
MetaSapiens: Real-Time Neural Rendering with
Efficiency-Aware Pruning and Accelerated Foveated

Rendering
Weikai Lin∗

University of Rochester
Rochester, NY, USA

wlin33@ur.rochester.edu

Yu Feng∗
Shanghai Jiao Tong University

Shanghai, China
y-feng@sjtu.edu.cn

Yuhao Zhu
University of Rochester
Rochester, NY, USA
yzhu@rochester.edu

Abstract
Point-BasedNeural Rendering (PBNR) is emerging as a promis-
ing class of rendering techniques, which are permeating all
aspects of society, driven by a growing demand for real-time,
photorealistic rendering in AR/VR and digital twins. Achiev-
ing real-time PBNR on mobile devices is challenging.

This paper proposesMetaSapiens, a PBNR system that for
the first time delivers real-time neural rendering on mobile
devices while maintaining human visual quality. MetaSapi-
ens combines three techniques. First, we present an efficiency-
aware pruning technique to optimize rendering speed. Sec-
ond, we introduce a Foveated Rendering (FR) method for
PBNR, leveraging humans’ low visual acuity in peripheral
regions to relax rendering quality and improve rendering
speed. Finally, we propose an accelerator design for FR,
addressing the load imbalance issue in (FR-based) PBNR.
Our evaluation shows that our system achieves an order
of magnitude speedup over existing PBNR models without
sacrificing subjective visual quality, as confirmed by a user
study. The code and demo are available at: https://horizon-
lab.org/metasapiens/.

CCS Concepts: • Computer systems organization→ Ar-
chitectures; • Human-centered computing→ Ubiqui-
tous and mobile computing.

Keywords: Gaussian Splatting, Foveated Rendering, Hard-
ware Accelerator

ACM Reference Format:
Weikai Lin, Yu Feng, and Yuhao Zhu. 2025. MetaSapiens: Real-Time
Neural Rendering with Efficiency-Aware Pruning and Accelerated
Foveated Rendering. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 1 (ASPLOS ’25), March 30-April 3,

∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0698-1/25/03
https://doi.org/10.1145/3669940.3707227

2025, Rotterdam, Netherlands. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3669940.3707227

1 Introduction
Rendering technologies are infiltrating every facet of so-
ciety. For instance, rendering is critical to enabling digital
twins [31] in emerging areas such as smart cities, digital
healthcare, and telepresence. Reinvigorated interests in Aug-
mented/Virtual Reality (AR/VR) further heighten the demand
for real-time, photorealistic rendering.
Point-Based Neural Rendering (PBNR), i.e., the Gaussian

Splatting-family algorithms [17, 18, 22, 34, 40, 50], is emerg-
ing as a new class of rendering solutions, which revitalizes
the classic point-based rendering techniques [23, 42, 53, 79]
using modern neural rendering methods [46]. PBNR, like pre-
vious neural rendering algorithms such as Neural Radiance
Fields (NeRF), offers photorealistic rendering by learning
scene radiance from data, but is significantly faster by replac-
ing the compute-intensive Multilayer Perceptrons (MLPs) in
NeRF with lightweight point-based rasterization.
Nevertheless, PBNR is still far from real-time on mobile

devices, rendering generally below 10 Frames-Per-Second
(FPS) on the mobile Volta GPU [2]. This paper introduces
MetaSapiens, which, for the first time, delivers real-time
PBNR on mobile devices while maintaining human visual
quality. MetaSapiens combines three key ingredients.
Efficiency-Aware Pruning. Much of the recent efforts

on optimizing PBNR models focus on pruning [17, 18, 22, 40,
50], which, while reducing the model size, does not bring sig-
nificant speedups. This is because existing pruning methods
are single-minded in reducing the sheer number of points
while being agnostic to the actual computational cost. We
find that different points in a PBNR model contribute dif-
ferently to the overall computation. Instead, we propose an
efficiency-aware pruning method that directly optimizes for
the rendering/inference speed (Sec. 3).

Foveated PBNR. MetaSapiens also exploits characteris-
tics of human vision to improve performance (Sec. 4). Human
vision acuity is poor in the visual periphery [73], an opportu-
nity that has long been exploited: one can speed up rendering
by gradually reducing the rendering quality as the pixel ec-
centricity increases (i.e., as pixels are positioned more at

https://orcid.org/0000-0003-3537-4857
https://orcid.org/0000-0002-2192-5737
https://orcid.org/0000-0002-2802-0578
https://horizon-lab.org/metasapiens/
https://horizon-lab.org/metasapiens/
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3669940.3707227
https://doi.org/10.1145/3669940.3707227

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Weikai Lin, Yu Feng, and Yuhao Zhu

the visual periphery) with impunity, a technique known as
Foveated Rendering (FR) [24, 51].
We introduce the first FR method for PBNR. We gradu-

ally reduce the number of points used for rendering as the
pixel eccentricity increases. The key is a data representation,
where points at higher eccentricies are purposely designed
to be a strict subset of the points at lower eccentricies. That
way, (most of the) parameters and computation are shared
when rendering different eccentricity regions, improving
performance and reducing storage requirements.
Equally important to improving performance is to main-

tain a high visual quality. To that end, we introduce a new
training method, which guides both pruning and periph-
eral quality relaxation (in FR) by explicitly modeling human
visual perception at different eccentricies. As a result, the
subjective visual quality is consistent across the visual field
and is aligned with the dense, non-FR model.

Architectural Support. While the two techniques above
readily provide about an order ofmagnitude speedup onGPU,
we co-design an accelerator architecture to further improve
the performance (Sec. 5). Aside from providing hardware
support for FR, the hardware addresses a key performance
bottleneck in PBNR exacerbated by FR: low hardware utiliza-
tion due to workload imbalance across tiles in a frame. Our
hardware mitigates this issue via 1) a dynamic tile merging
scheme that balances workloads across tiles and 2) incremen-
tally pipelining adjacent stages through line-buffering.
Result. We evaluate our method using both subjective

human studies and objective measurements of performance
and quality. Across 12 participants, the subjective rendering
quality of our method is statistically no-worse than that of
Mini-Splatting-D [18], a state-of-the-art PBNR method in
rendering quality. Compared to five state-of-the-art PBNR
methods, we out-perform all of them in both objective ren-
dering quality (by up to 0.4 dB in PSNR) and rendering speed
(by up to 7.4× on a mobile Volta GPU and 20.9× with our
hardware support).

The contributions of this paper are as follows:

• We propose an efficiency-aware pruning method for
PBNR that directly targets computational efficiency
rather than merely reducing point counts.

• We propose the first FR method tailored for PBNR; the
method is centered around a new data/point represen-
tation, which improves rendering performance with
little storage overhead.

• We introduce a training framework that incorporates
both pruning and FR while maintaining subjective
visual quality; the key is to explicitly model HVS and
use the model to guide training.

• We co-design an accelerator architecture, which ad-
dresses the load imbalance issue in PBNR and futher
improves performance.

A

B
C

D

E

a

b

c
d

e

Pixel p

Image plane

Gaussian
points and

their ellipsoids
in the scene

2x2 tile

Fig. 1. Illustration of PBNR, which parameterizes the scene
with a set of points, each associated with a 3D Gaussian
distribution that gives rise to an ellipsoid. The ellipsoids are
projected to ellipses on the image plane, where the ellipses
are sorted (per tile, e.g., 2 × 2 pixels). The color of a pixel is
calculated by integrating the contribution of each intersect-
ing ellipse (e.g., a, c, d, e for p).

2 Background
Wefirst introduce the necessary background in PBNR (Sec. 2.1),
followed by the main characteristics of the Human Visual
System (HVS) and how they are used by Foveated Rendering
to improve rendering speed (Sec. 2.2).

2.1 Point-Based Neural Rendering
PBNR is a class of neural rendering techniques, exempli-
fied by the 3D Gaussian Splatting (3DGS) algorithm [34]
and its descendants [17, 18, 22, 40, 50]. Compared to pre-
vious neural rendering techniques, a.k.a., the NeRF-family
algorithms [8, 11, 46, 49, 69], PBNR is fundamentally more ef-
ficient (e.g., usually over 1,000 times faster), because it param-
eterizes the scene with discrete points (rather than voxels) to
avoid redundant computations and renders via a lightweight
rasterization-based process called splatting [57, 62, 79] rather
than the heavy MLP inference.
General PBNR Pipeline. We use 3DGS as a running

example to explain the general pipeline of PBNR, which
all PBNR algorithms follow. Fig. 1 illustrates the general
idea. Rendering starts with an offline-trained model, which
contains a set of discrete points (A–E) that represent the
scene. Each point is associated with an ellipsoid, whose three-
dimensional scales are determined by the 𝜎s of a 3DGaussian
distributions (hence the name Gaussian point). Each ellip-
soid has a set of trainable parameters, including the scales,
position, orientation, opacity, color distribution (which is
parameterized through Spherical Harmonics; SH).

MetaSapiens: Real-Time Neural Rendering with Efficient Pruning and Foveated Rendering ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Given the trained points/ellipsoids, the online rendering
follows three steps: Projection, Sorting, and Rasterization.
Projection. Each ellipsoid is first projected/splatted to an

ellipse on the image plane1. In the example of Fig. 1, the
ellipsoids A–E in the scene are splatted to ellipses a–e on
the image plane. The goal is to identify, for each pixel tile
(e.g., 2 × 2), which ellipses intersect with the tile and thus
contribute to the pixel colors in the tile.

Sorting. For each tile, we sort all the intersecting ellipses
based on their depths to the image plane; that way, closer
ellipses can be integrated first when calculating pixel colors.
For instance in Fig. 1, ellipse c would be the closest.

