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Abstract

The success of deep neural networks (DNNs) has sparked
efforts to analyze (e.g., tracing) and optimize (e.g., pruning)
them. These tasks have specific requirements and ad-hoc
implementations in current execution backends like Ten-
sorFlow/PyTorch, which require developers to manage frag-
mented interfaces and adapt their codes to diverse models.
In this study, we propose a new framework called Amanda
to streamline the development of these tasks. We formal-
ize the implementation of these tasks as neural network
instrumentation, which involves introducing instrumen-
tation into the operator level of DNNs. This allows us to
abstract DNN analysis and optimization tasks as instrumen-
tation tools on various DNN models. We build Amanda with
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two levels of APIs to achieve a unified, extensible, and effi-
cient instrumentation design. The user-level API provides a
unified operator-grained instrumentation API for different
backends. Meanwhile, internally, we design a set of callback-
centric APIs for managing and optimizing the execution of
original and instrumentation codes in different backends.
Through these design principles, the Amanda framework
can accommodate a broad spectrum of use cases, such as
tracing, profiling, pruning, and quantization, across different
backends (e.g., TensorFlow/PyTorch) and execution modes
(graph/eager mode). Moreover, our efficient execution man-
agement ensures that the performance overhead is typically
kept within 5%.
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1 Introduction

Deep neural network (DNN) has emerged as the dominant
technology in various intelligent tasks such as natural lan-
guage understanding [47, 67], computer vision [22, 43, 68],
and speech recognition [79]. However, DNNs are difficult to
deploy owing to their excessive computing and memory con-
sumption [15, 27] as well as black-box nature [21, 46]. There-
fore, numerous research works focus on the analysis and opti-
mization of DNNs. Examples include tracing the activation of
neurons revealing new insights into DNN inferences [30, 56],
optimizing DNN memory usage [62, 69], and compressing
DNNss through quantization or pruning [33, 34, 36, 40].

The common requirements of the DNN analysis and op-
timization tasks are to monitor and manipulate the ex-
ecution process of an existing DNN model. However, we
find that researchers or developers implement those tasks
in an ad-hoc way because of the limited support from exe-
cution backends, including TensorFlow/PyTorch. Different
tasks require a diverse set of modification points and com-
putation states (e.g., various tensors). For example, weight
pruning [11] improves DNNs’ computation efficiency by
compressing their static weight tensors at every training iter-
ation, while activation pruning [73, 75] and quantization [28]
are performed at each layer. Quantization tasks [28] may
also require activation tensors and corresponding gradient
tensors in the back-propagation process. As a result, differ-
ent tasks rely on fragmented approaches, such as PyTorch’s
module hook [61], TensorFlow’s session hook [9], and even
source-code wrapping.

Due to the inconsistent DNN modification points and com-
putational states, developers must manually deal with the
wide interaction surface between their analysis/optimization
tasks and DNN models. This manual process may lead to
implementations that are bound to a particular execution
backend or even a specific model. Moreover, developers with
a machine learning background may need to understand
the low-level details of the underlying execution backends,
such as the graph and eager execution mode. The graph
mode separates the model building and the execution stage,
while the eager mode evaluates the user operations imme-
diately [60]. The graph mode allows for the global graph
structure of the model to be available, but modifications re-
quire the model to be rewritten. And the eager mode does not
have an explicit graph structure but can introduce complex
control flow operations. This additional level of inconsis-
tency presents significant challenges for researchers in their
efforts to analyze and optimize DNNss.

In this study, we propose addressing the aforementioned
fragmented situation by borrowing the mature instrumen-
tation concept from program analysis [54, 74]. We extend
the instrumentation concept to DNNs’ operators, which are
multi-input/-output functions with high-level model seman-
tics. With our approach, users can abstract the analysis and
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optimization tasks as instrumentation tools and implement
those tools by inserting codes to monitor or manipulate the
execution process of a target DNN without interacting with
its implementation detail. Our instrumentation model unifies
the diverse modification points to a universal operator in-
strumentation point abstraction, which we find is the finest
granularity required in those tasks. Other instrumentation
points, such as iteration, forward, and backward processes
can be derived by combining the operator-level instrumen-
tation point and context.

With the above insights, we present Amanda framework, a
unified, portable, reusable, and composable instrumenta-
tion infrastructure to facilitate the analysis and optimization
tasks on existing DNN models. Amanda provides the unified
operator-centric user-level instrumentation APIs that hide
the details of underlying execution backends. These APIs
cover a variety of instrumentation points and provide access
to rich instrumentation context with different tensors in the
forward and backward computation. They let developers
monitor and manipulate DNNs without concern about the
complexity of accessing their implementation details.

As a result, instrumentation tools implemented through
Amanda are decoupled from current ad-hoc instrumenta-
tion practices, making them DNN-model-independent and
portable to different DNNs in the same backend framework.
Furthermore, Amanda also provides an extra context map-
ping instrumentation tool that transforms the backend frame-
work’s context in advance, making those instrumentation
tools even more portable across backend frameworks.

We take a layered approach to make Amanda tools reusable
and composable. To accommodate common requirements
across different tasks, Amanda allows users to specify depen-
dencies of other instrumentation tools and internally applies
multiple tools. In this sense, Amanda tools themselves are
layered, where low-layer tools can be reused and composed
into a higher-layer tool that facilitates instrumentation at the
higher layer. Current practice makes such composition diffi-
cult, if not impossible. We envision that experienced Amanda
users would contribute their individual tools in the future,
making Amanda a community-maintained and long-term-
evolving general infrastructure. Moreover, Amanda encloses
several built-in instrumentation tools to address design chal-
lenges, including the one that builds a computation graph
in the eager mode, which users can pre-load to access the
graph-level structure in the instrumentation context.

Our work achieves the above unified user-level APIs across
different backends (i.e., TensorFlow/PyTorch) and different
execution modes (i.e., graph/eager) by adopting a two-layer
modular design. We first build a backend-dependent layer
called backend driver that handles the per-backend complex-
ity. These drivers offer common low-level callback-centric
APIs that implement new or utilize existing callback mech-
anisms for each backend. We then construct our universal
operator-level instrumentation model on top of this common
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callback mechanism. Currently, we have implemented dri-
vers for PyTorch and TensorFlow, respectively, for the eager
and graph execution mode in Amanda.

We also construct a backend-independent layer that is
called Amanda-core on top of the common callback-centric
backend interface. The aforementioned backend interface
defines the required instrumentation points to register call-
backs and contexts from the execution. This layer manages
callbacks and maps them with operator granularity, even
caching them to minimize instrumentation overhead. The
design makes Amanda easily extendable to different DNN
execution backends with a clearly defined backend interface.

To elaborate, we have extensively evaluated Amanda with
multiple neural network instrumentation tasks, including
tracing, profiling, pruning, and quantization. We show that
these tools can be implemented with Amanda’s APIs with
fewer lines of code than a direct implementation. The over-
head of Amanda is less than 5% for most cases, making it
applicable in real-world scenarios.

We make the following contributions in this work.

e We propose a novel DNN instrumentation concept with
simple operator abstraction to support analysis and opti-
mization applications of DNN models.

e We propose the Amanda DNN instrumentation framework
to support DNN instrumentation applications and imple-
ment the framework on two mainstream backends.

e We develop multiple instrumentation tools for representa-
tive DNN analysis and optimization tasks using Amanda
to evaluate its generality, consistency, and feasibility.

