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Abstract

Autonomous machines, encompassing self-driving vehicles, drones, and mobile robots,

are progressively becoming vital components in human society. As the algorithmic

complexity employed in these machines expands and the demand for computational

resources escalates, ensuring their reliability is more crucial than ever. Traditional ap-

proaches to guaranteeing reliability are often uniformly applied to all software, leading

to undesirable overheads in system latency, energy consumption, and silicon budget.

In my thesis, I present cross-layer solutions spanning hardware architecture, com-

pilers, operating systems, software, and algorithms to enhance system reliability under

various error types while minimizing the resulting overhead. The first part of this thesis

works on protecting the perception module from adversarial attacks, in which I propose

an efficient adversarial example detector and a dynamic network topology to process

standard and adversarial examples dynamically. The second part goes beyond the per-

ception module to protect the entire computing system, in which I propose to utilize the

differences in the inherent fault-tolerance levels inside autonomous machine software

to selectively apply protection and reduce area overhead. The contributions made in

this thesis hold the potential for long-lasting and significant impacts since the aspects

explored are pivotal to technological advancement roadmaps. Moreover, the systematic

and practical ideas and methodologies outlined in this thesis offer a robust foundation

for future research and development in the autonomous machine domain.
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1 Introduction

Autonomous machines, including self-driving vehicles, unmanned aerial vehicles

(UAVs), and mobile robots for transportation and manufacturing, are transforming the

way we live and work. By the end of 2025, it is projected that 284 million vehicles

will be operating in the United States, with most of them featuring some degree of au-

tonomy (Sudhakar et al., 2022). Similarly, the automated drone market is expected to

reach 42.8 billion, with annual sales exceeding 2 million units (Schroth, 2020). Over

the past decades, the primary function of these machines has evolved from “follow-

ing orders” to “creating orders,” a trend that has become increasingly pronounced with

recent advances in large-scale models (Khan et al., 2022; Han et al., 2022; Dosovit-

skiy et al., 2020; Radford et al., 2018; Shen et al., 2023). The driving force behind

this transformation is the rapid growth of computational capabilities and corresponding

innovations in algorithms.

Reliability of computing systems of autonomous machines have gradually become a

roadblock. The definition of reliability here is whether computing systems can behave

normally when different kinds of potential errors happen. Errors include commonly

exist bit flips in hardware (Baumann, 2005a,b; Mukherjee, 2011; Nicolaidis, 2010),

adversarial attacks against different algorithms (Madry et al., 2017; Akhtar and Mian,

2018), and potential software bugs (Hangal and Lam, 2002). Such errors, if not properly

handled, can cause severe consequences such as system failure and mission failure of
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autonomous machines, putting human life in danger.

Throughout the history of computer science, various techniques have been devel-

oped to improve fault tolerance. For example, enhancing modular redundancy, both

spatially (Anghel et al., 2000) and temporally (Kim, 1999), has been implemented in

numerous systems. However, these traditional techniques often struggle to be practical

in current autonomous machine applications for three main reasons. First, most au-

tonomous machines operate under real-time constraints (Joseph and Pandya, 1986; Hat-

ley and Pirbhai, 2013), and incorporating reliability-enhancing techniques could violate

these constraints, ultimately undermining the usability of the autonomous machines.

Second, many autonomous machines feature tight form factors (Rajendran and Smith,

2015), limiting the area and silicon budgets for allocating additional resources to ensure

reliability. Third, autonomous machines typically rely on fixed-size batteries for power.

Implementing most fault tolerance enhancement techniques leads to increased energy

consumption, which ultimately reduces the operating time of autonomous machines.

Addressing these challenges requires the development of new techniques that provide

enhanced fault tolerance while minimizing the impact on performance, resource uti-

lization, and energy consumption.

Thesis Statement. To build a reliable computing system for autonomous ma-

chines, a reliable perception module, along with other modules including localization,

planning and control needs to be considered. The perception module is a critical com-

ponent in autonomous machines, and its safety is often jeopardized by adversarial at-

tacks. To protect the perception module, a perception system that could efficiently

detect adversarial examples and a dynamic network topology that could achieve high

accuracy on both standard and adversarial images should be built. Apart from percep-

tion, other modules such as localization, planning, and control exhibit varying levels

of inherent fault tolerance when facing errors. Based on this observation, a selective

protection mechanism based on the classification of inherent fault-tolerance levels of

different algorithms in autonomous machine software can ensure reliability while not
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introducing high performance overhead is needed.

Introduction organization. The remainder of this chapter is structured as follows:

In Sec. 1.1, I provide an overview of my contributions to this research area. The poten-

tial long-term impact of my work is discussed in Sec. 1.2. The outline of the rest of the

dissertation is presented in Sec. 1.3, while Sec. 1.4 enumerates previously published

materials used in this dissertation.

1.1 Research Contributions

The primary contribution of my thesis is to enhance the reliability of computing systems

in autonomous machines while keeping overhead minimal. I contend that reaching this

objective solely through architectural solutions is unfeasible, as ensuring reliability in-

herently introduces significant overhead. Consequently, the main challenge of my work

lies in exploiting the inherent algorithmic characteristics for co-designing hardware and

algorithms, ultimately achieving reliability at a reduced cost.

For the perception module, an algorithmic insight is that a “hot-path” type charac-

teristic, similar to the concept in program analysis, can reveal the relationship between

a single input and its entire class during neural network inference. This characteristic

can be leveraged to detect adversarial examples effectively.

In the entire software stack of autonomous machines, the inherent fault tolerance

varies between different modules and algorithms. By exploiting this variation, selec-

tively protecting the more vulnerable nodes can substantially reduce overhead while

still maintaining the overall system’s reliability.

This dissertation presents four contributions to the cross-stack computing system

of autonomous machines, encompassing algorithms, compiler, operating system, and

hardware architecture. These contributions are illustrated in Fig. 1.1, with the added

enhancements shaded to differentiate them from the existing computing stack.
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Fig. 1.1: Overview of the contributions in this dissertation.

• I propose PTOLEMY, an algorithm-architecture co-designed system that detects

adversarial attacks at inference time with low overhead and high accuracy.

PTOLEMY exploits the synergies between DNN inference and imperative pro-

gram execution: an input to a DNN uniquely activates a set of neurons that con-

tribute significantly to the inference output, analogous to the sequence of basic

blocks exercised by an input in a conventional program. Critically, I observe that

adversarial samples tend to activate distinctive paths from those of benign inputs.

Leveraging this insight, I propose an adversarial sample detection framework that

uses canary paths generated from offline profiling to detect adversarial samples at

runtime. The PTOLEMY compiler, along with the co-designed hardware, enable

efficient execution by exploiting the unique algorithmic characteristics.

• I propose MORPHADNET, an adversarial training method that simultaneously

improves both standard accuracy (SA) and robust accuracy (RA) over existing

methods in a completely automated manner without manual test-time adaptation.

The key idea is to condition an adversarial network based on test-time detection

of input characteristics. In particular, MORPHADNET proposes to use the prefix

layers in a network to predict the attack strength of an input (i.e., perturbation

level), which is then used to condition the suffix layers in the network. In essence,
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a network trained by our framework can adapt itself depending on the input,

avoiding the SA-vs-RA trade-off in existing adversarial training.

• I propose BRAUM, a comprehensive study on the inherent fault tolerance of au-

tonomous machine softwares. By faithfully fault injections, BRAUM is able to

study how the AV software stack behaves under different error sources. I show

that algorithms in an AV software stack inherently possess different forms of

masking mechanisms. Based on the characteristic of the inherent fault toler-

ance mechanisms, BRAUM formalizes the notion of Fault Tolerance Level (FTL),

which quantifies how faults in an algorithm can be masked and/or attenuated

without affecting the actuator commands, providing opportunities to relax fault

protection.

• I propose KINDRED, a multi-domain lock-step system design that prioritizes high

reliability, while minimizing performance overhead. My proposed approach,

KINDRED, takes advantage of the inherent diversity in fault tolerance among

different tasks in autonomous machine software, scheduling only the vulnerable

nodes in the lock-domain. The primary challenge addressed in this work is the

intelligent scheduling of tasks across different domains, coupled with efficient

error detection and correction in the lock-domain.

1.2 Long-term Impact

The long-term impact of research contributions is crucial for both the domain and so-

ciety at large. My research contributions will have an enduring influence from two

perspectives.

First, the primary issue this dissertation seeks to address is improving system re-

liability while introducing minimal overhead. The trade-off between reliability and

performance will always be a critical aspect of autonomous machine systems. As the
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number of autonomous machines increases, the importance of finding a balance be-

tween these two factors becomes even more significant.

Second, my research contributions pertain to the field of autonomous machines, a

foundational infrastructure in human society. These contributions can be applied to

practical use cases of autonomous machines. For instance, most self-driving vehicles

currently require more than a 100% increase in chip area for full system duplication. By

integrating the findings from BRAUM and KINDRED, the amount of additional silicon

required can be significantly reduced, resulting in more efficient and potentially cost-

effective solutions for autonomous machines.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter 2 introduces the

preliminary knowledge of computing systems for autonomous machines and outlines

existing errors that could affect their safety. Chapter 3 presents PTOLEMY, an effi-

cient adversarial example detector for enhancing system reliability. Chapter 4 proposes

MORPHADNET, a perception system designed to counter adversarial attacks effec-

tively. Chapter 5 introduces BRAUM, a framework aimed at identifying the fault tol-

erance classification of different algorithms used in autonomous machines. Chapter 6

utilizes the findings from Chapter 5 to propose a heterogeneous split-lock CPU ar-

chitecture tailored to the autonomous machine software stack. Chapter 7 offers a retro-

spective of this dissertation work, summarizing the principles behind building a reliable

computing system for autonomous machines and discussing potential future research

directions. Chapter 8 concludes the dissertation, highlighting the key contributions and

their implications for the field of autonomous machines.
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1.4 Previous Published Material

This dissertation contains materials that are previously published in peer-reviewed con-

ferences and journals:

• Chapter 3 contains results from Ptolemy: Architecture Support for Robust Deep

Learning. Yiming Gan * , Yuxian Qiu *, Jingwen Leng, Minyi Guo, and Yuhao

Zhu. In 53rd IEEE/ACM International Symposium on Microarchitecture.

• Chapter 6 contains results from BRAUM: Analyzing and Protecting Autonomous

Machine Software Stack. Yiming Gan, Paul Whatmough, Jingwen Leng, Bo Yu,

Shaoshan Liu, Yuhao Zhu. In 33rd IEEE International Symposium on Software

Reliability Engineering.
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2 Background: Autonomous

Machines and Their Reliabilities

In this chapter, I provide an overview of the background information related to this

work. First, I briefly introduce the computing stack, encompassing both hardware and

software components, utilized in autonomous machines (Chapter 2.1). Next, I outline

the potential reliability concerns within the computing system (Chapter 2.2). Together,

these sections demonstrate that the computing system of autonomous machines is com-

plex and operates under potentially threatening environments. I further give definitions

of some technical concepts I use in this thesis to avoid confusions. (Chapter 2.3).

2.1 Computing Stack in Autonomous Machines

Autonomous machines have increasingly become a crucial infrastructure in human so-

ciety. With the rapid growth in the number of vehicles with self-driving capabilities,

drones, and mobile robots, autonomy in machines is gaining prominence. There are

three essential components to enable autonomy in machines (Vamvoudakis et al., 2015):

A sensor system, which includes cameras (Salman et al., 2017; Lee et al., 2013), Li-

DARs (Verucchi et al., 2020; Hecht, 2018; Ackerman, 2016), radars (Hakobyan and

Yang, 2019), and other sensors, captures reflections and changes in the environment.

A computing system collects the data from the sensor system and calculates the au-
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tonomous machine’s behavior, such as its mission and motion. A mechanical system

implements the results generated by the computing system, enabling the machine to in-

teract with its environment. My dissertation primarily focuses on the computing system

and its reliability, as this plays a critical role in ensuring the safe, effective operation of

autonomous machines.

The computing stack of autonomous machines, analogous to the human brain, is ex-

tremely complex. The computing stack can vary significantly depending on the specific

scenario or application in which the autonomous machine is operating. For instance,

the computing stack of a self-driving vehicle (Liu et al., 2020) is considerably more

intricate compared to that of a mobile robot (Kortenkamp et al., 1998; Rubio et al.,

2019). This complexity arises due to the diverse requirements, sensors, and operations

involved in differing autonomous machines’ contexts.

Software. I provide an overview of a general autonomous machine system, using a

self-driving vehicle as an example, which consists of five key components: sensing, per-

ception, localization, planning, and control. Sensor samples are first synchronized and

processed before being used by the perception and localization modules. Perception

module attempts to understand the surrounding environment by detecting and tracking

objects using the processed sensor data. The localization module positions the vehicle

within a global map, leveraging information from the sensors. The planning module

utilizes the perception and localization results to plan a path and generate control com-

mands. The control module smooths the control signals and transmits them through the

CAN bus to the vehicle’s Engine Control Unit (ECU). The control signals then control

the vehicle’s actuators, such as the gas pedal, brake, and steering wheel. Each module

may contain one or more nodes or kernels. A kernel represents an individual process

that runs within the system.

Sensing. The beginning of the autonomous machine software is the sensing mod-

ule. After the sensor system captures signals from the environment, the sensing module

of the computing system typically has two tasks. First, it handles sensor data prepro-
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cessing. For instance, various image preprocessing methods (Bose and Meyer, 2003;

Nakamura, 2017) are applied, including denoising (Motwani et al., 2004; Muresan and

Parks, 2003), demosaicing (Li et al., 2008; Hirakawa and Parks, 2006), and sharp-

ening (Dian et al., 2018), to the raw pixels captured by cameras in order to produce

high-quality images for perception and localization modules. For LiDAR signals, typi-

cal preprocessing procedures involve LiDAR point downsampling and filtering (Meng

et al., 2010; Montealegre et al., 2015), which help refine the data for further processing

by other modules in the system.

The second task of the sensing module is sensor data synchronization (Faizullin

et al., 2022; Yuan et al., 2022), which is crucial for perception and localization algo-

rithms, as they usually perform multi-sensor fusion. For example, many autonomous

vehicles use Visual-Inertial Odometry (VIO), which combines data from both camera

and IMU sensors. Sensor synchronization ensures that two sensor samples capturing

the same event have the same timestamp, allowing for accurate integration of informa-

tion from multiple sources.

Localization. Localization is a fundamental module to autonomous machines. It

calculates the six degrees of freedom (DoF) pose to locate the position and orientation

of an agent itself. The six DoF includes the three DoF for the translational pose, which

specifies the < x, y, z > position, and the three DoF for the rotational pose, which

specifies the orientation about three perpendicular axes, i.e., yaw, roll, and pitch.

Localization algorithms usually have high computational requirements. These al-

gorithms, such as Simultaneous Localization and Mapping (SLAM) (Taketomi et al.,

2017; Mur-Artal et al., 2015) and Visual Inertial Odometry (VIO) (Bloesch et al., 2015),

perform two main tasks. First, they capture correspondence in continuous frames.

Then, they use multiple correspondences to solve a complex optimization problem for

the final pose. A typical SLAM algorithm takes tens of milliseconds (ms) latency even

when running on a powerful Intel CPU (Liu et al., 2019b; Yoon and Raychowdhury,

2020). VIO algorithms exhibit similar latencies (Suleiman et al., 2018).
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Perception. The perception module usually consists of multiple nodes, such as

object detection, object tracking, prediction, and multi-sensor fusion (Rosique et al.,

2019; Gupta et al., 2021). The perception module first detects and tracks objects from

frames captured by cameras or LiDAR points. By combining the historical trajectory

and current velocity, the agent predicts the future trajectory of objects within its field

of view. Autonomous machines with small form factors may use only one sensor for

perception. In contrast, most large-scale autonomous machines, such as self-driving

cars, fuse prediction results from multiple sensors to generate an area map. This map

is typically represented as a grid map, with zero values representing free space and one

values indicating space that is going to be occupied by other objects. The generated

map then helps the autonomous system navigate and interact with its environment more

effectively.

The perception module is inherently computationally intensive and typically con-

tributes the longest latency in autonomous machines. The serial processing of detection,

tracking, and prediction in the perception pipeline exacerbates the computing latency.

Although most perception nodes have been accelerated by GPUs or other specialized

hardware accelerators, the perception stage still takes more than 100 milliseconds to

complete.

Planning. Planning aims to find a collision-free path from the current location

to the destination (Fan et al., 2018; Sudhakar et al., 2020). Planning algorithms typi-

cally rely on the occupancy grid generated by the perception module, which indicates

whether locations are free or occupied. Once the occupancy grid map is created, it

remains unchanged during a single planning process. The starting location on the oc-

cupancy grid map is determined by the localization module, which takes the current

position and orientation of the autonomous machine into account.