Rasterization. Finally, we calculate the intersections of all
the ellipses in a tile with each pixel. The color of a pixel p is
then computed using the classic volume renderingmethod [33,
41, 45], which integrates the contribution of all the intersect-
ing ellipses from near to far:

p =

𝑁−1∑︁
𝑖=0

𝑇𝑖𝛼𝑖𝑐𝑖 , 𝑇𝑖 =

𝑖−1∏
𝑗=0

(1 − 𝛼 𝑗) (1a)

𝛼𝑖 = 𝑓 (opacity𝑖 , ..., pose) (1b)
𝑐𝑖 = 𝑔(SH0, ..., SH𝑛) (1c)

where 𝑁 is the number of ellipses intersecting p (i.e., a, c, d,
e in Fig. 1), 𝛼𝑖 is a function 𝑓 of various trainable parameters
of the 𝑖𝑡ℎ intersecting ellipse (e.g., opacity) and the camera
pose, and 𝑐𝑖 is the color of the 𝑖𝑡ℎ ellipse at the position of
intersection, which is calculated using the Spherical Har-
monics (SH) function 𝑔 with trainable coefficients SH𝑛 . We
refer readers to Kerbl et al. [34] for the details of 𝑓 and 𝑔.

2.2 Human Visual System and Foveated Rendering
Foveated Rendering. It is well-known that human visual
acuity drops as eccentricity increases, i.e., when objects are
placed more toward the visual periphery [73]. This is due to
a combination of larger pooling sizes [15, 58] and a sparser
photoreceptor distribution [14, 67] on the retina as the ec-
centricity increases. Foveated Rendering (FR) [24, 51] lever-
ages this natural fall-off in visual acuity to speed up render-
ing by relaxing the rendering quality in peripheral regions.
Fig. 2 illustrates an example where the visual content in
high-eccentricity regions could be altered without being no-
ticeable by users.
While in classic FR the peripherial rendering quality is

relaxed by lowering the resolution, neural rendering offers
another dimension: reducing the computational workload
of each pixel. This new dimension is possible because the
rendering load of each pixel is controlled by inferencing a
deep learning model, which offers many knobs for accuracy-
vs-speed trade-offs that have been extensively studied [9,
25, 30, 75]. For instance, one can train a smaller model for

1We use “points”, “ellipses”, and “ellipsoids” interchangeably: there is a
one-to-one mapping between them.

rendering the visual periphery [16]. This paper will explore
FR knobs unique to PBNR.

ModelingHVS. A key question in FR is to determine how
much quality to relax without introducing visual artifacts. It
is well-established that commonly used visual qualitymetrics
such as Peak Signal to Noise Ratio (PSNR) or Structural
Similarity Index Measure (SSIM) [29] do not account for the
eccentricity-dependent visual acuity drop in HVS [61, 68, 72]
and, thus, are inadequate for FR: an image with a low PSNR at
the visual periphery might not introduce visual artifacts. The
altered image in Fig. 2, when placed in the visual periphery,
is visually indiscriminable from the reference image.
This paper leverages an eccentricity-aware HVS Quality

(HVSQ) metric [72] inspired by classic neuroscience studies
about the human visual pathway [20]. Given a reference
image, an altered image, and the eccentricity of each pixel
(which depends on the display resolution and the eye-display
distance), HVSQ quantifies how similar the two images are
as viewed by humans; a lower HVSQ means more similar.
The principle behind the HVSQ metric is as follows. The

retina aggregates photoreceptor outputs in spatial regions,
called spatial poolings. In the image space, a spatial pooling
corresponds to a set of adjacent pixels (e.g., SP in Fig. 2). The
pooling size increases with eccentricity, usually quadratically.
Computational models on HVS [72] show that as long as the
statistics (mean and standard deviation) of the content in a
spatial pooling between two images are close, humans can
not discriminate between them. The statistics are calculated
in a feature space (as opposed to the pixel space) to emulate
the feature extraction in human’s early visual processing.
Computationally, the HVSQ of an altered image with re-

spect to a reference image is calculated as follows:

𝐻𝑉𝑆𝑄 =
1
𝑁

𝑁∑︁
𝑖=1

[(
M(I𝑎𝑖) −M(I𝑟𝑖)

)2 + (
𝜎 (I𝑎𝑖) −𝜎 (I𝑟𝑖)

)2] (2)

where 𝑁 is the number of pixels in an image (each pixel has
a unique spatial pooling), I𝑟𝑖 and I𝑎𝑖 denote the features of
the 𝑖𝑡ℎ spatial pooling in the reference and the altered image,
respectively; M denotes arithmetic mean, and 𝜎 denotes
standard deviation.
Intuitively, the HVSQ metric calculates the average dis-

tance between the two images’ statistics across all the spatial
poolings. HVSQ makes intuitive sense: as pixel eccentricities
increase, the pooling sizes increase, which gives us more
“wiggle room” within a spatial pooling to manipulate pixel
values to match the feature statistics of the reference image.

3 Efficiency-Aware Pruning
This section introduces a pruning framework to speed up
PBNR. We first identify the root-cause why existing pruning
methods are ineffective (Sec. 3.1). We then propose two tech-
niques to address the root-cause: intersection-aware pruning

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Weikai Lin, Yu Feng, and Yuhao Zhu

Feature statistics (mean,
standard deviation)

High-eccentricity
region

Lo
w-

ec
ce

nt
ric

ity

re
gio

n

Gaze

Reference image

Altered, quality-
relaxed image

SP

Feature statistics (mean,
standard deviation)≈

Fig. 2. Pixels under the user’s gaze have low eccentricities,
where the human visual quality is the highest; the peripheral
pixels have high eccentricities where human visual acuity is
low. In peripheral regions, the visual stimulus (image) can
be altered without being discriminable from the reference
stimulus if the statistics of the image features are close, as
quantified by the HVSQ metric (Eqn. 2). SP: spatial pooling.

(Sec. 3.2) and scale decay (Sec. 3.3). Finally, we discuss how
these two techniques are combined together (Sec. 3.4).

3.1 Motivations
Speed. The performance of recent PBNR models is far from
real-time on mobile GPUs. Fig. 3 shows the FPS on the Mip-
NeRF 360 [8], Tanks&Temples [35], and Deep Belending [26]
dataset, measured on the mobile Volta GPU on Jetson Xavier
across five recent PBNR models [17, 18, 34, 40]. The data is
plotted as a standard boxplot to show the FPS distribution
across the 13 traces within the datasets.

3DGS [34] and Mini-Splatting-D [18] are two dense mod-
els and generally are the slowest. Much of recent work fo-
cuses on pruning: reducing the number of points in a PBNR
model [17, 18, 40]. While effective for reducing the model
size, these methods do not significantly speed up render-
ing. For instance, CompactGS, LightGS, and Mini-Splatting
in Fig. 3 are all pruned models; while generally faster than
dense models, they are still below real-time, especially for im-
mersive applications such as AR/VR, which would normally
require an FPS of 75–90 [3, 4, 6].

Why is Existing Pruning Insufficient? Existing prun-
ing methods focus on reducing the point count in a model,
which is ineffective for improving speed in PBNR. To quan-
tify this, Fig. 4 shows the inference latency (𝑥-axis) vs. point
count (left 𝑦-axis) of LightGS [17] (which prunes 3DGS [34])
trained on the bicycle trace in the Mip-NeRF 360 dataset at
different pruning levels (between 75% and 97%). The latency
reduction rate is slower than that of the point reduction rate.
The reason that reducing the point count is ineffective

for acceleration is because the computational costs associ-
ated with different points vary. Fig. 5 shows the intuition,

where there are two ellipses projected onto the image plane.
The smaller ellipse intersects with only two tiles whereas
the larger one intersects with eight. As a result, the larger
one is used in calculating more pixel colors and is naturally
responsible for more computation.
Therefore, what does impact the inference speed is the

number of tile-ellipse intersections. Fig. 4 shows the latency
vs. the average number of intersections per tile (right 𝑦-axis)
for each pruned LightGS model; the latency reduction rate
and intersection reduction rate match.

3.2 Intersection-Aware Pruning
The goal of our pruning is to judiciously reduce tile-ellipse
intersections without affecting the visual quality. The key to
our pruning is a metric that we call Computational Efficiency
(CE), which intuitively describes how much contribution a
point makes to pixel values per unit cost of compute. Intu-
itively, we would like to prioritize pruning points with low
CEs, as they consume a lot of computation without making
much contribution to pixel values. For every point 𝑖 in a
dense model, its CE is defined as:

CE𝑖 =
Val𝑖

Comp𝑖
(3)

Val𝑖 , contribution of a point 𝑖 to pixel values, is defined as
the number of pixels that are “dominated” by that point. A
pixel is dominated by a point if and only if that point, among
all the points, has the highest numerical contribution to the
pixel value during rasterization (Sec. 2.1). The numerical
contribution of a point 𝑖 is quantified by 𝑇𝑖𝛼𝑖 in Eqn. 1a.

Comp𝑖 , the compute cost of a point 𝑖 , which is ignored in
all existing pruning methods, is quantified by the number of
tiles that intersect and use (the ellipse of) that point, which
directly affects the rendering speed as established above.

In actual rendering, a point will be used in different frames
based on the camera pose. Thus, a point’s CE is frame-
specific; in extreme cases, a point could be outside the cam-
era’s viewing frustum and thus makes no contribution to
the image. We empirically find that the final CE of a point is
adequately measured by the maximum CE across all poses
(as opposed to the average, which is susceptible to dataset
bias) in the training set.
With this metric, during pruning we sort all the points

by their CEs and remove a certain portion of points with
the lowest CEs. How many points to remove must be done
in conjunction with controlling the quality of the pruned
model, which we will discuss in Sec. 3.4.

