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Abstract
Virtual Reality (VR) has the potential of becoming the next

ubiquitous computing platform. Continued progress in the

burgeoning field of VR depends critically on an efficient

computing substrate. In particular, DRAM access energy is

known to contribute to a significant portion of system en-

ergy. Today’s framebuffer compression system alleviates the

DRAM traffic by using a numerically lossless compression al-

gorithm. Being numerically lossless, however, is unnecessary

to preserve perceptual quality for humans. This paper pro-

poses a perceptually lossless, but numerically lossy, system

to compress DRAM traffic. Our idea builds on top of long-

established psychophysical studies that show that humans

cannot discriminate colors that are close to each other. The

discrimination ability becomes even weaker (i.e., more colors

are perceptually indistinguishable) in our peripheral vision.

Leveraging the color discrimination (in)ability, we propose

an algorithm that adjusts pixel colors to minimize the bit

encoding cost without introducing visible artifacts. The al-

gorithm is coupled with lightweight architectural support

that, in real-time, reduces the DRAM traffic by 66.9% and

outperforms existing framebuffer compression mechanisms

by up to 20.4%. Psychophysical studies on human partici-

pants show that our system introduce little to no perceptual

fidelity degradation.
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1 Introduction
Virtual Reality (VR) has the potential of becoming the next

ubiquitous computing platform, after PCs and smartphones,

revolutionizing a wide variety of domains such as health-

care [7], education [9], remote communication [44, 49], pro-

fessional training [28], and industrial design [23].

Continued progress in the burgeoning field of VR depends

critically on an efficient computing substrate, driven by the

ever-growing requirement of immersive user experience and

the miniaturization of device form factors. DRAM communi-

cation energy is known to contribute significantly to the sys-

tem energy consumption. Recent studies show that DRAM

energy alone can consume upward of 30% of the total system

energy consumption during VR video rendering [27, 77]. The

DRAM bottleneck will only become worse in the future with

users questing for higher resolution and frame rate.

An effective approach to reduce DRAM traffic is frame-

buffer compression, which is universally implemented in

modern mobile SoCs for compressing any traffic in and out

of the DRAM. A classic example is the Arm Frame Buffer

Compressions (AFBC) technology, which is now in almost all

of Arm’s GPU, Video Codec, and Display Controller IPs [3].

Idea. Today’s framebuffer compression algorithm is nu-

merically lossless. Being numerically lossless is, however, un-

necessary to preserve perceptual fidelity: more compression

opportunities arise when we turn our attention to perceptual
lossless. Long-established psychophysical studies show that

humans cannot discriminate colors that are close to each

other [36, 68]. Informally, this means that many colors, while

differing in RGB values, are perceptually indistinguishable

and thus can be encoded together — a previously under-

exploited opportunity for real-time image encoding.

Critically, the discrimination ability becomes even weaker

(i.e., more colors are indistinguishable) in our peripheral vi-
sion as objects move away from fixation [14, 22, 29]. The

https://doi.org/10.1145/3617232.3624860
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eccentricity-dependent weakening of color discrimination

provides further opportunities for DRAM traffic compression:

VR displays, to provide immersive experiences, have a wide

Field-of-View (FoV) of about 100°; above 90% of a frame’s

pixels are in the peripheral vision (outside 20 °) [10, 45].

Design. Leveraging the unique color discrimination (in)ability

of human visual system, we propose a new image compres-

sion algorithm for immersive VR systems. We precisely for-

mulate the color perception-aware encoding as a constraint

optimization problem. The formulation is non-convex and

requires iterative solvers that are not amenable to real-time

execution. Leveraging empirical observations of human color

discrimination abilities, we introduce a set of principled re-

laxations, which transform the compression problem into a

convex optimization with an analytical solution.

The analytical solution, while avoiding iterative solvers,

is still compute intensive and slow to execute in real-time.

Implemented as a GPU shader executing on the Adreno 650

GPU in Oculus Quest 2, a widely used mobile VR headset,

the compression algorithm runs in a mere 2 FPS. We propose

lightweight hardware extensions for our encoding and de-

coding algorithms. The new hardware exploits the inherent

task-level and pipeline-level parallelisms in the algorithms

and can be readily combined with existing Base-Delta (BD)

encoding without changing the decoding hardware at all.

Results. We implement our architectural extensions in

RTL and synthesize the design using a TSMC 7 nm process

node. The compression algorithm reduces the memory traf-

fic by 66.9% compared to uncompressed images and by up

to 20.4% compared to the state-of-the-art real-time frame-

buffer compression [76]. We conduct IRB approved human

subject study on 11 participants. Results suggest that our

compression algorithm brings little visible artifacts to users.

In summary, this paper makes the following contributions:

• Wepropose an image encoding scheme to reduceDRAM

traffic in mobile VR systems. The scheme leverages the

eccentricity-dependent color discrimination (in)ability

of human visual systems.

• We show that the new encoding scheme can be for-

mulated as a convex optimization problem with an

analytical solution.

• We propose lightweight and modular hardware sup-

port to enable real-time encoding.

• ASIC synthesis and human subject studies show that

the new encoding scheme reduces the DRAM traffic

by 66.9% with little to no subjective perceptual quality

degradation.

The rest of the paper is organized as follows. Sec. 2 intro-

duces the background. Sec. 3 describes our key compression

algorithm. Sec. 4 introduces the co-designed hardware ar-

chitecture. Sec. 5 discusses the experimental methodology,

followed by the evaluation results in Sec. 6. We relate our

work to prior art in Sec. 7 and conclude in Sec. 8.

2 Background and Motivation
We first introduce the background of human color perception

and its eccentricity dependence, which form the psychophys-

ical basis for our compress algorithm (Sec. 2.1). We then de-

scribe today’s real-time frame compression algorithm, which

forms an important baseline for our algorithm (Sec. 2.2).

2.1 Eccentricity-Dependent Color Perception
Colors and Color Spaces. In a typical rendering pipeline, a

color is usually described in the linear RGB space with three

channels; each channel is a floating point number between 0

and 1. For output encoding, each channel in the linear RGB

color space is transformed to the common sRGB color space,

where each channel is an 8-bit integer between 0 and 255.

This transformation is non-linear, called gamma encoding,

and is described by the following function 𝑓𝑠2𝑟 , where 𝑥 ∈
[0, 1] represents a linear RGB channel value [24, 62]:

𝑓𝑠2𝑟 (𝑥) :=
{
⌊12.92𝑥⌋ 𝑥 ≤ 0.0031308

⌊1.055𝑥1/2.4 − 0.055⌋ 𝑥 > 0.0031308
(1)

Psychophysical studies on color discrimination commonly

operate in the DKL color space [19, 29], mainly because the

DKL space models the opponent process in the human visual

system. The DKL space is a linear transformation away from

the linear RGB color space:

[𝑅,𝐺, 𝐵]𝑇 =MRGB2DKL [𝐾1, 𝐾2, 𝐾3]𝑇 (2)

where [𝑅,𝐺, 𝐵] is the color in the linear RGB space, [𝐾1, 𝐾2, 𝐾3]
is the color in the DKL space, andMRGB2DKL is a 3×3 constant
matrix (with the same coefficients, [[0.14, 0.17, 0.00], [−0.21,
−0.71,−0.07], [0.21, 0.72, 0.07]], as in Duinkharjav et al. [22]).
Color Discrimination. It is well-established that hu-

mans can not discriminate between colors that are close to

each other [36, 68]. For instance, Fig. 1 shows four colors

that have different sRGB values but appear to be the same.