Decision-Making. Autonomous machines use state machines to control behavior,

with the state machines being controlled by the decision-making module. For example,

when an autonomous vehicle detects a pedestrian nearby, the decision-making module
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changes the vehicle’s status from driving to stopping. Decision-making also relies on

the results of perception and localization, as it takes information about the environment

and the machine’s position into account to make appropriate decisions.

Control. The control module is the last component in the computing stack of

autonomous machines and is responsible for smoothing the control commands. It will

generate outputs such as the commands on steering wheels, gas pedals to the mechani-

cal system and control the vehicle.

Hardware. Autonomous machine software is complex, and many modules

are computationally intensive. To run this software, most autonomous machines are

equipped with powerful System-on-a-Chip (SoC) solutions (Ditty, 2022). These SoCs

typically contain multiple accelerators such as GPUs, DSPs, and NPUs to execute var-

ious tasks in parallel, working together to perform the diverse and demanding tasks

required for autonomy. However, at the same time, the increased complexity of these

chips with multiple silicon components can lead to higher error rates. This trade-off

highlights the importance of balancing performance and reliability to ensure the overall

stability and safety of autonomous machines.

2.2 Potential Errors in Computing Systems of Au-

tonomous Machines

Autonomous machines operate in environments with numerous potential threats, and

their computing systems can be subject to errors at both the hardware and software

levels. These errors, when they occur in the computing system, can significantly af-

fect the system’s outputs, ultimately impacting the behavior and safety of autonomous

machines. In this section, I will introduce some common errors that may arise in the

computing system of autonomous machines.

Soft Errors. In this dissertation, I consider hardware bit-flips that occur within a
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single compute cycle. This type of fault is commonly referred to as a soft error and is

among the most dominant errors affecting autonomous machine systems. The increas-

ing impact of soft errors has been recently emphasized by industrial studies (Hochschild

et al., 2021), where factors such as radiation and temperature changes can result in ran-

dom bit flips in silicon flip-flop units and memory cells.

Soft errors can lead to various misbehaviors in autonomous machine systems. One

of the most common consequences of soft errors is silent data corruption (SDC), where

the results deviate from the ground truth value without any notification or indication

of error (Dixit et al., 2021). In other cases, soft errors can cause processes to hang or

crash. In the context of autonomous machines, hangs and crashes due to soft errors can

typically be mitigated by directly restarting the affected process. However, SDCs can

potentially cause more severe errors within the system. For instance, an SDC affecting

a control command can change an intended decelerating command into an unexpected

accelerating command, posing a significant safety risk.

Adversarial Attacks. Unlike soft errors, which are random hardware-level errors,

adversarial attacks refer to intentionally manipulated inputs designed to compromise

the correctness of targeted algorithms. Many algorithms in the perception module of

autonomous machines utilize different forms of deep neural networks (Wen and Jo,

2022; Jebamikyous and Kashef, 2022; Gupta et al., 2021). However, deep neural net-

works have been proven to be vulnerable to adversarial attacks (Madry et al., 2017; He

et al., 2019; Huang et al., 2017; Chakraborty et al., 2018; Guo et al., 2019; Liu et al.,

2016; Papernot et al., 2016a). For example, slight changes in pixel values of an input

image or placing a sticker on a real-world object (Li et al., 2019) can cause an object

detector to misclassify an object, potentially leading to a stop sign being misidentified

as a traffic light or something else entirely.

After initially being applied to perception modules, adversarial attacks have been

further developed to target other modules of autonomous machines. Researchers

have successfully demonstrated adversarial attacks on localization modules (Yang and
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Huang, 2019; Patil et al., 2021) and planning modules (Vemprala and Kapoor, 2021;

Wang and Gursoy, 2023). These attacks can degrade the performance and reliability of

various computing components in autonomous systems.

Software Bugs. Software bugs are another source of potential errors that can

impact autonomous machine systems. Similar to traditional software development, au-

tonomous machine software can suffer from various types of bugs, including logic er-

rors, memory errors, and boundary errors (Garcia et al., 2020; Taylor et al., 2021).

These software bugs can compromise the correctness of the computing systems used in

autonomous machines, leading to incorrect outputs and, potentially, unsafe behavior.

2.3 Technical Concepts

To minimize ambiguity, I will first provide a concise introduction to several key tech-

nical concepts utilized throughout this dissertation. Please note that these explanations

are not formal definitions, but rather my own interpretations of these concepts, tailored

for the context of this research.

Error, fault and failure. Throughout this dissertation, I use the terms error, fault,

and failure interchangeably to represent a single concept. This encompasses any unex-

pected behavior occurring at the hardware or software level, resulting in mistakes. Such

unexpected behavior can range from a single bit flip within the hardware to traditional

software bugs, as described in Chapter 2.2.

Reliability, robustness and resilience. In this dissertation, the terms reliabil-

ity, robustness, and resilience collectively denote the ability of a computing system to

maintain functionality and produce accurate results within a faulty environment.

Safety and usability. In this dissertation, safety and reliability are considered dis-

tinct concepts. When a computing system generates incorrect output due to an error, the

impact on safety or usability may vary – in some cases, they might remain unaffected,

while in other instances, they could be compromised.
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3 An Efficient Adversarial Example

Detector

3.1 Introduction

Deep Neural Networks (DNN) are not robust. Small perturbations to inputs could easily

“fool” DNNs to produce incorrect results. By manipulating the perturbation, a range of

so-called adversarial attacks have been demonstrated to lead DNNs to mis-predict (Pa-

pernot et al., 2016c; Carlini and Wagner, 2017b; Kurakin et al., 2016; Nguyen et al.,

2015; Hu et al., 2020b), which could result in potentially severe consequences. For

instance, physically putting a sticker on a stop sign could lead a well-trained object

recognition DNN to misclassify the stop sign as a yield sign (Kurakin et al., 2016).

Beyond mission-critical scenarios such as autonomous driving, the robustness issue

also obstructs the deployment of DNN in privacy/security-sensitive domains such as

biometric authentication (Parkhi et al., 2015; Sun et al., 2015).

We take a first step toward architectural support for robust deep learning. For a

robustness scheme to be effective in practice, it not only has to accurately detect adver-

sarial inputs, but must also do so efficiently at inference time so that proper measure

could be taken. This paper propose PTOLEMY, an algorithm-architecture co-design

system that detects adversarial attacks at inference time with low overhead and high

accuracy. This enables applications to reject incorrect results produced by adversarial
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Fig. 3.1: PTOLEMY system overview.

attacks during inference. Fig. 3.1 provides an overview of the system.

Existing countermeasures to adversarial attacks are unable to detect adversarial

samples at inference time (Carlini and Wagner, 2017a; He et al., 2017). Fundamen-

tally, they treat DNN inferences as black boxes, ignoring their runtime behaviors. To

enable efficient online adversarial detection, this paper takes a different, white-box ap-

proach. We exploit the fact that each input to a DNN uniquely exercises an activation

path—a collection of neurons that contribute significantly to the inference output, anal-

ogous to the sequence of basic blocks exercised by an input in a conventional program.

Analyzing “hot” activation paths in DNNs, our key observation is that inputs that lead

to the same inference class tend to exercise a group of paths that are distinctive from

other inference classes.

We propose a general algorithmic framework that exploits the runtime path behav-

iors for efficient online adversarial sample detection. The detection framework con-

structs a canary class path offline for each inference class by profiling the training data.

At runtime, it builds the activation path for an input, and detects the input as an adver-

sary if the activation path is different from the canary path associated with the predicted

class. The general algorithm framework exposes a myriad of design knobs affecting the

critical trade-off between detection accuracy and compute cost, such as how a path is

formulated and when the path is constructed. To widen the applicability of our detec-

tion framework, PTOLEMY provides a high-level programming interface, which allows

programmers to calibrate the algorithmic knobs to explore the accuracy-cost trade-off

that best suits an application’s needs.
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PTOLEMY provides an efficient execution substrate. The key to the execution ef-

ficiency is the PTOLEMY compiler, which hides and reduces the detection overhead

by exploiting the unique parallelisms and redundancies exposed by the detection al-

gorithms. We show that with the aggressive compile-time optimizations and a well-

defined ISA, detection algorithms can be implemented on top of existing DNN accel-

erators with a set of basic, yet principled, hardware extensions, further widening the

applicability of PTOLEMY.

PTOLEMY enables highly accurate adversarial detection with low performance

overhead. Compared to today’s defense mechanisms that introduce over 10 × perfor-

mance overhead, we demonstrate a system that achieves higher accuracy with only 2%

performance overhead. PTOLEMY defends not only existing attacks, but also adaptive

attacks that are specifically designed to defeat our defense (Carlini et al., 2019). We also

demonstrate the PTOLEMY framework’s flexibility by presenting a range of algorithm

variants that offer different accuracy-efficiency trade-offs. For instance, PTOLEMY

could trade 10% performance overhead for 0.03 higher detection accuracy.

The PTOLEMY artifact, including the pre-trained models, offline-generated class

paths, code to generate adaptive and non-adaptive attacks, and the detection implemen-

tation is available at https://github.com/Ptolemy-DL/Ptolemy. In sum-

mary, PTOLEMY provides a generic framework for low-overhead, high-accuracy online

defense against adversarial attacks with the following contributions. First, We propose

a novel static-dynamic collaborative approach for adversarial detection by exploiting

the unique program execution characteristics of DNN inferences that are largely ig-

nored before. Second, We present a general algorithmic framework, along with a high-

level programming interface, that allows programmers to explore key algorithm design

knobs to navigate the accuracy-efficiency trade-off space. Third, We demonstrate that

with a carefully-designed ISA, compiler optimizations could enable efficient detection

by exploiting the unique parallelisms and redundancies exposed by our detection algo-

rithm framework. Finally, We present a programmable hardware to achieve low-latency

https://github.com/Ptolemy-DL/Ptolemy
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online adversarial defense with principled extensions to existing DNN accelerators.

3.2 Background

Adversarial Attacks DNNs are not robust to adversarial attacks, where DNNs mis-

predict under slightly perturbed inputs (Carlini and Wagner, 2017b; Kurakin et al.,

2016; Papernot et al., 2016c; Moosavi-Dezfooli et al., 2016a). Fig. 3.2 shows one such

example, where the two slightly different images are both perceived as stop signs to

human eyes, but the second image is mis-predicted by a DNN model as a yield sign.

The perturbations could be the result of carefully engineered attacks, but could also be

an artifact of normal data acquisition such as noisy sensor capturing and image com-

pression/resizing (Thang and Matsui, 2019).

Legitimate Sample Adversarial Sample Perturbation

Fig. 3.2: Adversarial example using the FGSM (Goodfellow et al., 2014a) attack.

Formally, given a DNN C, an input x′ is defined as an adversarial sample if it is

close to x yet makes C∗(x) = C(x) ̸= C(x′), where C∗(x) is the correct class of x.

Different adversarial samples differ in their measures of the distance between x and x′.

The distance could be small, where the input perturbations are imperceptible to humans

(as in the example above), but could also be large, where the perturbations are visible

to humans but still “fool” a DNN. For instance, physically putting a sticker on a stop

sign could mislead a DNN to misclassify the stop sign as a yield sign (Kurakin et al.,
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Fig. 3.3: Extracting important neurons from a fully connected layer (left) and a con-

volution layer (middle), and constructing the activation path from important neurons

across layers (right). Activation paths are input-specific. This figure illustrates back-

ward extraction using a cumulative threshold. Forward extraction would start from the

first layer rather than from the last year. Absolute thresholding would select important

neurons based on absolute partial sums rather than cumulative partial sums.

2016; Li et al., 2019). PTOLEMY targets the general robustness issue that introduces

mis-predictions through input perturbations—small or large, inadvertent or malicious.

For simplicity, we refer to all of them as adversarial attacks throughout this paper.

An adversarial attack is a black-box attack if it does not assume knowledge of the

attacked model; white-box attacks in contrast assume full knowledge of the model. Or-

thogonally, adaptive attacks have complete knowledge of the defense’s inner workings,

i.e., are specifically designed to attempt to defeat a defense, while non-adaptive attacks

do not (Tramer et al., 2020; Carlini et al., 2019; Carlini and Wagner, 2017a). We show

that our detection scheme can defend against a range of different attacks, including

the strongest form of attack that can be injected at inference phase (Goldwasser et al.,

2022): white-box adaptive attacks.

Countermeasures We aim to enable fast and accurate systems that can detect ad-

versarial examples at inference-time such that proper measures could be taken. Today’s

defense mechanisms largely fall under two categories, neither of which meets this goal.

The first class of defenses improves the robustness of DNN models at training time



20

(e.g., adversarial retraining) (Tramèr et al., 2017a; Zheng et al., 2016) by incorporat-

ing adversarial examples into the training data. However, re-training is not suitable at

inference-time and requires accesses to the training data. Another class of defenses uses

redundancies to defend against adversarial attacks (Thang and Matsui, 2019; Rouhani

et al., 2018), similar to the multi-module redundancy used in classic fault-tolerant sys-

tems (Sorin, 2009). This scheme, however, introduces high overhead, limiting its ap-

plicability at inference time.

3.3 Algorithmic Framework

This section introduces the PTOLEMY algorithm framework, which enables adversarial

attack detection at inference-time with high accuracy and low latency. PTOLEMY pro-

vides a set of principled design knobs to allow programmers to customize the accuracy

vs. efficiency trade-off.

We first describe the intuition and key concepts behind our algorithm frame-

work (Chapter 3.3.1). We then introduce the algorithm framework, and show that a

basic algorithm under the framework introduces excessive compute and memory cost

(Chapter 3.3.2). We further introduce key algorithmic knobs that enable different algo-

rithm variants to offer different accuracy-efficiency trade-offs (Chapter 3.3.3). Finally,

we introduce a high-level programming interface to flexibly express detection algo-

rithms within our framework (Chapter 3.3.4).

3.3.1 Intuition and Key Concepts

Intuition Each input to a DNN activates a sequence of neurons. We find that inputs

that are correctly predicted as the same class tend to activate a unique set of neurons

distinctive from that of other inputs. This is a manifestation of recent work on class-

level model sparsity (Qiu et al., 2019; Wang et al., 2018a), which shows that a small,



21

Path Extraction 
and Aggregation

Inference

Path Extraction
Training 

Data Class Paths Adversarial 
Classification Input

Adversary? (Y/N)
+ Output

Offline Online

Extraction Direction (Forward vs. Backward)

Thresholding Mechanism (Cumulative vs. Absolute)

Selective Extraction (Start/Termination Layer)

Path
Extraction
Knobs

Fig. 3.4: Adversarial detection algorithm framework. It provides a range of knobs for

path extraction, which dominates the runtime overhead. Note that the path extraction

methods in both the offline and online phases must match.

but distinctive, portion of the network contributes to each predicted class. Taking this

perspective, the way adversarial samples alter the inference result can be thought of as

activating a sequence of neurons different from the canonical sequence associated with

its predicted output. Analyzing dynamic paths in DNN inferences thus allows us to

detect adversaries.

A sequence of activated neurons is analogous to a sequence of basic blocks exer-

cised by an input to a conventional program. The frequently exercised basic block se-

quences, i.e., “hot paths” (Ball and Larus, 1996; Fisher, 1981; Chang and Hwu, 1988),

can be used to improve performance in classic profile-guided optimizations and dy-

namic compilers (Smith, 2000; Smith and Nair, 2005; Donovan et al., 2000). Our

approach shares a similar idea, where we treat a DNN as an imperative program, and

leverage its runtime paths (sequence of neurons) to guide adversarial sample detection.

Conventional countermeasures largely ignore the program execution behaviors of DNN

inferences.

Important Neurons The premise of our detection algorithm framework is the no-

tion of important neurons, which denote a set of neurons that contribute significantly to

the inference output. Important neurons are extracted in a backward fashion. The last

layer Ln has only one important neuron, which is the neuron n that corresponds to the

predicted class. At the second last layer Ln−1, the important neurons are the minimal

set of neurons in the input feature map that contribute to at least θ (0 ≤ θ ≤ 1) of n.



22

0 1 2 3 4 5 6 7 8 9
class

0
1

2
3

4
5

6
7

8
9

cl
as

s
1 0.37 0.34 0.36 0.35 0.37 0.27 0.29 0.36 0.34

0.37 1 0.35 0.37 0.33 0.38 0.28 0.28 0.35 0.35

0.34 0.35 1 0.33 0.32 0.34 0.27 0.29 0.3 0.31

0.36 0.37 0.33 1 0.32 0.37 0.27 0.27 0.34 0.33

0.35 0.33 0.32 0.32 1 0.32 0.29 0.29 0.36 0.33

0.37 0.38 0.34 0.37 0.32 1 0.26 0.29 0.35 0.35

0.27 0.28 0.27 0.27 0.29 0.26 1 0.29 0.27 0.29

0.29 0.28 0.29 0.27 0.29 0.29 0.29 1 0.28 0.29

0.36 0.35 0.3 0.34 0.36 0.35 0.27 0.28 1 0.36

0.34 0.35 0.31 0.33 0.33 0.35 0.29 0.29 0.36 1 0.32

0.40

0.48

0.56

0.64

(a) AlexNet @ ImageNet.