3.3 Scale Decay
Orthogonal to pruning points, another way to reduce tile-
ellipse intersections is to reduce the ellipse size/scale, which
we call “scale decay.” In particular, we want to focus on
scaling ellipses that are both large and are used by a lot of
tiles in rendering. To guide scale decay, we propose a metric

MetaSapiens: Real-Time Neural Rendering with Efficient Pruning and Foveated Rendering ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

3DGS

Mini-Splatting-D
CompactGS

LightGS
Mini-Splatting

0
20
40
60
80

100
FP

S

90

Fig. 3. FPS distribution of recent PBNR
models on common datasets measured
on mobile Volta GPU on Jetson Xavier.

0 10 20 30 40
Latency Per Frame (ms)

0.0

0.4

0.8

1.2

1.6

Po
in

t C
ou

nt
 (1

e6
)

0.0

1.0

2.0

3.0

4.0

 #
 o

f I
nt

er
se

ct
. (

1e
6)

Fig. 4. Point count vs. latency per frame
and the number of tile-ellipse intersec-
tions vs. latency per frame.

Fig. 5. Two ellipses intersect different
number of tiles so contribute to compu-
tation cost differently.

Dense Model

Pruning by R% Is Lquality below
a threshold?

N

Re-training with
scale decay

N

Max # of iteration
reached?

Y

Output Model

Y

Fig. 6. The procedure to obtain an efficient PBNR model
given a dense model. We iteratively apply pruning and re-
training with scale decay (guided by L in Eqn. 6) while
controlling for quality (L𝑞𝑢𝑎𝑙𝑖𝑡𝑦).

called Weighted Scale (WS) that weighs the point sizes with
how often they are used in rendering:

WS =
1
𝑁

𝑁−1∑︁
𝑖=0

S𝑖G𝑖 (4)

where 𝑁 is the number of points, S𝑖 is the scale of point 𝑖’s
ellipse (the maximum span of the ellipse in any direction).
Without G𝑖 , WS is simply the average scale of all points in a
model. G𝑖 weighs a point’s scale by how often it is used in
rendering, and is defined as:

G𝑖 = (U𝑖 > 𝑇) · (U𝑖 −𝑇) (5)

where U𝑖 is the number of tiles a point 𝑖 is used in rendering
and 𝑇 is a threshold; intuitively, if a point 𝑖 is used by fewer
than 𝑇 tiles, its scale is insignificant, in which case the G𝑖 is
0 so 𝑖 does not participate in calculating the average scale.
That way, the G term helps suppressing the scale of points
that are not only large but are also used often in rendering.

TheWSmetric is a generalmetric characterizing point/ellipse
scales in PBNR. We empirically find that it is particularly
effective when integrated into the training process as an
additional term to the loss function L, which ordinarily is
concerned only with the rendering quality (Lquality):

L = Lquality + 𝛾 ·WS (6)

where 𝛾 is a hyper-parameter governing how much scale
decay to apply.

3.4 Putting It Together
Pruning and scale decay are conceptually orthogonal, but,
importantly, scaling an ellipse’s size also changes its CE.
Thus, scale decay must be done in conjunction with pruning.
Fig. 6 illustrates the general procedure.
Given a dense model, we first compute the CE for all the

points, and repetitively prune a small percentage (𝑅 = 10%
in our implementation) of the points with the lowest CEs
until the quality loss (Lquality in Eqn. 6) is above a prescribed
threshold. We then train the pruned model again to regain
the quality, but using the composite loss L in Eqn. 6 in
order to apply scale decay. The re-training continues until
Lquality is once again below the threshold, at which point
we apply intersection-aware pruning again. We iteratively
apply pruning and scale decay in such a way until a certain
number of iterations is reached.

Note that Lquality is usually PSNR or SSIM but can be any
other quality metric of interest. In the next section we will
show howwe can use a human vision-inspired quality metric
to account for the eccentricity dependence of visual quality.

Our iterative procedure has two advantages. First, it com-
bines pruning and scale decay. Second, it does not require
quality-specific hyper-parameter tuning to achieve a spe-
cific visual quality: monitoring and controlling for L𝑞𝑢𝑎𝑙𝑖𝑡𝑦

automatically yield a model at a given quality.

4 Foveated PBNR
This section introduces a Foveated Rendering (FR) method
tailored to PBNR. We first describe the main idea and its
main challenges (Sec. 4.1). We then discuss an efficient data
representation that enables effective FR for PBNR (Sec. 4.2).
Finally, we describe how to train FR models leveraging the
efficiency-aware pruning discussed before (Sec. 4.3).

4.1 Main Idea and Challenges
We accelerate rendering by relaxing the rendering quality
at the visual periphery, leveraging the low peripheral visual
acuity in HVS. We illustrate the idea in Fig. 7, panel A .

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Weikai Lin, Yu Feng, and Yuhao Zhu

11

13
10

12

16

18
17

15

19
6

14
7

8

5
4

1

2

3

9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
L4

L3
L2

L1

Gaussian points in
the non-FR model

Points after
subsetting

Point trainable parameters
(as an example; Opacity and

SHDC are multi-versioned)
4

L1 L2 L3 L4

Opacity

SHDC

SHn>0

Position

Rotation

Scales

Shared

Shared

Shared

Shared

L4 Model
(Lowest Quality)

L1 Model
(Highest Quality)

L2 Model

L3 Model

Blend

Foveated Rendered Image

Reference/Ground-Truth Image

Equal visual
quality!

No
 p

ar
am

et
er

s
fo

r L
4

as
 p

oi
nt

4

is
no

t u
se

d
in

 th
e

L4
 m

od
el

R1

R2

R3

R4

Gaze

Pr
oj

ec
tio

n

FR Pipeline

Fi
lte

rin
g

So
rti

ng

Ra
st

er
iza

tio
n

Bl
en

di
ng

A B

C

E

D

Fig. 7. The general idea of FR for PBNR. A : We train multiple models (four in this example), each with a different quality and
is responsible for rendering a different quality region in the image (𝑅1 – 𝑅4). The four quality regions are blended together
to generate the final image. The goal is for the FR-rendered image to have the same visual quality as the reference image (e.g.,
generated by a dense model) when judged by humans. B : Points in the original non-FR model. C : Our hierarchical point
representation to support compute- and data-efficient FR. We subset the points so that points used to train a higher-level
(lower quality) model are strictly a subset of that used by a lower-level model. The quality bound 𝑚 of a point is the highest
level that uses the point (e.g.,𝑚 = 3 for Point 4). D : To provide more flexibility for training, we selectively allow key trainable
parameters to differ across levels; these parameters are the opacity of a point and the Direct Current (DC) component of the SH
coefficients (SHDC). Other (trainable) parameters of a point are shared across all the levels that use the point (e.g., no parameter
in 𝐿4 for Point 4). E : The rendering pipeline augmented to support FR (augmentations in green).

Main Pipeline. As with prior FR work [16, 24, 51], we
divide an image into 𝑁 regions (4 in the example), each cor-
responding to a quality level and is rendered by a separate
model. The region currently under the user’s gaze has the
highest quality (𝑅1 here). Lower-quality regions are ren-
dered using lighter models, which are obtained by applying
pruning and scale decay (Sec. 3) to a high-quality model.

Panel E shows the rendering pipeline augmented to sup-
port FR — with two new stages (green). First, after projec-
tion we must filter each model’s points that are outside the
model’s quality region. Second, after each region is rendered,
we must blend the results together to avoid aliasing.

Blending is required in all FR algorithms [24, 51]. Due to
the quality difference across levels, there is a sharp, undesir-
able boundary between two adjacent levels in the rendered
image (a form of aliasing). To eliminate the boundary, a com-
mon technique is for each model to render slightly beyond
its assigned boundary; thus, pixels at the boundary will be
rendered twice and then are interpolated/blended to provide
a smooth transition between the two levels.

While this multi-model FR idea is conceptually simple, we
must address three challenges.
Challenge 1: Performance Overhead. FR can poten-

tially accelerate rendering because it reduces the amount of

rasterization work in low-quality regions. However, it has
two sources of performance overhead.
First, all 𝑁 models must go through the Projection and

Filtering stages. In our profiling, these two stages can take
up to 18% of the rendering time. Second, blending also adds
overhead. Empirically we find that about 25% of the pixels
are to be blended and, thus, rendered twice.

Challenge 2: Storage Overhead. FR could increase the
model size due to the need to store multiple models, exacer-
bating the storage pressure of PBNR models. For instance,
the bicycle scene in the Mip-NeRF 360 dataset [7] takes
about 1.4 GB of space when trained with 3DGS [34]; recent
pruning methods [17] reduce the model size of that scene to
about 490 MB, which is still large for mobile devices.

We address the first two challenges using an efficient data
representation, as we will discuss in Sec. 4.2.

Challenge 3: Controlling Quality. FR must be done in
a way that guarantees human visual quality — how do we
decide the amount of relaxation at each level? We describe
a training strategy to guarantee consistent human visual
quality across all levels, as described in Sec. 4.3.

4.2 Efficient Data Representation
To address both the performance and storage overhead, we
propose an efficient data representation that allowsmodels at

MetaSapiens: Real-Time Neural Rendering with Efficient Pruning and Foveated Rendering ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

DRAM

Hi
er

ar
ch

ica
l

So
rti

ng
 U

nit

Tile-Point
Accumulator

Tile ID
Reassignment

Gau.
Sample

>

⍺-
Co

m
p.

T-
Co

m
p.

RG
B

Ac
cu

m
.

Skip?
Th.

Bl
en

d

Y

blend?

Line Buf.Line Buf. Double
 Buffer

RasterizationProjection Sorting

Duplication Unit Volume Rendering CoreFov Filter
>

Intersect
Test

None

Ecc.

+

CNT

>
+

β

Tile
ID

Projection,
Culling&

Conversion

Tile Merge Unit

Ti
le

Ac
cu

m
.

