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Abstract
Approximate nearest neighbor (ANN) search is a widely
applied technique in modern intelligent applications, such
as recommendation systems and vector databases. There-
fore, efficient and high-throughput execution of ANN search
has become increasingly important. In this paper, we first
characterize the state-of-the-art product quantization-based
method of ANN search and identify a significant source of
inefficiency in the form of unnecessary pairwise distance
calculations and accumulations. To improve efficiency, we
propose Juno, an end-to-end ANN search system that adopts
a carefully designed sparsity- and locality-aware search al-
gorithm. We also present an efficient hardware mapping that
utilizes ray tracing cores in modern GPUs with pipelined ex-
ecution on tensor cores to execute our sparsity-aware ANN
search algorithm. Our evaluations on four datasets from 1
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to 100 million search points demonstrate 2.2×-8.5× improve-
ments in search throughput. Moreover, our algorithmic en-
hancements alone achieve a maximal 2.6× improvement on
the hardware without the acceleration of the RT core.

CCS Concepts: •Computingmethodologies→Ray trac-
ing; • Information systems→ Top-k retrieval in databases;
Nearest-neighbor search.
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1 Introduction
Computer applications are becoming more intelligent with
the breakthrough from deep learning [49, 72]. One of the
key data structures in these applications is high-dimensional
embedding vector [2, 15, 61, 67, 73], which are usually gen-
erated from some kind of transformation or learning to the
raw data like text, images, audio, video, and others. Using
embeddings allows for fast and accurate nearest neighbor
(NN) search and retrieval of data based on their distance.
For example, we can perform the NN search to find images
similar to a given image based on their content and style.
Embedding vectors are often high-dimensional, ranging

from tens to thousands. The curse of dimension makes the
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exact NN search computationally expensive so that approxi-
mate nearest neighbor (ANN) search becomes increasingly
popular in industrial practice [7, 11, 22, 41, 71]. ANN search
trades search quality (measured in recall) for search perfor-
mance (measured in throughput) in different scenarios, with
GPUs being widely used to achieve higher throughput.
The IVFPQ technique, which combines the inverted file

index (i.e., IVF) with product quantization (i.e., PQ), is the
most commonly used ANN method [37, 41]. This method
is often combined with other techniques to improve perfor-
mance [45]. The PQ-based approach encodes search point
projections using a codebook in every subspace offline and
then searches for the nearest neighbors by accumulating
the distance information distributed in these subspaces on-
line. However, this process requires a significant number of
pairwise distance calculations between entry and query pro-
jections in low-dimensional subspaces, as well as frequent
look-ups to calculate the total distance for every query.

In this work, we use the state-of-the-art ANN framework
FAISS [37] to study the efficiency of the IVFPQ method. Al-
though the framework employs hundreds of codebook en-
tries to encode search points in each subspace, only a fraction
of these entries is used by the top-100 results returned by a
query. Notably, in some subspaces, all top-100 search points
are encoded with just one entry. This entry-level sparsity
provides opportunities to avoid calculating the pairwise dis-
tances of unused entries and to skip the distance look-up
and accumulation of search point projections encoded by
these unused entries.
In addition, our findings suggest that entries with high

usage frequency demonstrate a significant degree of spatial
locality, rendering the exploitation of sparsity more advanta-
geous. Despite being sparsely distributed in memory, these
entries are closely positioned in Euclidean space. In some
situations, within a specific subspace, by selecting the 25%
closest entries, we can obtain all the entries used by the pro-
jection of the top-100 neighbors of a query. Therefore, only
entries that are close to the query projections are essential.

We propose a selective codebook construction algorithm
to exploit the above sparsity and spatial locality to accelerate
high-dimensional ANN search. Our approach involves using
an adaptive distance threshold in each subspace to only select
necessary entries. We have identified a strong correlation
between the distance threshold and search point density, and
we exploit it by training a simple regression model offline,
with the density serving as the input. During runtime, we
utilize the threshold value determined by the regression
model to choose a small fraction of the search points.
Our sparsity-aware ANN searching method frequently

uses the distance comparison operation, which is well suited
for RT (ray tracing) cores in modern GPUs [51, 52, 56]. The
RT cores implement the tree-based intersection test [17, 68],
which has a reduced logarithmic time complexity. As a result,
RT cores can find objects intersected with a given ray with

high efficiency [50]. Obviously, this is quite similar to our
algorithmic intuition that finds close entries for a query pro-
jection in every subspace. Intuitively, we can organize entries
as objects and query projection as rays in every subspace
and let the RT core efficiently find the intersected (close)
entries of query rays.

We present Juno, a fast and high-throughput ANN search
system that employs algorithmic enhancement and RT core
mapping to leverage sparsity and spatial locality. However,
utilizing the RT core in an enhanced ANN algorithm still
poses unique challenges. Firstly, calculating distances for
selected codebook entries after filtering is still necessary. Sec-
ondly, naively implementing adaptive dynamic radius in RT
cores would cause unacceptable scene preparation overhead
during runtime. To overcome these issues, we exploit the
concept of "time" in the ray tracing scenario. Specifically, we
utilize the hit time results from RT cores to efficiently calcu-
late distances, thereby avoiding costly global memory access.
Additionally, we convert the dynamic distance threshold to a
dynamic maximum travel time for rays, thereby avoiding on-
line scene preparation. Finally, we optimize Juno to support
inner product similarity with no extra dimensions as other
works have, and efficient RT-Tensor core pipelining [57].

We evaluate Juno on multiple datasets sizing from 1M
to 100M with both L2 distance and inner product similarity.
Together they deliver an average (a maximum) of 4.4× (8.5×)
and 2.1× (3.2×) improvement in search throughput in low
and high search quality against the baseline. Moreover, the
improvement is bound by the performance of RT cores.

We make the following main contributions in this work:

• We study the inefficiency of the typical IVFPQ search-
ing pipeline and identify sparsity and spatial locality
in codebook entry usage.
• We design a threshold-based selective algorithm to
rapidly filter out the unnecessary search points lever-
aging the sparsity and spatial locality and propose a
mapping for our algorithm to run on the RT core.
• To the best of our knowledge, we are the first to study
how to generalize the existing kNN-RT core mapping
to ANN search with arbitrary dimensions, in aspects
of approximation method, metrics and system design.
Based on our experimental analysis and insights, we
propose Juno, an end-to-end high-dimensional ANN
search engine with both algorithmic enhancement and
optimized hardware mapping.
• We quantify the effectiveness of Juno over existing
ANN search framework, FAISS [37], with detailed break-
down analysis and ablation analysis on various GPUs.

2 Background
This section introduces the typical process of ANN search,
ray tracing pipeline, and its application in 2D/3DANN search.
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Table 1. Notations used in this work.

𝑁 # search points 𝐷 search points dimension
𝐶 # clusters 𝐸 # codebook entries
𝑥 search point vector 𝑀 subspaces dimension
𝑞 query vector 𝑟 bounding radius
𝑠 subspace id 𝑒 codebook entry id

𝑛𝑝𝑟𝑜𝑏𝑠 # chosen clusters in filtering

2.1 Approximate Nearest Neighbor (ANN) Search
The objective of the nearest neighbor (NN) search is to iden-
tify the top-kmost similar points to a querywithin a given set.
Typically, the similarity between two points is determined
using L2 distance or inner (or dot) product, as illustrated in
Equ. 2.1. L2 distance is lower-is-better and widely used in
measuring image similarity [70]. Inner product is higher-is-
better and frequently used in large language models (LLMs)
and Transformer architectures [58, 62].

𝐿2(𝒒, 𝒙) =
𝐷−1∑︁
𝑖=0
(𝑥𝑖 − 𝑞𝑖 )2, 𝐼𝑃 (𝒒, 𝒙) =

𝐷−1∑︁
𝑖=0

𝑥𝑖 · 𝑞𝑖

The exact NN search is often expensive and thus slow.
Many practical cases can tolerate certain search inaccuracies,
which can be exploited to improve the search throughput.
This is referred to as approximate NN (ANN) search [60].
One of the most popular ANN techniques is inverted file
index with product quantization (IVFPQ), which is used by
top-performing ANN frameworks such as FAISS [37] and
ScANN [29]. Notices that there are other indexing and en-
coding techniques, and we will discuss their details in Sec. 7.
Fig. 1 shows an example of the IVFPQ technique, with

notations defined in Tbl. 1, which has an offline (top) and
an online component (bottom). The offline component relies
on the inverted file index (IVF) and product quantization
(PQ), and the online component consists of filtering, L2-look
up table (L2-LUT) construction and distance calculation, as
described as follows.