2 Background and Motivation

The analysis and optimization of DNNs. With DNNs’
recent success, a large number of works have emerged, which
aim to analyze [7, 84] or accelerate [71] their inference or
training. The common requirement of these tasks is to moni-
tor and manipulate the computation process of DNN models,
whose behavior closely resembles the general concept of
instrumentation in traditional program analysis. To better
stress how the concept of instrumentation supports those
analysis and optimization tasks, we refer to them as DNN in-
strumentation tasks and use abstraction and terminology
of instrumentation to analyze those tasks. In this section,
we show that current practices for DNN instrumentation
tasks are far less mature and even fragmented compared
with program instrumentations. Several major difficulties
have to be conquered by the researchers or developers to
facilitate a specific task.

The pain of ad-hoc instrumentation points. When
instrumenting a DNN model, applications require a set of
diverse instrumentation points. That is where the runtime
state information is accessed or the manipulation operation
is applied. With current DNN execution backends, there exist
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Fig. 1. Instrumentation points of different pruning methods.

many different interfaces to access the DNN. As such, ad hoc
implementation designs are required accordingly.

We use network pruning algorithms, a popular approach
to compress DNN models for better computation efficiency,
as examples here. The pruning process exploits the inherent
redundancy in the DNN models to transform the original,
dense model into a sparse model with fewer parameters and
lower computation costs. There are vast works of literature
on DNN pruning [20, 41, 51, 53, 55, 66, 76], which can be
generally divided into static and dynamic pruning methods.
The static pruning method [41] only removes the model
weight parameters statically and performs finetuning with
extra training iterations to recover the accuracy loss. Dif-
ferent static pruning methods may apply different sparsity
patterns such as the unstructured element-wise pattern [38]
and structured channel-wise pattern [45], which lead to dif-
ferent accuracy and computation efficiency trade-off [33].
PyTorch and Tensorflow provide built-in tools for supporting
the basic static pruning method [9, 61]. However, they only
support a few fixed sparsity patterns, and their interfaces are
counter-intuitive or even unusable [33]. As such, researchers
often need to manually wrap the step function of the opti-
mizer to implement their own static pruning methods. The
example of third-party pruning tool APEX [1] in Fig. 1€
takes such an optimizer-wrapping approach, which manu-
ally updates weight tensors and their associated gradients
in the fine-tuning process.

The above implementation relies on the container object
module in PyTorch to access the parameters statically, which
cannot work for other dynamic pruning methods with more
complex instrumentation points requirements. The dynamic
pruning method determines sparsity during training and
updates it during the procedure, which generally has better
accuracy, however, more complicated pruning process [31,
32, 42]. Given its dynamic nature, these methods prune both
weight tensors and activation tensors. As such, they require
operator-level instrumentation points to access the runtime
activation tensors and the corresponding gradients as shown
with Fig. 1@). To insert customized operators or algorithms
at these instrumentation points, developers have to deal with
ad-hoc interfaces and programming models.

The pain of fragmented state representations. Vari-
ous DNN instrumentation tasks also demand ad-hoc state
representations. We use another widely used DNN compres-
sion method quantization [28, 36, 37, 81], which reduces
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Weight Activation Instrumentation

Weight Gradient Activation Gradient Points Graph
Quantization Methods
Static PTQ [48] v X X X Operator X
Dynamic PTQ [78] v X v X Operator X
QAT [59] v v v v Operator X
Other Instrumentation Tasks
Weight Pruning [41] 4 v X X Iteration X
Activation Pruning [73] X X v v Operator X
Profiling [2] v X v X Operator X
Effective Path [63] v v v v Operator v
DTR [50] v LS v X Operator v
Instrumentation Interfaces in Current Execution Backends
Source Modification v v v X Operator X
Module Hook Partial ~ Partial Partial Partial Module X
Amanda v v v v Operator v

Table 1. The computation state requirements of different
DNN model optimization/analysis tasks (top two parts) and
capabilities of current frameworks (bottom part).

the number of bits for DNN tensors, as an example to illus-
trate the point. Quantizing 32-bit floating-point-based DNNs
with 8-bit integer numbers achieves 4X storage and memory
bandwidth reduction and also simplifies the hardware pro-
cessing units. According to their usages, quantization meth-
ods are categorized into static post-training quantization
(static PTQ) [48], dynamic post-training quantization (dy-
namic PTQ) [78] and quantization aware training (QAT) [59].

These above quantization methods require different com-
putation states, which we summarize in Tbl. 1. First, they
require different types of tensors. The static PTQ only com-
presses the weight tensors, while dynamic PTQ compresses
both weight and activation tensors. The QAT uses extra train-
ing steps to mitigate the accuracy loss caused by quantization,
which further requires gradient tensors.

We find that the diverse requirements of quantization
methods lead to fragmented implementations. The current
built-in QAT tool of PyTorch framework only supports ba-
sic convolution and linear operators [61]. To implement
their own quantization methods, developers often manually
wrap every PyTorch module with additional quantization
operators. However, many DNN models also use PyTorch’s
functional APIs [61], for which the above module-wrapping
method fails. As such, massive ad-hoc efforts are needed
to extract the desired state representations from each DNN
model.

The extra complexity dimension of execution modes.
Together with the aforementioned ad-hoc instrumentation
points and representation states, the backend execution modes,
which include equally popular graph and eager mode, add an-
other dimension of complexity for users to implement their
instrumentation tasks. In the graph mode, each model is first
compiled into a computation graph consisting of operators
and then feed to runtime for execution. In contrast, oper-
ators are executed immediately in eager mode. Those two
modes provide different interfaces for implementing DNN
instrumentation tasks, as shown in the last part of Tbl. 1.
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Fig. 2. The operator-based instrumentation abstraction
adopted by Amanda to support DNN optimization tasks.

As such, developers have to deal with inconsistency from
not only the ad-hoc instrumentation points and fragmented
state representations, and also the complexity introduced by
the execution backend.

We use the sparsity profiling workload [32] in Tbl. 1 to
highlight its different implementation rationals in different
backends. This workload examines the sparsity of weight/ac-
tivation tensors in a DNN model. In the eager mode such
as PyTorch, users can easily modify the source code, while
users need to use the callback mechanism in the graph mode
of TensorFlow to achieve the same functionality [60].

Summary. Tbl 1 summarizes the required instrumenta-
tion points and computational states in various studied DNN
instrumentation tasks (first two parts). Besides various ten-
sors, certain tasks such as effective path [63] and dynamic
tensor rematerialization [50] also require the model’s graph
structure: the former uses it to extract sparse activation for
interpreting the model’s inference process while the latter
use it for memory management optimization. Current back-
ends have many inconveniences and limitations to support
those tasks (last part). This motivates us to design and im-
plement Amanda, which provides a universal abstraction
for DNN instrumentation with a wide range of instrumenta-
tion points and state representations. Amanda facilitates the
development of portable DNN instrumentation tasks.

3 Operator Instrumentation Abstraction

To address the fragmented choices of current DNN optimiza-
tion and analysis tasks, we propose to bring the wisdom of
program instrumentation into DNN frameworks, including
PyTorch and TensorFlow. To the best of our knowledge, we
are the first to formally introduce such DNN level instru-
mentation and provide principled support. We explain the
similarities and differences between DNN and the program.

Program instrumentation frameworks, such as Pin [54]
and NVbit [74], have been widely used for various purposes,
such as performance analysis, error diagnosis and informa-
tion tracing. These frameworks provide user-friendly APIs
that allow developers to insert analysis or emulation codes
into a target program without modifying the source program.
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The same instrumentation codes can be reused for different
programs, making instrumentation more efficient.