#F06077 #F26077 #F25E77 #F26075

Fig. 1.Human visual system can not discriminate colors that

close to each other. These four colors differ in tristimulus

values, but appear to be the same color.

More formally, given a reference color 𝜅, there exists a

set of colors E𝜅 , in which all the colors are perceptually

indistinguishable from 𝜅 . In a linear color space such as DKL

and RGB, the set of equi-appearance colors in E𝜅 form an

ellipsoid, whose center is 𝜅 [41]. In the literature, such an

ellipsoid is called a discrimination ellipsoid [69].

Eccentricity Dependence. Critically, human color dis-

crimination ability is weaker in the peripheral vision [14, 22].
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Foveal vision: stronger 
color discrimination 
(smaller ellipsoids)

Peripheral vision: weaker 
color discrimination (larger 

ellipsoids)
Retina

Lens

Eccentricity

Discrimination ellipsoids
in 5° eccentricity

Discrimination ellipsoids 
in 25° eccentricityPixels falling in 

peripheral vision

Pixels falling in 
foveal vision

Fig. 2. Color discrimination is eccentricity dependent. The discriminative ability is weaker as the eccentricity increases.

As a result, the sizes of the discrimination ellipsoids increase with the eccentricity. The two plots on the right show the

discrimination ellipsoids under a 5° and a 25° eccentricity, respectively, in the linear RGB color space (i.e., sRGB normalized to

[0, 1] without gamma [24, 62]). The discrimination ellipsoids in each plot are shown for 27 colors uniformly sampled in the

linear RGB color space between [0.2, 0.2, 0.2] and [0.8, 0.8, 0.8].

That is, for a color 𝜅 , its discrimination ellipsoid E𝜅 is larger,

i.e., includes more indistinguishable colors, as 𝜅 moves away

from one’s fixation. Fig. 2 shows two figures that plot the

discrimination ellipsoids under a 5° and a 25° eccentricity,

respectively, in the linear RGB color space. Eccentricity is

the angle from the center of the retina, a.k.a., current fixation

or “fovea”. The ellipsoids in the 25° plot are larger than those

in the 5° plot, suggesting that the color discrimination ability

is weaker in peripheral vision.

Color discrimination becomes weaker in the visual pe-

riphery for three reasons. First, the receptive field (RF) sizes

of Retinal Ganglion Cells (RGCs) increase with eccentricity,

a result of larger dendritic fields [17, 52] and sparser RGC

density in periphery [15]. A large RF means that a RGC in-

tegrates signals from a larger spatial area, leading to more

blurring in the (spatial) frequency domain. Second, cone

cells (which are photoreceptors responsible for vision under

normal daylight) become larger in size as eccentricity in-

creases [16], also contributing blurring in spatial frequency.

Finally, the distribution of cone cells on our retina is ex-

tremely non-uniform: over 95% of the cone cells are located

in the central region of the retina (i.e., fovea) with an ec-

centricity of below 5 ° [16, 56]. The density of the cone cells

decreases drastically in the visual periphery, which is, thus,

significantly under-sampled spatially.

The full color discrimination function Φ, expressed below,

is thus parameterized by both the reference color 𝜅 and the

eccentricity e:

Φ : (𝜅, e) ↦→ (𝑎, 𝑏, 𝑐) (3)

where (𝑎, 𝑏, 𝑐) represents the semi-axes lengths of the dis-

crimination ellipsoid belonging to color 𝜅 at an eccentricity e
in the DKL color space [19], a common color space for color

perception experiments. Given (𝑎, 𝑏, 𝑐), E𝜅 , the discrimina-

tion ellipsoid of color 𝜅 in the DKL space, is given by:

(𝑥 − 𝜅1)2
𝑎2

+ (𝑦 − 𝜅2)2
𝑏2

+ (𝑧 − 𝜅3)2
𝑐2

= 1 (4)

where (𝜅1, 𝜅2, 𝜅3) represent the three channels of the color
𝜅.

The function Φ can be implemented using a Radial Basis

Function (RBF) network [22], which is extremely efficient

to implement on GPUs in real time. In our measurement

on Oculus Quest 2 VR headset using Oculus’ OVR Metrics

Tool [5], evaluating RBF network runs in 72 FPS, matching

the display refresh rate while consuming sub 1 mW power.

AR and VR headsets, in providing an immersive experi-

ence, usually have a wide FoV that is above 100°. Therefore,

the vast majority of the pixel colors will fall in the periph-

eral vision. The eccentricity-dependent color discrimination

(in)abilities of human visual system gives opportunities to

better image compression that this paper exploits.

2.2 Real-Time Frame Compression
DRAM Traffic. A variety of data communication traffics

occur on a VR system, as illustrated in Fig. 3, such as the

traffic through DRAM, the display interface, and the wireless

communications with a remote rendering server. This paper

focuses on reducing the DRAM traffic, which occurs when

the different Intellectual Property (IP) blocks in the SoC

communicate with each other during rendering.

Each frame, the GPU writes the frame data to the frame

buffer in the GPU, which are then read by the display con-

troller. It is these DRAM traffics (i.e., GPU ↔ frame buffer

↔ DRAM controller) that this paper focuses on reducing.

When rendering a VR (360°) video, additional DRAM traffics

occur between the network interface controller, the video

codec, and the GPU [38]. While not explicitly targeted in

this paper, these traffics can also potentially be reduced by

our compression algorithm, especially in scenarios where
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SoC

Memory

Network 
Interface

Video 
Codec GPU Display 

Controller

Display Panel

Frame Buffer

2

Cloud/Nearby 
Base Station

1 3

1 Wireless network traffic

2 DRAM traffic (Focus 
of this paper)

3 Display interface (eDP/
MIPI DSI) traffic

Legend

Fig. 3. Different types of data communication traffic in a VR

system. This paper focuses on reducing DRAM traffic.

Original pixels BD-compressed pixels

Base

95 95

Fig. 4. Base + Delta (BD) compression, which works in the

sRGB color space. For each pixel tile (4×4 here), we find a

base pixel (95 here), and calculate the Δ of all other pixels

from the base pixel. The Δ are smaller in magnitude and thus

require fewer bits to encode. The same compression strategy

is applied to all three color channels.

remotely rendered frames are transmitted one by one (rather

than as a video) [31, 35].

Reducing DRAM traffic is critical. It is well-established

that data transfer and memory access energy is known to

far out-weigh the energy consumption of computation. For

instance, compared to a Multiple-Accumulate (MAC) oper-

ation on 1-Byte fixed-point data, transferring one Byte of

information through DRAM consumes 800 × [39, 40] higher

energy. Reducing DRAM traffic in a visual computing system

has been a main research focus in recent years [27, 34, 76].