Fig. 8. The overall architecture design. The the basic pipeline is similar to that of GSCore [39], a recent PBNR accelerator. We
augment the baseline to support FR (yellow-colored) and to address the workload imbalance issue in PBNR/FR (blue-colored).

different quality levels to share computation and parameters.
The key idea is that points used to train and render a lower
quality level are strictly a subset of the points used by a
higher quality level. Panel C in Fig. 7 illustrates how the
original points in Panel B are organized after subsetting.
Level 1 (𝐿1) model is trained with the most points and thus
would offer the highest quality, and Level 4 (𝐿4) model has
the fewest points and lowest quality.
Subsetting mitigates both the performance and storage

overhead, because the total number of points across all 𝑁
models, 𝑃𝑡𝑜𝑡𝑎𝑙 , is the same as that of the highest-quality
model, 𝑃1, rather than the sum of all 𝑁 models. That is,
𝑃𝑡𝑜𝑡𝑎𝑙 = max𝑁𝑖=1𝑃𝑖 = 𝑃1 <

∑𝑁
𝑖=1 𝑃𝑖 . As a result, there is no

storage overhead. The compute overhead is small too, since
the Projection and Filtering stages are executed only once,
rather than once for each of the 𝑁 models.
Under subsetting, each point is simultaneously used in

models [𝐿1, · · · , 𝐿𝑚], where 𝑚 is the highest level beyond
which the point is not used and is called the quality bound of
the point. For instance in Fig. 7,𝑚 = 3 for Points 4. During
the Projection stage, each point is projected to a tile, which
has a specific eccentricity and thus a corresponding quality
level 𝑡 . If 𝑡 > 𝑚, the point does not participate in the rest of
rendering. This is the Filtering stage in Panel E .

SelectiveMulti-Versioning. Practically, strict subsetting
is likely too restrictive in controlling the rendering quality
at different levels. This is because all the trainable param-
eters of a point would be fixed across all levels, so how a
point participates in calculating pixel colors (the 𝛼𝑖𝑐𝑖 term
in Eqn. 1a) is also fixed at any time. In reality, however, a
point’s contribution to pixel colors should vary depending
on the quality region the point is projected to, which varies
with the camera pose and the gaze position.

To relax this, we allow multi-versioning as illustrated in
panel D : a point can maintain 𝑚 (where 𝑚 is the quality

bound of the point) versions of some of its trainable parame-
ters, one version for each level the point is in. Empirically,
we allow four such parameters, i.e., the Opacity and the
Direct Current component of the SH coefficients (SH𝐷𝐶);
these four parameters are empirically found to impact the
pixel colors the most. We will show in Sec. 7.4 that selective
multi-versioning is critical to maintain high visual quality.

4.3 HVS-Guided Training
The discussion so far has focused on performance, but equally
important to FR is the visual quality: how much weaker can
higher-level models be while maintaining subjectively good
visual quality across quality levels/eccentricies?

To answer this question, we turn to the HVSQ metric dis-
cussed in Sec. 2.2. The HVSQmetric quantifies the subjective
visual quality between a reference image (e.g., rendered from
a dense PBNR model) and an altered image (e.g., rendered
from a pruned PBNR model), accounting for the eccentricity-
dependent visual acuity of HVS. Conveniently, while the
vanilla HVSQ metric in Eqn. 2 is applied to an entire image,
it can be easily adapted to a selected region — by simply
iterating over the spatial poolings (pixels) in the selected
region rather than over the entire image.

That way, each quality region has a unique HVSQmeasure,
and our goal is to ensure the HVSQs across all quality levels
are similar to the HVSQ of the baseline model. To that end,
we first train the highest-quality, 𝐿1 model, which itself can
be pruned and scale-decayed from a dense model. We then
prune a 𝐿1 model to obtain a 𝐿2 model, which is pruned
down to obtain a 𝐿3 model; this continues until the desired
level is achieved. The way to obtain a 𝐿𝑖+1 model follows the
exact procedure as laid out in Sec. 3.4 (i.e., iteratively apply
pruning and re-training to a 𝐿𝑖 model while controlling for
the quality loss L𝑞𝑢𝑎𝑙𝑖𝑡𝑦) — with two key differences.
First, instead of using the usual PSNR/SSIM metrics, we

use HVSQ asL𝑞𝑢𝑎𝑙𝑖𝑡𝑦 in Eqn. 6. In particular, when obtaining

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Weikai Lin, Yu Feng, and Yuhao Zhu

a 𝐿𝑖 model we use the HVSQ corresponding to level 𝑖 . We
control for L𝑞𝑢𝑎𝑙𝑖𝑡𝑦 so that the HVSQ at all quality levels is
the same as that of 𝐿1 such that the human visual quality
is consistent across the entire visual field. Second, during
iterative re-training we do not apply scale decay, because an
ellipse scale is not part of the multi-versioned parameters.

5 Hardware Support
Complementing pruning and FR techniques, we propose an
accelerator to further improve the performance. We first
provide an overview (Sec. 5.1) and discuss how the hardware
addresses the low hardware utilization issue in PBNR, which
is exacerbated by FR (Sec. 5.2).

5.1 Overview
Our architecture is built on top of GSCore [39], a recent PBNR
accelerator without FR. The basic architecture is designed
to support the three PBNR stages discussed in Sec. 2.1. The
three stages are pipelined across different tiles in a frame.
Fig. 8 shows the pipelined architecture, with the colored
components denoting our augmentations. The top panel
in Fig. 10 illustrates the pipelining process (omitting the
Projection stage for simplicity).
Supporting FR. We propose two sets of hardware aug-

mentations to support the two new stages in FR (green in
panel E). The augmentations are colored in yellow in Fig. 8.
First, during the Projection stage we must filter out points
that are not used to render a particular quality level. To that
end, we augment the Projection hardware to include a filter-
ing unit, which compares the quality bound𝑚 of a tile with
the current quality level 𝑡 of that tile, and pushes the tile to
the output buffer only if 𝑡 > 𝑚.

Second, FR requires blending across quality levels (Sec. 4.1).
We augment the Rasterization stage with a blending unit,
which takes the two colors of a pixel (rendered by twomodels
corresponding to the quality levels) and performs an inter-
polation. A small buffer is also needed to temporarily store
pixels before blending.

5.2 Addressing Load Imbalance
The Issue. With the augmentations above, the hardware can
functionally support FR, but faces low hardware utilization.
This is because the amount of work each tile requires is
severely imbalanced (recall a tile, like an instruction in a
conventional processor, is a basic unit for pipelining; Fig. 10).
The amount of work a tile involves can be quantified by

the number of tile-ellipse intersections. To quantify this im-
balance, Fig. 9a is a heatmap plotting the number of intersec-
tions each tile (16×16 pixels) has when rendering an image
in the Mip-NeRF 360 dataset using our FR model (with four
quality levels). The amount of intersections can vary by over
three orders of magnitude. In particular, most of the intersec-
tions are concentrated at the center, because the peripheral

0

12

24

48

36

0 12 24 36 48 60 72
0

500

1000

1500

2000

2500

#T
ile

-P
oi

nt
 In

te
rs

ec
tio

n

(a) Heatmap showing the number of
intersections per tile in bicycle.

flowerstreehillstump
garden

bicycle
0

300

600

900

1200

1500

of

 T
ile

-P
oi

nt
 In

te
rs

ec
t.

(b) Boxplot of the intersection distri-
bution in five traces (clipped at 1,500).

Fig. 9. Workload imbalance, quantified by the number of
intersections per tile, on the Mip-NeRF 360 dataset [8]. The
top and bottom notches in the boxplot represent data points
that are 1.5 Interquartile Range (IQR) above the third quartile
and below the first quartile, respectively.

tiles are rendered using pruned models, which have fewer
points. Fig. 9b is the boxplot showing large the distribu-
tion of intersections across all traces in the Mip-NeRF 360
dataset [8]; the imbalance issue is universal.

Load imbalance leads to frequent pipeline stalls. This is il-
lustrated by the top panel in Fig. 10, which shows the pipeline
dynamics when pipelining Sorting and Rasterization across
four imbalanced tiles. We propose two techniques to address
this issue: tile merging and incremental pipelining. The cor-
responding hardware components are blue-colored in Fig. 8.

Tile Merging. One way to balance the workload across
tiles is to merge tiles that have few intersections. This is
dealt with by the Tile Merge Unit (TMU) in the Sorting stage.
Conceptually, the TMU merges incoming tiles into a single
tile if the cumulative intersections is below a threshold 𝛽 .
The second panel in Fig. 10 shows an example where the
second and third tiles are merged, which reduces pipeline
stalls and improves performance.

The TMU has two stages. The first stage processes a Gauss-
ian point by incrementing its counter associated with a spe-
cific tile ID, storing the result in a temporal buffer. When
the accumulation for one tile is complete, its total count is
forwarded to the second stage, which continuously aggre-
gates incoming tiles, accumulates the intersection counts,
and compares the cumulative count against 𝛽 . If this thresh-
old is exceeded, a merged-tile is formed, where each consti-
tuting tile is augmented with a merged-tile ID, which is sent
along with the native tile ID to the sorting unit.
Incremental Pipelining. While Tile Merging reduces

the workload imbalances, it does not completely eliminate
pipeline stalls, because it is unlikely all the merged tiles have
exactly the same number of intersections.
To further enhance pipelining efficiency, we propose to

incrementally pipeline data between adjacent stages. In our
baseline PBNR accelerator, a double buffer is placed between
two adjacent stages; the consumer stage does not start until
the producer stage has finished processing the entire tile. Our

MetaSapiens: Real-Time Neural Rendering with Efficient Pruning and Foveated Rendering ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

S1S1

R1

S2+S3 S4

R2+R3 R4

S1S1

R1

S2+S3 S4

R2+R3 R4

Time

TM

TM+IP

S2

R2

S1

R1

S3 S4

R3 R4

Sorting Rasterization Idle

Baseline

S11

R11

Fig. 10. The baseline pipeline faces frequent stalls when
the workload is imbalanced across tiles. Tile Merging (TM)
and Incremental Pipelining (IP) mitigate the workload im-
balanced issue and improves the pipelining efficiency. With
IP, when the first sub-tile 𝑆11 in the 𝑆1 tile is available by the
Sorting stage it can be processed by the Rasterization stage.

idea is to break the workload of a tile into smaller sub-tiles
so that the consumer stage can start working on available
sub-tiles before the entire tile is ready from the producer
stage. This works because the workload of each pixel is inde-
pendent. This is akin to classic superpipelining in processor
design [47, 64]. The last panel in Fig. 10 illustrates the benefit
of incremental pipelining.