Similarly, DNN-level instrumentation involves inserting
user-defined codes or operators into a target DNN model
executed on a certain backend like TensorFlow and PyTorch.
With this programming abstraction, developers can write
codes for their tasks directly without touching the DNN
model source code, as shown in Fig. 2. Users write instrumen-
tation code given the computation states as instrumentation
context and specify the desired instrumentation points. This
decouples the implementation of optimization and analysis
tasks from the implementation of DNN models.

Different from the program instrumentation, we advo-
cate the operator-level instrumentation abstraction for DNN
instrumentation. Our key observation is that modern auto-
differentiation frameworks for DNNs are all built with the
same operator-based design [9, 13, 18, 61]. This design char-
acterizes a DNN model as a data-flow graph (DFG) of op-
erators and perform auto-differentiation for each operators
reversely. The fundamental abstraction is the basic execution
functions as nodes in the neural network DFG with multiple
tensor or scalar inputs and outputs. Although different AD
frameworks consists of diverse operator sets and implemen-
tations, this abstraction is always available. Therefore, we
can inspect and modify the execution of DNNs with a unified
operator instrumentation interface, similar to instruction-
based binary instrumentation. Tbl. 2 shows the conceptual
comparison of binary and DNN instrumentation.

Our operator-based instrumentation abstraction, shown
in Fig. 2 provides simple callback trigger points before and
after the execution of an operator. Under this programming
abstraction, the ad-hoc DNN model entry points for differ-
ent tasks are unified as instrumentation points surrounding
the operators. Higher-level instrumentation points, such as
modules or subgraphs, can be composed of operator-level
instrumentation points by locating the proper operator to
insert the higher-level instrumentation codes.

Futhermore, the operator-based abstraction lets users ac-
cess different tensors as edges connecting two operators in
the instrumentation context. As all the computation state
tensors are connected to the computation graph as edges,
diverse state representations are accessible through the same
interface, including dynamic activation tensors and implicit
backward gradient tensors. The abstraction of operators and

‘ Instrumentation Points ‘ State Representations

Binary | Instruction | Function | Program Register/Memory/
Type/...
DNN Operator | Module/ Graph Weight/Activation/
Subgraph Gradient/...

Table 2. Binary and DNN instrumentation comparison.
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class PruningTool (amanda.Tool):

1

2 def __init__(self):

3 self.depends_on(

4 MappingTool (rules=[["tensorflow", tf_type

1,...,1))

5 # register callbacks in forward and backward
execution

6 self.add_inst_for_op(self.instrumentation)

7 self.add_inst_for_op(self.
backward_instrumentation,

8 backward=True,

require_outputs=True)
9 # arbitrary pruning algorithm

10 def get_mask(self, tensor: Tensor) -> Tensor:

12 # analysis routines

13 def instrumentation(self, context: amanda.OpContext
):
14 if context["type"] in ["conv2d", J:
15 weight = context.get_inputs()[1]
16 mask = self.get_mask(weight)
17 context["mask"] = mask
18 context.insert_before_op(self.
mask_forward_weight,
19 inputs=[1], mask=mask)
20 def backward_instrumentation(self, context: amanda.
OpContext):
21 if context["backward_type"] in ["conv2d_backward"
,1:
22 weight_grad = context.get_grad_inputs()[0]
23 mask = context["mask"]
24 context.insert_after_backward_op(
25 self.mask_backward_gradient, grad_inputs=[0],
mask=mask)
26 # instrumentation routines
27 def mask_forward_weight(self, weight, mask):
28 return weight * mask

29 def mask_backward_gradient(self, weight_grad, mask)

30 return weight_grad x mask

31| # apply instrumentation tool to DNN execution
32| with amanda.apply(PruningTool()):

33 resnet50 (model_input)

Listing 1. Amanda’s operator instrumentation tool example
with a pruning tool on PyTorch backend.

tensors is independent of the underlying execution backends.
As such, users can insert codes at their specified points with
access to a rich instrumentation context, without knowing
or spending the efforts to modify the implementation details
of the underlying neural network model.

4 Amanda Instrumentation Interface

Following the previously discussed abstraction, we present
the user-level interface of the Amanda instrumentation frame-
work. Next, a minimum example is provided to demonstrate
the usage of Amanda and its instrumentation tools.

4.1 User Level Interface Introduction

The Amanda framework provides a user interface that is
based on general instrumentation interfaces borrowed from
program instrumentation frameworks. Users can use those
interfaces to implement their DNN analysis and optimization
tasks as Amanda tools composed of analysis routines and
instrumentations routines. The analysis routines analyze the
program or DNN model statically without runtime states.
The analysis routines filter and locate the desired position
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1| class Tool:

2 def add_inst_for_op(

3 self,

4 callback: Callable[[OpContext], Nonel],

5 backward: bool = False,

6 require_outputs: bool = False,

7 ) -> None:

8 def depends_on(self, *tools: Tool) -> None:

Listing 2. Registration APIs: register analysis routines.

1| class OpContext(dict):

2 insert_before_op(self, func, inputs, **kwargs)

3 insert_after_op(self, func, outputs, **xkwargs)

4 insert_before_backward_op(self, func,grad_out,h xx
kwargs)

5 insert_after_backward_op(self, func,grad_in,xx
kwargs)

6 replace_op(self, func, inputs, #*xkwargs)

7 replace_backward_op(self, func,grad_out ,*xkwargs)

Listing 3. Instrumentation APIs: modify models.

to insert instrumentation routines defined by the same tool.
These instrumentation routines, which are extra codes or
operators inserted into the original DNN execution process,
let users collect data and perform various optimization tasks.

The user-level interfaces in Amanda are provided as a
Python library with C++ extensions. To implement a DNN
optimization or analysis task as an Amanda tool, users can
declare a class that inherits from amanda.Tool, or create
an amanda.Tool instance directly. The class-based method
provides a language-native way to manage the tool’s state
through instance variables, while the alternative method is
more suitable for stateless tools or one-off use cases.

Example. As a concrete example, we walk through Lst. 1
to demonstrate how to these concepts to implement an in-
strumentation tool that can locate and prune the weight
tensor of convolution operators in any DNN models [33]. To
begin, we register analysis routines (Line 6 & 7) that deter-
mine the forward and backward convolution operators to
prune. Within the analysis routine, Amanda provides the
context of each operator. In the forward analysis routine of
this instance, we retrieve the operator type from the context
(Line 14). If the operator is a conv2d, we compute its prun-
ing mask using an arbitrary get_mask () method, which is
determined by the pruning algorithms (Line 16). Then we
insert a forward instrumentation routine just before the op-
erator executes pruning with the sparse mask at runtime
(Line 18). This instrumentation routine prunes the weight
tensor each time the operator is executed (Line 27). We also
inject the mask into the instrumentation context so that the
backward gradient pruning can access the same mask (Line
17). Backward instrumentation pruning the gradient of con-
volution weights is similar to the forward and the analysis
and instrumentation routines are defined in Lines 20 and 29.
This tool can be easily applied to any DNN model without
the need to reference its source code (Line 32).

Y. Guan, Y. Qiu, et al.

1| class OpContext(dict):

2 def get_op(self):

3 def get_op_id(self):

4 def get_inputs(self):

5 def get_outputs(self):

6 def get_backward_op(self):

7 def get_backward_op_id(self):
8 def get_grad_outputs(self):

9 def get_grad_inputs(self):

Listing 4. Inspection APIs: retrieve op information.