Framebuffer Compression Algorithms. An effective

and commonly used approach to reduce DRAM traffic in a

rendering system is framebuffer compression, which com-

presses and uncompresses every frame in and out of the

DRAM. To ensure a low per-frame latency, compression in

VR must be done on a per-frame basis, precluding video

compression methods such as H.265/VP5, which necessar-

ily require buffering a sequence of frames before compres-

sion [50, 51]. Offline image compression methods such as

JPEG and PNG are rarely used in framebuffer compression as

they are too compute-intensive. For instance, JPEG requires

chroma subsampling, transforming images to a frequency

space followed by quantization and Huffman encoding [63].

Today’s framebuffer compression methods universally use

a much faster base+delta (BD) strategy. Fig. 4 uses a simple

example to illustrate the basic idea behind BD, which com-

presses each color channel and each pixel tile individually.

The tile size in Fig. 4 is 4×4. In each tile, BD chooses a base

pixel and then calculates the Δs/offsets between all other

pixels and the base pixel. In the example of Fig. 4, the base

pixel is the first pixel. The Δs will necessarily have smaller

magnitudes compared to the original pixel values and, thus,

require fewer bits to encode.

The BD compression algorithm is lightweight: it works

completely in the image space, as opposed to the frequency

domain which requires an additional, compute-intensive

transformation (e.g. Fast Fourier Transform or Discrete Co-

sine Transformation); it requires only fixed-point addition

arithmetics; it is also embarrassingly parallel. Therefore, the

basic BD strategy is universally implemented in today’s mo-

bile SoCs for compressing any traffic in and out of the DRAM.

A classic example is the Arm Frame Buffer Compressions

(AFBC) technology, which is now in almost all of Arm’s GPU,

Video Codec, and Display Controller IPs [3].

3 Color Perception-Aware Compression
This section introduces a color perception-aware image en-

coding and decoding algorithm. We start by describing the

high-level ideas (Sec. 3.1), followed by a precise problem for-

mulation in the form of constraint optimization (Sec. 3.2). We

then show how this optimization problem has an analytical

solution when relaxed to a convex problem (Sec. 3.3). We

then describe the full compression algorithm (Sec. 3.4).

3.1 Key Ideas
The basic BD algorithm is numerically lossless. Our observa-

tion is that numerically lossless compression is unnecessary

to preserve perceptual equivalence — because of the inherent

the color discrimination (in)ability of human visual system.

Intuition. The basic BD algorithm encodes all the Δs in
a tile (off of a base pixel) rather than the original pixel values.

Thus, to improve the compression ratio over BD we must

reduce the magnitude of the Δs, which, intuitively, requires
bringing pixels more similar to each other.

Under a numerically lossless constraint, however, the Δs
between pixels are fixed. Our idea is to relax the constraint

from numerical lossless to perceptually lossless. In this way,

we could adjust pixel color values, as long as each pixel color

does not go beyond its discrimination ellipsoid, to minimize

the total number of bits required to encode the Δs. This
encoding is numerically lossy as we intentionally change

the color values, but will preserve the perceptual quality.

An Example. More concretely, consider the example in

Fig. 5, which shows 16 pixels in a tile on an axis. The number

of bits required to encode the entire tile is (ignoring any

metadata for now):

𝐵 = 𝐵0 + 𝑁 × 𝐵𝐷 (5)

𝐵0 = 8, 𝑁 = 15, 𝐵𝐷 = ⌊𝑙𝑜𝑔2 (𝑀𝑎𝑥 −𝑀𝑖𝑛 + 1)⌋ (6)
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Min Max

Min’ Max’

Original Pixels 

Adjusted Pixels 

Fig. 5. An intuition illustration of our perceptual-aware com-

pression, where pixel values are adjusted to be more similar

to each other by leveraging the inherent human color dis-

crimination thresholds.

where 𝐵0 being 8 denotes that we need 8 bits to encode a base

pixel (assuming the common 8-bit per-channel encoding),

and 𝑁 being 15 denotes that there are 15 other pixels. 𝐵𝐷
denotes the number of bits required to encode the Δ of each

of the 15 non-base pixels.

The minimum value of 𝐵𝐷 occurs when the base pixel

is chosen to be within [𝑀𝑖𝑛, 𝑀𝑎𝑥], in which case 𝐵𝐷 =

⌊𝑙𝑜𝑔2 (𝑀𝑎𝑥 −𝑀𝑖𝑛 + 1)⌋. This is because the number of bits

to encode each Δ must be the same
1
, so we must accommo-

date the largest possible Δ, which is the difference between

the maximum and minimum pixels in the tile. Therefore, to

improve compression ratio we must reduce (𝑀𝑎𝑥 −𝑀𝑖𝑛).
The bottom example in Fig. 5 illustrates what would hap-

pen when we relax the compression constraint to be percep-

tually lossless. The adjusted pixel values deviate from the

original values, but as long as they still within the respec-

tive ellipsoids, (𝑀𝑎𝑥 − 𝑀𝑖𝑛) is reduced without affecting

perceptual quality.

It is worth noting that to obtain the highest compression

rate it is necessary to adjust interior pixels, as is the case in

this example. The central challenge we address in this paper

is how to design a principled algorithm that maximizes the

bit reduction while being lightweight to execute in real time.

3.2 Problem Formulation
Our compression algorithm works on top of the baseline BD

algorithm. Our goal is to adjust pixel colors to minimize the

bit-length required to encode the Δs in a tile. The adjusted

pixel tile then goes through any existing BD compression

method. Critically, color adjustment must not violate the

1
It is possible, but uncommon, to vary the number of bits to encode the

Δs in a tile with more hardware overhead. Following prior work [76], this

paper assumes that one single bit-length is used to encode all Δs in a tile.

We consider variable bit-length an orthogonal idea to this paper.

perceptual constraints. Therefore, we formulate our com-

pression as a constraint optimization problem:

argmin

p

∑︁
C∈{𝑅,𝐺,𝐵}

𝑙𝑜𝑔2⌊𝑚𝑎𝑥{𝑓𝑠2𝑟 (pC)} −𝑚𝑖𝑛{𝑓𝑠2𝑟 (pC)} + 1⌋,

(7a)

where p := [𝑝0, 𝑝1, · · · , 𝑝𝑁−1], (7b)

pC := [𝑝C
0
, 𝑝C

1
, · · · , 𝑝C𝑁−1], C ∈ {𝑅,𝐺, 𝐵} (7c)

𝑠 .𝑡 . ∀𝑝𝑖 ∈ p 𝑝𝑖 ∈ E𝑝𝑖 (7d)

where p is the optimization variable, which is the collection

of 𝑁 pixels in a tile (Equ. 7b); 𝑝C𝑖 denotes channel C (R, G, or

B) of 𝑖-th pixel in the linear RGB space.

The constraints (Equ. 7d) provide the (convex) ellipsoid

boundary for each pixel to move while maintaining percep-

tion quality. 𝑓𝑠2𝑟 (·) is the non-linear transformation from

RGB to sRGB space (Sec. 2.1), which is ultimately where bit

encoding takes place. The objective function (Equ. 7a) min-

imizes the bit cost for encoding the Δs across all channels
(it is a constant cost to encode the base pixel, e.g., 8 in the

common sRGB encoding). This optimization formulation is

applied to each pixel tile independently.