Inverted File Index (IVF). 1 Given a query point 𝑞, the
IVFPQ technique performs the first coarse-grained filtering
step to identify a set of candidates from all search points. This
step is commonly implemented through k-means, which gen-
erates𝐶 clusters on 𝑁 search points of full dimension𝐷 . The
inverted file index (IVF) stores the associated search points
for each cluster centroid. This step calculates the distance
between query point 𝑞 and each centroid and identifies the
closest centroid(s). The IVF data structure lets us quickly
locate the associated search points for selected centroid(s).

Product Quantization (PQ). The PQ method is widely
used for vector compression. 2 Initially, the 𝐷-dimensional
space is divided into𝐷/𝑀 𝑀-dimensional subspaces. 3 Next,
in each subspace of total 𝐷/𝑀 subspaces, 𝐸 clusters are gen-
erated with projections of residuals (in this specific subspace)
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Figure 1. The example of offline training (top) and online
searching (bottom) component of IVFPQ-based ANN search.

between search points and first cluster centroids. We refer
to these 𝐸 clusters as the "second" clusters. The centroids
from the second clusters are combined to form the codebook,
with each centroid serving as a codebook entry. 4 Finally,
search points are encoded using this codebook by replacing
the projection on a subspace with the cluster ID to which
the residual projection belongs. PQ reduces the storage space
required for each search point originally in float format from
𝐷 × sizeof(float) × 8 bits to (𝐷/𝑀) × log2 𝐸 bits.

Online Search. After the IVF and the PQ are trained, the
online search process begins. A When a query arrives, it
first calculates the pairwise distances with𝐶 cluster centroids
in IVF. The 𝑛𝑝𝑟𝑜𝑏𝑠 closest centroids and their corresponding
clusters are chosen. Subsequent processes only occur on
the search points that belong to selected clusters. We refer
to this initial stage as the filtering stage following previous
literature [41], as illustrated in the bottom left of Fig. 1.

B Next, the query calculates residuals with the 𝑛𝑝𝑟𝑜𝑏𝑠 se-
lected cluster centroids. C For each residual, 𝐸 pairwise dis-
tances are computed between every codebook entry within
each subspace. These 𝑛𝑝𝑟𝑜𝑏𝑠×𝐸× (𝐷/𝑀) pairwise distances
are then organized into a look-up table. we refer to this sec-
ond stage as L2-LUT construction stage [41], as shown in the
bottommiddle of Fig. 1. D Finally, the query iterates over all
the encoded search points that belong to the 𝑛𝑝𝑟𝑜𝑏𝑠 chosen
clusters to calculate the overall distance. For a given encoded
search point with 𝑠 th subspace encoded with codebook entry
𝑒 , assuming it belongs to the 𝑛𝑝 th cluster, the total distance is
calculated by summing up all the L2-LUT [𝑛𝑝] [𝑠] [𝑒] values.
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Figure 2. The ray tracing pipeline for RT core.

We refer to this third stage as distance calculation stage [41],
as shown in the bottom right of Fig. 1.
After calculating the total distance between all encoded

search points, the query then sorts the results and selects
the top-k closest neighbors. It’s important to note that an
ANN search may yield false positives and false negatives.
For example, the 2𝑛𝑑 point could be the second closest to the
query, but is ignored in ANN search, as depicted in Fig. 1.

2.2 Accelerating NN Search with Ray Tracing Core
RT (ray tracing) is a distinct rendering pipeline from tra-
ditional rasterization [30, 46]. In the RT pipeline, rays are
cast from a camera through each pixel into a virtual scene,
simulating their interactions with objects to render pixels
with accurate colors. However, the RT pipeline can be com-
putationally expensive and time-consuming due to the need
to track interactions between rays and objects, resulting in
a large-scale operation. To accelerate this process, NVIDIA
introduced GPUs with dedicated hardware RT accelerators,
known as RT cores [51]. The RT core utilizes a BVH tree-
based RT algorithm in hardware, which efficiently finds in-
tersections between lines and surfaces in 3D Euclidean space.
Fig. 2 illustrates the typical BVH tree-based RT pipeline.

The NVIDIA RT cores consist of two core hardware com-
ponents for accelerating the typical ray tracing pipeline:
the Axis Aligned Bounding Box (AABB) intersection test
and the Bounding Volume Hierarchy (BVH) traversal. The
AABB-based intersection test first creates bounding boxes
(with edges parallel to 𝑥-, 𝑦-, or 𝑧-axes) to bound objects
that need to test the intersection with the ray. Then, the ray
will conduct a cheap interval-based calculation to test the
intersection status with bounding boxes. If a box is inter-
sected with the ray, the ray will further test the intersection
status with objects bounded by this tested box. Otherwise,
all objects bounded by this box will be ignored. Notice that
one AABB can recursively contain smaller AABBs, and fi-
nally form a tree-like structure with log-scale depth to total
objects number, where a node represents an AABB and its
child nodes represent smaller AABBs contained by it. This
structure is called the BVH tree and makes the process of
finding intersected bounding box recursive. Obviously, there
can be a huge amount of conditions and divergences in the
tree traversal process. The NVIDIA RT core also implements

corresponding hardware to accelerate the traversal process
of the BVH tree.

Researchers have utilized the capability of identifying in-
tersections in three-dimensional Euclidean space to apply
the RT core in two-dimensional/three-dimensional nearest
neighbor search [78]. The basic idea is to first organize 𝑁
search points into 𝑁 circles located in the 𝑥𝑂𝑦 plane, each
with a bounding radius 𝑟 . Subsequently, the queries can be
converted into rays that originate from the query coordi-
nates and are directed towards the z-axis, as illustrated in
Fig. 2. Any circles intersected by a ray indicate that the dis-
tance between the query (represented by the ray) and the
search points (represented by the circles) is lower than 𝑟 ,
and thus has the potential to be the nearest neighbors of
the query. For example, in Fig. 2, the ray 𝑞 intersects with
the two circles in the bottom left quadrant, signifying their
potential as the nearest neighbors of the query.
The aforementioned approach, which involves utilizing

RT core hardware for accelerating NN search, is limited to
low-dimensional (2 and 3) spaces, thereby restricting its prac-
ticality. Instead, our work endeavors to explore the effective
utilization of RT core for more general NN search tasks, with
a specific focus on ANN search in high-dimensional spaces.

3 Motivation
This section provides an analysis of the state-of-the-art li-
brary of high-dimensional approximate nearest neighbor
(ANN) search, FAISS [37]. We begin by measuring the break-
down of execution time for FAISS queries, followed by an
analysis of the identified inefficiencies. Finally, we propose
optimization takeaways based on the findings of our analysis.

3.1 Execution Time Breakdown
We use the latest version of FAISS [37] and the DEEP1M
dataset [4] in our study. Specifically, we configure FAISS with
<IVF4096,PQ48>, where 1,000,000 search points are grouped
into 4096 clusters, and the 96-dimensional space is divided
into 48 2-dimensional subspaces. We measure the execution
time of three stages as mentioned in Sec. 2.1 (filtering, L2-LUT
construction, distance calculation) on anNVIDIAGeforce RTX
4090 GPU [54]. For each query, we evaluate its execution
time with different 𝑛𝑝𝑟𝑜𝑏𝑠 , which is a hyper-parameter and
means the number of selected clusters in filtering.
The experimental results are presented in Figure 3(a),

which illustrates the breakdown of execution time. The ma-
jority of the execution time is consumed by the L2-LUT
construction and distance calculation stages, accounting for
approximately 90% to 99.9% of the total time. Additionally,
the time taken by these stages increases linearly with the
hyper-parameter 𝑛𝑝𝑟𝑜𝑏𝑠 , which is set smaller for higher per-
formance and larger for better search quality [42]. On the
other hand, the filtering stage remains relatively stable, as
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its computation depends on 𝑄 × 𝐷 ×𝐶 , where 𝐶 is indepen-
dent of 𝑛𝑝𝑟𝑜𝑏𝑠 . This observation motivates us to focus on
optimizing the L2-LUT construction and distance calculation
stages, as we will analyze the inefficiencies in the current
approach in below.

3.2 Sparsity of Codebook Entries Used by Top-k
Neighbors

The current ANN search implementation, like FAISS, cal-
culates the pairwise distance between the query projection
and codebook entries in all subspaces during the L2-LUT
construction stage. However, our findings indicate that for
a single query, only limited codebook entries are used to
identify the top-100 search points with the closest proximity.
To illustrate the above point, we calculate the usage fre-

quency of each codebook entry by the top-100 search points.
The results in the form of heatmap are presented in Fig. 3(b),
where the statistics for all entries from different subspaces
are depicted. The shading of the cells corresponds to the
frequency of usage, ranging from 0 to 100, with darker col-
ors indicating higher frequency of usage. For example, a
𝑐𝑒𝑙𝑙 [31] [114] = 75means that in the 31𝑠𝑡 subspace, 75 among
top-100 search points are encoded using the 114𝑡ℎ codebook
entry. A value of 0 signifies that none of the top-100 search
points are encoded with the respective codebook entry.