4.2 Amanda Tool APIs

Tool APIs are the key user-level APIs Amanda provided and
called by the instrumentation tool instances. They are catego-
rized into four groups as registration APIs, instrumentation
APIs, inspection APIs and control APIs.

Registration APIs are used to register callbacks for all
forward or backward ops, which are referred to as analysis
routines. The registration APIs are shown in Lst. 2. There are
two arguments specifying the exact instrumentation point
of the analysis routine. They are backward specifying the
backward graph and require_outputs specifying after the
execution of the operator. The combination of the two argu-
ments leads to four different registration locations, which are
before the forward operator (before_forward_op), after the
forward operator (after_forward_op), before the backward
operator (before_backward_op), and after the backward op-
erator (after_backward_op).

Instrumentation APIs modify the DNN model on-the-fly
with the specified codes or operator. Thus it provide users
the capability of accessing or modifying the instrumentation
context at runtime, which is referred to as instrumentation
routines. As shown in Lst. 3, modification can be achieved
by injecting instrumentation routines before or after a target
operator. Different from the analysis routines, instrumenta-
tion routines are called dynamically each time an operator
executes with runtime states. For example, to perform some
actions before an op is executed, users provide a function,
which accepts the original input tensors of the op and re-
turns the updated input tensors, to insert_before_op()
API Instrumentation APIs also have a parameter, such as
inputs indicating which computation states are required
by the instrumentation routine. Besides, Amanda allows in-
strumentation tools to inject outside parameters into the
instrumentation routines with kwargs. That means the in-
serted operator can take additional states into the original
DNN execution during execution. Amanda supports two
kinds of modifications of the DNN operators: insertion and
replacement. By replacing the operator with an identity op-
erator which forwards its inputs, the removal semantic of
operator can be also achieved.

Inspection APIs provide computation states as instru-
mentation context illustrated in Lst. 4. The available con-
text for each operator includes the operator metadata, the
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def apply(*tools: Tool):
def disabled():

def enabled():

def cache_disabled():
def cache_enabled():

o v A W =

Listing 5. Control APIs: enable and disable tools or caches.

corresponding operator in the backward process, and the
input/output tensors of these two operators. In addition,
Amanda also assigns a unique label (or ID) for each operator,
which is similar to the program counter value of each instruc-
tion in a program. Users can leverage this ID to aggregate
statistical metrics across multiple iterations or store extra
operator information. Note that those inspection APIs are
called in the analysis routine but the context is provided for
instrumentation routine at runtime.

Control APIs let users control Amanda’s instrumentation
behavior. Users can leverage the first two disabled() and
enabled() APIs in Lst. 5 to specify the instrumentation
scope in the DNN model. Instrumentation tools will be ap-
plied to all executed operators executed inside the apply ()
API unless Amanda is disabled on purpose. Similarly, the
cache control APIs manages the scope of the cache mecha-
nism of analysis routines, which we will explain later.

5 Amanda System Design

In this section, we first present the design overview of Amanda
that implements the DNN instrumentation interface in a
layered fashion to address the divergences of different hier-
archies. We then demonstrate the challenges and solutions
in Amanda called Amanda-core. Finally, we explain how
Amanda bridges to different backends with modular drivers
to make the instrumentation infrastructure extendable.

5.1 Amanda System Overview

The system design of Amanda is depicted in Fig. 3. Amanda
comprises two layers of interfaces: the tool APIs and backend
APIs, represented as different boxes. The former APIs inter-
act with high-level user tools while the latter APIs interact
with low-level DNN backends, respectively. As explained in
the previous section, the user-level tool APIs are provided
for users to develop instrumentation tools for various DNN
analysis or optimization tasks. Additionally, certain features
of Amanda’s framework are delivered as built-in instrumen-
tation tools, such as context transformation and graph struc-
tural tracing. These tools are also implemented using the
same user-level instrumentation interface, demonstrating
the feasibility and expressiveness of our instrumentation
framework design, as elaborated later in this paper.

The Amanda system employs backend APIs to effectively
separate the backend-independent Amanda-core from the
backend-dependent drivers. As discussed in the Sec. 2, the
current DNN instrumentation tasks exhibit divergences at
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Fig. 3. Architecture of Amanda instrumentation framework.

multiple hierarchies. To address the complexity arising from
different backends and to establish a unified interface, Amanda
adopts a layered system design that segregates the backend-
related and irrelevant components as Fig. 3 shows. The mod-
ular backend drivers implement the necessary raw callback
mechanism for operator instrumentation at each backend’s
auto-differentiation execution engine. The Amanda core
manages the inserted raw callbacks, implementing the opera-
tor instrumentation abstraction and optimizing for efficiency.
To facilitate this, the backend API defines the required raw
call back entry, instrumentation contexts, and meta informa-
tion for their management.

This layered design of Amanda promotes transparency
and adaptability with respect to the execution backends. To
accommodate a new backend, we only need to implement
the backend-dependent drivers and support the required
backend APIs. In the following, we introduce the detailed
implementation of Amanda-core and backend drivers.

5.2 Amanda Core

The Amanda-core is composed of multiple components as
shown in Fig. 3. They are integrated to effectively tackle the
design and implementation challenges faced by the system.
We highlight and address several of these challenges.

Harmonizing instrumentation semantics on different
execution modes.  One of the challenges for DNN instru-
mentation is the presence of multiple execution modes in the
backends, namely eager mode and graph mode. In the graph
execution mode, analysis routines are statically executed
during the construction of the computation graph, while
instrumentation routines are dynamically inserted and pro-
cessed in the DNN execution graph, as illustrated in Fig. 4 @.
This implementation approach is similar to binary instru-
mentation methods [54, 74], where analysis routines are
invoked during the recompilation of the binary program to
its instrumented version, prior to actual execution.
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Fig. 4. Analysis routines and instrumentation routines with
operator abstraction on eager and graph execution mode.

However, the eager execution mode executes each op-
erators instantly without an explicit graph-building phase,
for which we propose the lazy instrumentation of analysis
routines when the operator is executed for the first time
as shown with @. The instrumentation routines are trig-
gered eagerly after the analysis routine’s registration. To
elaborate, Amanda core assigns a consistent attribute ID for
each operator with linear congruential generator (LCG) [39]
to track their execution between iterations. The callback
management triggers analysis routines and keeps the instru-
mentation routines’ log for later iterations.

Addressing AD mechanism. Another challenge for DNN
instrumentation is how to handle of auto-differentiation (AD)
mechanism in existing DNN frameworks. With such a mech-
anism, users only need to declare the forward execution part
of the DNN, and the framework automatically performs back-
propagation [29], which is not exposed to end users. Unlike
traditional program instrumentation, which only deals with
the original program, DNN instrumentation needs to take
into account both the original “program" (i.e., forward com-
putation) and the AD program (i.e., backward computation).

The design of Amanda includes support for registering
instrumentation routines to the backward operators within
the forward analysis routine, achieved by specifying the
backward argument in the registration API as shown in
Fig. 5. This design feature simplifies analysis and optimiza-
tion tasks such as fine-tuning after pruning [33], as develop-
ers do not need to collect the state representations across the
two programs manually. Amanda is responsible for manag-
ing operator callbacks between the two programs to ensure
the correct provision of state representations and instru-
mentation routines. Additionally, since one forward oper-
ator can launch multiple backward operators for gradient
computation, Amanda-core tracks the backward operators
launched by each forward operator and provides instrumen-
tation points and forward context for all of them. This allows
for the visibility of hidden backward state representations,
such as the intermediate gradient tensor.