Unfortunately, this optimization problem is impractical

to be solved in real-time, because the objective function is

non-convex due to the non-linearity of min, max, floor, and

𝑓𝑠2𝑟 (·). Empirically, we also find that the popular solvers in

Matlab spend hours while still being stuck in local optima.

Relaxation. We introduce two relaxations that turn the

problem into a convex optimization. Critically, while general

convex optimization requires iterative solvers (e.g., gradient

descent or Newton’s method [11]), our relaxed problem is

one such that it has an analytical solution. The relaxations

keep the same constraints as before (Equ. 7d) and, thus, still

enforce the perceptual quality.

The first relaxation is based on the empirical observation

that most discrimination ellipsoids are elongated along the

either the Red or the Blue axis. See the discrimination ellip-

soids in Fig. 2 for an illustration. This makes sense as human

visual perception is most sensitive to green lights [54, 69]

and, thus, has the least “wiggle room” along the Green axis.

Our idea thus is to, instead of minimizing the bit costs

across all three axes, minimize along only the Red or the

Blue axis (while still having the flexibility of adjusting all

the channels of all the pixels in a tile). Using the Blue axis

an example, this relaxation yields following new objective

function in Equ. 8a:

argmin

p
𝑙𝑜𝑔2⌊𝑚𝑎𝑥{𝑓𝑠2𝑟 (p𝐵)} −𝑚𝑖𝑛{𝑓𝑠2𝑟 (p𝐵)} + 1⌋, (8a)

⇒ argmin

p
𝑚𝑎𝑥{𝑓𝑠2𝑟 (p𝐵)} −𝑚𝑖𝑛{𝑓𝑠2𝑟 (p𝐵)}, (8b)

∼
=⇒ argmin

p
𝑚𝑎𝑥{p𝐵} −𝑚𝑖𝑛{p𝐵}. (8c)
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Fig. 6. The two cases in adjusting color values to minimize

the Δ along the Blue axis. For simplicity, we draw the ellip-

soids in the B-G plane. The empty markers (𝐶0,𝐶1,𝐶2,𝐶3) de-

note the original colors and the solid markers (𝐶′
0
,𝐶′

1
,𝐶′

2
,𝐶′

3
)

denote the adjusted colors. In both cases, colors are adjusted

along the extrema vector V.

Second, the objective function in Equ. 8a can be trans-

formed to Equ. 8b without sacrificing solution optimality,

because 𝑙𝑜𝑔2⌊·⌋ is monotonically non-decreasing. We then

remove the non-linear RGB to sRGB transformation function

𝑓𝑠2𝑟 (·). This removal does not preserve the solution optimal-

ity, but gives us a convex objective function in Equ. 8c.

Proof of Convexity. Let the objective function𝑚𝑎𝑥{x}−
𝑚𝑖𝑛{x} be 𝑔(x) : R𝑁 → R. To prove 𝑔(x) is convex, we
must show: ∀x1, x2 ∈ R𝑁 and 𝑡 ∈ [0, 1], 𝑔(𝑡x1 + (1 − 𝑡)x2) ≤
𝑡𝑔(x1) + (1 − 𝑡)𝑔(x2).

Proof. Observe that: 𝑔(𝑡x1 + (1 − 𝑡)x2) := 𝑚𝑎𝑥 (𝑡x1 + (1 −
𝑡)x2) −𝑚𝑖𝑛(𝑡x1 + (1 − 𝑡)x2).
We know𝑚𝑎𝑥 (𝑡x1 + (1 − 𝑡)x2) ≤ 𝑚𝑎𝑥 (𝑡x1) +𝑚𝑎𝑥 ((1 −

𝑡)x2) = 𝑡 𝑚𝑎𝑥 (x1) + (1−𝑡)𝑚𝑎𝑥 (x2). Similarly we can derive:

𝑚𝑖𝑛(𝑡x1 + (1 − 𝑡)x2) ≥ 𝑡 𝑚𝑖𝑛(x1) + (1 − 𝑡) 𝑚𝑖𝑛(x2).
Therefore,𝑔(𝑡x1+(1−𝑡)x2) ≤ (𝑡 𝑚𝑎𝑥 (x1)+(1−𝑡)𝑚𝑎𝑥 (x2))−

(𝑡 𝑚𝑖𝑛(x1) + (1 − 𝑡) 𝑚𝑖𝑛(x2)) = 𝑡𝑔(x1) + (1 − 𝑡)𝑔(x2). □

3.3 Analytical Solution Intuition
The relaxations introduced before lead to an analytical so-

lution without requiring iterative solvers. Observe that the

objective function in Equ. 8c minimizes the difference be-

tween the maximum and minimum values along the Blue

axis. To achieve that, the intuition is that we must move

the colors closer to each other along the Blue axis while

making sure the adjusted colors stay within the respective

discriminative ellipsoids.

Exactly how to move the colors falls into two cases. Fig. 6

illustrates the two cases using two examples. Without losing

generality, we choose to optimize along the Blue axis in

these examples (the case along the Red axis is in principle

the same), and we plot the projection of the ellipsoids onto

the B-G plane for better visualization.

In the first case (Fig. 6a), there is no single plane that cuts

across all ellipsoids. This is because the Lowest of the Highest

points of all ellipsoids (LH) is lower than the Highest of the

Lowest points of all ellipsoids (LH). The optimal strategy is

to move all the colors higher than HL toward HL and move

all the colors lower than LH toward LH. The movement is

necessarily executed along the extrema vector, which is the

vector that connects the highest and the lowest point of an

ellipsoid. After the adjustment, the Blue channels across all

the pixels are eitherHL or LH. That is, the maximum Δ along

the Blue axis is now HL − LH, which is the smallest gap we

can get the Blue channels to be without going outside the

ellipsoid boundaries.

In the second case (Fig. 6b), there is a common plane (P)
that cuts across all four ellipsoids. In fact, there are infinitely

many such planes, because LH is higher HL; thus, any plane

between LH and HL will cut across all ellipsoids. In this case,

we can simply pick any such plane and move all the colors to

that plane. For the simplicity of implementation, we choose

the average of the LH and the HL planes as the common

plane and move colors along the extrema vectors. In this

way, the Blue channel value is exactly the same for all pixels,

requiring no Δ bit for the Blue channel.

3.4 Overall Compression Algorithm
We illustrate how our color adjustment algorithm fits in the

overall rendering and compression pipeline in Fig. 7. Our

adjustment algorithm takes as inputs a tile of pixels (each

with three channels) and the parameters of their correspond-

ing discrimination ellipsoids. The algorithm generates the

perceptually-adjusted pixel tile as the output. We apply the

same color adjustment strategy along both the Blue and the

Red axis for each tile, and pick the better one in the end.

It is worth noting that our algorithm does not directly per-

form compression in itself; it simply adjusts pixel colors so

that the (numerically lossless) BD encoding later can achieve

higher compression rate. Specifically, the adjusted pixel tile

will be first transformed from the linear RGB to the sRGB

space, which then goes through the usual BD compression.