The codebook entries utilization in each subspace for the
DEEP1M dataset [4] with the PQ48 configuration is shown

in Fig. 4(a), indicating that, on average, only 25% of the en-
tries (at most 30%) are utilized. To investigate the impact of
data distribution on this sparsity, we analyze the SIFT1M
(PQ64) [36] and TTI1M [36] (PQ40) datasets, as presented in
Fig. 5(a). It can be observed that, on average, these datasets
also exhibit less than 30% codebook entries utilization. Ex-
ploiting this sparsity can potentially result in a significant
reduction of up to 70% floating point operations in pairwise
distance calculation for each query, thereby substantially
reducing the time required for the L2-LUT construction stage.
With above analyses, we derive the first key takeaway:

Codebook entries used by top-100 neighbours are sparse.
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Figure 5. (a) Codebook entries average and maximal usage
ratio and (b) CDFs of entries to contain top-100 from closest
to farthest.

3.3 Spatial Locality of Codebook Entries Used by
Top-k Neighbors

Although we have shown that there exists a high sparsity
degree in the codebook entries used by top-k points, it maybe
still challenging to convert the sparsity to actual performance
speedup as sparsity often results in irregular access patterns.
However, as depicted in Fig. 3(b), the codebook entries that
are actually used are densely concentrated in the front half of
the frequency heatmap. This suggests that the used codebook
entries are closer to the query projection compared to others,
as the heatmap is sorted based on the distance between the
entry and the query projection in each subspace.

To validate this claim, we calculate and plot the cumulative
distribution function (CDF) of actual top-100 search points
from the closest to farthest entries in every subspace. As
depicted in Fig. 4(b), we observe that considering using half
of the codebook entries enables us to obtain over 90% of the
top-100 search points. The CDFs for the SIFT1M and TTI1M
datasets are shown in Fig. 5(b), respectively. Despite having
different patterns, both datasets exhibit a similar property,
with approximately 50% of the closest entries containing
over 90% of the top-100 ground truth.
With above analyses, we derive another key takeaway:

Codebook entries used by top-100 neighbours are closely
distributed in the space.
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4 Selective L2-LUT Construction on RT
Core

In this section, we present our algorithm enhancement and
RT core mapping for an efficient alternative to the original
L2-LUT construction stage. We begin by introducing our al-
gorithmic intuition and design details, then we introduce
how we map the enhanced algorithm to the RT core.

4.1 Threshold Based Selective L2-LUT Construction
In this subsection, we describe and explain our algorithm
design to leverage the features above of the current ANN
search. The new algorithm aims to replace current L2-LUT
construction in our searching pipeline and provide significant
operation saving with acceptable approximation.

Intuition of Algorithm Enhancement. Our algorithm
aims to exploit the sparsity and spatial locality in subspaces,
resulting in improved search performance through additional
approximation techniques alongside product quantization.
Specifically, we propose a distance checking-based approach
to efficiently prune unnecessary entries in each subspace.
This approach involves setting distance thresholds in all sub-
spaces, defining the interested region of a query projection
as the union of all points with distances from the query
projection being less than the distance threshold, and sub-
sequently discarding codebook entries that fall outside the
interested region of a query projection. This pruning strategy
is motivated by the findings presented in Sec. 3.
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Figure 6. Remained search
points that need to accumulate
the distance.

Pruning unnecessary
codebook entries can
significantly reduce the
number of distance
calculations. As in Fig. 6,
the remaining search
point projections that
require accessing the
L2-LUT and distance
calculations decrease
linearlywith the thresh-
old. This finding sug-
gests that the projec-
tions of the top-100
search points are closely distributed around the query pro-
jection in a subspace. Consequently, a substantial amount
of L2-LUT lookups and distance calculations can be saved
by filtering out codebook entries far away from the query
projection in each subspace.

Choose Necessary Entries with Efficiency. As discussed
in Sec. 4.1, our algorithm leverages the sparsity and spatial
locality by selectively choosing the codebook entries that fall
within the region of interest in each subspace. The distances
between these selected entries and the query projection are

then calculated for constructing a L2-LUT in a selective man-
ner. To achieve this, we bound smaller entries/boxes into a
larger box and hierarchically organize these bounding boxes
into a tree structure. As such, we can avoid pairwise distance
calculations between all 𝐸 entries and the query projection
in each subspace, and instead perform inside/outside checks
with logarithmic complexity of 𝑙𝑜𝑔𝐸.

Determining Proper Threshold. The selection of an ap-
propriate threshold is crucial in our approach, as it is used
to distinguish whether an entry falls within the interested
region of a query projection. A tight threshold may filter out
too many entries, resulting in missed true neighbors, while a
relaxed threshold may include unnecessary entries, leading
to a waste of time and resources. To determine the optimal
threshold, we conduct a thorough study of the relationship
between query features and the threshold that can contain
the top-100 search points in each subspace.
As shown in Fig. 7(a), we observe a negative correlation

between the threshold for containing the top-100 search
points and the region density of the query projection in a
subspace. To calculate the region density, we divide the entire
subspace into a 100× 100 grid and define the density of each
cell as the quotient obtained by dividing the number of search
point projections falling into that cell by the area of the cell.
This finding is reasonable, as a higher threshold is likely
to contain many search point projections in high-density
regions, resulting in a higher probability of containing the
top-100 search points. Conversely, in low-density regions,
even the same threshold may not be able to contain 100
search point projections, let alone the top-100 points.

Based on our findings, we propose incorporating dynamic
radius mechanics to determine an appropriate threshold dur-
ing runtime. Initially, we generate a density map and a sim-
ple regression model offline. The density map consists of a
100 × 100 grid for each subspace, where each cell records
the density computed as previously described. Subsequently,
we randomly select several search point projections to train
the regression model, with the region density as input and
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Figure 7. (a) The relation between threshold to contain top-
100 search points and region density a query falls into. (b)
The amount of top-100 search points contained when thresh-
old scales smaller. *Q0/Q4=Q1/Q3∓1.5×IQR, IQR=Q3−Q1.
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Figure 8. Intuition of hardware mapping of Juno.

the threshold to contain the top-100 search points as out-
put. During runtime, we look up the density of the query
projection in each subspace and use the regression model
to infer a query-specific threshold. Notably, we find that
a simple polynomial regression model accurately captures
the relationship, resulting in minimal runtime overhead for
threshold determination. Once the threshold is determined,
we disregard all codebook entries beyond the threshold and
compute the distance between the query projection and the
remaining codebook entries to create an L2-LUT.
Furthermore, we have observed a power-law pattern in

the variation of the threshold value, as illustrated in Fig. 7(b).
When the distance threshold is scaled down to half of its
original value to accommodate the top-100 search points,
approximately 90% of these points are retained. This indi-
cates the potential for using a smaller distance threshold
to further prune codebook entries. In other words, we can
trade-off slightly lower search quality for significantly en-
hanced search throughput, such as queries per second (QPS).
In our work, we provide users with the flexibility to set the
threshold value through a dedicated interface, enabling them
to make this trade-off according to their specific needs.

4.2 Mapping the Selective Algorithm to the RT Core
In this subsection, we explain how to map the computation
of selective L2-LUT construction described in Sec. 4.1 to the
RT core in modern GPUs. The key approach is to utilize the
RT core to accurately, efficiently determine the intersections
of rays with the selected search points within each subspace.
Additionally, we exploit the capabilities of the RT core for
efficient hit distance calculation, which can be extended to
support other distance metrics like MIPS (Maximum Inner
Product Similarity).

Algorithm Mapping. The RT core implements bounding
box intersection check (AABB) and hierarchical data struc-
ture traversing (BVH) in the hardware, which aligns with
the computational characteristics of our proposed threshold-
based LUT construction. Similar to the original ANN search
algorithm discussed in Sec. 2.1, our RT core-based ANN al-
gorithm comprises both an offline and online component.

Previous research [78] has demonstrated the efficient in-
tersection check capability of the RT core through its tree-
based algorithm. With this capability, our method has the
potential to save computational resources in determining
whether an entry falls inside the region of interest within
a query projection in a subspace. To implement this, we
align our distance-checking approach with the RT core by
placing a sphere at the coordinates of the query projection,
with a radius set to the distance threshold. This sphere natu-
rally defines the region of interest. Then, rays are cast from
codebook entries towards the region of interest in the RT
core, enabling rapid determination of whether an entry falls
within the region of interest, as the left part of Fig. 8 shows.