Another challenge brought by the auto-differentiation
(AD) feature is that the instrumented code in the forward
graph could alter the original backward graph at runtime.
To address this issue, the Amanda-core disables the AD
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Fig. 5. Operator mapping of AD instrumentation.

for inserted instrumentation routines to isolate the instru-
mented code. For instance, if an instrumentation tool intends
to gather forward activation tensors and calculate their L1
norms, the inserted forward operators should not modify
the backward process with L1 gradient calculations.

To provide flexibility for experienced users, we also pro-
vide a control interface in Lst. 5 to overwrite the above be-
havior, i.e., allowing the inserted operators to participate in
the backward graph. This feature is useful when the instru-
mented code should participate in the backward calculation
such as the fine-tuning after pruning [33]. The pruning tool
might aim to insert sparsity masks for both the forward
matmul operator and its corresponding backward Matmul-
Backward operator. This can be achieved by enabling AD
of instrumented code and only instrumenting the forward
process. As this represents an advanced feature, the respon-
sibility for ensuring the safety of AD in instrumented code
lies with the tool developers.

Composable tools and context transformation. We
observe that certain tasks may share similar requirements,
such as sparsity profiling and standard context transforma-
tion in different pruning algorithms. To prevent redundant
work and encourage the reuse of low-level tools, Amanda
enables the usage of layered composable tools, which allows
multiple instrumentation tools to be used, as shown in Fig. 6.

Users can utilize the depends_on() registration API in
Lst. 2 to specify the dependencies for their tools. These depen-
dencies determine the triggering order of instrumentation
routines and the transformation of operator contexts. Specif-
ically, an instrumentation tool is considered dependent on
another tool when it needs to consume and be triggered after
the other tool. Amanda-core handles tool management by
resolving the dependency graph of instrumentation tools dur-
ing initialization and detecting loop dependencies. During
execution, the tools transform the instrumentation context
according to the determined dependency graph.
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Fig. 6. Composable instrumentation tools that transform the
context, like name and tensor layout, to a common format.

Certain design features of Amanda are supported as built-
in tools that can be directly utilized by the user tool through
pre-loading. For instance, we have designed and implemented
the graph tracing tool that provides the graph structure
of the DNN model in the instrumentation context, enabling
tasks [35] that require a global view or the ability to look
back from the current operator. Additionally, we have imple-
mented another subgraph rewriting tool that allows for
modifications on a subgraph granularity of the DNN model.
We anticipate that in the future, tool developers will be able
to combine built-in tools with other community-contributed
tools to support their high-level applications.

Amanda also includes a built-in context mapping tool
that performs transformation with user-defined rules be-
tween namespaces. As previously explained, although we
provide unified instrumentation points and interfaces across
different backends in Amanda, the raw context remains
backend-specific. State representations may have different
formats in various frameworks, such as tensor layouts or op-
erator naming conventions, as illustrated in Fig. 6. To achieve
the backend framework portability, the raw context is trans-
formed by intermediate layer mapping tools into a common
format that can be consumed by the same instrumentation
code. Thus, the transformation and high-level code can be
implemented as portable tools, with the transformation tools
being shared and reused by the high-level ones.

The built-in context mapping tools are used to support the
development of those transformation tools by allowing users
to only define transformation rules between namespaces
instead of implementing individual tools. A namespace is a
group of tags that specifies the framework name, version, and
execution mode. For instance, an operator in the namespace
“tensorflow/1.13/graph” indicates that it is executed on
TensorFlow 1.13 in graph mode. Because the composition
feature allows tools to update the operator’s context and

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

def tf_type(context: amanda.OpContext):

1

2 op = context.get_op()

3 context["type"] = op.type.lower()

4 if not context.is_forward():

5 backward_op = context.get_backward_op()

6 if backward_op.type == "Conv2DBackpropFilter":
7 context["backward_type"] = "conv2d_backward"
8| class PruningTool (amanda.Tool):

9 def __init__(self):

10 self.depends_on(

1 amanda. tools.mapping.MappingTool (

12 rules=[ ["tensorflow", tf_typel,

13 ["tensorflow", tf_get_shapel],

14 ["tensorflow", tf_get_mask],

15 ["pytorch", torch_typel,

16 ["pytorch", torch_get_shapel,

17 ["pytorch", torch_get_mask], 1))

Listing 6. Context mapping tool example with
transformation rules.

inject new state representations, this tool lets users register
a mapping rule as a state representation transformation func-
tion. We illustrate an example of the Amanda mapping tool
for the pruning tool in Sec. 4 with Lst. 6. With these map-
ping rules handling the transformation of raw context, the
pruning tool can be applied to both PyTorch and TensorFlow
backends. Notably, a mapping rule can register two functions
that transform the computation state representations held by
the context, one before and one after the analysis routines.
As a result, users can implement cross-framework instru-
mentation tools rely on the high-level semantics of DNNs
without dealing with the fragmented underlying details.

Minimizing instrumentation overhead via caching. In
the Amanda-core, we introduce a set of cache techniques to
optimize the instrumentation overhead in the eager mode
and graph mode, respectively. The basic idea is to cache the
redundant instrumentations and enable the reuse of repeated
ones so that we can reduce irrelevant instrumentations. To
elaborate, the instrumentation routines are represented as
action objects defined in backend APIs, which will be in-
troduced later in this paper. By logging the instrumentation
actions of each operator, Amanda utilizes a cache mechanism
to apply minimum DNN modifications and reduce redundant
callbacks on operators. The effect of this action cache varies
depending on the execution mode, as illustrated in Fig. 4. We
will demonstrate the details later in Sec. 5.3.

Addressing the language disparity. Modern DNN back-
ends are typically implemented in native languages such as
C++ language, while present users with Python-level pro-
gramming interfaces. The backend drivers employ runtime
replacement of specific Python implementations for the pur-
pose of instrumentation. To address this disparity, Amanda
core incorporates a lightweight cross-language interceptor
as a Python library, which dynamically replaces the specific
implementation as needed. This interceptor effectively en-
capsulates Python functions or underlying native binding
functions, eliminating the need for the driver to replace all
references to such functions without necessitating a heap
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scan replacement. Furthermore, the design of the interceptor
minimizes the introduction of cross-language trampolines,
resulting in a low overhead for cross-language binding. For
instance, even for small GPU kernels, the overhead is kept
below 10 ps.

5.3 Amanda Backend

To reduce the case-by-case engineering efforts for differ-
ent backends, we propose the implementation of a backend-
dependent driver that offers simple and standardized call-
back mechanisms. As shown in Fig. 7, various backends
may implement their callback mechanisms differently, but
they all provide a common intermediate abstraction layer
referred to as the backend interface. In other words, this
interface definition isolates the Amanda drivers from the
Amanda-core components, facilitating the reusability of the
Amanda-core and enabling the extensibility of backend dri-
vers. Amanda provides out-of-the-box driver support for
TensorFlow’s graph mode and PyTorch’s eager mode. The
drivers for other backends, such as MXNet [13] and Mind-
Spore [12], can be implemented in the similar programming
models, which are our future works.

Backend Interface. This thin abstraction layer defines
the necessary functional or storage interfaces by drivers
with OpContext and Action objects as shown in Fig. 7. The
runtime computation states surrounding an operator are rep-
resented by an OpContext object, which encapsulates raw
operator objects, contextual informations such as input ten-
sors and output tensors as well as instrumentation metadata.
This object is passed and rearranged through Amanda-cores
and user-level APIs. Its member function, trigger_call-
back(), provides a raw callback interception interface, im-
plemented by low-level drivers with an i_point argument
that assigns the instrumentation point.