To support such an incremental computation, we replace
the double buffers between stages with line buffers (LB) [27,
28, 56, 71], which, under the surface, is a set of small SRAMs,
each of which buffers one row of pixels. Assume a 16×16 tile
size, once 16 rows are produced in the LB, the consumer can
starting using them. The line buffer can be small, since it has
to buffer only sub-tiles rather than entire tile.

6 Experimental Setup
FRTraining Procedure. Weuse four quality regions whose
eccentricity starts at 0°, 18°, 27°, and 33°, respectively, cor-
responding to about 13%, 17%, 21%, 49% of image pixels in
these four regions, respectively.

We use Mini-Splatting-D [18], the current-best in qual-
ity, as the baseline dense PBNR model. The 𝐿1 model is ob-
tained from the dense model through pruning and scale
decay as described in Sec. 3.4, with an iteration budget of
50,000, followed by another 5,000 iterations of fine-tuning
with HVSQ loss. The three lower-quality models are obtained
from their immediately higher-quality model as described
in Sec. 4.3, with a 7,500 iteration budget. Our training time
is roughly three times as much as that of the original, dense
model. Much of the slow down is because the HVS loss is
calculated using an open-source Python implementation [5],
which could be accelerated with a more efficient implemen-
tation in, e.g., CUDA.

Variants. Wedesign three variants of ourmethod, namely
MetaSapiens-H,MetaSapiens-M, andMetaSapiens-L, with

decreasing rendering quality. The 𝐿1 model in the three vari-
ants is pruned to have a PSNR of 99%, 98%, and 97% of that of
the dense model. The total model size of the three variants is
16%, 12%, and 10%, respectively, of that of the dense model.

Datasets. We evaluate three real-world datasets: Mip-
Nerf360 [8], Tanks & Temple [35], and DeepBlending [26],
which amounts to 13 traces in total. The camera poses in
the datasets are usually very sparsely populated, which is
not representative of the continuous rendering scenario (e.g.,
VR).We interpolate between the poses in the dataset to create
smooth trajectories, producing approximately 1,440 poses
for each trace, corresponding to a 16-second video at 90 FPS.
Hardware Implementation. We develop a RTL imple-

mentation of the accelerator, where the basic pipeline (the
uncolored in Fig. 8) is similar to GScore [39], with the re-
source allocation adjusted for a more balanced pipeline for
our workloads (8 Culling and Conversion Units, a single
Hierarchical Sorting Unit, and a 16×16 Volume Rendering
Core array). Our RTL design is implemented via Synposys
synthesis and Cadence layout tools in TSMC 16nm FinFET
technology. Each line buffer has a capacity of 1 KB, and the
double buffer before the sorting unit is 64 KB. The SRAMs are
generated by an Arm compiler. The DRAM is modeled after
four channels of Micron 16 Gb LPDDR3-1600 memory [1].
Overall, we have an area of 2.73 mm2. The volume Ren-

dering Core takes 63% of the total area, other stages occupy
the rest 30 %; the SRAMs comprise 7% of the total area. Our
area is larger than that of GScore (1.45 mm2), whose area is
scaled to 16nm using the DeepScaleTool [63]. We will show
in Sec. 7.5 that we outperform GScore even under the same
area when the latter is scaled up.

Baselines. We compare against five recent PBNR models:

• Dense PBNR models: 3DGS [34], which is the earliest
PBNRmodel, and Mini-Splatting-D [18], Mip-Spla-
tting [77], StopThePop [54], which are state-of-the-
art work that improve upon 3DGS.

• Pruned PBNRmodels: LightGS [17], CompactGS [40],
and Mini-Splatting [18]. The first two are pruned
from 3DGS and the last one is fromMini-Splatting-D.

We also compare with two FR methods applied to PBNR.
Both methods use the same quality-region division as in
our method. The first one is SMFR (Single-Model FR), which
uses a single dense PBNR model, which is the 𝐿1 model in
MetaSapiens-H, and randomly samples the points when
rendering lower-quality regions. It is effectively a strict sub-
setting version of ourmodel without selectivemulti-versioning.
The second one is MMFR (Multi-Model FR) [16], whose 𝐿1
model is the same as that of MetaSapiens-H and whose
higher-level models are pruned from its 𝐿1 model separately
(without subsetting). The number of points used in each level
in both methods matches that used in our method.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Weikai Lin, Yu Feng, and Yuhao Zhu

room drjohnson truck bicycle Average0
2
4
6
8

Vo
te

s
Mini-Splatting-D MetaSapiens-H

Fig. 11. The average number of times the twomethods are preferred
by users (a tie would be 4-vs-4). Error bars indicate the standard
deviation within the participants. Users either have no preference
or prefer our method (binomial test on the average result; 𝑝 < 0.01).

Dense + SD + CE + FR
0

20
40
60
80

100
120

FP
S

26.0
26.5
27.0
27.5
28.0
28.5

PS
N

R
(d

B)

Fig. 12. Ablation study teasing apart the impact of
various techniques. The FPS results are obtained on
Jetson Xavier and averaged over all traces.

User Study Procedure. To assess the subjective render-
ing quality of ourmethod, we perform a user study; the proce-
dure is approved by our Internal Review Board (IRB). We re-
cruited 12 participants (8 males and 4 females between 20 and
30 years old), all with normal or corrected-to-normal vision.
The scale of our user study is comparable with other research
in the field [16, 60, 65, 76]. We select four scenes from the
three datasets: bicycle, room, drjohnson, and truck, which
vary in both content and complexity. We then render the
scenes using our MetaSapiens-H and Mini-Splatting-D,
which, recall, is the current-best in rendering quality.

Since Mini-Splatting-D does not render in real-time on
amobile device, we use a workstation with an RTX 4090 GPU
to execute both models, both of which render smoothly at 90
FPS. The workstation streams, in real-time, the rendering to
a Meta Quest Pro headset, which has an eye tracker to track
the user’s real-time gaze.

We use the classic Two-Interval Forced Choice (2IFC) psy-
chophysical procedure [12, 52], which is commonly used
for evaluating the subjective quality of foveated render-
ing [16, 24, 60, 65, 72, 74, 76, 78] For each trace, we display
its rendering by the two methods on the headset in a random
order to each participant, with a 5-second rest interval in-
between. Each participant is then asked to pick which of the
two versions they prefer. Each trace is repeated eight times,
and the repetitions across traces are also randomized. The
entire experiment lasts about one hour for each participant.

7 Evaluation
We first show that the subjective rendering quality of our
method is statistically no-worse than Mini-Splatting-D
(Sec. 7.1). We then show that we provide a better speed-
quality trade-off than virtually all baselines on a mobile GPU
(Sec. 7.2); hardware acceleration improves the speed even
further (Sec. 7.3). We out-perform other FR methods (Sec. 7.4)
and a prior PBNR accelerator (Sec. 7.5).

7.1 Subjective Experiments.
Fig. 11 shows the average number of participants who prefer
the two methods for each video. A tie would be 4-vs-4, since
each video is watched eight times by each user. We find that
users either have no preference or prefer our method over
Mini-Splatting-D. The results are statistically significant
through a binomial test with 𝑝 < 0.01; the null hypothesis is
“users prefer Mini-Splatting-D more than 50% of the time”.

It might initially look surprising that we have equal or
better subjective quality than Mini-Splatting-D, a dense
model from which we prune and build our FR model. Further
inspection and interviewing participants show two reasons.
First, our HVS-aware fine-tuning (Sec. 6) better aligns the
statistics of human-sensitive features with the ground truth.
Second, some points in the dense model are trained with
inconsistent information across camera poses, leading to
incorrect luminance changes over time; pruning those points
helps alleviate this inconsistency.

7.2 GPU Results
We now show the performance results on the mobile Volta
GPU on Nvidia Jetson AGX Xavier [2], a representative mo-
bile device for use-cases such as VR. Fig. 13 shows the results.
We execute each model five times for each camera pose in
each scene in all the datasets, and report the average FPS.
To put the performance results in context, we compare

our variants with the baselines using three objective metrics,
PSNR, SSIM, and LPIPS, which provide good quality mea-
sures for the region under the user’s gaze and are commonly
reported in prior work. Using the objective metrics also
allows us to scale up the study to more traces.

Our three variants provide better speed-quality trade-offs
in virtually all metrics. Our slowest variant MetaSapiens-H
is 1.9× faster than the fastest baseline while having better or
similar objective quality. The fastest variant MetaSapiens-L
is 7.9× faster than 3DGS, and can be up to 19.8× on the
largest bicycle trace.