In our approach, we utilize a sphere to delineate the region
of interest in a query projection. However, this approach ne-
cessitates adding spheres into the runtime scene, resulting in
excessive overhead. To mitigate this issue, we take advantage
of the commutativity of the L2 distance metric. Specifically,
we pre-generate spheres at the center of each codebook entry
during the offline processing stage, and cast query projec-
tion towards these spheres at runtime. This yields identical
inside/outside results as the online sphere construction.

Next, we construct the L2-LUT specifically for the entries
located within the region of interest. In this process, we also
utilize RT cores for the fast and efficient distance calculation
of these selected entries, employing the concept of hit dis-
tance which will be detailed in the next paragraph. Once the
L2-LUT is constructed, it can be employed for performing
distance lookup and accumulation for the points of interest
in the search, as demonstrated in the right part of Fig. 8.

Calculating Hit Distance. The construction of L2-LUT
requires calculating the distance between each hit entry and
the sphere center. The naive approach is to directly use the
coordinates of the hit entries stored in global memory, which
may have irregular memory accesses due to the sparsity of
hit entries. To address this issue, we propose utilizing the
results from the RT core to efficiently calculate the distance,
thus avoiding global memory accesses.

The RT core incorporates the notion of time in ray tracing,
signifying the duration of a ray’s travel. By default, a ray
traverses one unit of space within a one unit time interval.
There are two defined crucial time points: 𝑡ℎ𝑖𝑡 and 𝑡𝑚𝑎𝑥 . The
former is the time interval from the initiation of ray travel
to the point when it intersects an object, while the latter is
the maximum duration that a ray can travel. We can obtain
𝑡ℎ𝑖𝑡 in hit shader without global memory access.

To accurately calculate the distance, we employ the 𝑡ℎ𝑖𝑡
of a ray and rapidly determine the distance between the hit
point and the center of the sphere using the radius of the hit
sphere. This allows us to obtain the precise distance between
the query projection and the codebook entry, as depicted in
the left portion of Fig. 9. Notice that 𝑅 in the figure means the
radius of the spheres and are now set as identical constants.
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Figure 9. (left) We use the 𝑡ℎ𝑖𝑡 to calculate the hit distance
between query projection and sphere centroid. (right) We
dynamically adjust the radius of the sphere that a ray can
hit by adjusting 𝑡𝑚𝑎𝑥 .

Dynamic Threshold. As mentioned in the previous sub-
section, our approach also incorporates a dynamic distance
threshold to obtain top-100, which can also be adjusted by the
user to balance search quality and throughput. A naive im-
plementation would involve modifying the radius of spheres
at runtime, which may result in unacceptable overhead.

To eliminate the need for online sphere creation, we con-
vert the dynamic distance threshold into a dynamic max-
imum travel time for rays. For smaller regions, we set a
correspondingly smaller value for 𝑡𝑚𝑎𝑥 , as shown on the
right side of Fig. 9. For example, if the original threshold is
0.6, a value of 𝑡𝑚𝑎𝑥 = 0.64 corresponds to a scaling factor of
0.8. Thus, we support both dynamic distance threshold and
user-defined scaling factor by adjusting 𝑡𝑚𝑎𝑥 only, and we
can set the radius of all spheres to be identical, which will sig-
nificantly simplify the aforementioned distance calculation
and further processing.

Maximum Inner Product Similarity Support. Our ap-
proach efficiently supports maximum inner product similar-
ity (MIPS) at minimal computational cost through a well-
designed transformation mechanism. Previous methods rely
on introducing extra dimensions so that they can maximize
inner product by minimizing L2 distance between trans-
formed query and search points [5, 64]. The extra dimensions
affect training, aligning, search performance [37]. Instead,
we propose a method that is free of extra dimensions and
RT core friendly.
Notice that we use 𝑡ℎ𝑖𝑡 to calculate 𝐿2(𝑒, 𝑞) in a 2D sub-

space where 𝑒 is the codebook entry, that is:

𝐿22 (𝒆, 𝒒) = 𝑅2 − (1 − 𝑡ℎ𝑖𝑡 )2 = (𝑥𝑒 − 𝑥𝑞)2 + (𝑦𝑒 − 𝑦𝑞)2

𝐼𝑃 (𝒆, 𝒒) = 𝑥𝑒𝑥𝑞 + 𝑦𝑒𝑦𝑞 = (𝑥2𝑒 + 𝑦2𝑒 + 𝑥2𝑞 + 𝑦2𝑞 − 𝐿22 (𝒆, 𝒒))/2

= (𝑥2𝑒 + 𝑦2𝑒 + 𝑥2𝑞 + 𝑦2𝑞 − 𝑅2 + (1 − 𝑡ℎ𝑖𝑡 )2)/2

The codebook entry related part 𝑥2𝑒 , 𝑦2𝑒 requires accessing
global memory lookup for their coordinates at runtime to
calculate inner product 𝐼𝑃 (𝑒, 𝑞). While with the RT core, we
can eliminate 𝑥2𝑒 , 𝑦2𝑒 by replacing 𝑅 with 𝑅′ =

√︁
𝑅2 + 𝑥2𝑒 + 𝑦2𝑒

1st clustering (D-dim) 2nd clustering (M-dim) Subspace level 
inverted index building

Cluster centriods IVF: entries —> pointsTraversable Scene
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Threshold based 
selective L2-LUT 

construction

Distance calculation of 
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Figure 10. Overview design of Juno.

without any extra dimension(s) as follows:

𝑡𝑛𝑒𝑤
ℎ𝑖𝑡

= 1 −
√︃
𝑅′2 − 𝑥2𝑒 − 𝑥2𝑒 − 𝑥2𝑞 − 𝑦2𝑞 + 2 × 𝐼𝑃 (𝒆, 𝒒)

= 1 −
√︃
𝑅2 − 𝑥2𝑞 − 𝑦2𝑞 + 2 × 𝐼𝑃 (𝒆, 𝒒)

⇒ 𝐼𝑃 (𝒆, 𝒒) = (𝑥2𝑞 + 𝑦2𝑞 − 𝑅2 + (1 − 𝑡𝑛𝑒𝑤ℎ𝑖𝑡
)2)/2

where𝑥𝑞, 𝑦𝑞, 𝑅 are all constant values for a single query. Thus,
the inner product 𝐼𝑃 (𝑒, 𝑞) can be directly calculated using
𝑡𝑛𝑒𝑤
ℎ𝑖𝑡

, without any sphere coordinate accesses. Furthermore,
the term 𝑥2𝑞 + 𝑦2𝑞 can be disregarded as it remains constant
for all codebook entries. Consequently, only the radiuses of
spheres need to be adjusted from 𝑅 for the L2 distance metric
to

√︁
𝑅2 + 𝑥2𝑒 + 𝑦2𝑒 for the inner product metric offline. Notice

that we also need to change metric of the cluster in filtering
from L2 distance to the inner product.

5 Juno System Design
Based on aforementioned insights, we propose Juno, an
end-to-end search system for efficient ANN search in high-
dimensional space. Juno consists of offline and online phases
leveraging the algorithmic enhancement and hardware map-
ping mentioned in Sec. 4, which are described in Sec. 5.2
and Sec. 5.3. Besides, we propose pipelining and aggressive
approximation leveraging the hardware features of the RT
core, which are discussed in Sec. 5.3 and Sec. 5.4.

5.1 System Design Overview
We present the overview of Juno in Fig. 10. In the offline
phase, we prepare the traversable scene and inverted indices
from codebook entries to search points in every subspace.
Once a batch of queries arrive, we first conduct the filter-
ing that is identical to the original IVFPQ approach. Then
we use the RT core to do threshold-based selective L2-LUT
construction to obtain only necessary entries falling inside
the interested region of query projection in every subspace.
Finally, we conduct the distance calculation where only inter-
ested search points are considered for the final accumulated
distance, by using the inverted indices prepared offline and
L2-LUT constructed online.
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5.2 Offline Preparation Phase
In the offline phase, we need to prepare a traversable scene
and subspace-level inverted indices for later online searching.
Alg. 1 shows its details. We first use the typical IVFPQ offline
training process. Specifically, we first obtain the 𝐶 cluster
centroids and labels of search points needed by filtering (line
3-4), and then generate the codebook trained by the residual
between search points and their centroids (line 5-9).