We unify the implementation of various instrumentation
points, such as callbacks for forward and backward operators
to a common interface with the i_point as the dispatching
key. The Action object serves as the abstraction of an in-
strumentation action on the target DNN model. And all the
instrumentation actions applied to an operator are tracked
by its OpContext. The attributes of the Action object de-
termine the type of instrumentation, the inserted callback
function, and the required contextual tensors. Specifically,
there are six types of instrumentation actions, which are
the same as those in Lst. 3. Amanda will execute analysis
routines and record all the actions generated by them. The
registered actions are evaluated during the subsequent DNN
executions as instrumentation routines.

Eager Mode Driver. In our implementation of the eager
mode driver, we employ a technique called monkey-patching
to wrap original operators with additional callbacks. The
wrapped operator executes the instrumented actions before
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Fig. 7. Implementation of Amanda’s unified user-level inter-
face on different backends.

and after the original operator execution. However, there
are two main challenges to be addressed.

The first challenge is the non-trivial task of patching all
the operators, including the framework-native ones and user-
defined ones, as there is no global reference for all the op-
erators in the backend. To solve this problem, we snoop the
operator registration process of the backend, ensuring that
all registered operators, including dynamically linked ones
defined by users, are correctly patched. However, this pro-
cess also patches irrelevant operators, for which we use a
cache mechanism to overcome, as described in Sec. 5.2. The
second challenge is to correctly collect and map backward
operators to their corresponding forward operators, which
is essential for providing the necessary instrumentation con-
text required by the backend APIs. In the eager mode, the
backward operators are declared by the forward operators
and are constructed as a linked list for subsequent execution.
These backward operators do not have direct references to
their corresponding forward operators. To overcome this
challenge, we enhance the driver with the capability to incre-
mentally track the backward operators. Specifically, after the
execution of each forward operator, we traverse the back-
ward computation graph and assign those newly declared
backward operators to the current forward operator. In par-
ticular, we implement this tracking process using the raw
callback mechanism as a post-execution hook.

We then demonstrate the cache mechanism in the eager
mode drivers. By logging the instrumentation routines as
action on each operator, the action cache eliminates unneces-
sary callbacks for patched operators without cached actions,
resulting in significant performance improvements. To en-
sure the instrumentation points are provided for all dynamic
operators during the initial execution, Amanda patches all
operators, including irrelevant ones. By caching the instru-
mentation routines as action objects, operators that are not
instrumented by users are switched back to their vanilla
counterparts, and heavy analysis routines are reused. This
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Tasks Projects Type ‘ Graph Mode Eager Mode Amanda Tool ‘
| Interface Portable | Interface Portable |  Interface Portable |
Graph Tracing Built-in Analysis Graph All Module Hook Refactor | Instrumentation All
FLOPs Profiling [2,3,6,70] Analysis Graph All Module Hook Refactor | Instrumentation All
Effective Path [25, 63] Analysis Graph, Source Modification No Module Hook No Instrumentation All
Weight Pruning [33, 41, 77] | Optimization Session Hook No Module Parameter ~Refactor | Instrumentation All
Quantization Training | [10, 23, 49] | Optimization Source Modification No Module Hook Refactor | Instrumentation All

Table 3. Representative DNN analysis and optimization tasks that can be implemented as Amanda tools using its instrumenta-
tion interface comparison with their native implementations in different execution modes.

strategy eliminates redundant callbacks for empty instru-
mentation, thereby reducing the instrumentation overhead.

Graph Mode Driver. We implement this driver by modi-
fying the computation graph with operator insertions. The
driver retrieves the computation graph from the backend
runtime and replaces it with the modified version. The anal-
ysis routine is invoked during this rewriting process, while
the instrumentation routines are added to the graph as op-
erators and executed at runtime. One major challenge of
this rewriting approach is to ensure the isolation between
the instrumentation code and the original graph operators.
Specifically, the instrumented code should not be visible to
the operators of the original graph. For example, if the instru-
mentation code adds a parameter to the graph to maintain an
internal state, a graph saver operator from the original com-
putation graph may inadvertently include this parameter in
the checkpoint, which is an undesired behavior.

We develop a graph switching mechanism to effectively
address the above issue. The driver maintains two versions
of the graph: the original instance and the instrumented
instance. The instrumented graph is utilized for backend
runtime execution, while the original “vanilla" graph is used
by operators to access the graph. To seamlessly switch be-
tween the two graphs during runtime, we wrap the execution
call with a mechanism that updates the instrumented graph
with the latest computation states from the raw graph and
applies instrumentation actions. Additionally, after the in-
strumented execution, the raw graph’s computation states
are updated by the instrumented graph.

On the other hand, naively implementing the above graph
modification could be rather expensive in graph execution
backends. As such, we adopt the cache mechanism at a
coarse-grained graph level, where all actions applied to the
computation graph are cached as an instrumented graph.
The graph object is hashed and reused across executions
until further modifications are made. The heavy and time-
consuming graph rewrite/switch operation only occurs when
new instrumentation routines update the graph.

6 Evaluation: Amanda Tools

In this section, we evaluate the Amanda framework by devel-
oping multiple representative several use cases. Through this

comprehensive evaluation, we aim to demonstrate the key
advantages of Amanda, including its generality to support
mainstream DNN analysis and optimization tasks, the ca-
pability of integrating additional low-level instrumentation
framework, user-friendly and consistent interfaces across
different execution backends, and low execution overhead.

6.1 Generality: Supporting Various Use Cases

To show the feasibility of Amanda to support the analy-
sis and optimization of DNN models, we evaluate Amanda
with several common and representative use cases including
general computation graph tracing, FLOPs profiling, DNN
interpretability tool effective path, model pruning and model
quantization. Tbl. 3 summarizes these tasks.

The first general computation graph tracing task traces
the execution operators and computation graph of a DNN
model. It is often used to debug a model during development
or get the graph structure for further processing. As intro-
duced in Sec. 5.2, we make graph tracing a built-in tool to be
easily used by other Amanda tools. Profiling is to trace and
count the runtime states of DNN operators. It is important
for further DNN optimization of all levels, such as compiler-
level optimization [14], system-level scheduling [84], or even
hardware-level architecture design [71]. Here, we show a
common FLOP profiler that evaluates the computational
complexity of a DNN model. This is a very common demand
and a lot of projects implement it as part of its utility func-
tion [26]. Though we can get such performance counters
with GPU-provided APIs, they are difficult to use considering
the challenges we stressed in Sec. 2. The GPU performance
profiling tool makes such a process easy and portable.

There is also a line of works that study the interpretability
of DNN models. For example, prior work [25, 63] extracts a
sub-structure of the DNN model under certain input called
the effective path to understand the model’s behavior. Ex-
tracting the effective path from various models requires both
the forward and backward computation graph, and takes a
significant amount of manual refactoring and even source
code modification. For optimization tasks, we use weight
pruning and quantization-aware training discussed in Sec. 2.