0 1 2 3 4 5 6 7 8 9
class

0
1

2
3

4
5

6
7

8
9

cl
as

s

1 0.61 0.61 0.6 0.6 0.59 0.58 0.6 0.63 0.61

0.61 1 0.6 0.61 0.6 0.6 0.6 0.61 0.62 0.64

0.61 0.6 1 0.63 0.64 0.63 0.63 0.62 0.6 0.6

0.6 0.61 0.63 1 0.63 0.65 0.63 0.63 0.6 0.61

0.6 0.6 0.64 0.63 1 0.63 0.63 0.64 0.59 0.61

0.59 0.6 0.63 0.65 0.63 1 0.62 0.63 0.59 0.61

0.58 0.6 0.63 0.63 0.63 0.62 1 0.61 0.58 0.6

0.6 0.61 0.62 0.63 0.64 0.63 0.61 1 0.59 0.62

0.63 0.62 0.6 0.6 0.59 0.59 0.58 0.59 1 0.62

0.61 0.64 0.6 0.61 0.61 0.61 0.6 0.62 0.62 1

0.60

0.62

0.64

0.66

0.68

0.70

(b) ResNet18 @ CIFAR-10.

Fig. 3.5: Class path similarity (θ = 0.5).

Here, θ controls the coverage of important neurons. To extract the important neurons

of layer Ln−1, we simply rank the partial sums used to calculate n, and choose the

minimal number of neurons whose partial sums collectively contribute to at least θ×n.

The left panel in Fig. 3.3 shows an example using a fully-connected layer. Assum-

ing θ = 0.6 and the second neuron in the output feature map (0.46) is the important

neuron identified in the next layer. The fourth (1.0) and the fifth (0.1) neurons in the

input feature map are identified as the important neurons in the current layer, because

they contribute the two large partial sums and their cumulative partial sum (0.3) con-

tribute to more than 60% of the important neuron in the output feature map. The same

process can be extended to convolution layers. The middle panel in Fig. 3.3 shows an

example. For the important neuron in the output feature map, we first find its recep-

tive field in the input feature map, and then identify the minimal set of neurons in the

receptive field whose cumulative partial sums contribute to at least θ × n.

This process is repeated backwards from the last layer to the first layer, as shown

in the right panel in Fig. 3.3. The important neurons identified at layer Li are used to

determine the important neurons at layer Li−1.
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From Neurons to Paths The collection of important neurons across all the lay-

ers under a given input constitutes an activation path of that input, similar to how a

sequence of basic blocks constitutes a path/trace in a program. We represent a path

using a bitmask, where each bit mi,j indicates whether the neuron (input feature map

element) at layer i position j is an important neuron.

From individual activation paths, we introduce the concept of a class path for a

class c, which aggregates (bitwise OR) the activation paths of different inputs that are

correctly predicted as class c. That is: Pc =
⋃

x∈x̄c
P(x), where P(x) denotes the

activation path of input x, x̄c denotes the set of all the correctly predicted inputs of

class c,
⋃

denotes bitwise OR, and Pc denotes the class path of class c. We observe that

Pc starts to saturate around 100 images and including more images from the training

dataset does not result all bits being 1. We do not manually stop filling the bits.

Critically, class paths are significantly different from each other. Fig. 3.5a shows

the path similarity in AlexNet (Krizhevsky et al., 2012) across 10 randomly-sampled

classes from ImageNet (Deng et al., 2009). Fig. 3.5b shows the path similarity in

ResNet18 (Szegedy et al., 2017a) across the 10 classes in CIFAR-10 (Krizhevsky et al.,

2009). All the results are obtained on the training set. The average inter-class path

similarity is only 36.2% (max 38.2%, 90-percentile 36.6%) for AlexNet on ImageNet

and 61.2% (max 65.1%, 90-percentile 63.4%) for ResNet18 on CIFAR-10, suggesting

that class paths are distinctive. In an attempt to normalize the dataset, we also perform

the same experiment on ResNet50 on ImageNet. The average inter-class path similarity

is 37.6% (max 40.9%, 90-percentile 39.1%), similar to those of AlexNet on ImageNet.

The class path similarity is much higher in CIFAR-10 than in ImageNet. This is

because ImageNet has 1,000 classes that cover a wide range of objects and CIFAR-10

has only 10 classes, which are similar to each other (e.g., cat vs. dog). The randomly

picked 10 classes in ImageNet are more likely to be different from each other than

the 10 classes in CIFAR-10. Across all the 1,000 classes in ImageNet, the maximum

inter-class path similarity is still only 0.44, suggesting that our random sampling of
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ImageNet is representative.

3.3.2 Detection Framework and Cost Analysis

We leverage the clear distinction across different class paths to detect adversarial inputs.

If an input x is predicted as class c while its activation path P(x) does not resemble the

class path Pc, we hypothesize that the input is an adversary.

Framework Fig. 3.4 shows an overview of the algorithm framework, which re-

quires static-dynamic collaboration. The static component profiles the training data to

extract activation paths P(x) for each correctly predicted sample x, and generates the

class path Pc for each class c as described before. The class paths are stored offline

and reused over time. Critically, our profiling method can easily integrate new training

samples, whose activation paths would simply be aggregated (OR-ed) with the existing

class paths without having to re-generate the entire class paths from scratch.

At inference-time, the dynamic component extracts the path for a given input. Note

that activation paths are extracted only after the entire DNN inference finishes, because

the identification of important neurons starts from the predicted class in the last layer

and propagates backward. We will show other variants in Chapter 3.3.3 that relax this

restriction.

Given the activation path P(x) of an input x and the canary class path Pc, where c is

the predicted class of x, a classification module then decides whether x is an adversary

or not based on the similarity between P(x) and Pc. While a range of similarity metrics

and algorithms could be used, we propose a lightweight algorithm that is extremely

efficient to compute while providing high accuracy. Specifically, we first estimate the

similarity S between P(x) and Pc: S = ∥P(x) & Pc∥1/∥P(x)∥1, where ∥P∥1 denotes

the number of 1s in the vector P , and & denotes bitwise AND. S is fed into a learned

classifier, for which we use the lightweight random forest method (Liaw et al., 2002),

for the final classification. The classification module is lightweight, contributing to less
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than 0.1% of the total detection cost.

Cost Analysis The algorithm described above is able to achieve accuracy higher

than state-of-the-art methods (see Chapter 6.8). However, runtime extraction of activa-

tion paths also introduces significant memory and compute costs.

The memory cost is significant because every single partial sum generated during

inference must be stored in the memory before the path extraction process begins. The

detection algorithm introduces 9× to 420×memory overhead, which is a lower bound

of the actual memory traffic overhead in real systems because the massive partial sums

will not be buffered completely on-chip. Storing partial sums will also stall the com-

puting units and increase latency.

Path extraction also introduces compute overhead due to sorting and accumulating

partial sums. Using AlexNet as an example, at θ = 0.9, the compute overhead could

be as high as 30%. At first glance, it might be surprising that the compute overhead

is “only” 30%. Further investigations show that percentage of important neurons in a

network is generally below 5% even with θ = 0.9. Thus, the expensive sorting and

accumulation operations are applied to only a small portion of partial sums. Note that

the compute cost shown here leads to much higher latency overhead in reality because,

while inference is massively parallel, sorting and accumulating are much less so. A

pure software implementation of the detection algorithm introduces 15.4× and 50.7×

overhead over inference on AlexNet and ResNet50, respectively.

3.3.3 Algorithmic Knobs and Variants

To trade little accuracy loss for significant efficiency gains, we introduce three algorith-

mic knobs that control how activation paths are extracted, which dominates the runtime

performance/energy overhead. The result is a set of algorithm variants that follow the

same algorithm framework described in Fig. 3.4, but that differ in how the paths are

extracted.
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Hiding Detection Cost: Extraction Direction

The cost introduced by the basic detection algorithm directly increases the inference

latency because path extraction and inference must be serialized. We identify a key

algorithmic knob that provides the opportunity to hide the compute cost of detection by

overlapping detection with inference.

The key to the new algorithm is to extract important neurons in a forward rather

than a backward manner. Recall that in the original backward extraction process, we

use the important neurons in layer Li’s output (which is equivalent to layer Li+1’s input)

to identify the important neurons in layer Li’s input. In our new forward extraction

process, as soon as layer Li finishes inference we first determine the important neurons

in its output by simply ranking output neurons according to their numerical values and

selecting the largest neurons, instead of waiting until after the extraction of layer Li+1.

In this way, the extraction of important neurons at layer Li and the inference of layer

Li+1 can be overlapped.

Reducing Detection Cost: Thresholding Mechanism

The forward extraction process hides the extraction behind inference, but does not

reduce the detection cost, which could significantly increase the energy overhead.

To reduce the detection cost, we propose to extract important neurons using abso-

lute thresholds rather than cumulative thresholds. Whenever a partial sum is generated

during inference it is compared against an absolute threshold ϕ. A single-bit mask is

stored to the memory based on the comparison result. Later during path extraction, the

masks (as opposed to partial sums) are loaded to determine important neurons. Thresh-

olding can be specified at each layer, and can be applied to both extraction directions.

Using absolute thresholds significantly reduces both the compute and memory

costs (Chapter 3.7.3), because comparing partial sums against a threshold is much

cheaper than sorting and accumulating them, and writing single-bit masks rather than

partial sums significantly reduces the memory accesses.
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Table 3.1: Summary of PTOLEMY instructions. Operands in the first three instruction

classes are registers to simplify encoding.

Class Name 23-20 19-16 15-12 11-8 7-4 3-0

Inference

inf 0000 Input addr. Weight addr. Output addr. Unused

infsp 0001 Input addr. Weight addr. Output addr. First partial sum addr. Unused

csps 0010 Output neuron ID Layer ID First partial sum addr. Unused

Path Construction

sort 0011 Unsorted seq. start addr. Seq. length Sorted seq. start addr. Unused

acum 0100 Input addr. Output addr. Cumulative threshold Unused

genmasks 0101 Input addr. Output addr. Unused

findneuron 0110 Layer ID Neuron position Target neuron addr. Unused

findrf 0111 Neuron addr. Receptive field addr. Unused

Classification cls 1000 Class path addr. Activation path addr. Result Unused

Others Omitted for simplicity (mov, dec, jne, etc.)

Reducing Detection Cost: Selective Extraction

An orthogonal way to reduce the cost is to skip important neurons from certain lay-

ers altogether. In many networks, later layers have a more significant impact on the

inference output than earlier layers (Raghu et al., 2017). Thus, one could extract im-

portant neurons from just the last a few layers to further reduce the cost (Chapter 3.7.6).

When combined with forward extraction, this is equivalent to starting extraction later

(“late-start”); when combined with backward extraction, this is equivalent to terminat-

ing extraction earlier (“early-termination”). This knob specifies the start/termination

layer.

Summary The PTOLEMY framework provides three different knobs to explore

the accuracy-efficiency trade-off. While the extraction direction applies to the entire

network and hides the detection cost behind the inference cost, the thresholding mech-

anism and the extracted layer are specified at the layer level to reduce the detection

cost.
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def AdversaryDetection(model, input, θ, φ):
  output = Inference(model, input)
  N = model.num_layers
  // Selective extraction only in the last three layers
  for L in range(N-3, N):
    if L != N-1:
      // Forward extraction using absolute thresholds
      ImptN[L] = ExtractImptNeurons(1, 1, φ, L)
    else:
       // Forward extraction using cumulative thresholds

      ImptN[L] = ExtractImptNeurons(1, 0, θ, L)
    dynPath.concat(GenMask(ImptN[L]))
  classPath = LoadClassPath(argmax(output))
  is_adversary = Classify(classPath, dynPath)
  return is_adversary

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Fig. 3.6: An adversarial detection algorithm expressed using the programming inter-

face.

3.3.4 Programming Interface

PTOLEMY provides a (Python-based) programming interface that allows programmers

to express a range of different algorithmic design knobs described above. Our pro-

gramming interface is designed with two principles in mind, which we will explain

using an actual detection algorithm expressed using the programming interface shown

in Fig. 4.1.

Decoupled Inference/Detection The PTOLEMY programming interface decou-

ples inference with detection, which allows programmers to focus on expressing the

functionalities of the detection algorithm while leaving optimizations to the compiler

and runtime. For instance, while the inference code (Line 2) and the path extraction

code (Line 3–15) are expressed sequentially in the program, our compiler will under-

stand that the program uses the forward extraction algorithm (Line 8 and 11), and thus

will automatically pipeline inference with important neuron extraction across layers
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(see Chapter 3.4.2).

Per-Layer Extraction Granularity Our programming interface provides the flex-

ibility to specify the important neuron extraction method for each layer to leverage the

three knobs described above to explore the efficiency-accuracy trade-off space. We will

demonstrate its effectiveness in Chapter 3.7.6.

For instance in Fig. 4.1, the programmer selectively extracts important neurons only

for the last three layers (Line 5). In addition, only the last layer uses the cumulative

threshold to extract important neurons (Line 11), which is more accurate but requires

more computations than using absolute thresholds, which is the method used by the

other two layers (Line 8). Note that we do not allow backward extraction and forward

extraction to be combined in one network to avoid discrepancies in the layer where they

join.

3.4 ISA and Compiler Optimizations

This section describes how PTOLEMY efficiently maps detection algorithms expressed

in the high-level programming interface to the hardware architecture. To that end, we

first introduce the software-hardware interface, i.e., the Instruction Set Architecture

(ISA) (Chapter 3.4.1), followed by the compiler optimizations (Chapter 3.4.2).

3.4.1 Instruction Set Architecture

PTOLEMY provides a custom CISC-like ISA to allow efficient mapping from high-level

detection algorithms to the hardware architecture. The design principles of the ISA are

two-fold. First, it abstracts away hardware implementation details; the semantics are

closer to high-level DNN programmers, and the instructions will be decomposed by

micro-instructions controlled by an FSM. Second, it exposes opportunities for compiler

and hardware to exploit parallelisms.
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The PTOLEMY ISA contains four types of instructions: Inference, Path Construc-

tion, Classification, and Others. They are high-level instructions in the CISC style

that perform complex operations. We use a 24-bit fixed length encoding, and provide

16 general-purpose registers. Tbl. 3.1 summarizes the instructions. We highlight key

design decisions.

• Inference These instructions dictate the inference process. In addition to sup-

port usual inferences (inf), PTOLEMY also provides an instruction that stores

the partial sums to memory (infsp) during inference for backward extraction.

Each inference instruction operates on one layer to match the per-layer extraction

semantics in the high-level programming interface. Finally, the ISA also provides

a special instruction that calculates and stores all the partial sums given an output

feature map element (csps), which will be used by the compiler for memory

optimizations.

• Path Construction This class of instructions is used to construct activation path

dynamically at runtime for any given input. To construct path, the ISA provides

instructions to identify important neurons (sorting sort, accumulate acum) and

to generate the masks from the identified important neurons to form an activation

path (genmasks). There are also instructions to calculate neuron addresses,

which are convenient in finding the start address of a receptive field for a given

neuron (findrf) and finding a given neuron given its position in the network

(findneuron).

• Classification The classification instruction (cls) is used to classify an input as

either adversarial or benign.

• Others The ISA provides a set of control-flow instructions (e.g., and jne), arith-

metic instructions (e.g., dec), and scalar data movement instructions (e.g., mov).

Example Lst. 3.1 shows a sample code that uses cumulative thresholds to extract

important neurons. Through a loop, it iteratively finds a receptive field (findrf), sorts
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partial sums in the receptive field (sort), and uses the sorted partial sums to identify

important neurons whose cumulative partial sums exceed the threshold (acum).

1 .set rfsize 0x200

2 .set thrd 0x08

3 mov r3, rfsize

4 mov r5, thrd

5 <start>

6 [update r7&r2 for next output neuron]

7 findneuron r2, r7, r4

8 mul r5, (r4)

9 findrf r4, r1

10 sort r1, r3, r6

11 acum r6, r1, r5

12 dec r11

13 jne <start>

Listing 3.1: Generating important neurons using a cumulative threshold. .set is a

directive setting compiler-calculated constants. [code] indicates code omitted for

simplicity.