The conventional IVFPQ approach stores and iterates over
all search points encoded with the codebook entries, which is
not efficient for our selective L2-LUT construction algorithm.
To address this issue, we maintain an inverted index from
codebook entries to search points (lines 14-16) in each sub-
space. For example, 𝑀𝑎𝑝 [114] [19] [24] contains all search
points that satisfy the following conditions: i) the search
point belongs to the 114𝑡ℎ cluster, and ii) its projection is
encoded with the 24𝑡ℎ codebook entry in the 19𝑡ℎ subspace.
This inverted index enables us to only iterate through neces-
sary search points from entries that are close to the query
projection in a subspace.
In the 𝑑𝑡ℎ subspace, the spheres representing the entries

of this subspace are positioned at the corresponding 𝑥 and 𝑦
coordinates. For the 𝑧 coordinate, we place the entries from
different subspaces at different depths, specifically 𝑧 = 2𝑠 + 1
for the 𝑠𝑡ℎ subspace. This approach prevents interference
from rays originating from other subspaces during the ray
tracing process. Lines 10-13 show the codebook entries place-
ment in 𝐷/𝑀 subspaces (also illustrated in the left of Fig. 8).

Besides the position of spheres, we also need to determine
their radius (i.e., distance threshold). Recall that the distance
threshold depends on the density of the grid a query projec-
tion falls into (Sec. 4.1), while we use the travel time-based
method to enable dynamic threshold (Sec. 4.2), to avoid costly
runtime object modifying. So, we set identical radius for all
spheres for the convenience of further computation.

5.3 Online Searching
We describe the case of a single query search in the online
phase, which is detailed in Alg. 2. It straightforward to gen-
eralize the single-query case to the multi-query case.
Given a query, we first perform the filtering and select

𝑛𝑝𝑟𝑜𝑏𝑠 clusters (line 2). We then calculate the residuals be-
tween the query and centroids of the selected clusters (line
4-5). For dynamic distance threshold, and we calculate the
threshold for every query projection with density map, poly-
nomial regressor trained offline and user-defined scaling
factor, and transform the threshold to ray’s maximal travel
time 𝑡𝑚𝑎𝑥 (line 6-7). For each selected cluster, a ray is cre-
ated from the coordinate of the residual between the query
projection and the cluster centroid projection in each sub-
space (line 8-9). As a reminder, the spheres representing the
codebook entries in the 𝑠𝑡ℎ subspace are placed at 𝑧 = 2𝑠 + 1.
By placing the ray origin at 𝑧 = 2𝑠 and restricting the 𝑡𝑚𝑎𝑥

of the rays to be 1.0, these rays can accurately interact with
the spheres in the same subspace without interfering with
entries in other subspaces (illustrated in the left of Fig. 8).
Line 10 registers a callback called RT_HitShader, which

would be invoked when the ray hits the sphere, i.e., an entry
falls within the interested region of a query projection in
a subspace. Inside the hit callback, we calculate and record
the actual distance between the entry and the query projec-
tion using the variable 𝑡ℎ𝑖𝑡 (line 14-16). To process multiple
queries, we create and shoot rays of all projections in parallel,
maintaining for each query a list that records the hit entry
IDs and their corresponding distances in every subspace (line
17-18). These lists collectively form the L2 lookup table.

After obtaining the L2-LUT, we perform distance calcu-
lations for the search points. For each subspace, we access
the inverted index to retrieve the search points whose entry
is matched by the query projection, and then accumulate
their distances with the results in the L2-LUT. The remain-
ing search points would be directly assigned with a large
constant without performing any L2-LUT lookup. Finally,
a list containing the search points and their distances are
returned for selecting the top-k results.

Pipelining on Heterogeneous Cores. In our Juno frame-
work, the L2-LUT construction utilizes the RT core, while the
distance calculation is performed on the CUDA core. This con-
figuration has the potential for pipelined execution, which
can improve the search throughput. This capability is sup-
ported by NVIDIA GPUs starting from the Ampere architec-
ture, which allows for co-running of the Tensor core, RT core,
and CUDA core [52]. However, naive co-running without
proper optimization can result in severe interference and
slowdown [28, 44, 76], as demonstrated in Fig. 11(a). The

Algorithm 1 Build a traversable scene, prepare cluster cen-
troids of filter and entry-search points mapping offline.
Input: 𝑝𝑜𝑖𝑛𝑡𝑠 [𝑁 ] [𝐷],𝑀 = 2, 𝐸, 𝐶 ,𝑚𝑒𝑡𝑟𝑖𝑐
Output:𝑀𝑎𝑝 [𝐶] [ 𝐷

𝑀
]{𝑒𝑛𝑡𝑟𝑦_𝑖𝑑 : 𝑝𝑜𝑖𝑛𝑡𝑠_𝑖𝑑 [ ]}

Output: 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠 , 𝑆𝑐𝑒𝑛𝑒
1: function BuildRTScene(𝑝𝑜𝑖𝑛𝑡𝑠 [𝑁 ] [𝐷],𝑀 , 𝐸, 𝐶)
2: 𝑆𝑐𝑒𝑛𝑒, 𝑓 𝑖𝑙𝑡𝑒𝑟 ← ∅, 𝑘𝑚𝑒𝑎𝑛𝑠 (𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝐶)
3: 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠 ← 𝑓 𝑖𝑙𝑡𝑒𝑟 .𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠, 𝑓 𝑖𝑙𝑡𝑒𝑟 .𝑙𝑎𝑏𝑒𝑙𝑠

4: 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ← [𝑥 − 𝑐𝑒𝑛𝑡𝑜𝑖𝑑𝑠 [𝑥 .𝑙𝑎𝑏𝑒𝑙] 𝑓 𝑜𝑟 𝑥 𝑖𝑛 𝑝𝑜𝑖𝑛𝑡𝑠]
5: for 𝑠 ∈ [0, 𝐷

𝑀
) do

6: 𝑟𝑒𝑠 ← 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 [:, 2𝑠 : 2𝑠 + 2]
7: 𝑐𝑜𝑑𝑒𝑏𝑜𝑜𝑘 [𝑠] ← 𝑘𝑚𝑒𝑎𝑛𝑠 (𝑟𝑒𝑠, 𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝐸)
8: 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 ← 𝑐𝑜𝑑𝑒𝑏𝑜𝑜𝑘 [𝑠] .𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠
9: for 𝑒 ∈ [0, 𝐸) do
10: 𝑥,𝑦, 𝑧 ← 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 [𝑒] .𝑥, 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 [𝑒] .𝑦, 2𝑠 + 1
11: 𝑆𝑐𝑒𝑛𝑒.𝑎𝑑𝑑 (𝑠𝑝ℎ𝑒𝑟𝑒 (𝑝𝑜𝑠 = (𝑥,𝑦, 𝑧), 𝑟 = 𝐶𝑜𝑛𝑠𝑡))
12: for 𝑒 ∈ [0, 𝐸), 𝑐 ∈ [0,𝐶) do
13: 𝑟𝑒𝑠𝑐 ← [𝑙𝑎𝑏𝑒𝑙𝑠 [𝑝] = 𝑐 𝑓 𝑜𝑟 𝑝 𝑖𝑛 𝑟𝑒𝑠]
14: 𝑀𝑎𝑝 [𝑐] [𝑒] ← [𝑝 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑏𝑦 𝑒 𝑓 𝑜𝑟 𝑝 𝑖𝑛 𝑟𝑒𝑠𝑐 ]
15: return 𝑆𝑐𝑒𝑛𝑒,𝑀𝑎𝑝, 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠
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Figure 11. (a) Latency breakdown of three stages. (b) Rela-
tionship between hit count and exact distance of query and
search points.

reason is that long latency of distance calculation on the
CUDA core leads to severe resource contention.
Juno achieves efficient hardware pipelining by mapping

the accumulation in the distance calculation stage to Tensor
cores. The distances of the selected search points in each
subspace are organized into rows to form matrix 𝐴 with
shape𝑀,𝐾 = 𝑄×sizeof(selected points)×𝑛𝑝𝑟𝑜𝑏𝑠, 𝐷/𝑀 (with
padding for simplicity). Then, matrix 𝐵 is created with shape
𝐾, 𝑁 = 𝐷/𝑀, 1, and all elements are set to 1.0. The accumu-
lation is then performed by calculating the matmul 𝐴 × 𝐵,
utilizing the cublas library [55] on Tensor cores. Thus, the
reduced latency mitigates the resource contention.