As shown in Tbl. 3, we implement these common use cases
to show the generality of Amanda supporting popular tasks.
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Project Type ‘ User Tool ‘ Amanda tool ‘

| Backend  Interface Supported Networks LoC Acc|LoC  Acc |
Tile Wise Pruning[33] Static Tensorflow Session Hook VGGs, BERT 1203 76.7 | 213 76.7
Dynamic Channel Pruning[26] Dynamic | PyTorch Source Modification VGG19, ResNet34, SquezzeNet 387 70.7 | 115 70.7
Activation Pruning[73] Dynamic | PyTorch Source Modification ResNets 650 77.1 | 193 76.5
Attention Pruning[32] Dynamic | PyTorch Source Modification BERT, Roberta, DistillBERT, ALBERT 1105 83.2 | 179 83.2
APEX Vector Wise Pruning][1, 80] | Static PyTorch Module Hook Models with Module API 499  76.5 | 279 76.2

Table 4. Evaluation of pruning projects from the community and the re-produced Amanda tool in line of codes (LoC). Accuracy
(Acc) is evaluated with the ResNet50 model [44] on the ImageNet dataset [17] and BERT-base model [19] on SQuAD-V2

question-answering dataset [64].

For the tasks for which we cannot find implementations in
both execution modes, we provide a prototype implemen-
tation as a baseline. We can find that implementing these
use cases requires ad-hoc interfaces with reference to the in-
strumentation points and state representations they require.
Meanwhile, these developed tools are often not portable
and tied to several specific DNN models, which require a
significant amount of engineering efforts or direct source
modification to adapt them to different DNN models. With
Amanda framework, users can develop such tools without
considering the details of a specific DNN model, and con-
struct an instrumentation tool that is portable to all mod-
els. Tbl. 3 shows that while different projects prefer various
backends/interfaces, Amanda framework’s instrumentation
abstraction reduces the developers’ learning bar to deal with
the complexity of backends and interfaces but concentrates
on the task itself. We give a detailed demonstration of two
Amanda tools in the following.

6.2 Developer Friendly: Network Pruning

We then demonstrate how Amanda benefits developers on
actual projects. As we have demonstrated in Sec. 2, devel-
oping network pruning use cases faces a series of problems
caused by current fragmented DNN execution backends.

Tbl. 4 shows several representative pruning projects that
we collect from the DNN algorithm research community
including different pruning patterns, pruning strategies, and
object tensors. With fragmented interfaces and network
source code, developers often write ad-hoc programs for
these similar pruning algorithms. We find that it is even com-
mon to directly modify the source code of every supported
network to adopt their proposed pruning method. We can
find that developers use different implementations according
to the algorithms, target DNN model, and even their prefer-
ence. This is extremely user-unfriendly and non-extendable.
In contrast, Amanda can support all these pruning tasks with
a unified instrumentation abstraction, which is to simply in-
sert the pruning operators with Amanda APIs and apply the
tool during DNN training. As such, the developer can handle
the unified state representation and apply the pruning tool
to all models without extra effort.

Tbl. 4 shows that developing the same project with Amanda
framework requires much fewer lines of codes (LoC). This
is because current user implementations spend many codes
dealing with the DNN model definition and execution codes,
which scales directly as the number of DNN models increases.
Meanwhile, there is a large fraction of codes used to deal
with the instrumentation process, such as fetching required
tensors or applying the pruning function to the training loop.

As the Amanda instrumentation tool is decoupled from
the original DNN definition and execution codes, the lines
of codes in different use cases are greatly reduced when
applied to multiple DNN models. In addition, Amanda does
not change the execution semantics of a specific pruning task.
We validate this behavior by showing that Amanda-based
implementation achieves the same level of model accuracy as
the original implementation. APEX [1] is a general pruning
tool supporting the vector wise pruning algorithm provided
by TensorCore [16] hardware. So Amanda does not have as
much LoC reduction as it does on other projects. It is portable
to different DNN models but only supports a fixed sparsity
pattern. Besides, APEX only supports networks defined with
PyTorch’s module API. Users may have to refactor a target
DNN model with this module API in order to use this tool.

6.3 Synergy with Low-level Kernel Instrumentation

As introduced in Sec. 3, Amanda is designed for operator-
level or coarser-grained subgraph (e.g. module in PyTorch)
instrumentation points. For fine-grained instrumentation
such as kernel- and binary-level, the design of Amanda is
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naturally compatible to existing mature and vendor-specific
solutions such as Pin [54], NVBit [74], and CUPTI [5].

To demonstrate the synergy instrumentation relationship
between Amanda and CUPTI, we have developed an Amanda
tool that supports the profiling of underlying GPU kernels.
Profiling the hardware performance counters of each DNN
operator is essential for many optimizations [33, 58, 84].
Some DNN execution engines [6, 7] provide integrated GPU
profiling support to collect low-level information such as
kernel execution time and memory utilization. However,
these integrated profilers only provide overall statistics and
are not customizable for low-level GPU APIs. As a result, it
requires serious human effort to refactor the DNN source
codes to get the operator isolated and profiled.

With the use of Amanda, such CUPTI API can be instru-
mented into the DNN model easily. We can simply declare the
hardware tracer and counter before operator execution and
perform clean-up after operator execution to get operator-
level performance counter metrics. The available metrics
include kernel launch time, kernel execution time, mem-
ory access, and so on. Fig. 8 shows the overall GPU time
breakdown of a ResNet50 model. With the operator level
instrumentation points of Amanda, we can even aggregate
the low-level kernel results at the operator level We use
the diminant convolution operator as an example. While
im2col-based [83] kernels are used for most cases, FFT and
Winograd algorithms are also used for several cases. That
information is useful for operator or compiler developers to
improve execution efficiency. Amanda makes the profiling
of low-level metrics fully customizable and easy-to-do.

6.4 Instrumentation Point Coverage

We then evaluate the instrumentation point coverage of
Amanda compared to the module hook interface that is com-
monly used in PyTorch [61]. Module hooks are provided in
PyTorch to instrument its execution to inspect runtime and
backward phase information. However, as demonstrated in
the aforementioned sections, it suffers from the module dec-
laration limitation. As determined by the DNN model source
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Fig. 10. Overhead of Amanda on the use cases introduced
in Sec. 6 with several common neural network models.

declaration, many ops are not reachable under various cir-
cumstances. It is a common effort for developers to conduct
source code modification or refactor the DNN model.

Fig. 9 shows the number of instrumentation points covered
by PyTorch module hook and Amanda. In all cases except
VGG19 [68], there are ops missed by the module hook in
the forward phase. This is because there are multiple op-
erators in one module object. For complicated DNN model
BERT [19], the module hook fails to capture over 100 of the
total 327 forward operators. It also misses more operators
in the backward phase because a forward operator may call
multiple backward operators for gradient calculation. In that
case, the module hook only captures the entrance and exit
instrumentation point for those backward operators. As a re-
sult, it fails to capture over four hundred backward operators
as shown in Fig. 9.

This omission can lead to incorrect results for analysis
tools. Take the add operator of skip connections in ResNet [44]
as an example. They are declared by the functional APIs, and
hence omitted by module hooks, which leads to wrong re-
sults in effective path extraction task [63]. Another thing
worth mentioning is the gradient accumulation ops in the
backward pass, all of which are omitted by module hooks.
Instead, Amanda provides instrumentation points for them,
which leverages handy manipulations on gradient accumu-
lation operation.

6.5 Instrumentation Overhead

To make the instrumentation framework applicable, its over-
head should be kept at a low and acceptable level. We evalu-
ate Amanda’s overhead on these use cases and further show
the effects of the cache management mechanism.

Fig. 10 shows the overhead of various models and use
cases. Overall, the overhead of Amanda is less than 1% in
eager mode and 7% in graph mode. This low overhead guar-
antees the instrumentation framework is applicable in real
scenarios. In eager mode, pruning and effective path tools on
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Fig. 11. The normalized execution time breakdown for each
use case by Amanda framework and tools.

the BERT model have a larger overhead. This is because they
contain forward and backward subgraph matching which
is slow. In graph mode, the inception-v3 model [72] has the
highest overhead for most cases. This is because this model
implementation consists of many operators.