MetaSapiens: Real-Time Neural Rendering with Efficient Pruning and Foveated Rendering ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

0 30 60 90 120 150
FPS

26.6

26.8

27.0

27.2

27.4

PS
N

R
 (d

B)

better

0 30 60 90 120 150
FPS

0.81

0.82

0.83

0.84

0.85

SS
IM

better

0 30 60 90 120 150
FPS

0.17

0.19

0.21

0.23

0.25

LP
IP

S

better
Ours
3DGS
Mini-Sp.-D
Mip-Sp.
StopThePop
CompactGS
LightGS
Mini-Sp.

Fig. 13. Performance and objective rendering quality (PSNR, SSIM, LPIPS) comparison across the seven baselines and the
three MetaSapiens variants on the mobile Volta GPU. 3DGS, Mini-Splatting-D, Mip-Splatting, and StopThePop are
dense models, and the other three baselines are pruned models.

Base
Base+TM

Base+TM+IP
10

15

20

25

30

S
pe

ed
up

Fig. 14. Speed-ups of dif-
ferent accelerator variants
over the GPU baseline; each
marker is a dataset trace.

1 2 3 4 5 6
Area (mm2)

0
10
20
30
40
50
60

S
pe

ed
up

GSCore Ours

Fig. 15. Speedup and area
comparison between our
hardware and GSCore under
different configurations.

Ablation Studies. We now ablate the contribution of
various performance-enhancing techniques. Fig. 12 shows
the FPS (left 𝑦-axis) and PSNR (right 𝑦-axis) under: 1) the
dense Mini-Splatting-D model, 2) MetaSapiens with only
scale decay (SD; Sec. 3.3), 3) MetaSapiens with SD and CE-
based pruning (Sec. 3.2), and 4) MetaSapiens with SD, CE,
and FR (Sec. 4).We use theMetaSapiens-Hmodel and obtain
the FPS/PSNR results on Xavier averaged over all traces.
The PSNRs for all the variants are similar. With a simi-

lar quality, our SD implementation achieves 1.6× speedup
compared to original dense model; CE-based pruning and FR
bring the speedup to 5.8× and 7.4×, respectively. CE reduces
the model size by 85%, and FR diminishes the pruning rate
only marginally to 84% owing to selective multi-versioning,.

7.3 Results with Hardware Support
Speedup. Our hardware support provides further perfor-
mance improvements. Fig. 14 shows the speedups over GPU
of: 1) the base accelerator (the uncolored in Fig. 8), 2) the
accelerator with only Tile Merging, and 3) one with both Tile
Merging and Incremental Pipelining. Each marker represents
one of the 13 dataset traces. We use the MetaSapiens-H
model for evaluation. Overall, even the base accelerator
achieves a 18.5× speedup (geomean), up to 24.8×, compared
to the GPU baseline across different datasets.

Table 1. Comparison of FR methods.

Methods FPS ↑ Storage (MB) ↓ HVS Quality (×10−5)↓
L1 L2 L3 L4

SMFR 125.9 (1×) 161.6 (1×) 2.12 10.1 21.7 28.3
MMFR 52.6 (0.42×) 311.0 (1.92 ×) 2.12 1.87 1.79 1.76

MetaSapiens-H 102.2 (0.81×) 171.8 (1.06×) 2.12 2.10 2.09 2.08

The introduction of Tile Merging consistently improves
performance, because tile merging mitigates the load im-
balance across tiles. On top of that, Incremental Pipelin-
ing completely addresses the load imbalance in FR. Overall,
MetaSapiens-TM-IP combines both techniques and achieves
an average 20.9× (up to 27.7×) speedup.

Energy Savings. We summarize the energy results. Our
base accelerator achieves a 54.4× energy reduction com-
pared to the GPU baseline. MetaSapiens-TM-IP improves
the energy saving to 56.8×; this is primarily because with in-
cremental pipelining we can afford to smaller SRAMs as line
buffers, which reduces the energy consumption of SRAMs.

7.4 Comparison with Other FR Methods
MetaSapiens also out-performs the two FR baselines. Tbl. 1
compares the FPS (on the mobile Volta GPU), storage re-
quirement, and the HVSQ metric across different quality re-
gions/layers. The results are averaged across all the datasets.

SMFR has been seen as a variant of our FR with strict
subsetting (no multi-versioning). Thus, it is the fastest, but
has excessively low visual quality, because it simply sub-
samples pre-trained points to render low-quality regions. Its
HVSQ in 𝐿4 is over 10× worse than the other two methods.
Users confirm that subjectively this gives the worst quality.
Our method selectively multi-versioned four trainable

parameters out of about 60 (Sec. 4.2 and D in Fig. 7), so
the additional storage requirement is small (about 6%). Note
that MetaSapiens-H already reduces the dense model size
to 16% as shown in Sec. 6.

MMFR can be seen as a variant of our FR that multi-
versions all parameters. It is thus the slowest of the three —

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Weikai Lin, Yu Feng, and Yuhao Zhu

its FPS is way below a 90 FPS real-time requirement, and has
the largest storage requirement. This is due to the compute
and storage overhead discussed in Sec. 4.1. Its HVSQ metrics
in higher levels (lower-quality regions) are better than that of
ours. Given that our method is already subjectively no-worse
than even a dense model (Sec. 7.1), this suggests that MMFR
unnecessarily optimizes for details that are imperceptible to
users, which we confirm with users.

7.5 Comparison with GSCore
Our accelerator is based on GSCore [39], but has a larger area
(Sec. 6). This is because our baseline hardware (uncolored
in Fig. 8) has 4× more Volume Rendering Cores compared
to that of GSCore with 2× fewer sorting unit to balance the
latency of different stages.

Fig. 15 compares the speedup over GPU and area between
our architecture (with TM and IP) and GSCore; both hard-
ware execute the MetaSapiens-H model on the flowers
scene. We proportionally scale both GSCore and ours based
on their own resource ratio. We consistently achieve higher
speedups with a slightly smaller area against GSCore. For
example, at an area of around 6 mm2, MetaSapiens out-
performsGSCore by 1.6×. The higher performance of MetaS-
apiens is from the effectiveness of TM and IP that avoid
stalling when pipelining over tiles. Our performance gain is
more significant as the area increases, because the workload
imbalance is more pronounced with a large amount of idle
resource.

8 Related Work
Foveated Rendering. The graphics community has long
exploited FR for real-time rendering [10, 13, 24, 32, 36, 37, 51,
66, 70]. Particularly relevant to our work, researchers have
started applying FR to neural rendering [16, 59, 60], such as
Fov-NeRF [16]. Our work differs from them in two key ways.
First, these methods exclusively focus on NeRF, whereas
we focus on PBNR, which is shown to be fundamentally
more efficient that NeRF. Second, some [16] use the multi-
model approach, similar to our MMFR baseline, which we
out-perform (Sec. 7.4). Our FR method uses subsetting with
selectively multi-versioning, addressing the performance
overhead of evaluating multiple models (Sec. 4.1).
While conventional FR uses heuristics (e.g., blurring) to

guide quality relaxation, recently researchers have investi-
gated more principled ways to model human perception for
quality relaxation [20, 72]. This work leverages such theo-
retical work and integrates it into the training framework to
demonstrate its practical utility.
Efficient PBNR. Almost all existing work optimizing

PBNR focuses on pruning, based on the observation that a
considerable amount of points can be pruned without im-
pacting the rendering quality. They usually do so by, e.g.,
explicitly training a mask to remove points [40] or sorting

points by their numerical contribution to pixel colors fol-
lowed by removing low-contributing points [17, 18, 22, 50].
People have also investigated non-pruning methods, such as
vector quantization [17] and distillation [40] techniques, to
compress PBNR models.
Our work differs from them in two key ways. First, we

show that point count is not indicative of performance; tile
intersections are (Sec. 3.1).We propose an intersection-aware
metric to guide pruning (Sec. 3.2). Second, we show an or-
thogonal technique, scale decay, that complements pruning
(Sec. 3.3) and can be performed in conjunction with pruning
to further achieve improve performance (Sec. 3.4).

Neural Rendering Accelerators. Significant work has
been done on accelerating neural rendering [19, 21, 38, 43, 44,
48, 55], but most of them focuses on NeRF, a variant of neu-
ral rendering that PBNR aims to out-perform. GSCore [39]
accelerates 3DGS, a particular PBNR model.
Our work differs from prior PBNR accelerators in two

ways. First, our hardware supports FR with minimal hard-
ware augmentations. Second, we identify and address the
load imbalance issue in PBNR, which is exacerbated by FR.

9 Conclusions
We achieve over an order of magnitude speedup over existing
PBNR models with no subjective quality loss through a user
study. The speedup comes from: 1) a pruning techniques
that directly optimizes for the compute-cost of PBNR, 2) FR
specialized for PBNR, and 3) hardware support addressing
the load imbalanced issue in FR-based PBNR.

Acknowledgments
The work is partially supported by NSF Award #2225860.

References
[1] 2014. Micron 178-Ball, Single-Channel Mobile LPDDR3 SDRAM

Features. https://www.micron.com/-/media/client/global/

documents/products/data-sheet/dram/mobile-dram/low-power-

dram/lpddr3/178b_8-16gb_2c0f_mobile_lpddr3.pdf

[2] 2018. NVIDIA Reveals Xavier SOC Details. https:

//www.forbes.com/sites/moorinsights/2018/08/24/nvidia-reveals-

xavier-soc-details/amp/

[3] 2021. VIVE Pro 2 Headset Specifications. https://www.vive.com/us/

product/vive-pro2/specs/.
[4] 2022. Meta Quest Pro Specifications. https://vr-compare.com/headset/

metaquestpro. Accessed: 2024-06-24.
[5] 2022. Metameric Loss. https://github.com/kaanaksit/odak/blob/

master/odak/learn/perception/metameric_loss.py.
[6] 2024. Apple Vision Pro Specifications. https://www.apple.com/apple-

vision-pro/specs/. Accessed: 2024-06-24.
[7] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman,

Ricardo Martin-Brualla, and Pratul P Srinivasan. 2021. Mip-nerf: A
multiscale representation for anti-aliasing neural radiance fields. In
Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion. 5855–5864.