It highlights an important design decision of the PTOLEMY ISA: all the detection

related instructions use register operands. This design simplifies instruction encoding

with little performance impact. For instance, the findrf instruction requires the re-

ceptive field size as an operand, which can be statically calculated by the compiler given

the DNN model configurations. Since the receptive field size could be arbitrarily large

and thus does not always fit in a reasonable, fixed-length encoding, a mov instruction is

used to move the statically calculated immediate value to a register (r3), which is later

used in the sort instruction. While a more complex instruction encoding that limits

the range of immediate operands could eliminate this mov instruction, the performance

overhead introduced by this mov instruction is negligible compared to the heavy-duty
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sort and acum instructions.

3.4.2 Code Generation and Optimization

The compiler maximizes performance by exploiting unique parallelisms and redundan-

cies inherent to the detection algorithms. This is achieved through statically schedul-

ing instructions, which minimizes runtime overhead and hardware complexity. Static

scheduling is possible because the compute and memory access behaviors of both DNN

inference and detection are known at the compile time.

Layer-Level Pipelining A key characteristic of algorithms that use the forward

extraction method is that inference and extraction of different layers can be overlapped.

While the high-level programming interface decouples inference (INFERENCE) and ex-

traction (EXTRACTIMPTNEURONS), and expresses them sequentially, our compiler

will reorder instructions to enable automatic pipelining at runtime, in a way similar

to classic software-pipelining technique (Allan et al., 1995).

Fig. 3.7a shows an example. We use pseudo-code to remove unnecessary details.

<extraction for j> indicates the code block for extracting important neurons

at layer j, and inf(j) indicates inference at layer j. By simply reordering instruc-

tions, inference of layer j+1 and extraction of layer j, which are independent, could

be pipelined. At the hardware level, once inf(j) is issued to execute on the DNN ac-

celerator, <extraction for j> could be issued and executed immediately on our

hardware extension (Chapter 3.5.2).

Note that our software pipelining technique does not fully hide the instruction la-

tency to guarantee that a new instruction can be dispatched every cycle. Both inference

and the extraction code block take tens of millions of cycles. Fully hiding latencies re-

quires expensive optimizations in classic compiler literature (Triantafyllis et al., 2003;

Hoste and Eeckhout, 2008). We find that our simple static instruction reordering is able

to largely overlap inference with extraction, leading to very low performance overhead.
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for j = 1 to L {
  inf(j)
  <extraction for j>
}

inf(1)
for j = 1 to L-1 {
  inf(j+1)
  <extraction for j>
}
<extraction for L>

; inference & extraction of a model

(a) Overlapping inference with

extraction across layers in for-

ward extraction. L is the total

number of DNN layers.

for i = 1 to N {
  sort(i)
  acum(i)
}

sort(1)
for i = 1 to N-1 {
  sort(i+1)
  acum(i)
}
acum(N)

; extraction within a layer

(b) Neuron-level pipelining

in important neuron extrac-

tion. N denotes the number

of important neurons in the

current layer’s output.

Fig. 3.7: Pseudo-code of instruction scheduling examples. The code in (b) is the ex-

traction block simplified in (a).

A side effect of not fully hiding the instruction latencies is that our hardware would

still have the logic to check dependencies and stall the pipeline if necessary. But the

hardware remains in-order without the expensive out-of-order instruction scheduling

logic.

Neuron-Level Pipelining Similar to layer-level pipelining, our compiler will

also automatically pipeline the extraction of different important neurons within a

layer. Fig. 3.7b shows an example, where cumulative thresholds are used. The two steps

needed to extract important neurons, sorting all the partial sums (sort) and accumu-

lating the partial sums until the threshold is reached (acum), have data dependencies.

The compiler overlaps the extraction across different important neurons (iterations),

improving hardware utilization and performance.

Trading-off Compute for Memory Algorithms that use cumulative thresholds

have high memory cost because all the partial sums must be stored to memory (Fig. 3.5).
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However, if a receptive field does not correspond to an important neuron in the output

feature map, its partial sums will not be used later. We observe that fewer than 5% of

the partial sums stored are used later to extract important neurons.

We propose to use redundant computation to reduce memory overhead. Instead of

storing all the partial sums during inference, we re-compute the partial sums during the

extraction process only for the receptive fields that are known to correspond to impor-

tant neurons in the output feature map. The compiler implements this by generating

csps instructions to re-compute partial sums.

3.5 Architecture Support

This section introduces the PTOLEMY hardware architecture. Following an

overview (Chapter 3.5.1), we describe the designs of major hardware compo-

nents (Chapter 3.5.2 – Chapter 3.5.4).

3.5.1 Overview

Our architecture builds on top of a conventional DNN accelerator. Fig. 3.8 provides an

overview of the PTOLEMY architecture, which consists of an augmented DNN accel-

erator, a Path Constructor that builds the activation path for an input, and a Controller

that dispatches instructions, runs state machines that control the hardware blocks, and

executes the final classifier. An off-chip memory stores all the data structures that are

needed for inference and detection. Both the DNN accelerator and the Path Constructor

use double-buffered on-chip SRAMs to capture data reuse and to overlap DMA transfer

with computation. The controller’s SRAM stores the compiled detection program and

activation/class paths for classification.
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Fig. 3.8: PTOLEMY architecture overview.

3.5.2 Enhanced DNN Accelerator

PTOLEMY can be integrated into general DNN accelerator designs. Without losing

generality we assume a TPU-like systolic array design (Jouppi et al., 2017). Each

PE consists of two 16-bit input registers, a 16-bit fixed-point MAC unit with a 32-bit

accumulator register, and simple trivial control logic.

PTOLEMY minimally extends each MAC unit. Fig. 3.9a shows the simple MAC unit

augmentations (shaded). Specifically, algorithms that use absolute thresholds compare

each partial sum with the threshold and store the single-bit mask to the SRAM; al-

gorithms that use cumulative thresholds require each partial sum to be stored to the

SRAM. Note that with the re-computation optimization, partial sums are recomputed

at extraction time only for important neurons instead of being stored during inference.

To avoid the SRAM becoming a scalability bottleneck, the partial sums and the

masks are double-buffered in the SRAM and doubled-buffered to the DRAM through

a DMA. Later, the partial sums and/or masks are double-buffered back to the SRAM,

similar to how feature maps and kernels are accessed. The extra DRAM space required
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to store partial sums is small as we will show in Chapter 6.8.1. The additional DRAM

traffic incurred by storing and reading partial sums is negligible (<0.1%) compared to

the original DRAM traffic since each partial sum is read and stored only once.

The PE array is used both for the usual inference and for re-computing partial sums

as instructed by the clps instruction (Chapter 3.4.2). During re-computation, only the

first row in the PE array is active because only a selected few elements in the output

feature maps are to be re-computed.

3.5.3 Path Constructor

The goal of the path constructor is to extract important neurons and to construct activa-

tion paths. Algorithms that use cumulative thresholds requires sorting partial sums in

receptive fields. Since receptive fields in modern DNNs are usually large (tens of thou-

sands of elements), sorting all the elements on one piece of hardware could become a

latency bottleneck as the sequence length increases. Our design splits a long sequence

into multiple subsequences, which are sorted in parallel and merged together. Fig. 3.9b

shows the sort unit organization. The sort unit uses the classic sorting network (Knuth,

2014), and the merge unit uses a standard merge tree, both have efficient hardware

implementations (Mueller et al., 2012; Chen et al., 2015; Koch and Torresen, 2011).

The path constructor uses lightweight mask generation hardware, which generates

the important neuron masks for each layer, from which the entire activation path (a bit

vector) is constructed. The path constructor also integrates hardware that calculates

similarities between an activation path and a canary class path, which is a highly bit-

parallel operation. The SRAM in the path constructor is separate from the SRAM used

by the DNN accelerator to avoid resource contention, and is also doubled-buffered.
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Fig. 3.9: Microarchitecture details. MAC and sorting constitutes 99.9% of the opera-

tions in our detection algorithm.

3.5.4 Controller

We assume a micro-controller unit (MCU) in the baseline hardware, as is common in

today’s DNN-based Systems-on-a-chip (SoCs) (xav). We piggyback two key tasks on

the MCU: dispatching instructions and executing the final classifier to detect adver-

saries. Both are lightweight tasks that can be executed efficiently on an MCU without

extra hardware.

Dispatching Instructions Thanks to the simple ISA encoding (Tbl. 3.1), the com-

piled programs can be interpreted on the MCU (i.e., software decoding) efficiently

while avoiding extra hardware cost. The overhead of interpreting the code is negligi-

ble compared to the total execution time. The programs are very small in size. The

largest one, which uses cumulative thresholds and backward extraction, is about 30

static instructions (below 100 bytes).

Classification The similarity between an activation path and the canary class path

calculated from the path constructor is fed into a random forest (RF) for the final clas-

sification (Chapter 3.3.2). Our particular RF implementation uses 100 decision trees,

each of which has an average depth of 12. In total, RF consumes about 2,000 operations

on AlexNet (five orders of magnitude lower than inference), and could execute on an

MCU in microseconds.
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3.6 Evaluation Methodology

This section explains the basic hardware and software setup (Chapter 3.6.1) and the

evaluation plan (Chapter 3.6.2).

3.6.1 Experimental Setup

Hardware Implementation We develop RTL implementation using Synposys synthe-

sis and Cadence layout tools with Silvaco’s Open-Cell 15nm technology (15n). The

on-chip SRAM is generated using an ARM memory compiler and the off-chip DRAM

is modeled after four Micron 16 Gb LPDDR3-1600 channels. We assume an ARM Cor-

tex M4-like micro-controller (MCU) as the controller in the hardware (Chapter 3.5.4).

The synthesis and memory estimation results are used to drive a cycle-level simulator

for performance and energy analyses.

Networks and Datasets We evaluate PTOLEMY using two networks: 1)

ResNet18 (Szegedy et al., 2017a) on the CIFAR-100 dataset (Krizhevsky et al., 2009)

with 100 different classes and 50,000 training images, and 2) AlexNet (Krizhevsky

et al., 2012) on the ImageNet dataset (Deng et al., 2009) with 1000 different classes

and 1 million training images. The networks and datasets we evaluate are at the high

end of the benchmark scale evaluated by today’s countermeasure mechanisms (Car-

lini and Wagner, 2017a; He et al., 2017; Metzen et al., 2017), which mostly use much

smaller datasets and networks (e.g., MNIST, CIFAR-10) (LeCun, 1998; Netzer et al.,

2011) that are less effective in exercising the capability of our system. The test sets

are evenly split between adversarial and benign inputs, following the common setup of

adversarial attack research.

The clean AlexNet without attacks has an accuracy of 55.13% on ImageNet;

ResNet18 has an accuracy of 94.49% and 75.87% on CIFAR-10 and CIFAR-100, re-

spectively.
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Attacks We evaluate PTOLEMY against a wide range of attacks. We first

evaluate using five common non-adaptive attacks: BIM (Kurakin et al., 2016),

CWL2 (Carlini and Wagner, 2017c), DeepFool (Moosavi-Dezfooli et al., 2016a),

FGSM (Papernot et al., 2016b), and JSMA (Papernot et al., 2016b), which com-

prehensively cover all three types of input perturbation measures (L0, L2, and

L∞) (Akhtar and Mian, 2018).

We also specifically construct attacks that attempt to defeat our detection mecha-

nism (a.k.a., adaptive attacks (Carlini and Wagner, 2017a)). In particular, we assume

an adversary that has a complete knowledge of PTOLEMY’s detection algorithms and

the attacked model, and thereby generates adversarial samples by incorporating path

similarities into the loss function.

Metrics We use the standard “area under curve” (AUC) accuracy metric (between 0

and 1) for adversarial detection (Huang and Ling, 2005), which captures the interaction

between true positive rate and false positive rate. Unless otherwise noted, we report

the average accuracy across all attacks. We confirm that the accuracy trend is similar

across attacks.

3.6.2 Evaluation Plan

Our evaluation is designed to demonstrate that 1) PTOLEMY achieves similar or higher

accuracy than today’s detection mechanisms with a much lower performance penalty,

and 2) the general framework allows for a large accuracy-efficiency trade-off. To that

end, we develop and evaluate four algorithm variants using our programming model.

All the compiler optimizations (Chapter 3.4.2) are enabled when applicable.

• BWCU: Backward extraction with cumulative thresholds.

• BWAB: Backward extraction with absolute thresholds.

• FWAB: Forward extraction with absolute thresholds.
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• HYBRID: Hybrid algorithm where BWAB is used on the first half of a network

and BWCU is used on the rest.

Baselines We compare against three state-of-the-art adversarial detection mecha-

nisms: EP (Qiu et al., 2019), CDRP (Wang et al., 2018a), DeepFense (Rouhani et al.,

2018). Both EP and CDRP leverage class-level sparsity. CDRP requires retraining and

thus is not able to detect adversaries at inference-time. Note that we evaluate PTOLEMY

using the exact same attacks used in the above papers.

DeepFense represents a class of detection mechanisms that use modular redun-

dancy. DeepFense employs multiple latent models as redundancies. We directly use

the accuracy results reported in their papers. Note that DeepFense is evaluated using

ResNet18 on CIFAR-10, on which we perform additional experiments for a fair com-

parison.

3.7 Evaluation

We first show the area and DRAM space overhead introduced by PTOLEMY’s hardware

extensions (Chapter 6.8.1) are small. We show that PTOLEMY provides more accu-

rate detection (Chapter 3.7.2) with lower latency and energy overhead than prior work

(Chapter 3.7.3 – Chapter 3.7.4). We show that PTOLEMY is robust against adaptive

attacks that are specifically designed to defeat it (Chapter 3.7.5). PTOLEMY provides

a large accuracy-efficiency trade-off space (Chapter 3.7.6). We further study the sensi-

tivity and scalability of PTOLEMY (Chapter 3.7.7). Finally, we report additional results

on several other models (Chapter 3.7.8).

3.7.1 Overhead Analysis

Area Overhead The baseline DNN accelerator incorporates a 20×20 MAC array op-

erating at 250MHz. The accelerator has an SRAM size of 1.5 MB, which is banked at
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Fig. 3.10: Accuracy comparisons with EP and CDRP. Error bars indicate the max and

min accuracies of all the attacks.

a 64 KB granularity. PTOLEMY augments the baseline hardware with a 32 KB SRAM

banked at 2KB granularity for storing partial sums/masks, and a 64 KB SRAM used by

the path constructor, which includes two 16-element sort units, one 16-way merge tree,

and an accumulation unit. This accelerator is used in evaluating both PTOLEMY and all

our baselines.

On top of the baseline DNN accelerator, PTOLEMY introduces a total area overhead

of 5.2% (0.08 mm2), of which 3.9% is contributed by the additional SRAM. The rest

of the area overhead is attributed to the MAC unit augmentation (0.4%) and other logic

(0.9%).

DRAM Space Under BWAB and FWAB, AlexNet and ResNet18 require 1.6 MB

and 2.2 MB extra DRAM space. To show scalability, we also evaluated VGG19, which

is 13× larger than ResNet18 and requires only 18.5 MB extra DRAM space. With the

recompute optimization, AlexNet, ResNet18, and VGG19 require only an extra 12.8

MB, 17.6 MB, and 148.0 MB in DRAM, respectively under BWCU. The additional

DRAM traffic is less than 0.1% (Chapter 3.5.2).
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3.7.2 Accuracy

PTOLEMY’s accuracy varies with the choice of θ and ϕ, which control the coverage

of important neurons. Using BWCU as an example, Tbl. 3.2 shows how its accuracy

changes as θ varies from 0.1 to 0.9. As θ initially increases from 0.1 to 0.5 the accuracy

also increases, because a higher θ captures more important neurons. However, as θ

increases to 0.9, the accuracy slightly drops. This is because a high θ value causes

different class paths to overlap and become less distinguishable. Meanwhile, the latency

and energy consumption increase almost proportionally as θ increases. We thus use

θ = 0.5 for the rest of our evaluation. The trend with respect to ϕ is similar, but is

omitted due to limited space.

Table 3.2: Sensitivity of accuracy, la-

tency, and energy of BWCU as θ varies.

Latency and Energy are normalized to

inference.

θ Accuracy Latency Energy

0.1 0.86 4.7× 2.9×

0.5 0.94 12.3× 7.7×

0.9 0.91 25.7× 15.6×

PTOLEMY variants achieve similar or better accuracy than existing defense mech-

anisms. Fig. 3.10 shows the accuracy comparison. On AlexNet across all attacks

(Fig. 3.10a), the three backward extraction-based variants (BWCU, BWAB, and

HYBRID) outperform EP and CDRP by up to 0.02 and 0.1, respectively. FWAB uses

forward extraction and has 0.03 lower accuracy than EP (0.06 higher than CDRP),

indicating the accuracy benefits of backward extraction. On ResNet18 (Fig. 3.10b),

PTOLEMY consistently achieves higher (0.14 – 0.16) accuracy than CDRP, and has

similar or higher accuracy than EP (at most 0.01 accuracy loss).