We utilize CUDA MPS [53] to partition the SM resources
in a 9:1 ratio, allocating 90% of the resources to L2-LUT con-
struction (using RT cores) and 10% to distance calculation
(using Tensor cores). This partitioning results in similar la-
tencies for the two stages, maximizing the overlap of the two

Algorithm 2 Construct L2-LUT with the RT core and con-
duct distance calculation for interested search points.
Input: 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 [𝑄] [𝐷], 𝑖𝑛𝑑𝑒𝑥 , 𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑙𝑒𝑐𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 , 𝑛𝑝𝑟𝑜𝑏𝑠
Input: 𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑚𝑎𝑝 , 𝑝𝑜𝑙𝑦_𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟 , 𝑡ℎ𝑟𝑒𝑠_𝑠𝑐𝑎𝑙𝑒(user defined)
Output: 𝐿2_𝐿𝑈𝑇 [𝑄] [𝑛𝑝𝑟𝑜𝑏𝑠] [ 𝐷

𝑀
]{𝑒𝑛𝑡𝑟𝑦_𝑖𝑑 : 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒}

1: function L2_LUT(𝑞𝑢𝑒𝑟𝑦, 𝑖𝑛𝑑𝑒𝑥 , 𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑙𝑒𝑐𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠)
2: for 𝑞 ∈ [0, 𝑄), 𝑠 ∈ [0, 𝐷

𝑀
) do

3: 𝑥,𝑦, 𝑧 ← 𝑞 [_𝑞] [2𝑠 : 2𝑠 + 1], 2𝑠
4: for 𝑐 in 𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑙𝑒𝑐𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 [𝑞] do
5: 𝑡ℎ𝑟𝑒𝑠 ← 𝑝𝑜𝑙𝑦_𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟 (𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑚𝑎𝑝 (𝑥,𝑦))
6: 𝑡 ← 1 −

√︁
1.02 − (𝑡ℎ𝑟𝑒𝑠 × 𝑡ℎ𝑟𝑒𝑠_𝑠𝑐𝑎𝑙𝑒)2

7: 𝑥,𝑦 ← (𝑥,𝑦) − 𝑖𝑛𝑑𝑒𝑥 .𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 [𝑐] [2𝑠 : 2𝑠 + 1]
8: 𝑟𝑎𝑦𝑠.𝑎𝑑𝑑 (𝑥,𝑦, 𝑧, 𝑡𝑚𝑎𝑥 = 𝑡, 𝑑𝑖𝑟 = (0, 0, 1))
9: 𝑖𝑛𝑑𝑒𝑥 .𝑠𝑐𝑒𝑛𝑒.𝑠𝑒𝑡_ℎ𝑖𝑡_𝑐𝑎𝑙𝑙𝑏𝑎𝑐𝑘 (RT_HitShader)
10: return RayTracing(𝑟𝑎𝑦𝑠, 𝑠𝑐𝑒𝑛𝑒)
11: function RT_HitShader(𝑖𝑛𝑑𝑒𝑥 ,𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑙𝑒𝑐𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠)
12: 𝑟𝑎𝑦, 𝑠𝑝ℎ𝑒𝑟𝑒, 𝑡ℎ𝑖𝑡 ←GetRay(),GetHitSphere(),GetTime()
13: 𝑞, 𝑠, 𝑒 ← 𝑟𝑎𝑦.𝑞𝑢𝑒𝑟𝑦_𝑖𝑑, 𝑟𝑎𝑦.𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒_𝑖𝑑, 𝑠𝑝ℎ𝑒𝑟𝑒.𝑒𝑛𝑡𝑟𝑦_𝑖𝑑
14: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ←

√︁
𝑅2 − (1 − 𝑡ℎ𝑖𝑡 )2 // 𝑅 = 𝐶𝑜𝑛𝑠𝑡

15: for 𝑐 in 𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑙𝑒𝑐𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
16: 𝐿2_𝐿𝑈𝑇 [𝑞] [𝑐] [𝑠] .𝑎𝑑𝑑 ({𝑒 : 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒})

stages. We also apply proper data padding and transforma-
tion to enable the pipeline, with an overhead of less than 5%
of the latency, compared to the solo-run of Fig. 11(a).

For filtering, L2 distance can be calculated with ∥𝒙 −𝒒∥22 =
𝒙2 − 2𝒙𝒒𝑇 + 𝒒2, where 𝒙2 ← ∑𝐷−1

𝑖=0 𝑥2𝑖 is calculated ahead of
time. We just calculate the 𝒒2 ← ∑𝐷−1

𝑖=0 𝑞2𝑖 for every query.
To calculate 2𝒙𝒒𝑇 , we use cublas and Tensor core too with
𝛼 = −2, 𝛽 = 1, 𝐴 = 𝒙, 𝐵 = 𝒒𝑇 ,𝐶 = 𝒙2 (𝒒2)𝑇 . Inner product is
even simpler by calling a matmul with 𝐴 = 𝒙, 𝐵 = 𝒒𝑇 .

5.4 Aggressive Approximation: Hit Count-Based
Method

The above L2-LUT construction still needs to conduct sev-
eral floating point operations to calculate the radius of a hit
sphere and hit distance of a ray. We propose a more aggres-
sive approximated ANN search that uses the hit/miss result
from the RT core, inspired by previous work [40].

We first study the relationship between hit count and exact
distance, where all spheres are set with a radius threshold
that encompasses the top-100 search points. As Fig. 11(b)
shows, there is strong correlation between these two factors.
The reason is that higher hit count implies being close to the
query projection in more subspaces. This finding inspires us
to implement a hit count-based ANN search method.
Specifically, we employ a reward/penalty-based model,

which involves the extra sphere with half the radius for each
original sphere, as in Fig. 11(b). The hit count is incremented
by one only when the ray successfully intersects the inner
sphere, and decremented by one as a penalty when the ray
misses both spheres. As Fig. 11(b) shows, the hit count (blue
▲) calculated using this approach exhibits a stronger corre-
lation compared to the original hit count (yellow ). While
this approximation may result in false positives/negatives
(marked as region of ‘−’ and ‘+’ respectively in Fig. 11(b)), it
offers users a new parameter to trade-off between reasonable
search quality degradation and improved throughput.

6 Evaulation
We demonstrate the effectiveness of the proposed algorithm
and hardware mapping of Juno throughout experiments.

6.1 Experimental Setup
Setup. The ray tracing (RT) part of Juno is implemented

with NVIDIA OptiX 7.6 [50]. We evaluate Juno on different
NVIDIA GPUs (with CUDA/RT cores): RTX 4090 (16384/128),
A100 (6912/0), and NVIDIA Tesla A40 (10752/84). Notice that
OptiX offloads the RT computation to CUDA cores if the
GPU does not have RT cores. This makes Juno also com-
patible with the GPU without the RT core. As such, we can
conduct the sensitivity analysis to study i) the effectiveness
of algorithm enhancement only and ii) the impact of ray
tracing hardware performance.
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Figure 12. Result of query per second (QPS) and search quality of Juno on various datasets including SIFT1M, DEEP1M,
TTI1M, SIFT100M and DEEP100M. The bolded grey line labeled Juno is the Pareto frontier of our search engine under different
configurations (i.e., the configuration of Juno-L, Juno-M, and Juno-H), standing for the optimal performance of Juno at a
given search quality requirement.

Dataset. Ourwork focuses on improving the performance
of high-dimensional ANN search on a single GPU. We use
popular datasets, including SIFT1M, 100M [36], DEEP1M,
100M [4] and TTI1M[63]. The suffix 1M stands for 1 million
search points and the suffix 100M stands for 100 million
points. Their embedding sizes are 128/128, 96/96 and 200,
respectively. TTI1M uses the inner product metric (MIPS),
and the rest uses the L2 distance metric. Notice that larger
datasets (>1B) cannot be held in the memory of a single
GPU, and they need chunking, partitioning, or other storage-
related techniques proposed in other orthogonal works [10,
59, 65]. For example, GGNN utilizes 8 GPUs, and ANNA
utilizes 12 accelerators to process 1B datasets [24, 41].

Baseline and Configurations. Wemainly compare Juno
against FAISS, the state-of-the-art GPU-accelerated ANN
search library [37]. To comprehensively evaluate the advan-
tages of our work, we use identical IVF cluster numbers as
those used in FAISS within Juno. Next, we conduct evalua-
tions on various PQ configurations. Finally, we augment our
approach by incorporating the widely applied HNSW (Hierar-
chical Navigable Small World graphs) optimization [45] on
top of the IVF and PQ methods. It is important to note that
HNSW represents an orthogonal index optimization technique,
compatible with IVF. Since in the search process of HNSW,
distance calculation and sorting are still necessary among
neighbors of vertices in the navigable small world graphs,
and can still benefit from optimized PQ process proposed
in Juno. While our primary focus in Juno is on optimizing
the PQ component, we defer the integration of HNSW opti-
mization into the current IVF indexing for future research.
Nevertheless, we make a thorough comparison of our work

against baselines that include HNSW optimizations. In FAISS,
this is implemented by calling the index_factory with the
parameter IVFx_HNSWy,PQz. There are other works, such as
CPU-centric [29], RAM-centric [10], and disk-centric [10, 65]
ANN search optimization, which are orthogonal to Juno.

