-
tion than if each of the layers worked
in isolation. It is time that we as a com-
munity make the Web great again in the
emerging era.

Vijay Janapa Reddi is an assistant professor in
the Department of Electrical and Computer Engineering
at the University of Texas at Austin.

Yuhao Zhu is a Ph.D. candidate at the University of Texas
at Austin.

Copyright held by owners/authors.
Publication rights licensed to ACM. $15.00

“At present
there are more
than three billion
Web-connected
mobile devices.
By 2020, there
will be 50 billion
such devices.”