Note that adversarial attacks generated by CWL2 have low confidence of the rank1

class, and the confidence of rank1 class is similar to that of the rank2 class. Thus,

evaluating CWL2 let us understand PTOLEMY’s robustness against adversarial attacks
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Fig. 3.11: Latency and energy comparisons with EP.

launched by “low-confidence” images. On Imagenet against CWL2, PTOLEMY’s ac-

curacy is 0.95, while the baselines are 0.94 (EP) and 0.85 (CDRP); on CIFAR10,

PTOLEMY’s accuracy is 0.96 while DeepFense is 0.93.

3.7.3 Latency and Energy

PTOLEMY could achieve low performance and energy overhead over usual DNN infer-

ence. Fig. 3.11a and Fig. 3.11b show the latency and energy consumption of the four

PTOLEMY variants normalized to DNN inference, respectively. For comparison pur-

poses, we also show the latency and energy of EP. We do not show the results of CDRP

because CDRP requires retraining and is not suitable for online detection.

Although having the highest accuracy, BWCU also has the highest latency and en-

ergy overhead due to the expensive partial sum sorting and accumulation operations

during extraction, which is serialized with inference. On AlexNet, BWCU introduces

12.3× latency overhead and increases the energy by 7.7×. The corresponding results

on ResNet18 are 195.4× and 105.9×, respectively. The overhead on ResNet18 (18

layers) is higher than on AlexNet (8 layers), because as the network becomes deeper

the amount of important neurons increases, which in turn increases the extraction time.

The overhead of BWCU is similar to EP, while BWAB, FWAB and HYBRID all
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achieve much lower latency and energy overhead. BWAB uses absolute thresholds to

avoid sorting and storing partials sums. BWAB reduces the latency and energy overhead

on AlexNet to only 1.2× and 1.1×, respectively, and 3.2× and 2.0× on ResNet18,

respectively.

FWAB further reduces the latency overhead to only 2.1% and 2.1× on the two

networks, respectively, by using forward extraction to overlap extraction with inference.

The latency overhead on ResNet18 is higher because ResNet18 is deeper with a higher

important neuron density (explained above), leading to longer extraction latency that is

harder to hide behind the inference latency. FWAB does not reduce energy overhead

significantly comparing to BWAB, because it hides, rather than reducing, the amount

of compute.

Finally, HYBRID provides a design point that balances efficiency with accuracy

by combining cumulative thresholds and absolute thresholds. It leads to 1.7× latency

overhead and 1.4× energy overhead on AlexNet, and the overheads are 47.3× and

36.1× on ResNet18, respectively.

3.7.4 DeepFense Comparison

We compare against the three default DeepFense variants, which differ in the number

of redundant networks: 1 in DFL, 8 in DFM, and 16 in DFH. DeepFense is originally

implemented on FPGA/GPUs; we perform a best-effort reimplementation on our hard-

ware substrate for a fair comparison.

Fig. 3.12a shows the accuracy comparison between PTOLEMY and DeepFense us-

ing ResNet18 on CIFAR-10. All PTOLEMY variants achieve significantly higher de-

tection accuracy over DeepFense. Specifically, FWAB, which has the lowest accuracy

among all PTOLEMY variants, outperforms DFH, which is the most accurate setup of

DeepFense, by 0.11 on average.

Fig. 3.12b shows the latency and energy of PTOLEMY and DeepFense variants nor-
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Fig. 3.12: DeepFense comparison.

malized to usual inference. With higher accuracy, BWAB and FWAB are also faster and

consume less energy compared to all three DeepFense variants. For instance, FWAB re-

duces latency and energy overhead by 89.0% and 59.0%, respectively, compared with

DFL, the most light version of DeepFense. The better efficiency of PTOLEMY over

DeepFense indicates the effectiveness of exploiting the runtime behaviors of DNN in-

ferences.

3.7.5 Defending Against Adaptive Attacks

Adaptive attacks refer to attacks that have complete knowledge of how a defense

mechanism works and attempt to defeat that specific defense (Carlini et al., 2019;

Tramer et al., 2020). We perform a best-effort construction of adaptive attacks against

PTOLEMY, and show that PTOLEMY can effectively defend against adaptive attacks.

Constructing the Attacks To attempt to defeat PTOLEMY, we force an adversarial

sample to have the same activation path as a benign input. However, since our path con-

struction requires ranking/thresholding, which are non-differentiable, we opt for a dif-

ferentiable approximation–a common practice in adversarial ML (Tramer et al., 2020).

We experiment with several heuristics, and find that the most effective one is to force

all the activations of an adversary to be the same as a benign input, i.e., a sufficient but
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Fig. 3.13: Detection accuracy of PTOLEMY on various adaptive attacks (AT) compared

to the five existing attacks.

not necessary condition.

Specifically, to generate an adversarial sample from an input x that has a true class

c, we first randomly choose a benign input xt of target class t from the training dataset,

where c ̸= t. We then add noise δx to x to generate xa such that xa’s activations

are as close to that of xt as possible. This is achieved by minimizing the L2 loss∑
i ∥zi(x+ δx)− zi(xt)∥22 as the objective function, where zi(⋆) denotes the activa-

tions of ⋆ at layer i. To strengthen the attack, we choose five different xt of different

classes to generate five different xa, and select the xa with the smallest loss. We use

ptolemyected gradient descent (PGD) (Madry et al., 2017) as the optimization method.

Results PTOLEMY detects these adaptive adversarial samples, even though they are

generated specifically to “fool” PTOLEMY by having activation paths that are similar to

their benign counterparts. Using AlexNet on ImageNet as an example, Fig. 3.13 shows

the detection accuracy of BWCU and FWAB on the adaptive attacks (AT ). ATn denotes

that activations of the last n layers are considered in the loss function when generating

adversarial samples. Since AlexNet has 8 layers, AT8 is the strongest adaptive attack.

The detection accuracies on existing attacks are shown as for comparison.

Overall, the detection accuracy decreases as more layers are considered in generat-

ing the adaptive attacks, i.e., attacks become more effective. When only the first three
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layers are considered by the adaptive attack, the adversaries are more easily detected by

PTOLEMY than existing attacks. The detection accuracies on adaptive attacks are lower

than those on non-adaptive attacks, confirming that adaptive attacks are more effective,

matching the intuition (Carlini et al., 2019).

Validating and Analyzing the Attacks Our adaptive attack does not bound

perturbation, i.e., is an unbounded attack. Following the guideline in Carlini et

al. (Carlini et al., 2019) that “The correct metric for evaluating unbounded attacks is

the distortion required to generate an adversarial example, not the success rate (which

should always be 100%)”, we verify the validity of our adaptive attack in two ways.

First, we verify that the constructed attacks do reach 100% success rate; the average

distortion, measured in Mean Square Error (MSE), is 0.007, and the maximum MSE

0.035.

Second, we show how the detection accuracy of PTOLEMY is impacted by the dis-

tortion rate introduced in the adaptive adversarial examples. The data is shown in

Fig. 3.14, where every < x, y > point denotes the average detection accuracy (y)

for all the adaptive attacks whose distortions (MSE) is lower than or equal to a certain

value (x). We find that overall the detection accuracy drops slightly as the distortion

increases—an expected trend—although the trend is not strong, which is likely because

the absolute distortion is too low (a desirable property) to demonstrate strong correla-

tion with accuracy. We do verify that when the distortion is large enough to completely

transform an image from one class to another, the detection accuracy would drop to

0, but at that point the input could not be considered an adversarial attack since the

transformed image does not look like the original image.

We also investigate how the detection accuracy is impacted by the path similarities

between the original class and the target class. We show the results in Fig. 3.15, where

every < x, y > point denotes the average detection accuracy (y) for all the adaptive

adversarial inputs whose path similarity between the original class and the target class

is lower than or equal to a certain value (x). While the path similarity between the
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original class and the target class has a wide range (0.0 – 0.34), the detection accuracy

does not correlate strongly with the path similarity. This is a desirable property, as

it suggests that PTOLEMY is not more vulnerable when the attacker simply targets a

similar class when generating the attacks.

Discussion The way we construct the adaptive attack is by approximating the hard

path objective (i.e., forcing an adversarial sample to have the same activation path as a

benign input) using a differentiable objective that constrains the individual activations.

This relaxation let us formulate adversarial attack generation as an optimization prob-

lem that could be solved using effective optimization methods (e.g., PGD). If one were

to force a hard constraint on the activation path, the objective function would not be

differentiable.

In that case, a naive approach to generate adaptive attacks would be to exhaustively

search all the possible perturbations. But without guidance such search would be pro-

hibitively expensive (e.g., (256340,000 for an 8-bit color depth, 200×200 resolution RGB

image). We did try the exhaustive search method in a limited form, which generated

results that add so much perturbation so that the resulted images do not look like the

original images at all.

An interesting direction would be to investigate intelligent search heuristics (e.g.,
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Fig. 3.16: Accuracy, latency, and energy consumption under different termination layer

in BWCU.
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Fig. 3.17: Accuracy, latency, and energy consumption under different start layer in

FWAB.

simulated annealing) to find perturbations that meets the hard path constraint while

fooling PTOLEMY. We leave this to future work.

3.7.6 Early-Termination and Late-Start

The PTOLEMY framework allows programmers to flexibly select which layers to extract

important neurons from (Chapter 3.3.3). To trade accuracy for performance, program-

mers could start extracting important neurons later in forward extraction algorithms (as

illustrated in Fig. 3.6), or terminate extraction earlier in backward extraction algorithms.

Early-Termination We use BWCU to showcase the trade-off that early-termination
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in backward extraction offers. For simplicity, we show only the results on AlexNet;

ResNet18 has similar trends. Fig. 3.16a shows how accuracy (y-axis) varies as the ter-

mination layer (x-axis) varies from 8 (the last layer) to 1 (the first layer). As AlexNet

has 8 layers in total, terminating at layer 8 means extracting important neurons from

only one layer. As extraction terminates later (further to the right on x-axis), more im-

portant neurons are captured and thus the accuracy increases. The accuracy increase

eventually plateaus beyond layer 6, indicating marginal return of investment to extract

more layers.

Fig. 3.16b shows how the latency and energy consumption varies with the termina-

tion layer. With virtually the same accuracy, extracting all the layers (i.e., terminating

at layer 1) leads to 11.2× higher latency and 6.6× more energy compared to extracting

only 3 layers (i.e., terminating after layer 6), which introduces only 1.1× and 1.1×

latency and energy overhead over normal inference, respectively.

Late-Start We use FWAB as an example to demonstrate the trade-off that late-start

provides to forward extraction-based methods. Fig. 3.17a and Fig. 3.17b show how the

accuracy and latency/energy vary with the start layer, respectively.

Similar to early-termination, the accuracy increases as more layers are extracted,

i.e., start earlier (further to the right). Interestingly, starting later does not help reduce

the latency. This is because extraction latency is largely hidden behind the inference

latency. However, starting later does reduce the energy consumption by 8.4% because

less work is done.

3.7.7 Sensitivity and Scalability Studies

We show how PTOLEMY’s performance varies with different hardware resource provi-

sions in the path constructor. We report only the results of BWCU on AlexNet due to

limited space. Fig. 3.18a shows how the latency and energy consumption (normalized

to DNN inference) vary with the number of merge tree length (the number of partially
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Fig. 3.18: Performance vary with hardware resource.

sorted sequences that are merged simultaneously). As the merge tree length increases,

the latency reduces (from 31.0× to 12.3×), but the power consumption stays virtually

the same. This is because a 16-length merge tree contributes to only 2% of the total

power.

Fig. 3.18b shows how the latency and power consumption vary with the number

of sort units. We find out latency decreases only marginally with more sort units, be-

cause sorting is memory-bound and thus increasing computing units has a marginal

impact. The power consumption, however, increases significantly, because the sort unit

contributes significantly (33.4%) to the overall power in our design.

While our original DNN accelerator uses 16-bit precision, we also evaluate

PTOLEMY under a 8-bit design. The area overhead increases from 5.2% to 5.5%. For

AlexNet, the 8-bit design has 2.1% latency and 33.0% energy overhead using FWAB,

comparable with 2.1% and 16.0% overhead of the original design. We also increase

the MAC array size from 20×20 to 32×32. The area overhead increases from 5.2% to

6.4%. AlexNet has 4.4% latency and 16.4% energy overhead using FWAB, on par with

the original 2.1% and 16.0% value.
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3.7.8 Large Model Evaluation

On VGG16 (Simonyan and Zisserman, 2014) and Inception-V4 (Szegedy et al., 2017b),

the average inter-class path similarity on ImageNet is only 41.5% and 28.8%, respec-

tively, indicating that important neurons exist and class paths are unique in these mod-

els.

We also applied our detection scheme to DenseNet (Iandola et al., 2014), and

achieved 100% detection accuracy with 0% false positive rate (FPR), higher than the

previously best accuracy at 96% with 3.8% FPR (Ma and Liu, 2019). We use the detec-

tion accuracy and false positive rate instead of AUC in order to directly compare with

the referenced method. We also evaluated ResNet50 on ImageNet using BWCU. The

accuracy is 0.900, which is more accurate than EP (Qiu et al., 2019) (0.898).

3.8 Related Work and Discussion

Different mechanisms to counter adversarial attacks have been explored. One major

class is to boost the DNN robustness at the training time through adversarial retrain-

ing (Bradshaw et al., 2017; Goodfellow et al., 2014a; Miyato et al., 2016; Gu and

Rigazio, 2014), which incorporates adversarial samples into the training data. How-

ever, adversarial retraining does not have the detection capability at inference time. It

also requires accesses to the retraining data, which PTOLEMY does not. PTOLEMY can

also be integrated with adversarial retraining. Besides adversarial samples, we expect

that PTOLEMY could also be used for detecting the execution errors of DNN accelera-

tors caused by transient hardware errors (Leng et al., 2020, 2015; Papadimitriou et al.,

2020).

Detection mechanisms have also been extensively explored, ranging from using

modular redundancies (e.g., input transformation (Buckman et al., 2018; Guo et al.,

2017; Thang and Matsui, 2019), multiple models (Rouhani et al., 2018), and weights
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randomization (Dhillon et al., 2018; Xie et al., 2017)), to cascading a dedicated DNN to

detect adversaries (Ma and Liu, 2019; Lu et al., 2017; Gong et al., 2017; Metzen et al.,

2017). Wang et al. (Wang et al., 2020b) proposes to spatially share the DNN accelerator

resources between the original network and the detection network. PTOLEMY differs

from them in two ways. First, we show that using path as an explicit representation

of the input, PTOLEMY can use a simple random forest classifier to detect adversarial

inputs rather than complicated DNNs. Coupled with other performance optimizations,

PTOLEMY provides very low (2%) overhead to enable detection at inference-time while

others introduce several folds higher overhead. Second, PTOLEMY provides an algo-

rithm design framework that allows programmers to make trade-offs between detection

efficiency and accuracy.

Carlini et al. provides a checklist of best practices in evaluating defense mecha-

nisms of adversarial attacks (Carlini et al., 2019). This paper exercises the following

red teaming:

• Stated the threat model: attackers know everything (model, inputs, defense).

• Performed adaptive attacks (Chapter 3.7.5).

• Reported clean model accuracy (Chapter 3.6.1).

• Performed basic sanity checks (iterative attacks perform better than single-step

attacks; increasing the perturbation budget strictly increases attack success rate;

with “high” distortion, model accuracy reaches random guessing.).

• Analyzed success vs. distortion (perturbation) for our adaptive attack (Chap-

ter 3.7.5).

• Showed that adaptive attacks are better (harder to be detected) than non-adaptive

ones (Fig. 3.13).

• Showed attack hyper-parameters with the released code.
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• Applied both non-adaptive attacks (covering all three types of input perturbation

measures (L0, L2, and L∞)) and adaptive attacks (Chapter 3.6.1).

• For non-differentiable components (in adaptive attacks), applied differentiable

techniques (Chapter 3.7.5).

• Verified that the attacks have converged under the selected hyper-parameters.
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4 A Reliable Perception System for

Countering Adversarial Attacks

Deep neural networks (DNNs) are known to be vulnerable. Adversarial examples,

which are carefully crafted examples, can easily lead deep neural networks to mis-

predict (Yuan et al., 2019; Madry et al., 2017; Moosavi-Dezfooli et al., 2016a; Li et al.,

2019; Gao et al., 2018b). As deep learning has been widely used in mission-critical ap-

plications such as autonomous vehicle systems (Ramos et al., 2017; Rao and Frtunikj,

2018) and anti-fraud systems (Paula et al., 2016; Fang et al., 2021; Craja et al., 2020),

the safety and robustness of deep learning systems countering adversarial examples

have become more important than ever.