Metric. In our evaluation, we assess the search quality us-
ing twometrics: Recall-1@100 (R1@100) and Recall-100@1000
(R100@1000). The R1@100 metric is defined as follows. For a
set of Q queries, each with 100 retrieved neighbors, R1@100
represents the count of queries, among the set of Q, where
their 100 retrieved neighbors include the true nearest neigh-
bor. It is important to note that R1@100 does not consider
the specific order of the 100 retrieved neighbors. Consider-
ing a scenario with ten queries. If the retrieved neighbors
of eight queries include the true nearest neighbor, then the
R1@100 score would be calculated as 8/10. The R100@1000
metric measures the averaged number of retrieved neigh-
bors, among a total of 1000 retrieved neighbors, that belong
to the 100 true nearest neighbors for each query.

Evaluation Plan. In this study, we conduct an evaluation
of Query Per Second (QPS) and search quality for Juno using
various configurations. For each configuration, we apply
a scaling factor, as referenced in Section 4, to achieve an
optimal balance between search quality and performance.
• Juno-H: We employ hit time based exact hit distance
calculation for high quality requirement.
• Juno-M: We employ finer-grained hit count-based se-
lection with multiple spheres for medium quality re-
quirement.
• Juno-L: We employ hit count-based selection only for
low quality requirement.
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It is worth noting that there is some overlap in the search
quality among these configurations. And we have empiri-
cally divided the search quality requirements into three inter-
vals: [0.0, 0.95], [0.95, 0.97], and [0.97, 1.0]. Accordingly, we
designate Juno-L, Juno-M, and Juno-H for configurations
that correspond to these intervals, respectively. In instances
where Juno-L or Juno-M fails to meet the requirements of
the default intervals, we default to using Juno-H. We then
evaluate the improvement breakdown of two optimization
techniques. Finally, we conduct a sensitivity analysis to eval-
uate the effectiveness of design decisions in Juno.

6.2 Search Quality and Throughput
Fig. 12 shows the overall search quality and throughput on
different datasets. We aggregate the various configurations
of Juno-L/M/H into the grey bold line in the plot as Juno
allows users to make trade-off between search quality and
throughput. The lines labelled with PQx are from the FAISS
baseline stand for dividing the entire space into x subspaces.
The lines labelled with +HNSW stand for the performance
of adding HNSW optimization to the best performed PQ con-
figuration. Notice that the HNSW is configured as the best
performed parameter.

Justifications of Baseline Configurations. We conduct
a detailed analysis on the performance of various baseline
methods and provide a rationale for their chosen config-
urations. Upon investigating the application of HNSW opti-
mization, we observe that it brings limited improvement
in smaller datasets (1M) but exhibits more significant en-
hancements in larger datasets (100M). Moreover, these ob-
servations align well with the benchmark results reported
in FAISS [47]. Regarding the PQ configuration, we find that
incorporating more smaller subspaces results in improved
search quality; however, it also leads to lower throughput.We
optimize the baseline on different datasets so that the base-
line performance approaches closer to the Pareto optimal.
Despite the varying performances of the baseline methods,
in our subsequent analysis, we will compare Juno against the
best-performing one to ensure a fair and rigorous evaluation.

SIFT1M and DEEP1M. We achieve 7.8× higher QPS than
the baseline in the low search quality scenario, i.e., Juno-L
with R1@100≤ 0.95. The improvements are from the ex-
ploiting of sparsity and aggressive approximation. Firstly, by
setting a tighter threshold, we can discardmore search points,
thereby improving the filtering effectiveness. Secondly, we
perform hit count-based selectionwithout the actual distance
calculation. Additionally, using a tighter threshold leads to
fewer hit events due to the reduced size of the spheres. As a
result, Juno is able to fully exploit the sparsity and spatial
locality of the data, which is particularly advantageous when
dealing with low search quality requirements.

The high requirement for search quality, such as R1@100=
0.99, results in increased selected search points. Additionally,

it is necessary to compute the actual distance to meet this
stringent accuracy requirement. These two factors limit the
advantages of leveraging sparsity. However, despite these
limitations, the Juno approach still achieves a throughput
improvement of 2.4× compared to the baseline, owing to the
tree-based search methodology employed in the RT core.

It is worth noting that Juno-L only achieves 0.95 recall for
these two datasets as it employs a pure hit count-based ap-
proximation approach. Juno-M is able to improve the search
quality to 0.97 by employing the reward/penalty-based ap-
proximation approach with extra inner spheres (Sec. 5.4).
The throughput improvement over the baseline is 2.9×.

TTI1M. This dataset uses the inner product metric (i.e.,
MIPS). Since Juno-H calculates the exact distance in every
subspace, its performance improvement is 2.04×, similar to
the two previous datasets with L2 metric. Notice that the
FAISS baseline can also only reach the 0.96 recall. While the
hit count-based method abandons the 𝑡ℎ𝑖𝑡 information, and
intersecting only implies being close in aspect of L2 distance,
rather than being similar in aspect of inner product. So, the
search quality rapidly drops in dataset with inner product
similarity. Thus, the line representing Juno-L moves to left.

SIFT100M and DEEP100M. The Juno-H and Juno-L con-
figurations achieve an averaged improvement of 1.5× and
2.1× over the baseline, respectively. The performance gain of
Juno-H diminishes as the distance calculation becomes the
bottleneck. Notice that these improvements are calculated
by comparing Juno without HNSW against FAISS with HNSW
optimization. We do not implement HNSW in Juno owing to
its high code complexity in current FAISS framework. Mean-
while, implementing it provides no extra insight to guide
the optimization of PQ. Notably, Juno-H outperforms the
baseline without HNSW optimization by a factor of 3.0×.

Results of Different Metrics. The results for R100@1000
of SIFT1M, DEEP1M, and TTI1M are presented in Figure 12.
It is evident that Juno exhibits comparable improvements
over the baseline, demonstrating the effectiveness of the ap-
proximation techniques proposed by Juno even under more
challenging metrics. Specifically, on average, the top 100
retrieved neighbors out of 1000 contain 65% of the true top
100 nearest neighbors. This performance is also influenced
by the clustering quality of IVF and the PQ quality, which
remain identical in Juno when compared to the baseline.

6.3 Effectiveness of Different Optimizations
We now evaluate the effectiveness of optimizations used
in Juno, including the pipelining among CUDA-tensor-RT
cores, hit count-based L2-LUT selective construction, and
dynamic radius (i.e., distance threshold). Fig. 13(a) shows the
both the overall improvement and effects without applying
the first two optimizations, while (b) shows the effects of
dynamic radius.
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Overall Improvement. Juno achieves averaged 2.1×-4.4×
QPS improvement on five datasets from high to low search
quality requirement over the baseline. Although we do not
tune Juno for a particular dataset, Juno still achieves 8.5×-
3.2× maximum improvement on these datasets.

Effectiveness of Pipelining. The third bar in Fig. 13(a)
presents the performance improvement achieved without
pipelining. Specifically, in scenarios where high search qual-
ity is required, the critical path is the L2-LUT construction,
which has a longer latency compared to the distance calcu-
lation. Consequently, without pipelining, the improvement
decreases by 44%. On the other hand, in situations where
lower search quality is acceptable, the latency between the
L2-LUT construction and distance calculation is similar, result-
ing in a 50% decrease in the improvement without pipelining.

Effectiveness of Hit Count-based Selection. The final
bar in Fig. 13(a) displays the improvement achieved when
hit count-based selection is not utilized. It is evident that
for extremely high search quality requirements, hit count-
based selection has no influence as it is unable to achieve
such quality. However, as the search quality requirement de-
creases, the influence of hit count-based selection increases,
as lower recall necessitates fewer exact distance calculations.
In conclusion, a combination of hit count-based selection and
exact distance calculation is necessary to deliver high search
throughput across different search quality requirements.