Ellipsoid Transformation. The first step in our algo-

rithm is to transform the discrimination ellipsoids from the

DKL space to the linear RGB space, which is where color
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Fig. 7. Overview of our algorithm and how it fits in existing rendering and compression pipeline. Our algorithm takes a tile

of pixels and their corresponding discrimination ellipsoid parameters, and generate an adjusted pixel tile, which then goes

through existing BD encoding.

adjustment takes place (Sec. 3.3). While ellipsoids are axis-

aligned in the DKL color space [22], they will not be axis-

aligned after the linear transformation from the DKL to the

RGB color space. Therefore, an ellipsoid in the linear RGB

space has to take the form of a general quadric surface:

𝐴𝑥2 + 𝐵𝑦2 +𝐶𝑧2 + 𝐷𝑥 + 𝐸𝑦 + 𝐹𝑧 +𝐺𝑥𝑦 + 𝐻𝑦𝑧 + 𝐼𝑧𝑥 + 1 = 0 (9)

Transforming an axis-aligned ellipsoid in the DKL space

to an ellipsoid in the linear RGB amounts to the following

matrix multiplication:



𝐴

𝐵

𝐶

𝐷

𝐸

𝐹

𝐺

𝐻

𝐼


=



(𝑇 ⊙ 𝑇 )⊤ 0

0 𝑇
2𝑇00𝑇01 2𝑇10𝑇11 2𝑇20𝑇21
2𝑇01𝑇02 2𝑇11𝑇12 2𝑇21𝑇22
2𝑇00𝑇02 2𝑇10𝑇12 2𝑇20𝑇22

 0


×



1/𝑎2𝑡
1/𝑏2𝑡
1/𝑐2𝑡

−2𝜅1/𝑎2𝑡
−2𝜅2/𝑏2𝑡
−2𝜅3/𝑐2𝑡


,

𝑡 = 1 −
(𝜅2

1

𝑎2
+
𝜅2
2

𝑏2
+
𝜅2
3

𝑐2

)
(10)

where 𝑇 =

[ 𝑇00 𝑇01 𝑇02
𝑇10 𝑇11 𝑇12
𝑇20 𝑇21 𝑇22

]
is the constant MRGB2DKL matrix in

Sec. 2.1, ⊙ is element-wise product, (𝜅1, 𝜅2, 𝜅3) is the color
in DKL space, and (𝑎, 𝑏, 𝑐) are the semi-axis lengths of 𝜅’s

discrimination ellipsoids. The derivation uses basic linear

transformations and is omitted here due to space constraints.

Color Adjustment. Once we have the ellipsoids in the

linear RGB space, we can perform color adjustment, which,

as illustrated in Fig. 6 and described in Sec. 3.3, is done in

three steps: 1) compute the extrema, i.e., the highest and

the lowest point, of each ellipsoid; 2) compute LH and HL
based on the extrema of all ellipsoids; 3) compare LH and

HL and move colors along extrema vectors accordingly. Step

2 and 3 are relatively straightforward, so here we focus on

the mathematical details of Step 1.

Extrema along the Blue axis can be computed by taking

the partial derivatives of the ellipsoid equation along the Red

and Green axes:

𝑑𝑧

𝑑𝑥
= 2𝐴𝑥 +𝐺𝑦 + 𝐼𝑧 + 𝐷 = 0 (11a)

𝑑𝑧

𝑑𝑦
= 𝐺𝑥 + 2𝐵𝑦 + 𝐻𝑧 + 𝐸 = 0 (11b)

These partial derivatives give us two planes, the intersection

of which is a vector v that connects the two extrema. The

extreme vector v is calculated by taking the cross product of

the normal vectors of the two planes:

v = (2𝐴,𝐺, 𝐼 ) × (𝐺, 2𝐵,𝐻 ) (12)

The two extrema points 𝐻 and 𝐿 are then calculated by

finding the intersection of v and the ellipsoid:

x := (𝑥1, 𝑥2, 𝑥3) = MRGB2DKL × v𝑇 (13a)

𝑡 = 1/

√︄
𝑥2
1

𝑎2
+
𝑥2
2

𝑏2
+
𝑥2
3

𝑐2
(13b)

𝐻 = M
−1
RGB2DKL

× (𝜅1 + 𝑥1𝑡, 𝜅2 + 𝑥2𝑡, 𝜅3 + 𝑥3𝑡)𝑇

𝐿 = M
−1
RGB2DKL

× (𝜅1 − 𝑥1𝑡, 𝜅2 − 𝑥2𝑡, 𝜅3 − 𝑥3𝑡)𝑇 (13c)

where 𝜅 is the pixel color in the DKL space, (𝑎, 𝑏, 𝑐) are DKL
ellipsoid parameters, and MRGB2DKL is the RGB to DKL trans-

formation matrix (Sec. 2.1). We omit the derivation details

due to space constraints, but the derivation amounts to a

simple application of line-ellipsoid intersection and linear

transformations between RGB and DKL space.

Remarks on Decoding. One desired byproduct of our

algorithm is that it requires no change to the existing frame-

buffer decoding scheme — our color adjustment algorithm

simply changes the input to BD. During decoding (e.g., by the

display controller), the existing BD decoder will construct

the sRGB values from the BD-encoded data, which are then

sent to the display. The exact BD encoding format varies

across implementations and is not our focus. We assume the

encoding format described in Zhang et al. [76].
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Fig. 8. Illustration of the hardware support, which we dub Color Adjustment Unit (CAU) for our image encoding and how

CAU interfaces with the rest of the SoC. Internally, the CAU uses an array of PEs, each of which adjust colors for one tile of

pixels. CAU is fully pipelined to accept a new tile every cycle from the Pending Buffer, which receives the rendered pixels and

their discrimination ellipsoids from the GPUs.

4 Hardware Architecture
The analytical compression algorithm, while avoiding itera-

tive solvers, is still compute intensive and slow to execute in

real-time. We implement it as a GPU shader executing on the

Adreno 650 GPU in Oculus Quest 2, a widely used mobile VR

headset. The compression algorithm runs in a mere 2 FPS.

This section describes a lightweight hardware design that

accelerates the compression algorithm. Sec. 4.1 describes

how our custom hardware fits into the overall system and

Sec. 4.2 describes the hardware details.

4.1 Hardware Overview
Fig. 8 provides an overview of our architectural extension,

dubbed the Color Adjustment Unit (CAU), and how CAU

fits into existing mobile SoCs. The CAU executes the pixel

adjustment algorithm described in Sec. 3. The CAU reads

its input from an on-chip buffer, which stores the pixels and

the discrimination ellipsoid parameters generated by the

GPU. Following prior work [22], we assume that the GPU

is responsible for generating the per-pixel discrimination

ellipsoids. The generation algorithm is a lightweight RBF

network (Sec. 2.1). In our measurement, the ellipsoid gen-

eration algorithm on Oculus Quest 2 runs at the maximum

display refresh rate (72 FPS) while consuming less than 1 mW

measured using Oculus’ OVR Metrics Tool [5].

The output of the CAU enters the existing BD framebuffer

encoder, which writes the encoded data to the DRAM. Any

frame read out from the DRAM, e,g., by the Displayer Con-

troller IP block when sending the frame to the display, will

enter the BD decoder, which reconstructs the sRGB pixels.