A primary countermeasure against adversarial attacks is adversarial example detec-

tion, as demonstrated in PTOLEMY. Leveraging the differences between the charac-

teristics of standard and adversarial inputs, PTOLEMY effectively classifies adversarial

examples from standard inputs. Nevertheless, a major limitation of adversarial example

detection lies in its ability solely to detect but not process these adversarial examples.

The other main countermeasure of adversarial attacks is adversarial training (Paper-

not et al., 2016c; Miller et al., 2020; Tramèr et al., 2017b; Shafahi et al., 2019), which

exposes the network architecture to adversarial samples at training time. Fundamen-

tally, adversarial training trades off standard accuracy (SA) for robust accuracy (RA).

The inherent SA-vs-RA trade-off has been observed, explored, and demonstrated in
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Fig. 4.1: Standard model is vulnerable to adversarial samples; adversarially-trained

model is more robust at a cost of standard accuracy; our method provides both high

accuracy and robustness.

numerous studies (Zhang et al., 2019; Sun et al., 2019; Nakkiran, 2019; Raghunathan

et al., 2019; Singla et al., 2021; Xu et al., 2021).

Fig. 4.1 illustrates the SA-vs-RA trade-off using an example where the traffic sign

is adversarially-attacked (e.g., through a physical attack (Li et al., 2019; Sayles et al.,

2021)). As a result, the standard model, while correctly classifies the car and the bike,

mis-classifies the traffic sign into a traffic light. The adversarially trained model defends

the adversarial attack on the traffic sign, but mis-predicts the bike, which is a standard

input without contamination.

I argue that improving a network’s robustness does not necessarily mean a signifi-

cant drop in standard accuracy. I propose a generic framework that simultaneously im-

proves the standard and robustness accuracy over prior adversarial learning schemes.

Illustratively in Fig. 4.1, our framework would defend against the adversarial input

(traffic sign) while also correctly predicting the standard inputs (the car and the bike).

Fig. 4.2 shows a more comprehensive picture, where networks trained using the pop-

ular Projected Gradient Descent Adversarial Training (PGDAT) (Madry et al., 2017)

under different configurations show a clear SA-vs-RA trade-off, while our frameworks
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maintains both high SA and RA.

Our key insight is that a network’s inference should automatically adapt to different

inputs and to attacks of different strengths. Intuitively, a stronger attack requires a more

robust model, and this selection must be done at inference time at a per-input basis. The

key of the selection is an adversarial example detector like PTOLEMY. To that end, I

propose a conditional adversarial learning framework, where the network architecture

is parameterized with respect to a parameter λ that controls the standard-vs-robustness

accuracy trade-off of the network. At inference time, λ is set for each input, allowing

the network to adapt to the input dynamically.

Crucially, the condition parameter λ is learned from the input in a completely auto-

mated manner without any extra manual control from the users. This is accomplished

by learning an input-specific λ such that λ represents whether an input is a standard in-

put or an adversarial sample and, in the latter case, the perturbation level of the attack.

I show that λ can be learned from the inherent inference behavior of an input. I then

demonstrate an end-to-end trainable network that jointly learns λ and the subsequent

inference conditioned on λ. I make three contributions in this work. First, I challenge

the conventional wisdom that there necessarily is a trade-off between SA and RA. I

introduce a conditional network architecture that adapts itself to the adversarial char-

acteristics of an input and, thus, maintains both high SA and RA. Second, Unlike prior

work on conditional adversarial learning (Wang et al., 2020a), I show how the condition

parameter can be automatically inferred without user input. Prior work requires manual

specification of the condition parameter, which is necessarily heuristic and, thus, lacks

the ability to adapt to different inputs. Third, extensive experimental results demon-

strate higher SA and RA compared to existing adversarial training schemes with just

one model without retraining, ensemble, or extra user inputs.
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4.1 Preliminaries and Motivation

4.1.1 Adversarial Attack and Defense

Deep learning models are vulnerable to adversarial attacks: small perturbations that

fool the network (Szegedy et al., 2013). A range of different types of attacks exists

depending on the attack model (Akhtar and Mian, 2018; Chakraborty et al., 2018). This

paper targets the evasion attack, where the inference inputs could contain adversarial

samples. Evasion attack is by far the most common attack form in practical settings

(Hitaj et al., 2017; Madry et al., 2017; Moosavi-Dezfooli et al., 2016b; Ma et al., 2020;

Li et al., 2020; Garcelon et al., 2020; Dolatabadi et al., 2020; Zhang et al., 2020b;

Tramer et al., 2020)

The main countermeasure of adversarial attacks is adversarial training, where ad-

versarial samples are exposed at training time (Goodfellow et al., 2014b; Lyu et al.,

2015; Lin et al., 2020; Yang et al., 2020; Zhang et al., 2020a) Other methods such as

gradient hiding (Papernot et al., 2017), feature enhancement (Xu et al., 2017; Levine

and Feizi, 2020; Tian and Xu, 2021; Dusmanu et al., 2020) and adversarial example

detection (Yin et al., 2021; Freitas et al., 2020) are also applied.

4.1.2 Adversarial Training

Adversarial training is one of the most studied countermeasures (Madry et al., 2017;

Tramèr et al., 2017b). Most adversarial training methods increase the robustness of the

network by introducing an extra robustness loss into the overall loss function:

(4.1) min
θ

E(x,y)∼D(1− α)× Lc + α× La,

where (x, y) is a pair of data and label drawn from distribution D, f is the classifier

parameterized by θ, Lc and La are loss functions over clean and adversarial samples
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respectively, and α is a hyper-parameter controlling the model’s ability to classify stan-

dard inputs vs. adversarial examples and it is usually fixed before training. The two

loss terms are: Lc = L(f(x; θ), y), La = max
δ∈B(ϵ)

L(f(x+ δ; θ), y), where δ is the adver-

sarial perturbation, and B(ϵ) = {δ| ∥δ||∞ ≤ ϵ∥} is the allowed perturbation set with the

pre-defined radius ϵ. Depending on the adversarial training strategy, the loss function L

could be the cross-entropy loss (Cox, 1958), soft logits-pairing (Kannan et al., 2018),

etc.

Standard-vs-Robust Accuracy Trade-off Many works (Raghunathan et al.,

2019; Wang et al., 2020a; Yang et al., 2020) have shown that the inherent trade-off

happens standard accuracy and robust accuracy exist, and the trade-off is dictated by

α. In much of the prior work (Madry et al., 2017), α is statically set once in training.

Using PGDAT (Madry et al., 2017) on CIFAR-10 as an example, Fig. 4.2 shows the

trade-off between standard accuracy and robust accuracy. To increase the model’s ca-

pability of countering adversarial examples, the accuracy on standard inputs drops as

much as 9.5%.

Attack Strengths Another limitation of traditional adversarial training is the lack

of ability to deal with adversarial samples with different attack strengths (perturbation

levels). A model is typically trained with adversarial samples with only one attack

strength and, thus, in theory, is able to defense attacks with that particular setting well.

Simply training models by mixing different attack strengths leads to accuracy degrada-

tion.

We demonstrate the limitation of only using one model to defend attacks with differ-

ent strengths in Fig. 4.3. “PGDAT” denotes a model trained using a typical adversarial

training setting that mixes standard inputs and adversarial samples with a perturbation

level ϵ = 6. “PGDAT-Mixed” denotes a model trained by mixing standard inputs and

adversarial samples with two different perturbation levels ϵ = 6 and ϵ = 12. “PGDAT-

Dedicated” refers to dedicated models trained with the particular perturbation level

same as the evaluation attack perturbation level. The y-axis shows the model accuracy
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under standard inputs and adversarial samples of different perturbation levels.

PGDAT-Dedicated shows on average 3.7% accuracy improvement over PGDAT,

which is in turn 1.8% more accurate than PGDAT-Mixed on standard inputs and, on av-

erage, 1.4% more accurate on adversarial samples of different perturbation levels. The

results show that adversarial training by simply mixing different perturbation levels

hurts accuracy. Training dedicated models, while generally more accurate, is undesir-

able as it increases the training effort and deployment complexity (Wang et al., 2020a).

4.1.3 Adversarial Sample Detection

Complementary to adversarial training which improves the model robustness at train-

ing time, one could also detect adversarial inputs when an input is available (Qiu et al.,

2019; Metzen et al., 2017; Zhang and Zitnik, 2020). Traditionally, adversarial sample



61

detection techniques are generally used offline because they either are slow (Gan et al.,

2020) or are fundamentally infeasible for inference-time detection, e.g., requiring ac-

cesses to training data (Wang et al., 2018b). Recent advancements have enabled fast and

lean algorithms that can detect and reject adversarial samples at inference time (Aldah-

dooh et al., 2021) with high accuracy. For instance, Qiu et al. (Qiu et al., 2019) achieves

a 96.0% Area Under Curve (AUC) accuracy on the CIFAR-10 dataset (Krizhevsky

et al., 2009) and a 95.0% AUC on the CIFAR-100 dataset with negligible overhead.

A key contribution of our work is to integrate adversarial detection into the adver-

sarial training process in such a way that the trained model is conditioned on the detec-

tion result. It addresses a crucial limitation of existing adversary detection techniques,

where they do not have the ability to provide the correct output when an adversarial

sample is detected, limiting their practical use.

4.2 Technical Approach

After providing an overview to our framework, we first focus on inference, describing

how the condition is generated and how the condition is used to dynamically morph

the network. We then discuss how a network is trained in our framework in the last

subsection.

4.2.1 Main Idea Overview

Our main idea is to learn a DNN, whose inference is conditioned upon the adversarial

characteristics of an input. In particular, we divide a N -layer network into two concep-

tual stages: a P -layer prefix stage used to generate the condition λ based on detecting

the adversarial characteristics of an input, and an S-layer suffix stage, which contains

different sub-networks, each of which is activated for a particular kind of input (e.g.,

standard vs. adversarial input) conditioned upon λ. Unlike prior conditional adversar-
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Fig. 4.4: MORPHADNET system overview. Prefix layers and input classifier is used to

generate the condition λ. Suffix layers are dynamically conditioned upon λ. The input

classifier in our implementation is a shallow 3-layer MLP.

ial learning (Wang et al., 2020a) that requires λ to be manually specified by users, λ in

our framework is generated automatically without any user input. Fig. 4.4 provides an

overview of our system at both the inference time and at the training time.

Inference The prefix layers serve two purposes. First, they are part of the inference

network: the output of the prefix layer enters the suffix layer, just like how a normal

inference model would work. Second, the prefix layers also extract adversarial char-

acteristics of the input to generate the condition parameter λ, a scalar. In particular, λ

takes 0 when the input is classified as a standard input and takes the value of the pertur-

bation ϵ used to generate the adversarial sample if an input is classified as an adversarial

attack. We will elaborate how the prefix layers predict λ in next subsection.

The suffix layers are dynamically adjusted given λ. Its design is inspired by multi-

branch conditional learning work where the inference path changes based on the in-

put (Bello et al., 2019). While a range of options are available, we use two particular

kinds of modules to achieve adaptivity: dual batch normalization (Benz et al., 2021;

Xie et al., 2020) and dynamic filtering (Jia et al., 2016).

Training The prefix and suffix stages are trained jointly end-to-end. The loss

function is a weighted sum of three components: the loss on standard inputs, the loss
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Fig. 4.5: The details of a dynamic suffix layer. We apply two techniques to achieve the

configurability in dynamic layers which are dynamic kernels and K-BN layer.

on adversarial inputs, and the loss on the input classifier. Evidently, the first two losses

depend on the third loss. We describe how this dependency is resolved and how training

is practically implemented in training subsection.

4.2.2 Generating and Encoding the Condition

Encoding λ The goal here is to generate a λ that encodes the relevant adversarial infor-

mation unique to a particular input. In particular, our current design ties λ to the pertur-

bation level ϵ used to generate an adversarial attack. This is motivated by the observa-

tions that models specialized to specific perturbation levels are vastly different and sig-

nificantly out-perform a generic network trained on different attacks (Fig. 4.3) (Tramer

and Boneh, 2019). Thus, λ is encoded as a scalar value, which is 0 if the input is a

standard sample and is equivalent to ϵ for adversarial inputs.

Learning λ Since λ is equivalent to the perturbation level ϵ, the goal is to predict

ϵ of an input. In particular, we propose to predict ϵ by extracting and leveraging an

input’s inherent inference behavior in a network.

We find that a standard input of a class c tends to exercise a different “path” com-

pared to adversarial inputs that are (mis-)predicted to have the same class c. A pathP(x)

of an input x is defined as a collection of “important” activations and weights during

the inference of x, where the importance is defined based on the activation magnitudes.
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At training time, for each training sample we collect, layer by layer, all the activa-

tions (and their associated weights) that are above a pre-defined threshold θ. We then

aggregate (union) the paths of all the traing samples of class c to create a class path

Pc =
⋃

x∈x̄c
P(x), where x̄c is the set of all the inputs of class c.

At the inference time, we construct a path P(x) for each input x. We then generate

a L-element vector S from P(x) and Pc, where L is the number of layers and c is the

predicted class of x. Each element i in S characterizes the similarity between P(x) and

Pc at layer i. We use the Jaccard similarity coefficient encode the similarity:

(4.2) Si =
|P(x)

i

⋃
Pc

i |
|P(x)

i

⋂
Pc

i |
,

S then enters a shallow, 3-layer MLP (the input classifier in Fig. 4.4) to predict ϵ.

The intuition that S would be effective in predicting ϵ is that samples with a stronger

perturbation tend to be more different from standard inputs than samples with smaller

perturbations. S encodes the difference between an input’s path and the corresponding

class path. Thus, S is directly correlated with the the difference between an input and

the standard inputs of the same class.

4.2.3 Dynamic Suffix Layers

The suffix layers are conditioned upon λ. Two extreme solutions exist. On one hand,

one could use two completely different sub-networks that do not share weights; λ se-

lects the sub-network. On the other hand, one could treat λ as an additional layer input

and force all sub-networks to share (almost) all weights. The former is unscalable as it

requires replicating the entire suffix layers multiple times, and the latter is inflexible, as

the sub-network weights are dependent (e.g., up to an affine transformation if weights

are conditioned on λ through an affine transformation (Perez et al., 2018)).

Our approach combines the best of both worlds selectively by instantiating different

layer instances only in a small number of suffix layers. λ acts as a switch to choose be-
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tween the layer instances. This architecture is illustrated in Fig. 4.5. Our design can be

thought of as sharing the vast majority of weights across sub-networks but forcing the

non-shared weights across sub-networks to be completely different. Clearly, how many

layers are allowed to have the dynamic configurability dictates the trade-off between

network overhead and accuracy, which we explore in evaluation.

Dynamic Knobs We resort to two common techniques to achieve the configurabil-

ity in dynamic layers, shown in Fig. 4.5. First, we propose to use K mutually indepen-

dent kernels in each dynamic layer to learn separate features from standard inputs and

adversarial inputs with different perturbation levels, where K denotes the number of in-

put classes. Second, we propose to leverage the phenomenon that statistics of standard

inputs and adversarial inputs at batch normalization layers are distinctive (Xie et al.,

2020; Wang et al., 2020a). We therefore replace BN layer in the network with a K-BN

layer with K different BNs. At inference time, the network uses λ to select one of the

K kernels and one of the K BNs, effectively conditioning itself on λ.

Scale-up the Network Traditional adversarial training methods are limited by the

diversity of adversarial attacks they can deal with. This is because we usually have to

train a dedicated network (with a unique training setting) for a given attack strength (ϵ).

Mixing different attack strengths in one adversarial training setting leads to significant

performance degradation (Fig. 4.3).

Our network provides two natural ways to scale to more attacks. First, if the input

is an attack that has an ϵ that is beyond the K values seen at the training time, the prefix

layers will predict a λ that is closest to the ϵ. Effectively, this allows us to adapt to

unseen attacks by implicitly performing an interpolation on ϵ. Second, one could easily

increase K to provide more coverage at the inference time. This is feasible as only a

small portion (less than 1% of total parameters) of the network is selected to dynamic;

thus, increasing K leads to little overhead.
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Algorithm 1: Joint Training Process.
Input: Training set D; model f ; maximal steps T ; Adversarial example

detector p; Weight on different loss W1,W2, . . . ,WK

Result: Model parameter θ

for t = 1 to T do
Sample a batch of data (x, y) from D;

Create the corresponding adversarial samples: xadv = PGD(x);

Combine x and xadv into a training batch xr; predict the perturbation levels

of inputs in prefix layers: ladv = p(xr);

Calculate the adversarial sample classification loss: Losspre = L(ladv, lgt);

According to the predictions, separate xr into K batches, each with a

predicted perturbation λi: xλi
, where λi = 0 denotes standard inputs;

Forward xλi
to the corresponding branch Pλi

= f(xλi
; θλi

);

Calculate the loss on different branches Lossλi
= L(Pλi

, y);

Calculate total Loss Loss = W0 × Losspre +
∑K

1 Wi × Lossλi
;

Update model parameters θλi
|i = 1, 2, . . . , K;

end

4.2.4 Training

We design an end-to-end training strategy to jointly train the prefix layers and the suf-

fix layers. The training procedure is non-trivial because it must consider two unique

aspects of our network. First, recall that the prefix layer serves two purposes: it is part

of the overall inference network and also provides the path information to predict the λ

of an input. As a result, the network loss must incorporate both inference loss and the

λ prediction loss. Second, the exact suffix layers for a particular input depends on the

prefix layers’ prediction. We formulate the loss accordingly.