[8] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan,
and Peter Hedman. 2022. Mip-nerf 360: Unbounded anti-aliased neural

https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/mobile-dram/low-power-dram/lpddr3/178b_8-16gb_2c0f_mobile_lpddr3.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/mobile-dram/low-power-dram/lpddr3/178b_8-16gb_2c0f_mobile_lpddr3.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/mobile-dram/low-power-dram/lpddr3/178b_8-16gb_2c0f_mobile_lpddr3.pdf
https://www.forbes.com/sites/moorinsights/2018/08/24/nvidia-reveals-xavier-soc-details/amp/
https://www.forbes.com/sites/moorinsights/2018/08/24/nvidia-reveals-xavier-soc-details/amp/
https://www.forbes.com/sites/moorinsights/2018/08/24/nvidia-reveals-xavier-soc-details/amp/
https://www.vive.com/us/product/vive-pro2/specs/
https://www.vive.com/us/product/vive-pro2/specs/
https://vr-compare.com/headset/metaquestpro
https://vr-compare.com/headset/metaquestpro
https://github.com/kaanaksit/odak/blob/master/odak/learn/perception/metameric_loss.py
https://github.com/kaanaksit/odak/blob/master/odak/learn/perception/metameric_loss.py
https://www.apple.com/apple-vision-pro/specs/
https://www.apple.com/apple-vision-pro/specs/

MetaSapiens: Real-Time Neural Rendering with Efficient Pruning and Foveated Rendering ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

radiance fields. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 5470–5479.

[9] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John
Guttag. 2020. What is the state of neural network pruning? Proceedings
of machine learning and systems 2 (2020), 129–146.

[10] P. Chakravarthula, Z. Zhang, O. Tursun, P. Didyk, Q. Sun, and H. Fuchs.
2021. Gaze-Contingent Retinal Speckle Suppression for Perceptually-
Matched Foveated Holographic Displays. IEEE Transactions on Visual-
ization and Computer Graphics 27, 11 (2021), 4194–4203.

[11] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022.
Tensorf: Tensorial radiance fields. In European Conference on Computer
Vision. Springer, 333–350.

[12] K. Chen, T. Wan, N. Matsuda, A. Ninan, A. Chapiro, and Q. Sun. 2024.
PEA-PODs: Perceptual Evaluation of Algorithms for Power Optimiza-
tion in XR Displays. ACM Transactions on Graphics 43, 4 (July 2024),
67.

[13] S. Chen, B. Duinkharjav, X. Sun, L.-Y. Wei, S. Petrangeli, J. Echevarria,
C. Silva, and Q. Sun. 2022. Instant Reality: Gaze-Contingent Perceptual
Optimization for 3D Virtual Reality Streaming. IEEE Transactions on
Visualization and Computer Graphics 28, 5 (2022), 2157–2167.

[14] Christine A Curcio, Kenneth R Sloan, Robert E Kalina, and Anita E
Hendrickson. 1990. Human photoreceptor topography. Journal of
comparative neurology 292, 4 (1990), 497–523.

[15] Dennis M Dacey. 1993. The mosaic of midget ganglion cells in the
human retina. Journal of Neuroscience 13, 12 (1993), 5334–5355.

[16] Nianchen Deng, Zhenyi He, Jiannan Ye, Budmonde Duinkharjav,
Praneeth Chakravarthula, Xubo Yang, and Qi Sun. 2022. Fov-nerf:
Foveated neural radiance fields for virtual reality. IEEE Transactions
on Visualization and Computer Graphics 28, 11 (2022), 3854–3864.

[17] Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and
Zhangyang Wang. 2024. LightGaussian: Unbounded 3D Gaussian
Compression with 15x Reduction and 200+ FPS. In Advances in Neural
Information Processing Systems. To appear.

[18] Guangchi Fang and Bing Wang. 2024. Mini-Splatting: Representing
Scenes with a Constrained Number of Gaussians. In Proceedings of the
European Conference on Computer Vision (ECCV). To appear.

[19] Yu Feng, Zihan Liu, Jingwen Leng, Minyi Guo, and Yuhao Zhu. 2024.
Cicero: Addressing Algorithmic and Architectural Bottlenecks in Neu-
ral Rendering by Radiance Warping and Memory Optimizations. In
Proceedings of the 50th Annual International Symposium on Computer
Architecture.

[20] Jeremy Freeman and Eero P. Simoncelli. 2011. Metamers of the Ventral
Stream. Nature Neuroscience 14, 9 (Sept. 2011), 1195–1201.

[21] Yonggan Fu, Zhifan Ye, Jiayi Yuan, Shunyao Zhang, Sixu Li, Haoran
You, and Yingyan Lin. 2023. Gen-NeRF: Efficient and Generalizable
Neural Radiance Fields via Algorithm-Hardware Co-Design. In Pro-
ceedings of the 50th Annual International Symposium on Computer
Architecture. 1–12.

[22] Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. 2024. Eagles:
Efficient accelerated 3d gaussians with lightweight encodings. In Pro-
ceedings of the European Conference on Computer Vision (ECCV). To
appear.

[23] Markus Gross and Hanspeter Pfister. 2011. Point-based graphics. Else-
vier.

[24] Brian Guenter, Mark Finch, Steven Drucker, Desney Tan, and John
Snyder. 2012. Foveated 3D graphics. ACM transactions on Graphics
(ToG) 31, 6 (2012), 1–10.

[25] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning
both weights and connections for efficient neural network. Advances
in neural information processing systems 28 (2015).

[26] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George
Drettakis, and Gabriel Brostow. 2018. Deep blending for free-viewpoint
image-based rendering. ACM Transactions on Graphics (ToG) 37, 6
(2018), 1–15.

[27] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-
Kelley, Noy Cohen, Steven Bell, Artem Vasilyev, Mark Horowitz, and
Pat Hanrahan. 2014. Darkroom: compiling high-level image processing
code into hardware pipelines. ACM Trans. Graph. 33, 4 (2014), 144–1.

[28] John L Hennessy and David A Patterson. 2019. Chapter 7.7 Pixel Visual
Core, a Personal Mobile Device Image Processing Unit. In Computer
Architecture: a Quantitative Approach. Elsevier, 579–592.

[29] Alain Hore and Djemel Ziou. 2010. Image quality metrics: PSNR vs.
SSIM. In 2010 20th international conference on pattern recognition. IEEE,
2366–2369.

[30] Qing Jin, Linjie Yang, and Zhenyu Liao. 2020. Adabits: Neural network
quantization with adaptive bit-widths. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2146–2156.

[31] Maria G. Juarez, Vicente J. Botti, and Adriana S. Giret. 2021. Digital
Twins: Review and Challenges. Journal of Computing and Information
Science in Engineering 21 (2021), 030802:1–030802:23.

[32] A. S. Kaplanyan, A. Sochenov, T. Leimkühler, M. Okunev, T. Goodall,
and G. Rufo. 2019. Deepfovea: Neural Reconstruction for Foveated
Rendering and Video Compression Using Learned Statistics of Natural
Videos. ACM Transactions on Graphics 38, 6 (Nov. 2019). https://doi.

org/10.1145/3355089.3356557

[33] Arie Kaufman, Daniel Cohen, and Roni Yagel. 1993. Volume graphics.
Computer 26, 7 (1993), 51–64.

[34] B. Kerbl, G. Kopanas, T. Leimkuehler, and G. Drettakis. 2023. 3D
Gaussian Splatting for Real-Time Radiance Field Rendering. ACM
Transactions on Graphics 42, 4 (Aug. 2023), 1–14. https://doi.org/10.

1145/3592433

[35] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017.
Tanks and Temples: Benchmarking Large-Scale Scene Reconstruction.
ACM Transactions on Graphics 36, 4 (2017).

[36] R. Konrad, A. Angelopoulos, and G. Wetzstein. 2020. Gaze-Contingent
Ocular Parallax Rendering for Virtual Reality. ACM Transactions on
Graphics 39 (2020).

[37] B. Krajancich, P. Kellnhofer, and G. Wetzstein. 2020. Optimizing
Depth Perception in Virtual and Augmented Reality through Gaze-
Contingent Stereo Rendering. ACMTransactions on Graphics 39 (2020).

[38] Junseo Lee, Kwanseok Choi, Jungi Lee, Seokwon Lee, JoonhoWhangbo,
and Jaewoong Sim. 2023. NeuRex: A Case for Neural Rendering Accel-
eration. In Proceedings of the 50th Annual International Symposium on
Computer Architecture. 1–13.

[39] Junseo Lee, Seokwon Lee, Jungi Lee, Junyong Park, and Jaewoong Sim.
2024. GSCore: Efficient Radiance Field Rendering via Architectural
Support for 3D Gaussian Splatting. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3. 497–511.

[40] Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung
Park. 2024. Compact 3d gaussian representation for radiance field. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 21719–21728.

[41] Marc Levoy. 1988. Display of surfaces from volume data. IEEE Com-
puter graphics and Applications 8, 3 (1988), 29–37.

[42] Marc Levoy and Turner Whitted. 1985. The use of points as a display
primitive. (1985).

[43] Chaojian Li, Sixu Li, Yang Zhao, Wenbo Zhu, and Yingyan Lin. 2022.
RT-NeRF: Real-Time On-Device Neural Radiance Fields Towards Im-
mersive AR/VR Rendering. In Proceedings of the 41st IEEE/ACM Inter-
national Conference on Computer-Aided Design. 1–9.