The figure provides a visual confirmation that our algorithm

1) works on top of, rather than replaces, BD encoding, and

2) does not change the decoding architecture.

4.2 Color Adjustment Unit
Internally, the CAU consists of an array of Processing Ele-

ments (PEs), each of which is designed to adjust colors for

one tile of pixels, which in our current design is assumed to

be 4 × 4. Each PE interfaces with a dedicated Pending Buffer,

which holds all the information of the pixel tiles generated

from the GPU. Having more PEs will allows the system to

compressing multiples tiles simultaneously.

Pipelining. The PE is fully pipelined to accept a new tile

every cycle. Fig. 8 illustrates the detailed architecture, which

has three main phases, each of which is internally pipelined.

The first phase computes the extrema. The next phases use

reduction trees to calculate HL and LH from the extrema.

The final phase move the colors along the extrema vector.

Compute Extrema Blocks. This component calculates

the extrema of all the pixels in a tile, which is naturally

parallelizable across pixel and, thus, has multiple parallel

units, each of which is responsible for one pixel. The top-

right box in Fig. 8 illustrates the microarchitecture. This

is the most compute intensive block in the CAU, since it

involves multiple divisions and square root operations. The

division and square root hardware implements Equ. 13b,

and the adder and subtractor circuit implements Equ. 13c.

The DKL-RGB transformations in Equ. 13c and Equ. 13a are

implemented through matrix vector multiplication executed

on a 3 × 3 MAC array.

Compute Planes Blocks. The extrema calculated before

enters this unit, which finds the channel value for the HL
plane (maximum of the minima) and LH (minimum of the

maxima) plane. We implement this stage using two reduction

(comparator) trees to generate both planes simultaneously.

Color Shift Blocks. This block takes the original color

values and the two planes as input and outputs the modified

color values. This phase is control-flow heavy, as it involves
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multiple condition checks, e.g., testing the relationship be-

tween a point and a plane. A custom datapath in CAU avoids

much of the inefficiencies surrounding control flows that

are detrimental to GPU performance. This hardware is a

relatively straightforward mapping from the algorithm.

Pending Buffer. The Pending Buffers store intermediate

pixels and their discrimination ellipsoids from the GPU be-

fore they are consumed by the CAU. Each buffer is interfaced

with a dedicated PE and, thus, contains the data for all the

pixel tiles to be consumed by the PE.

The buffers must be properly sized so as to not stall or

starve the CAU pipeline. In order to be independent of the

exact GPU microarchitecture details, we make a conserva-

tive estimation of the buffer size. In particular, we allocate

enough space in the buffer such that it can hold all the pixels

generated by the GPU in each CAU cycle even if the GPU

is fully utilized, in which case each shader core in the GPU

generates 1 pixel/GPU cycle. Note that the GPU and CAU

cycle times need not be the same. The number of PEs in a

CAU must be properly decided so as to not stall either the

GPU nor the CAU, as we will discuss in Sec. 6.1.

5 Experimental Methodology
5.1 Setup
Hardware. We implement our encoder and decoder units in

SystemVerilog and use an EDA flow consisting of Synopsys

and Cadence tools with the TSMC 7 nm FinFET technology

to obtain latency and area. We use Synopsys DesignWare

library for a variety of RTL implementations such as the

pipelined divider. Power is estimated using Synopsys Prime-

TimePX with fully annotated switching activity.

The DRAM energy is calculated using Micron’s System

Power Calculators [4], assuming a typical 8 Gb, 32-bit LPDDR4.

On average, the DRAM access energy per pixel is estimated

to be 3,477 pJ/pixel, matching prior work [33, 34].

Dataset and Software. We evaluate our compression

algorithm with 6 different VR scenes used in VR color per-

ception studies [22]. In each scene, each frame is rendered

with two sub-frames, one for each eye. All the frames are dy-

namically rendered (on the GPU) at run time, i.e., the frames

are neither loaded from the disk nor streamed over the net-

work. Following the common practice in color perception

studies [14, 22], we keep pixels in the central 10° FoV un-

changed, and apply the compression algorithm only on the

rest (peripheral) pixels.

As discussed in Sec. 3.4, our algorithm works in conjunc-

tion with existing BD compression. In this paper, we assume

a recent, state-of-the-art, BD algorithm described by Zhang

et al. [76], from which we obtain the final compression rate.

5.2 Human Subject Studies
We also evaluate the perceptual quality of our compression

algorithm on actual participants. We recruit 11 participants

(a) Original frame. (b) Color-adjusted frame.

Fig. 9. A pair of images without (left) and with (right) our

color adjustment. The two images when viewed on a con-

ventional computer display are visibly different, because the

entirety of the images will be in the viewer’s foveal vision.

(3 female; ages between 19 and 40). None of the participants

were aware of the research, the number of conditions, or

the hypothesis before taking the experiments, which were

approved by an Internal Review Board.

We face a dilemma in user study: the speed of the com-

pression algorithm implemented as a GPU shader is too slow

on today’s mobile VR headsets (e.g., 2 FPS on Oculus Quest 2

as discussed in Sec. 4) — the motivation behind our architec-

tural support, but this also means we can not use a mobile

VR headset for user study. Our approach is to run the user

study on a tethered VR headset, HTC Vive Pro Eye, which is

connected to a PC with a powerful Nvidia RTX A2000 GPU,

which runs the compression algorithm at 90 FPS, sufficient

for user study.

Each participant was shown the six VR scenes (20 seconds

each) used in a prior study [22] in random order. To en-

courage and ensure that the participants actively and freely

explored the scene, each participant was asked to perform a

scene-specific task, such as counting the number of birds in

the scene. At the end of each video, we asked the participant

whether they notice any visual artifacts.

In order for participants to isolate potential artifacts intro-

duced by our compression from other irrelevant artifacts (e.g.,

low resolution, aliasing in rendering), at the beginning of

each test we show the participant two images on a computer

display, one with and the other without our perceptual com-

pression; see examples in Fig. 9. When participants viewed

the images on the computer display, the entire frames were

in their foveal vision so the color adjustment was clearly

visible. In this way, we make sure the artifacts reported by

users resulted from compression. This is a common practice

in subjective color perception studies [22]. The user study

results should be seen as the lower bound of the quality of

compression algorithm, because the participants were aware

of and thus better identification of the artifacts.
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5.3 Baselines
We compare against four baselines:

• NoCom: no compression;

• BD: existing BD compression based on Zhang et al. [76];

• PNG: lossless compression based on the popular Portable

Network Graphics (PNG), which is unsuitable for real-

time DRAM compression because of its high run-time

overhead evenwith dedicated hardware acceleration [1,

30]. For instance, the commercial IPB-PNG-E FPGA-

based IP core compresses an 800 × 600 image only at a

20 FPS [1].

• SCC: an alternative strategy to exploit color discrimi-

nation based on the Set Cover formulation, which we

describe next.