Algo. 1 shows the joint training process. For every batch of the data, we combine the

standard images and corresponding adversarial images together and feed into the prefix
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layers, which generate a λ for each input. Based on the λ value, we separate the training

batch into K sub-batches, each with a unique λ value and enters the corresponding sub-

network in the suffix layers.

The loss is combined from: W0 × Losspre +
∑K

1 Wi × Lossλi
. Losspre is the loss

from the classifier predicting the perturbation levels and Lossλi
is the inference loss of

inputs that are predicted to have a perturbation λi (recall λi = 0 indicates an input is

predicted as a standard input). We empirically set the weight of Lossλi
to be ten times

larger than that of Losspre. All losses mentioned in our application are cross-entropy

loss.

4.3 Evaluation

We show the result of a basic two-branch setting on black-box attack including Transfer

PGD attack and white-box attack including PGD attack and Auto attack. We compare

with existing adversarial training mechanisms to improve SA-RA trade-off with manual

or none test-time adaption. We also evaluate a three-branch setting. More detailed re-

sults about square attack and ablation study are presented in the supplementary material

due to the space limitation.

4.3.1 Experimental Setup

Implementation The input classification in the prefix layers are implemented based

on Ptolemy (Gan et al., 2020; Qiu et al., 2019), a state-of-the-art path-based adversarial

sample detection algorithm. The original Ptolemy design supports only classifying an

input as either standard or adversarial inputs. We augment its implementation to also

predict the perturbation level ϵ. The original classifier in Ptolemy is a random forest,

which we replace with a 3-layer MLP to be differentiable.
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Table 4.1: Standard Accuracy (SA) and Robust Accuracy (RA) with a 2-branch MOR-

PHADNET on Transfer PGD attacks. PGDAT is trained from with a mix of standard

and adversarial samples whose perturbation (ϵ) is 8. PGDAT-Dedicated refers to train-

ing a dedicate network for a particular ϵ without standard samples. Ours-Oracle refers

to an unrealistic version of MORPHADNET where the prefix layers have a 100% accu-

racy in predicting λ and, thus, can be seen as the upper-bound of our approach.

Dataset Variants SA RA (ϵ = 2) RA (ϵ = 4) RA (ϵ = 6) RA (ϵ = 8)

PGDAT 89.4% 85.3% 82.9% 81.9% 77.0%

PGDAT-Dedicated 95.5% 91.9% 88.9% 82.0% 77.5%

CIFAR-10 Ours-Strong 92.1% 89.1% 85.0% 82.0% 77.0%

Ours-Weak 91.2% 88.9% 84.4% 82.8% 77.4%

Ours-Oracle 95.0% 92.2% 90.1% 86.6% 77.2%

PGDAT 61.6% 57.8% 53.9% 49.9% 46.0%

PGDAT-Dedicated 77.1% 67.8% 56.3% 52.1% 45.0%

CIFAR-100 Ours-Strong 64.8% 63.7% 57.0% 53.1% 45.8%

Ours-Weak 63.0% 59.3% 56.7% 52.1% 47.4%

Ours-Oracle 72.1% 67.6% 63.6% 58.7% 45.7%

We evaluate two variants of our system. The stronger version Ours-Strong (Ours-S

hereafter) uses the entire ResNet-18 as the prefix layers and ResNet-34 as the suffix

layers. The weaker version Ours-Weak (Ours-W hereafter) uses the first 5 layers of

ResNet-18 as the prefix layers. In both variants, only the first layer of the entire network

is a dynamic layer (i.e., has two branches). This leads to a FLOPs increase of just 0.1%.

Attacks and Datasets We evaluate MORPHADNET against two attacks: the trans-

fer PGD attack (Cheng et al., 2019) and the square attack (Andriushchenko et al., 2020).

We generate transfer PGD attacks (Cheng et al., 2019) by attacking a ResNet-50 model.

Both transfer PGD and square attacks (refer to supplementary material) in our evalua-

tion are used as black-box attacks.

Developing white-box attacks for multi-branch, dynamic network is still an active

area of research (Hu et al., 2020a): if an adversarial sample is sent to a different branch

from what the sample was originally designed to attack (e.g., due to a mis-prediction
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Table 4.2: SA and RA with a 2-branch setup on Square Attack.

Dataset Variants SA RA (ϵ = 8)

PGDAT 89.4% 80.3%

CIFAR-10 Ours-Strong 92.1% 80.1%

Ours-Oracle 95.0% 80.9%

PGDAT 61.6% 47.8%

CIFAR-100 Ours-Strong 64.8% 46.2%

Ours-Oracle 72.1% 46.7%

in the prefix layers), the attack effectiveness is significantly lower. We also try our best

effort to create white-box attacks against MORPHADNET. For the suffix layers with

more than one branch, we either select a branch to attack or attack a mix of them. We

use PGD attack (Cheng et al., 2019) and AutoAttack (Croce and Hein, 2020) in the

white-box attacks. We report both SA and RA in all cases.

Baselines We compared with three adversarial training mechanisms: the popular

PGDAT (Madry et al., 2017), a recent adversarial training strategy Closer Look (Yang

et al., 2020) which also aims to improve RA without sacrificing SA with dropouts in

adversarial training, and OAT (Wang et al., 2020a), which provides a flexible SA-vs-RA

trade-off by sampling different SA-vs-RA weights at training time and perform manual

adaption at test time. For PGDAT, we also trained various PGDAT-Dedicated variants,

each of which is trained using adversarial samples with only one particular perturbation

level same to the evaluation attack perturbation level. The detailed configuration of each

baseline will be described in the following sections.
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4.3.2 Comparison with Adversarial Training on Black-box Attacks

The classifier we used to predict ϵ is able to correctly classify 75.4% of the standard

samples and 93.5% of the adversarial samples on the largest ϵ level of 15. The detail

discussion of the accuracy of the classifier can be found in the supplementary materials.

Tbl. 4.1 shows the result on transfer PGD attacks. On CIFAR-10, Ours-W out-

performs the PGDAT baseline in both SA and RA. The baseline is trained using the

standard adversarial training procedure by mixing standard inputs and adversarial in-

puts whose perturbation is 8. The SA improvement is 1.8%, and the RA improvements

are between 0.4% and 3.6% for different perturbation levels. The same trend holds on

CIFAR-100. Ours-S improves the SA by 3.2% compared to PGDAT, and the RA has

an average improvement of 3.0%.

In general, Ours-S is more accurate than Ours-W, except when facing adversarial

attacks generated using high perturbations (e.g., when ϵ = 8), where the attack is so

strong that the overall RA is generally low anyways. Ours-S introduces about 68.7%

more FLOPs compared to Ours-W; they collectively present a speed-vs-accuracy trade-

off to users.

To understand the upper-bound of our framework, we show the results of Ours-

Oracle, which is a hypothetical variant of our framework, where the prefix layers are

assumed to have an 100% accuracy in predicting the input ϵ. Ours-Oracle generally

improves the SA and RA by 5.6% to 7.2% compared to the PGDAT baseline on CIFAR-

10 dataset. The main reason that Ours-S and Ours-W fall behind Ours-Oracle is due

to the mis-predictions in the prefix layers. We find that with a 0.8 AUC, the prefix

layers in Ours-S mis-classified over 20% standard images into the adversarial category.

This suggests that a better input predictor can readily improve the SA and RA with

MORPHADNET.

Finally, we compare our framework to PGDAT-Dedicated. Not surprisingly, Ours-S

and Ours-W have generally lower SA and RA than PGDAT-Dedicated. Ours-Oracle is
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worse than PGDAT-Dedicated on SA, because when training Ours-Oracle the vast ma-

jority of the layers are forced to share weights to accommodate both adversarial samples

and standard inputs. Ours-Oracle is competitive compared to PGDAT-Dedicated in RA

settings, showing the ability to deal with different attack strengths.

Adaptive attack. To test the robustness of MORPHADNET under adaptive attack,

we create the oracle adaptive attack against out input classifier. We assume that the

adaptive attack can always break the input classifier and generate a wrong classification

for the input, that is, to always use the opposite label the input classifier predict. For

the attack with ϵ = 8, we achieve a SA of 89.2% and a RA of 75.1%.

We test the model’s ability on countering other black-box attacks to prove our

method is not sacrificing robust accuracy for standard accuracy and we use square at-

tack as an example. Square attack is a black-box attack which requires the model to be

exposed to the attacker. As we described in Chapter 5.4.1, the multi-branch network

architecture and runtime detector system design makes normal black-box attack im-

proper for MORPHADNET. Hence, we incorporate PTOLEMY into the attack pipeline.

For the oracle case of square attack, we apply attacks dedicated for the robust branch

in our network. For the non-oracle case, we create an adaptive square attack targeting

on breaking the defense of the entire MORPHADNET system. We process every im-

age with PTOLEMY at every attack iteration to make sure the attack images will not

be mis-classified into the standard branch. Same with baseline, both oracle and non-

oracle attack is attacked with up to five hundred iterations and the attack perturbation

amplitude is set to be eight.

Tbl. 4.2 shows the SA and RA of MORPHADNET on Square Attack. Ours-Strong

achieves 2.7% and 3.2% SA improvements on CIFAR-10 and CIFAR-100, respectively.

The RA is slightly lower in an acceptable range because the model is not specifically

trained to defend square attacks.
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Table 4.3: Standard Accuracy (SA) and Robust Accuracy (RA) on white-box PGD

attacks and white-box AutoAttack (AA). Attack on Robust Branch refers to white-

box attack against the robust branch of suffix layers. Attack on Robust Branch refers

to white-box attack against the standard branch of suffix layers. Ensemble Attack

refers to white-box attack against an ensemble of two.

Dataset Variants SA RA: PGD RA: AA

PGDAT (baseline) 89.4% 54.2% 42.9%

CIFAR-10 Attack on Robust Branch (Ours) 92.1% 62.0% 44.8%

Attack on Standard Branch (Ours) 92.1% 77.2% 77.5%

Ensemble Attack (Ours) 92.1% 59.1% 78.8%

4.3.3 Comparison with Adversarial Training on White-box At-

tacks

We also evaluate our methods with white-box attack settings. We attack a selection of

two branches (the robust one and the standard one) or a mix of both branches of the

network and show the results in Tbl. 4.3. We perform both PGD attack and AutoAttack

on suffix layers. Under different settings, MORPHADNET still achieves better RA than

the baseline. Attacking either branch or an ensemble of them shows an average RA

improvement of 11.9% on white-box PGD attack and 24.2% on white-box AutoAttack.

We further elaborate the unusual higher RA with the example of PGD attack on

robust branch. Fig. 4.6 shows the comparison of SA (x-axis) and RA (y-axis). By

changing the weight between standard loss and robust loss, PGDAT baseline shows the

trade-off between SA and RA. Ours-Oracle process all the standard images with the

standard branch and adversarial images with the robust branch, thus it pareto dominates

the PGDAT baseline. When we use our classifier to replace the oracle selection and use

blue marker to represent the accuracy. Ours-Strong shows less SA (2.4%) compared to

Ours-Oracle as expected. Surprisingly, Ours-Strong also has a higher RA (4%).
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Fig. 4.6: Evaluation results on white-box PGD attack. Ours-AllStandard represents

using only the standard branch for processing all images. Ours-AllRobust represents

using only the robust branch.

The reason is that the white-box attacks are designed to defeat the robust branch,

when the classifier mispredicts the images and uses the standard branch to process them,

the attacks become a type of transfer (black-box) attack to the standard branch whose

attack effectiveness gets degraded.

To further reason the behavior, we design another experiment to validate it. For

the same set of evaluation images, we either use the standard branch only to process

all the images (both standard ones and adversarial ones) or use the robust branch only.

Theoretically, only using the standard branch should result in the same SA but higher

robust accuracy because the attacks were designed to attack the robust branch, and

using only the robust branch should result in the same robust accuracy but lower SA.

Fig. 4.6 use Ours-AllStandard and Ours-AllRobust to demonstrate the phenomenon.

Ours-AllStandard has exact same SA compared to Ours-Oracle but with 12% higher

robust accuracy. Ours-Robust has same robust accuracy compared to Ours-Oracle but

with 11.5% less SA. The results again validates our conclusion drew from Tbl. 4.3.
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Fig. 4.7: Comparison with the state-of-the-art methods

4.3.4 Comparison with Existing Methods

We compare our work with two existing works, OAT (Wang et al., 2020a) and Closer

Look (Yang et al., 2020), that target the trade-off between SA and RA by either man-

ually doing selection at test time (OAT) or ignore test time selection (Closer Look).

We re-implement Closer Look such that it can be evaluated on the same datasets and

network as ours for a fair comparison. For OAT, we pick the λ to be 0.5 in the inference

as it achieves both a high SA and a high RA.

Fig. 4.7a shows the SA under different schemes. As a reference, we show the

accuracy under standard training (i.e., without adversarial samples). We see that Ours-

S and Ours-W have significantly higher SA compared to the PGDAT, Closer Look,

and OAT, which have a SA drop, from standard training, of 5.9%, 5.5%, and 7.2%,

respectively.

Fig. 5.5b shows the comparison on the RA where the attack perturbation levels

range from 2 to 8. Again, in virtually all cases, our algorithms out-perform the base-

lines. The average RA improvements of Ours-S over Closer Look and OAT are 0.9%

and 0.9%, respectively. The RA improvement is more significant on small perturba-

tions.
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Table 4.4: SA and RA of a three-branch MORPHADNET on Transfer PGD attacks.

PGDAT is adversarially trained from mixing standard inputs and adversarial samples

with ϵ = 6. PGDAT-2eps is a network trained from a mix of standard inputs, adver-

sarial samples with ϵ = 6, and adversarial samples with ϵ = 12. PGDAT-Dedicated

networks are trained with adversarial samples of a specific ϵ alone.

Dataset Variants SA RA (ϵ = 3) RA (ϵ = 6) RA (ϵ = 9) RA (ϵ = 12) RA (ϵ = 15)

PGDAT 89.9% 85.7% 81.9% 74.5% 66.4% 57.8%

PGDAT-2eps 88.1% 83.5% 79.0% 73.6% 67.0% 59.7%

PGDAT-Dedicated 95.5% 89.5% 82.0% 75.5% 70.6% 65.0%

CIFAR-10 Ours-Strong 92.7% 88.3% 81.7% 76.6% 71.0% 65.0%

Ours-Weak 90.4% 84.8% 80.0% 75.2% 69.1% 62.6%

Ours-Oracle 94.2% 91.0% 81.5% 77.1% 71.1% 65.5%

PGDAT 62.3% 56.7% 48.2% 43.7% 37.9% 33.7%

PGDAT-2eps 62.4% 50.6% 45.8% 41.9% 38.1% 34.6%

PGDAT-Dedicated 77.1% 61.0% 52.1% 42.3% 37.9% 35.1%

CIFAR-100 Ours-Strong 63.5% 58.7% 48.9% 43.2% 38.5% 34.8%

Ours-Weak 62.8% 56.9% 48.7% 43.1% 38.4% 33.7%

Ours-Oracle 67.9% 62.8% 48.3% 44.1% 38.9% 35.8%

4.3.5 Scalability

MORPHADNET can scale-up to integrate more dynamic branches as discussed in Chap-

ter 4.2.3. We now evaluate a three-branch setting of MORPHADNET, where the first

branch is trained to process standard inputs and the other two branches are trained to

process adversarial inputs of perturbation levels ϵ = 6 and ϵ = 12, respectively, in our

current implementation. For a fair comparison, we also augment conventional adver-

sarial training such that it is exposed to both adversarial perturbation levels along with

the standard inputs. We call this baseline PGDAT-2eps.

Tbl. 4.4 shows the results. Compared to PGDAT, PGDAT-2eps has sightly lower

accuracy on adversarial examples with light but performs better on stronger attacks.

We evaluate five different perturbation levels (from 3 to 15) and show the results in

Tbl. 4.4. Similar to the trend observed before, we out-perform PGDAT and PGDAT-

2eps on both SA and RA. For instance, on CIFAR-10, the improvements is up to 7.5%
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(ϵ = 15) on RA.