Fig. 11 shows the breakdown of the overhead of Amanda
framework and use-case itself (Amanda tool). There is a large
range of varieties among these five different Amanda tools.
For example, the QAT (quantization-aware training) tool
contains a computationally heavy instrumentation routine
that performs extra calculations with runtime tensors. As
such, the instrumentation framework overhead is negligible
compared to the tool itself. We observe a similar trend for
the effective path tool [63]. However, this tool requires the
graph structure and invokes the built-in graph tracing in
PyTorch, and we account this built-in graph tracing tool’s
overhead in Amanda framework.

We then evaluate the effectiveness of our cache mecha-
nism in Fig. 12. We normalize the overall execution time of
instrumentation tools without cache mechanism to its opti-
mized version. In the eager mode, the analysis routines are
cached after their first execution. The static pruning use case
is the only one that contains a heavy analysis routine and
benefits the most (over 2x larger latency). In the graph mode,
the graph rewriting procedure is cached. As such, most use
cases benefit from the cache mechanism. Similar to the ea-
ger mode, the pruning use case has the most speedup ratio
when enabling the cache mechanism as the analysis routine
could also be optimized in graph mode. Compared with the
baseline without enabling the cache mechanism, Amanda
achieves 72.6X speedup at most and 17.1X speedup on aver-
age, showing the effectiveness of our cache mechanism.

We further evaluate the GPU memory usage of Amanda
framework across various input sizes to further analyze its
associated overhead. To achieve this, we adopt a tracing
use case that spans all operators in the DNN processing
pipeline. We present the results with ResNet50 with input
size 224 x 224 and Transformer with input sequence length
of 128, serving as a representative setting. Notably, Tensor-
Flow incorporates an intrinsic mechanism for device memory
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Fig. 12. Normalized overall execution latency of Amanda
instrumentation tools without cache mechanism normalized
to its optimized counterpart. Larger normalized latency rep-
resents better optimization by caching.

management, which declares maximum memory for inter-
nal scheduling. In our experimentation, we deactivate this
feature, opting to execute the instrumentation tools with its
dynamic memory allocation method. Despite this, it remains
pertinent to highlight that Amanda retains seamless compati-
bility with TensorFlow’s foundational memory management
mechanism. This is due to the fact that Amanda integrates
a fully modified computation graph into the runtime with-
out disrupting the existing memory management protocols.
The memory footprint breakdown of the instrumentation
tools is shown with Fig. 13. We can find that Amanda gen-
erally has a minor memory overhead which is less than 5%
for most cases. For input tensors featuring a larger batch
size, Amanda framework has a reduction in memory foot-
print overhead because of its fixed management overhead.
However, when evaluating the Transformer model within
the TensorFlow backend, it is evident that overhead often
approximates or surpasses 10% for smaller batch sizes of 1
or 2. This phenomenon is driven by the model’s relatively
small size and input dimensions, culminating in a relatively
substantial instrumentation management overhead.

7 Related Work and Discussion

In this section, we discuss other techniques and interfaces
for DNN application development. We further analyze other
independent DNN tools or compilers and their collaboration
with the instrumentation tools of Amanda.

Eager Mode Hooks. In PyTorch’s eager mode, develop-
ers can utilize runtime hooks to alter the runtime behavior
or capture runtime state representations. For instance, back-
ward module hooks can be used to retrieve the activation
tensors and their gradient in both forward and backward
passes. Although these hooks support the instrumentation
of any module, they cannot be applied to operators that are
not wrapped as modules, which limits their universality. Fur-
thermore, functional operator APIs [61] cannot be covered
by PyTorch’s module hooks, restricting their applicability
when the model employs these APIs.

Graph Transformation. Graph transformation is a tech-
nique used to transform the computational graph in graph
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mode. For instance, TensorFlow’s session hooks can be used
to achieve tracing by providing a session hook when an
estimator submits a graph to the session, enabling extra
fetches to be attached for instrumentation. However, legal
graph transformation is limited since TensorFlow’s graph is
append-only for users. Without the help of internal graph
APIs, tracing cannot be implemented by the users. Addition-
ally, TensorFlow’s graph will seal after submission, which
breaks the tracing tool when there are multiple session sub-
missions, such as when initializing parameters before infer-
ence. Grappler [9], which is the default graph optimization
system of TensorFlow, can be an alternative for instrumen-
tation, despite not being designed for this task. However,
Grappler only provides C++ APIs, raising the barrier to use,
and it is not compatible with TensorFlow Eager. FX [65], a
PyTorch toolkit for module transformation, uses symbolic
tracing to capture the graph representation inside the mod-
ule and provides APIs to arbitrarily instrument the module.
Nevertheless, it is not fully compatible with eager mode since
some dynamic graphs cannot be symbolically traced, and the
instrumentation API is verbose since users are manipulating
the graph AST directly.

High-level Tools. There are also many high-level DNN
tools, such as Torch-Pruning [24] for pruning, NNI [57] for
model compression, TensorBoard [4] for visualization, and
many others. These tools are primarily higher-level analysis
or optimization tools, whereas Amanda serves as a lower-
level instrumentation infrastructure. As shown in Sec. 6.1,
the semantics of these tools can be easily implemented with
Amanda’s fundamental instrumentation abstraction. Specif-
ically, TensorBoard can also instrument the operators and
profile metrics of various DNN models. However, Tensor-
Board is limited to profiling and lacks customization options
for non-trivial use cases such as pruning or quantization.
Furthermore, we introduced how Amanda interacts with
lower-level instrumentation tools to deliver cross-layer in-
strumentation features in Sec. 6.3. Amanda can also coop-
erate with the TensorBoard visualization tool to reuse its
well-defined functionalities. For example, the tracing tool
developed with Amanda dumps the trace file in JSON format,
which can also be visualized with TensorBoard.

Synergy with DNN Compilers. There have emerged
many DNN compilers [52, 82], such as TVM [14], TorchDy-
namo [8], optimizing the execution of DNN models. These
compilers may change the execution flow, fuse adjacent op-
erators, and dispatch operators for efficient kernel imple-
mentation. With these model-level optimizations, certain
instrumentation points could be removed since the low-level
compiler can modify the execution graph or operators. One
potential solution is to employ an intermediate level that
maintains the relationship between the remaining instru-
mentation points and the original ones. Alternatively, one
could also disable the compiler optimizations, similar to how
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Fig. 13. Memory footprint overhead breakdown of tracing
tool with Amanda of different input batch sizes

a program debugger disables certain optimizations in favor
of debugging rather than performance.

8 Conclusion

In this study, we propose to utilize the instrumentation pro-
gramming model to support the emerging DNN analysis and
optimization tasks, for which developers and researchers cur-
rently adopt ad-hoc and fragmented techniques. Throughout
the development, we explored several abstraction models,
including maintaining an internal operator set or conducting
namespace-to-namespace operator conversion. Ultimately,
we discovered that an operator abstraction with context map-
ping is the optimal approach for ensuring the extensibility
of the framework while providing a unified interface. As
such, we build Amanda which allows users produce portable,
reusable and composable tools with a unified instrumenta-
tion interface. Our framework has a low execution overhead
and is designed with a clear layered architecture, making it
easy to adapt to new backends. We believe that these fea-
tures will make our Amanda framework a practical and open-
source infrastructure for the community. Ultimately, we look
forward to providing long-term support of the framework,
including bringing it to new backends and further optimiza-
tion of its efficiency.
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