SCC uses a look-up table to map each 24-bit sRGB color

to a more compact encoding. This can be formulated as a

set cover problem [32]: find the smallest subset of sRGB

colors C ⊂ sRGB whose discrimination ellipsoids union-ed

together cover all the 2
24

sRGB colors. Each new color is

then encoded with only 𝑙𝑜𝑔2⌈|C|⌉ bits, where | · | denotes the
set cardinality.

The set cover problem is a classic NP-complete problem [32],

where the optimal solution requires combinatorial search.

We use a common greedy heuristics [13] and construct the

mapping tables. The encoding table consumes 30 MB and

the decoding table consumes 96 KB, too large for SCC to be

used for DRAM traffic compression in mobile SoCs.

6 Evaluation
We first show that the area and power overhead of our com-

pression scheme is negligible while ensuring real-time com-

pression (Sec. 6.1). We then present the benefits of our com-

pression scheme in DRAM traffic reduction and power sav-

ings, and analyze the sources of the savings (Sec. 6.2). We

then present our human subject studies, which show that

our compression scheme introduces little visible artifacts

(Sec. 6.3). We present a sensitivity study of the key parame-

ters in our compression scheme (Sec. 6.4). Finally, we discuss

how we can accommodate a diverse range of users (Sec. 6.5).

6.1 Area and Power Overhead
Performance. Our algorithm along with the hardware sup-

port achieves real-time compression. The CAU operates with

a cycle time of about 6 𝑛𝑠 , which translates to a frequency of

about 166.7 MHz. The Adreno 650 GPU used in Oculus Quest

2 operates at a nominal frequency of 441 MHz, which means

during each CAU cycle (at most) three pixels are generated

by a shader core in the GPU. Given that the Adreno 650 GPU

has 512 shader cores, each CAU cycle 512 × 3 pixels (i.e.,

96 tiles) are generated. Therefore, we configure our CAU to

have 96 PEs, which are able to process 96 tiles simultaneously,

matching peak throughput of the GPU.

office fortnite skyline dumbo thai
monkey

-10
0

15
30
45
60
75

Ba
nd

wi
dt

h 
Re

du
ct

io
n 

(%
) NoCom SCC BD PNG

Fig. 10. Bandwidth reduction over baselines.

office fortnite skyline dumbo thai
monkey0

3

6

9

12

Bi
ts

 p
er

-p
ixe

l BD
Ou

rs

Base Metadata Deltas

Fig. 11. Distribution of bits per pixel across the three compo-

nents: base, metadata, and Δ. Left: BD; Right: our algorithm.

Thus, when compressing a 5408 × 2736 image (the highest

rendering resolution on Oculus Quest 2), compression adds

a delay of 173.4 𝜇𝑠 , negligible in a rendering pipeline that

operates at, say, 72 FPS with a frame time budget of 13.9𝑚𝑠 .

Area and Power. Our compression hardware extension

introduces little area overhead, which consists of that of the

Pending Buffers and the PEs. Each PE has an area of 0.022

𝑚𝑚2
, resulting in a total PE size of 2.1𝑚𝑚2

. Each Pending

Buffer holds data for two tiles (double buffering); the total

buffer size is 36 KB, resulting in a total area of 0.03𝑚𝑚2
.

The area overhead is negligible compared to the size of a

typical mobile SoC. For instance, the Xavier SoC has an area

of 350𝑚𝑚2
(12 nm) [6], Qualcomm Snapdragon 865 SoC has

a die area of 83.54𝑚𝑚2
(7 nm) [8], and Apple A14 SoC has

a die area of 88 𝑚𝑚2
(5 nm) [2]. The power consumption

of each PE and its buffer is about 2.1 𝜇𝑊 , resulting in a

total CAU power consumption of about 201.6 𝜇𝑊 , which we

faithfully account for in the power saving analyses later.

6.2 Results
Compression Rate. Fig. 10 shows the bandwidth reduction

of our algorithm compared to the baselines. Our algorithm

achieves a compression rate of 66.9%, 50.3%, and 15.6% over

NoCom, SCC, and BD, respectively. Unsurprisingly, the high-

est gains are against NoCom, which is the original frames

and uses 3 Bytes (24 bits) to store each pixel.

SCC (Sec. 5.3) is able to map all the 2
24

(about 16.8 mil-

lion) sRGB colors to a small subset of only 32,274 colors.
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Fig. 13. Power saving over BD under the lowest and highest

resolutions and four different frame rates on Oculus Quest 2.

SCC thus uses 15 bits to represent a color, reducing the stor-

age cost compared to the original frames but is still much

less efficient than BD, which is the canonical Base+Delta

approach to compression DRAM traffic in today’s mobile

SoCs. Compared to BD, we show 15.6% (up to 20.4%) higher

compression rate, because of our ability to exploit human

color discrimination to reduce the magnitudes of Δs.
We get the least improvement over PNG. In two scenes,

PNG actually has a higher compression rate. This matches

prior results on BD [76] and is not surprising — to get a high

compression rate PNG is computationally intensive and is

meant to be used offline; see discussion in Sec. 5.3.

Understanding Results. Our improvement over BD

comes from the fact that we require fewer bits to store the Δs.
Fig. 11 shows the average number of bits per pixel required

to store the base, metadata, and Δs in a tile. We compare the

statistics between BD (left bars) and our scheme (right bars).

It is clear that the space reduction comes from reducing the

number of bits required to store the Δs.
To dissect how our scheme reduces the magnitude of Δs,

Fig. 12 shows the distribution of tiles across the two cases in

Fig. 6: HL > LH (c1) and HL < LH (c2). We observe that c2 is
the more common case: 78.92% tiles result in this case. In c2,
there exists a common plane where all the color values can

collapse to. We can reduce the Δ to 0 in these tiles, essentially

eliminating the need to store Δ.
Power Reduction. We evaluate the power reduction un-

der different resolutions and frame rates available on Oculus

Quest 2. Fig. 13 shows the power savings under each com-

bination over BD. Across all configurations, we reduce the

power consumption by 307.2 𝑚𝑊 on average. The power
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Fig. 14.Number of participants (out of 11) who did not notice
any artifacts in each scene in our user study.

saving is a combination of reducing the DRAM traffic and

the power overhead of the CAU encoding (201.6 𝜇𝑊 ).

Even on the lowest resolution and frame rate combination

on Oculus Quest 2, we reduce the power consumption by

180.3𝑚𝑊 , which translates to about 29.9% of the total power

measured (using Oculus’ OVR Metrics Tool [5]) when ren-

dering without compression. Under the highest resolution

and frame rate combination, the power saving increases to

514.2𝑚𝑊 . As resolution and frame rate will likely increase

in future VR devices, the power benefits of our compression

scheme will only increase.

6.3 User Studies and Analyses
Fig. 14 shows the number of participants who did not no-
tice any artifact in each scene. On average, 2.8 participants

(standard deviation 1.5) out of 11 total participants observe

artifacts. This percentage is on par with prior color percep-

tion studies [14, 22]. We further interviewed the participants

and identified three reasons why certain participants notice

artifacts, all of which were orthogonal to the fundamental

idea of this paper and actually point to optimization oppor-

tunities in other parts of the system, which, when exploited,

can be readily integrated into our work.