[44] Sixu Li, Chaojian Li, Wenbo Zhu, Boyang Yu, Yang Zhao, Cheng Wan,
Haoran You, Huihong Shi, and Yingyan Lin. 2023. Instant-3D: Instant
Neural Radiance Field Training Towards On-Device AR/VR 3D Recon-
struction. In Proceedings of the 50th Annual International Symposium
on Computer Architecture. 1–13.

https://doi.org/10.1145/3355089.3356557
https://doi.org/10.1145/3355089.3356557
https://doi.org/10.1145/3592433
https://doi.org/10.1145/3592433

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Weikai Lin, Yu Feng, and Yuhao Zhu

[45] Nelson Max. 1995. Optical models for direct volume rendering. IEEE
Transactions on Visualization and Computer Graphics 1, 2 (1995), 99–
108.

[46] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T
Barron, Ravi Ramamoorthi, and Ren Ng. 2021. Nerf: Representing
scenes as neural radiance fields for view synthesis. Commun. ACM 65,
1 (2021), 99–106.

[47] Sunil Mirapuri, Michael Woodacre, and Nader Vasseghi. 1992. The
MIPS R4000 processor. IEEE Micro 12, 2 (1992), 10–22.

[48] Muhammad Husnain Mubarik, Ramakrishna Kanungo, Tobias Zirr,
and Rakesh Kumar. 2023. Hardware Acceleration of Neural Graphics.
In Proceedings of the 50th Annual International Symposium on Computer
Architecture. 1–12.

[49] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller.
2022. Instant neural graphics primitives with a multiresolution hash
encoding. ACM Transactions on Graphics (ToG) 41, 4 (2022), 1–15.

[50] Michael Niemeyer, Fabian Manhardt, Marie-Julie Rakotosaona,
Michael Oechsle, Daniel Duckworth, Rama Gosula, Keisuke Tateno,
John Bates, Dominik Kaeser, and Federico Tombari. 2024. Radsplat: Ra-
diance field-informed gaussian splatting for robust real-time rendering
with 900+ fps. arXiv preprint arXiv:2403.13806 (2024).

[51] Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris
Wyman, Nir Benty, David Luebke, and Aaron Lefohn. 2016. Towards
foveated rendering for gaze-tracked virtual reality. ACM Transactions
on Graphics (TOG) 35, 6 (2016), 1–12.

[52] Maria Perez-Ortiz, Aliaksei Mikhailiuk, Emin Zerman, Vedad Hulu-
sic, Giuseppe Valenzise, and Rafał K Mantiuk. 2019. From pairwise
comparisons and rating to a unified quality scale. IEEE Transactions
on Image Processing 29 (2019), 1139–1151.

[53] Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar, and Markus
Gross. 2000. Surfels: Surface elements as rendering primitives. In
Proceedings of the 27th annual conference on Computer graphics and
interactive techniques. 335–342.

[54] Lukas Radl, Michael Steiner, Mathias Parger, Alexander Weinrauch,
Bernhard Kerbl, and Markus Steinberger. 2024. StopThePop: Sorted
Gaussian Splatting for View-Consistent Real-time Rendering. ACM
Transactions on Graphics 4, 43, Article 64 (2024).

[55] Chaolin Rao, Huangjie Yu, Haochuan Wan, Jindong Zhou, Yueyang
Zheng, Minye Wu, Yu Ma, Anpei Chen, Binzhe Yuan, Pingqiang Zhou,
et al. 2022. ICARUS: A Specialized Architecture for Neural Radiance
Fields Rendering. ACM Transactions on Graphics (TOG) 41, 6 (2022),
1–14.

[56] Jason Redgrave, Albert Meixner, Nathan Goulding-Hotta, Artem Vasi-
lyev, and Ofer Shacham. 2018. Pixel Visual Core: Google’s Fully Pro-
grammableImage, Vision, and AI Processor For Mobile Devices. In
Proc. IEEE Hot Chips Symp.(HCS). 1–18.

[57] Liu Ren, Hanspeter Pfister, and Matthias Zwicker. 2002. Object space
EWA surface splatting: A hardware accelerated approach to high qual-
ity point rendering. In Computer Graphics Forum, Vol. 21. Wiley Online
Library, 461–470.

[58] RW Rodieck, KF Binmoeller, and J Dineen. 1985. Parasol and midget
ganglion cells of the human retina. Journal of Comparative Neurology
233, 1 (1985), 115–132.

[59] Tim Rolff, Ke Li, Julia Hertel, Susanne Schmidt, Simone Frintrop, and
Frank Steinicke. 2023. Interactive VRS-NeRF: Lightning fast Neural
Radiance Field Rendering for Virtual Reality. In Proceedings of the 2023
ACM Symposium on Spatial User Interaction. 1–3.

[60] Tim Rolff, Susanne Schmidt, Ke Li, Frank Steinicke, and Simone Frin-
trop. 2023. VRS-NeRF: Accelerating Neural Radiance Field Rendering
with Variable Rate Shading. In 2023 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR). IEEE, 243–252.

[61] Ruth Rosenholtz. 2016. Capabilities and limitations of peripheral vision.
Annual review of vision science 2 (2016), 437–457.

[62] Szymon Rusinkiewicz andMarc Levoy. 2000. QSplat: Amultiresolution
point rendering system for large meshes. In Proceedings of the 27th
annual conference on Computer graphics and interactive techniques.
343–352.

[63] Satyabrata Sarangi and Bevan Baas. 2021. DeepScaleTool: A tool for
the accurate estimation of technology scaling in the deep-submicron
era. In 2021 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, 1–5.

[64] John Paul Shen and Mikko H Lipasti. 2013. Modern processor design:
fundamentals of superscalar processors. Waveland Press.

[65] Xuehuai Shi, Lili Wang, Xinda Liu, Jian Wu, and Zhiwen Shao. 2024.
Scene-aware Foveated Neural Radiance Fields. IEEE Transactions on
Visualization and Computer Graphics (2024).

[66] Rahul Singh, Muhammad Huzaifa, Jeffrey Liu, Anjul Patney, Hashim
Sharif, Yifan Zhao, and Sarita Adve. 2023. Power, performance, and
image quality tradeoffs in foveated rendering. In 2023 IEEE Conference
Virtual Reality and 3D User Interfaces (VR). IEEE, 205–214.

[67] Hongxin Song, Toco Yuen Ping Chui, Zhangyi Zhong, Ann E Elsner,
and Stephen A Burns. 2011. Variation of cone photoreceptor packing
density with retinal eccentricity and age. Investigative ophthalmology
& visual science 52, 10 (2011), 7376–7384.

[68] Hans Strasburger, Ingo Rentschler, andMartin Jüttner. 2011. Peripheral
vision and pattern recognition: A review. Journal of vision 11, 5 (2011),
13–13.

[69] Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2022. Direct voxel grid
optimization: Super-fast convergence for radiance fields reconstruc-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 5459–5469.

[70] Q. Sun, F.-C. Huang, J. Kim, L.-Y. Wei, D. Luebke, and A. Kaufman.
2017. Perceptually-Guided Foveation for Light Field Displays. ACM
Transactions on Graphics 36, 6 (Nov. 2017). https://doi.org/10.1145/

3130800.3130807

[71] Nisarg Ujjainkar, Jingwen Leng, and Yuhao Zhu. 2023. ImaGen: A
general framework for generating memory-and power-efficient image
processing accelerators. In Proceedings of the 50th Annual International
Symposium on Computer Architecture. 1–13.

[72] David R Walton, Rafael Kuffner Dos Anjos, Sebastian Friston, David
Swapp, Kaan Akşit, Anthony Steed, and Tobias Ritschel. 2021. Be-
yond blur: Real-time ventral metamers for foveated rendering. ACM
Transactions on Graphics 40, 4 (2021), 1–14.

[73] Brian A Wandell. 1995. Foundations of vision. sinauer Associates.
[74] Yue Wang, Yan Zhang, Xuanhui Yang, Hui Wang, Dongxu Liu, and

Xubo Yang. 2024. Foveated Fluid Animation in Virtual Reality. In
2024 IEEE Conference Virtual Reality and 3D User Interfaces (VR). IEEE,
535–545.

[75] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing Deng,
Jianqiang Huang, and Xian-sheng Hua. 2019. Quantization networks.
In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 7308–7316.

[76] Jiannan Ye, Anqi Xie, Susmija Jabbireddy, Yunchuan Li, Xubo Yang, and
Xiaoxu Meng. 2022. Rectangular mapping-based foveated rendering.
In 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).
IEEE, 756–764.

[77] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas
Geiger. 2024. Mip-splatting: Alias-free 3d gaussian splatting. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 19447–19456.

[78] Yan Zhang, Keyao You, Xiaodan Hu, Hangyu Zhou, Kiyoshi Kiyokawa,
and Xubo Yang. 2024. Retinotopic Foveated Rendering. In 2024 IEEE
Conference Virtual Reality and 3D User Interfaces (VR). IEEE, 903–912.

[79] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus
Gross. 2001. Surface splatting. In Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques. 371–378.

https://doi.org/10.1145/3130800.3130807
https://doi.org/10.1145/3130800.3130807

	Abstract
	1 Introduction
	2 Background
	2.1 Point-Based Neural Rendering
	2.2 Human Visual System and Foveated Rendering

	3 Efficiency-Aware Pruning
	3.1 Motivations
	3.2 Intersection-Aware Pruning
	3.3 Scale Decay
	3.4 Putting It Together

	4 Foveated PBNR
	4.1 Main Idea and Challenges
	4.2 Efficient Data Representation
	4.3 HVS-Guided Training

	5 Hardware Support
	5.1 Overview
	5.2 Addressing Load Imbalance

	6 Experimental Setup
	7 Evaluation
	7.1 Subjective Experiments.
	7.2 GPU Results
	7.3 Results with Hardware Support
	7.4 Comparison with Other FR Methods
	7.5 Comparison with GSCore

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