Effectiveness of Dynamic Threshold Strategy. We eval-
uate the search quality and search throughput (QPS) using a
small and large static threshold. We conduct this evaluation
on SIFT1M dataset with Juno-H, where small and large static
thresholds are determined with the minimum and maximal
threshold values of dynamic threshold. As Fig. 13(b) shows,
utilizing a large static threshold results in a decreased search
throughput but achieves higher search quality. This can be
attributed to the fact that a larger threshold leads to a larger
sphere, causing a ray to intersect with more spheres and
trigger more hit shader functions. Conversely, using a small
static threshold improves the search throughput, but at the
cost of degraded search quality. Even for scenarios with low
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Figure 13. (a) Improvement breakdown of Juno against
FAISS. (b) Performance of different threshold strategy, eval-
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Figure 14. (a) QPS and recall of Juno and FAISS on A100.
(b) Average advantage against FAISS on different GPUs.

search quality requirements, selecting more clusters to ad-
dress the recall issue becomes necessary, thereby negating
the potential performance gain from reducing hit shader in-
vocations. For cases with high search quality requirements,
this small static threshold proves to be inadequate, as it re-
sults in missing too many true top-k neighbors, thereby jeop-
ardizing recall. In contrast, our dynamic threshold strategy
outperforms both the small and large static threshold-based
approaches in terms of both search quality and throughput.

6.4 Sensitivity to RT Core Performance
Finally, we evaluate the performance of Juno with and with-
out the acceleration of the RT core using different GPUs.
Fig. 14(a) shows the detailed performance of Juno and the
baseline on Tesla A100, a GPU without RT cores. We conduct
this evaluation on SIFT1M dataset with baseline configured
as PQ16+HNSW (the best performed configuration among oth-
ers). We find that Juno still gains significant improvement at
low search quality requirement on Tesla A100, which means
the advantage is purely contributed by the threshold-based
selective algorithm. This result also verifies that it is rea-
sonable to leverage the sparsity and spatial similarity in the
typical IVFPQ process. For high search quality requirements,
Juno gradually performs worse than the baseline since the
overhead to simulate ray tracing with the CUDA core sup-
presses the tiny positive effect brought by the sparsity.
Results in Fig. 11(a) imply that the performance of Juno

is bound by the performance of RT cores. So, we expect a
performance improvement with a faster RT core. According
to the white paper of NVIDIA Ada architecture [56], the
Gen.3 RT core of Ada GPUs has 2× throughput compared to
a Gen.2 RT core of Ampere GPUs. As shown in Fig. 14(b),
on average of three 1M datasets, RTX4090 has 1.5× higher
improvement over the baseline than Tesla A40. Notice that
the throughput of CUDA cores and Tensor cores of RTX4090
is 1.4× of A40 GPU per SM [52, 56].

6.5 Robustness Discussions
Since Juno adopts an approximate search methodology, we
delve deeper into its robustness aspect, focusing on concerns
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that researchers may have pertaining to accuracy guarantees
and dataset characteristics.

AccuracyGuarantee. Similar to our baseline ANN search
framework, Juno does not offer a theoretical accuracy guar-
antee and relies on the quality of offline clustering. Nonethe-
less, it has the capability to support lossless searching through
a series of minor adjustments: i) exhaustively searching all
IVF clusters, equivalent to a Flat index, ensures that all
search points are thoroughly explored, leaving no potential
neighbors missed. ii) projecting all original search points
(rather than PQ codebook entries) into a two-dimensional
space, iii) and employing ray tracing to calculate precise
distances between search points (rather than PQ codebook
entries) and queries. As a result, we can guarantee the search
accuracy and use Juno in scenarios with stringent search
quality requirements.
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Figure 15. Word perplexity of Llama-7B with different
amount of attention remained.

Dataset Characteristics. Juno leverages sparsity and
locality inherent in high-dimensional ANN search to im-
prove efficiency. Critically, Juno does NO dataset-specific
tuning and optimization. As we have shown in the above
results, Juno consistently delivers significant performance
improvements across a number of popular datasets, despite
their different levels of sparsity and redundancy character-
istics. Furthermore, in the era of training expansive foun-
dational models using vast datasets, the data exhibit an es-
calating trend of becoming increasingly sparse and redun-
dant [12, 18, 19, 25, 32]. Those foundational models adopt
the decoder-based Transformer architecture that adopts the
multi-head attention mechanism. The memory and compu-
tation complexity of attention mechanism scales quadrat-
icly with the sequence length, making it the main bottle-
neck when dealing with long input sequences. On the other
hand, the attention mechanism essentially calculates the in-
ner product between query vectors and key vectors, which
correspond to the query points and search points in vec-
tor search. Prior works have shown that keeping the most
significant attention values can still preserve the model accu-
racy [8, 38], making LLM an ideal candidate to be accelerated
by ANN search. This phenomenon underscores the promis-
ing potential of JUNO in future.
To verify, we conduct an experiment on Llama-7B [66]. Recall

that 30%-50% nearest entries should be preserved to maintain
search qualities in ANN search according to Fig. 4 and Fig. 5,
while as shown in Fig. 15, a commendable quality can be
sustained with less than 20% nearest tokens attended.

7 Related Work
Since there are two aspects, i.e., indexing and encoding, in
an ANN algorithm, we compare Juno with existing works
in these two algorithmic aspects and hardware acceleration.

Indexing. Indexing techniques aim to compress the search
space by eliminating unnecessary search points. Except for
the trival flat index that store the complete database, one ex-
ample of such technique is the inverted file index (IVF) [43],
which organizes search points into clusters and selects sev-
eral closest clusters when searching (search points in other
unselected clusters are ignored). Another type of technique
involves graph-based methods that construct a nearest neigh-
bor graph to quickly prune the search space [16, 31, 69]. To ac-
celerate thesemethods, heuristic-based approaches [6, 20, 33]
have been proposed. Currently, among these works, hi-
erarchical navigable small world (HNSW) [45] and navigat-
ing spread-out graph (NSG) [21] are the most representative.
The HNSW construct the neighbor graph hierarchically, with
the search going deeper, the graph have higher degree and
shorter edges. So that the search can quickly choose a good
search direction and get good enough results in log-scale. The
NSG further reduce the size and degree of graphs, thus reduce
the length of search path via setting navigation points from
which the search begins. Additionally, tree-based techniques
including kd-tree and octree [9, 48], and locality-sensitive
hashing (LSH) [13, 14] are also commonly used for indexing.
Noted that Juno is not limited to specific indexing methods,
and is compatible with Flat, IVF, HNSW, etc.

Encoding. Encoding techniques aim to reduce the mem-
ory consumption of search points. The most commonly used
technique is product quantization (PQ) [35], which splits the
space into several subspaces and encodes the search point
projections. Several techniques have been proposed to op-
timize the codebook quality thanks to its strong relation
between search quality, such as DPQ [39] and OPQ [23]. Ad-
ditionally, scalar quantization (SQ) [77] maps vector compo-
nents separately and linearly, similar to traditional quantiza-
tion in DNNs [26, 27]. Additive quantization (AQ) [3] encodes
search points as a sum of codebook entries. Juno currently
supports product quantization (PQ) only.

Hardware Acceleration. There are several specialized
architecture designs including hardware support for hierar-
chical product quantization [1] and fused high-performance
k-selection [75]. ANNA proposed an end-to-end hardware
solution for PQ-based ANN search [41]. Several architectural
designs based on tree-like data structures [9, 74] are proposed
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for low-dimensional ANN search. In addition to computa-
tion, large-scale ANN search presents severe challenges to
the memory and storage subsystems. DiskANN presented a
graph-based indexing that can search with limited RAM and
cheap solid-state drives [34]. SPANN presented a memory-
disk hybrid indexing following the inverted file index [10].
Those solutions employ partitioning techniques to divide
large datasets into smaller chunks for index creation and
processing, in order to overcome resource limitations. Partic-
ularly in the case of GPU-accelerated ANNS, the GPU’s mem-
ory capacity is often inadequate to load the entire dataset.
As such, we believe that evaluating a 100M dataset would be
adequate to showcase the superior performance of JUNO.

Researchers have also proposed various techniques to map
the ANN search to existing hardware. ScANN optimizes the
ANN search with the AVX ISA on CPUs [29]. RTNNmaps the
low-dimensional ANN search to the RT core [78]. Our system
seeks to harness the power of the RT core to accelerate more
general ANN search in high-dimensional spaces.

8 Conclusion
In this work, we have presented Juno, an end-to-end approx-
imate nearest neighbor (ANN) search system that incorpo-
rates a sparsity-aware codebook entry selection algorithm
and a highly efficient RT core mapping. The key in our algo-
rithm is to exploit the opportunities of sparsity and spatial
locality that we have identified through detailed profiling.
Specifically, we employ a distance threshold filtering that
can be efficiently mapped to RT cores. Additionally, we op-
timize the system with time-based hit distance calculation,
hit count-based aggressive approximation, and Tensor-RT
core pipelining. Evaluation of Juno on multiples datasets
demonstrates a 2.1×-8.5× improvement over existing prod-
uct quantization based ANN search in search throughput
across various scenarios.
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