One participant who noticed subtle artifacts in three out of

the six scenes was a visual artist with “color-sensitive eyes.”

Observer variation is a known phenomenon in vision science

since the early days of color science research [26, 67, 72].

Given that color discrimination models in the literature all

target the average case in the population, the results indicate

that customizing/calibrating the model for individual users

is likely a promising approach to reduce the artifact.

Another set of participants noticed artifacts only during

rapid eye/head movement but not with a steady pose. This is

likely attributed to external factors such as rendering lag or

slow gaze detection, which is independent of our algorithm.

Finally, we found that no participant noticed any artifact

in the fortnite scene, which is a bright scene with a large

amount of green. Since our compression algorithm generally

yields green-hue shifts (see examples in Fig. 9), artifacts

are less noticeable in scenes that are green to begin with.

In contrast, dumbo and monkey, both dark scenes, have

the most noticeable artifacts. The results suggest, to the
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Fig. 15. Bandwidth reduction over NoCom under BD and

our scheme with different tile sizes denoted by 𝑇𝑛 , where 𝑛

is the tile size.

vision science community, the need for improving the color

discrimination models in low-luminance conditions.

Objective Image Quality. To show that subjective ex-

perience, which is the focus of our work, is not equivalent
to objective quality, we evaluate the Peak-Signal-to-Noise-

Ratio (PSNR), a common objective quality metric, of all the

compressed images. On average, the PSNR of the compressed

videos is 46.0 dB (standard deviation 19.5); all but two scenes

have a PSNR below 37. A PSNR value in this range usually

indicates noticeable visual artifacts [12], which is confirmed

by our participants when they view the compressed images

on a conventional display. This result accentuates the crux

of our work: use human color perception in VR to guide

a numerically lossy scheme (hence low PSNR) for higher

compression rate with little subjective quality degradation.

6.4 Sensitivity Studies
Our evaluation so far assumes a tile size of 4 × 4. We also

evaluate our compression algorithm across different tile sizes;

the results are shown in Fig. 15 along with BD. We observe

that the compression rate drops once the tile size increases

beyond 4 × 4 and can be worse than BD when the tile size is

larger than 8 × 8.

The trend is the result of two opposing effects. On one

hand, as we increase the tile size we can amortize the cost of

storing the base pixels. On the other hand, larger tiles also

present less opportunity to bringing pixels together, because

we have to accommodate the worst case/largest difference

between two pixels in a tile (Sec. 3.1).

6.5 Discussions
To accommodate individual color perception in actual system

deployments, one can perform a per-user color calibration

procedure to build a per-user ellipsoid model. Such a proce-

dure is laid out in prior work [22], and is readily doable. Such

user-specific calibrations are routinely done when a user first

uses an AR/VR product, e.g., adjusting the pair of displays

to accommodate different inter-pupil distances among indi-

viduals. When a per-user ellipsoid model is available, our

fundamental idea readily applies.

It is worth noting that we can, if need be, easily turn off

our compression algorithm, which is intentionally designed

as a plug-and-play stage between normal GPU rendering and

existing BD compression (see Fig. 7). One scenario where

one might want to turn off our compression is when a user

has color vision deficiency (CVD). The color discrimination

model that underlies our compression algorithm does not

consider individuals with CVD. When such models for CVD

become available, our fundamental idea readily applies.

7 Related Work
Perception-Aware Rendering. A host of recent work

has focused on leveraging human perception to optimize

AR/VR systems. Weier et al. provide a relatively recent sur-

vey [65]. The most studied approach is foveated rendering,

which reduces rendering resolution in the visual periph-

ery [25, 46, 58, 59, 64]. Foveated rendering has been theo-

retically studied to reduce data transmission traffic in cloud

rendering [31, 35], but the decoding (reconstruction) cost is

prohibitively high (e.g., need a complicated DNN). Our ap-

proach is orthogonal to foveated rendering in that we focus

on adjusting colors rather than the spatial frequency, and

works directly on top of the existing (BD-based) framebuffer

compression framework without adding decoding cost.

Color Perception in Systems Optimizations. Color

perception is most often leveraged to reduce display energy.

To our best knowledge, this is the first paper that leverages

color perception to reduce data communication energy.

Dong et al. [20], Crayon [57], Dong and Zhong [21] all

leverage the human color discrimination to reduce OLED

power, which is known to strongly correlate with color.

Duinkharjav et al. [22] extend this approach to VR by quanti-

fying the eccentricity dependent color discrimination. Recent

work byDash andHu [18] builds an accurate color-vs-display

power model. None focused on reducing data traffic. Shye et

al. [55] and Yan et al. [73] leverage dark adaptation to reduce

display power. Dark adaptation will likely weaken the color

discrimination even more, potentially further improving the

compression rate — an interesting future direction.

Data Traffic Optimizations in VR. Data traffic reduc-

tion in VR has mostly been studied in the context of client-

cloud collaborative rendering, i.e., reducing wireless trans-

mission traffic. The pioneering Furion [37] system and later

developments and variants such as Coterie [42] andQ-VR [71]

cleverly decide what to rendering locally vs. remotely. For

instance, one could offload background/far objects rendering

to the server and render foreground/near object interactions

locally. EVR [38, 60] predicts user FoV trajectory and pre-

renders VR videos in the cloud. Our proposal is orthogonal
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to the client-remote collaborative rendering, in that we focus

on reducing DRAM traffic occurred within a local device.

Zhang et al. [76] describe a BD design in encoding frame-

buffer traffic. We directly compare against this approach and

show up to 20% bandwidth savings. Zhang et al. [75] pro-

pose a content cache that exploits value equality in video

decoding, which does not apply to encoding where strict

equality is rare. Rhythmic Pixel Regions [34] drops pixel

tiles to reduce DRAM traffic in a machine vision pipeline,

whereas our focus is human visual perception in VR.

Any compression algorithm, ours included, exploits data

similarities. Recent work leverages data similarities to speed-

up rendering [66, 74, 77, 78] by eliding redundant compu-

tations (that compute same/similar data). These methods,

however, do not reduce data traffic, which we do.

General Memory Compression. Exploiting value simi-

larities to compress data traffic is a long-standing technique

in architecture [47, 48]. Recent work in approximate com-

puting extends compression to tasks that can tolerate slight

data infidelity such as image processing [43, 53] and tex-

ture mapping in rendering [61, 70]. In comparison, this pa-

per performs a principled “approximate compression” by

1) using a rigorous human perception model derived from

psychophysical experiments and 2) formulating compres-

sion as a constraint optimization with an optimal solution

(under necessary relaxations). Finally, we specifically target

VR and, thus, exploit the eccentricity dependency that is

unconcerned with before.

8 Conclusion
Aggressively lossy compression in the numerical domain can

achieve significant data traffic reduction with little percep-

tual quality loss in VR. The key is to leverage human color

discrimination (in)ability to bring pixels more similar to each

other. The resulting images, thus, permit more aggressive

compression over the classic Base+Delta scheme to reduce

DRAM traffic in amobile SoC.We show that our compression

algorithm has an analytical form, which, when accelerated

by a dedicated hardware, can achieve real-time compression.

Future VR systems design must actively integrate human

perception into the optimization loop.
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