Ours-Oracle shows room for improvement. On CIFAR-10, the Ours-Oracle

achieves 4.3% higher SA and on average 4.7% higher RA accuracy compared to PG-

DAT. In addition, Ours-S is generally better than Ours-W, suggesting the speed-vs-

accuracy trade-off.

4.3.6 Dual-BN Ablation and Sensitivity Results

Dynamic batch normalization layers serve as a crucial role in the suffix layers. We

perform an ablation study on experiments with and without dual-BN layers in the two

branch suffix layers.

Sensitivity of Dynamic Layers . We perform more sensitivity study on the param-

eter and accuracy overhead of MORPHADNET. In the paper, we assume that only the

first layer in the entire suffix network is a dynamic layer. This increases the total model

parameters over the ResNet-34 baseline by less than 0.05% as shown by Fig. 4.8b. The

network has a stronger capability to adapt to different inputs with more layers allowed

to be dynamic as shown in Fig. 4.8a, the parameter overhead also increases. Fig. 4.8b

shows this trade-off, where we further allow all layers in one or more residual blocks

to be dynamic. When all four residual blocks are set to be dynamic, our overhead can

reach to 2.0× compared to the baseline.

Ablation study on dual-BN for CIFAR-10 dataset and CIFAR-100 dataset. We

discuss the advantage of using multiple-BN layers. We provide the data on CIFAR-

10 and CIFAR-100 dataset. Fig. 4.9a shows that using multiple-BN shows significant

improvement on standard images and all attack perturbation levels. The SA is increased

by 3.4% and the average RA is increased by 3.6% when dual BN is used. The results

of CIFAR-100 dataset can be found in Fig. 4.9b. Results reveal that similar trends can

be found in the CIFAR-100 dataset.
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Fig. 4.9: Comparison with manual test-time adaptation method.

4.3.7 Discussion on Existing Works

SA-RA trade-off problem is tricky. Most training methods will sacrifice standard ac-

curacy when improving the robust accuracy. The reasonable way of improving the

SA-RA trade-off is to increase the standard accuracy to the level of normally-trained

network while still maintain the robust accuracy or improve it. MORPHADNET is the

first work that conditions an adversarially-trained network based on the inference-time

detection of input characteristics to solve the SA-RA trade-off, which is different from

previous works. Related works either condition the network during training time or do

not condition the network.

Condition the network during training time. One way to solve the SA-RA trade-
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off during adversarial training is to enhance the loss function of adversarial training

with weights (Madry et al., 2017). By tunning the weights between loss from standard

examples (standard loss) and adversarial examples (adversarial loss), the model is able

to trade standard accuracy for robust accuracy or vice versa. However, different weights

on the loss term during training increase the number of models at inference time (each

weighted loss during training corresponds to one individual model). OAT (Wang et al.,

2020a) solves the multi-model problem by enhancing the process which not only tun-

ning weights between standard loss and adversarial loss, but also condition the network

based on the weighted loss during training. Although effective, OAT still has to manu-

ally pick the condition parameter during inference.

None conditional network. Another popular way of solving the SA-RA trade-

off is to not putting any condition term during training and inference. Deep de-

fense (Rouhani et al., 2018) integrates an adversarial perturbation-based regularizer

into the training objective. Closer Look (Yang et al., 2020) introduces generalization

methods such as drop out into different training methodology such as Locally Linear

Regularization (LLR), Adversarial Training (AT), and Robust Self Training (RST) to

improve both SA and RA.
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5 Characterizing Inherent

Fault-Tolerance Capabilities of

Autonomous Machine Software

Autonomous machines are not reliable. With the rapid growth of the autonomy in-

side drones, robotics and vehicles (Kalra and Paddock, 2016; Koopman and Wagner,

2017; Yu et al., 2020), the unreliability of hardware and software in autonomous ma-

chines have also resulted in many crashes of the systems. Among them, the reliability

of autonomous vehicles, which are vehicles executing driving tasks autonomously, is

crucial, as faults that happen in autonomous vehicle systems could lead to severe con-

sequences (Boudette, 2021a,b).

Despite numerous efforts in improving the safety of AV products (Moody et al.,

2020; Reschka, 2016; Gan et al., 2020), a myriad of sources threatening AV safety still

exist. A single bit-flip of the transistors inside the hardware caused by thermal irreg-

ularities or cosmic rays (Mukherjee et al., 2005; Dixit and Wood, 2011; Zhang and

Shanbhag, 2006) can result in a silent data corruption (SDC) of an arbitrary algorithm

in the AV software stack. The SDC can propagate to the following software and in-

fluence the behavior of the vehicle. Carefully designed adversarial attacks on traffic

signs and traffic lights are proved to be able to mislead the perception module of the

AV (Komkov and Petiushko, 2021; Guo et al., 2021; Lengyel et al., 2021) easily. Soft-
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ware bugs (Garcia et al., 2020; Koopman and Wagner, 2016) in the AV software stack

can also be the source of unreliability.

Existing fault-tolerance techniques are expensive. Traditional protection mecha-

nism such as modular redundancy (Abraham and Siewiorek, 1974; Engelmann et al.,

2009; Kim and Shanbhag, 2010), anomaly detection and recovery (Ahmed et al., 2016;

Chandola et al., 2009; Patcha and Park, 2007), and re-execution (Kim et al., 2010; Roth,

2005) introduce spatial and/or temporal overhead, challenging the real-time nature of

AV.

In the preceding two chapters, I introduced PTOLEMY, an efficient method for ad-

versarial example detection, and MORPHADNET, a dynamic framework for adversarial

training that simultaneously enhances standard and robust accuracy. Both approaches

aim to develop a reliable perception module for the computing systems used in au-

tonomous machines. Nevertheless, the software stack of autonomous machines com-

prises more than just a perception module. Additional critical components include

localization, planning, and control, all of which contribute to the overall performance

of such systems.

In this chapter, I propose BRAUM, a dynamic protection system rooted in the under-

standing of the inherent fault tolerance mechanisms of autonomous software. Using the

popular Autoware AV software as a case-study (Kato et al., 2018), I observe that many

algorithms in an AV software have inherently error-masking and/or error-attenuation

capabilities through operations such as operator union and low-pass filtering. BRAUM

systematically identifies these error-masking mechanisms and leverages these mecha-

nisms to selectively provide error protection to AV software with minimal overhead.

To identify the error-masking capability of AV algorithms, I conduct a large-scale

fault injection into the AV software stack and use program analysis techniques to trace

how faults propagate and are masked by each algorithm in the AV software. Our fault

injection framework synthesizes and injects faults that mimic different forms of po-

tential faults an AV software could encounter, including transient errors, adversarial
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attacks, and software bugs. The fault injection framework is lightweight so as to mini-

mize the impact on the behavior of the original software stack.

Our fault injection and analysis reveal many mechanisms for error masking and/or

error attenuation possessed by different algorithms in the AV software stack. Building

on top of these inherent mechanisms, I propose the notion of Fault Tolerance Level

(FTL), which describes whether and how the output error of an individual algorithm

will be masked before reaching the actuator. I show an iterative algorithm that calcu-

lates the FTL of an algorithm in an AV software stack.

Leveraging the FTL calculation, I propose a dynamic protection system that selec-

tively elides and/or relaxes protection of certain algorithms in the software to demon-

strate BRAUM is able to help reduce protection overhead. Intuitively, if an algorithm

has a “high FTL”, e.g., its output errors can always be masked before reaching the

actuator, there is no need to, for instance, re-execute that node to avoid soft errors.

In summary, I make the following contributions in this chapter. First, I propose

a lightweight fault injection framework to synthesize and inject representative faults

that an AV could encounter and analyze the fault injection results to identify inherent

error masking/attenuation mechanisms in AV software. Second, I propose the notion of

FTL to intuitively describe how invulnerable an algorithm is, and provide an iterative

algorithm to calculate the FTL of each algorithm in the software stack. Finally, I design

a simple dynamic protection system that selectively elides/relaxes protection for high-

FTL algorithms to illustrate the idea of BRAUM. I implement our protection system

on Autoware, a widely-used AV software. Experimental results show that we reduce

error propagation rates by 90.1% compared with a baseline without any protection and

reduces the execution overhead by 47.2% compared to a baseline that provides always-

on protection.
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5.1 Background

We briefly introduce the design of AV software in Chapter 5.1.1, the source of threats

to the reliability of AV software in Chapter 5.1.2 and existing protection mechanism in

Chapter 5.1.3. We discuss common protection methods in Chapter 5.1.3.

5.1.1 Autonomous Vehicle Software Stack

Fig. 5.1 shows a high-level overview of an AV system which consists of a computing

system and a mechanical system. At each time frame, the computing system takes input

from the sensors (e.g., cameras, LiDAR, GPS) to infer an actuation (e.g., throttle, brake,

steering wheel angle) to the actuators and further control the mechanical components

of the AV.

The computing system runs a complicated software system on the hardware. Typ-

ical AV software stacks such as Autoware (Kato et al., 2018) and Baidu Applo (Apo)

perform three major tasks that enable the autonomous driving capability: perception,

localization and control. The perception module detects and interprets the environments

with the information provided by the cameras and LiDARs. The localization module

locates the current position of the AV on the map with the input of GPS and IMUs.

Planning digest both results from perception and localization module to plan for the

trajectory and control the actuators. Usually each module contains multiple algorithms.

Different algorithms are connected in a consumer-producer fashion, formulating a com-

plicated computational graph.

5.1.2 Source of Threats to AV Software

AV software is not running in a safe and reliable environment. In reality, when the

vehicle is driving autonomously on the road, different sources of threats exist. We

briefly describe the three main error sources that this paper focuses on.
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Fig. 5.1: An overview of AV system.

Soft Errors. Soft error is a type of error that changes the states of a logic device

(e.g., a SRAM cell). A soft error can be caused by cosmic rays or thermal impact.

Multiple works (Iturbe et al., 2016a; Blome et al., 2005; Mukherjee et al., 2003) have

shown that a bit-flip caused by the soft error can easily result in incorrect outputs of a

program, i.e., Silent Data Corruption (SDC). SDC can take place in stage/algorithm in

an AV software stack. An SDC occurring at one stage could propagate and eventually

corrupt the output of the entire software stack, crashing the vehicle (Bandeira et al.,

2019).

Adversarial Attacks. Unlike soft error and software bugs that take place uninten-

tionally, adversarial attacks are carefully crafted manipulations of the input of certain

algorithms that cause an algorithm to misbehave. The most well-studied example is
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the adversarial attack on the input image to the deep learning-based perception module.

Negligible perturbations to an input image can lead a perception DNN to mispredict,

e.g., recognizing a stop sign as a green light (Yuan et al., 2019; Madry et al., 2017; Li

et al., 2019). Adversarial attacks have also been extended to other sensor input such as

point cloud data (Liu et al., 2019a; Zhang et al., 2021).

Software Bugs. Software can be buggy. Even with experienced programmers and

extensive testing techniques, AV software is vulnerable to different kinds of bugs. Pre-

vious work (Garcia et al., 2020) found 499 bugs in the two widely-used AV Software

Autoware (Kato et al., 2018) and Baidu Applo (Apo). These bugs exist in the percep-

tion, localization, planning and actuation of the AV software. 10.6% of the bugs will

lead to a crash of the AV system in the end (Garcia et al., 2020), showing that software

bugs can be a serious threat to the safety of AVs.

5.1.3 Common Protection Mechanisms

Redundancy. Redundancy, both temporally and spatially, serves as an effective way

of countering the threats to the AV software. Temporal redundancy refers to executing

a part of the code more than once (Kim, 1999; Rivers, 1998; Oplinger and Lam, 2002).

Redundant executions can help alleviate the threat of SDC caused by soft errors as

they are transient. Temporal redundancy introduces significant performance overhead.

Executing each software module twice effectively halves the performance.

Spatial redundancy refers to executing the same algorithm using different physical

hardware instances (Lyons and Vanderkulk, 1962; Kastensmidt et al., 2005). For in-

stance, Tesla’s Full Self-Driving (FSD) chip makes two copies of the entire processing

logic, effectively introducing a dual modular redundancy (Pete Bannon, 2019). Modu-

lar redundancy has been shown to be effective against software errors (Yim et al., 2012)

and adversarial attacks (Rouhani et al., 2018). Modern processors usually provide hard-

ware support to minimize the performance overhead of executing on identical hardware
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copies (de Oliveira et al., 2017, 2018). As a result, the main overhead of special redun-

dancy comes from the added silicon area and the associated non-recurring engineering

costs, which are expected to increase as AV platforms are increasingly integrating spe-

cialized accelerators (Gan et al., 2021; Liu et al., 2021).

Anomaly Detection. As an alternative to redundancy, anomaly detection shields

the errors at the sources. Unlike much traditional software, Av software process tempo-

ral inputs, i.e., sequences of sensors inputs, which exhibit strong temporal consistency.

For example, when a car is driving in a straight lane, it is unlikely that the path plan-

ning module will issue a sudden acceleration to the actuator. Therefore, errors in AV

software sometimes are manifested as outliers that break the temporal consistency. Dif-

ferent techniques on anomaly detection (Sample and Schaffer, 2013; He et al., 2016)

are proposed to detect outliers in AV software. Anomaly detection, however, introduces

overhead due to the execution of the detection algorithm.

5.2 Understanding Inherent Fault Tolerance in Au-

tonomous Machine Software Stack

We first describe our error injection methods (Chapter 5.2.1). We then analyze how

the fault propagates (Chapter 5.2.2) to identify different masking mechanisms (Chap-

ter 5.2.3). From individual nodes’ masking mechanisms, we describe how the fault-

tolerance level of each node is derived (Chapter 5.2.4).

5.2.1 Error Definitions and Injection

Autoware is a widely used AV software stack. We apply Autoware into the simulation

platform of CARLA (Dosovitskiy et al., 2017) to form realistic AV driving scenarios.

Autoware is built with the support of Robotic Operating System (ROS), where different

algorithms in Autoware is represented by a separate process or ROS node. Different
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ROS nodes communicate through ROS messages which is the output of each algo-

rithms. All the ROS nodes and ROS messages formulate a large directed graph which

we will refer to ROS graph in the following context. The ROS graph is a strict equiva-

lence of Autoware. The error injection happens on our server with 8 Intel(R) Xeon(R)

W-2123 CPUs and a Nvidia Quadro RTX 4000 GPU and is tested on the Ubuntu 18.04.5

system.

The goal of BRAUM error injection framework is to mimic different kinds of errors

AV software may encounter while being lightweight enough to not influence the reg-

ular execution of AV software. We achieve this by injecting three types of errors in

Autoware.

Soft errors. To mimic soft error-induced SDC, we leverage architectural-level

register error injection. During BRAUM error injection, the selected victim ROS node

will send out its process ID (PID) to the error injection process so that the injection

process can attach to the victim ROS node via ptrace system call. The ptrace system

call allows us to manipulate the register files of the selected victim ROS node. First,

we randomly pick a general-purpose or floating point register and randomly pick a

bit to flip. Second, we use ptrace and the PID of the running process to pause the

execution, obtain the register value, inject the fault, and resume the execution. This

architecture-level register error injection has little overhead, as shown in previous error

injection tools (Porpodas, 2019; Hsiao et al., 2021).

Adversarial attacks. To mimic potential adversarial attacks, our strategy is care-

fully corrupt the output of relevant ROS nodes. For the perception module, which

mainly performs object detection and tracking, we emulate two common types of adver-

sarial attacks (Madry et al., 2017; Yuan et al., 2019), non-targeted attack and targeted

attack. For non-targeted attacks, we randomly change the detected object class to an-

other class that exists in the dataset. For targeted attacks, the detected object class is

randomly changed to another class commonly seen in AV (e.g., person, stop signs).

To emulate corruptions in bounding boxes, we either create a very large bounding box
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(i.e., 240× 240 pixels) when the ground truth is an empty box or remove the bounding

box altogether if otherwise.

Adversarial attacks on the localization and planning modules are much less

common in literature. We create our best-effort localization and planning at-

tacks by assuming that an attack on localization moves the vehicle position away

from the ground truth anywhere between 5m and 300m, similar to prior work

(Patil et al., 2021; Wang et al., 2022). Attacks on planning are similarly emulated ex-

cept we move the predicted future, rather than current, position of the vehicle.

Software bugs. To emulate software bugs, a randomly generated error is applied

(added) to a node’s output signal. Both adversarial attacks and software bugs are im-

plemented by using the ROS topic publish mechanism with little overhead.

Summary. In total we cover 23 ROS nodes (and 26 ROS topics) as shown in

Tbl. 5.1. A campaign of 14,196 error injections was performed over 30 days. The

26 ROS topics cover virtually all the output topics, including localization, perception,

planning and control in Autoware; the only topics/nodes that are not covered are those

that are specific to the simulator itself (e.g., UI, saving data, visualization).

5.2.2 Error Propagation Analysis

Goal. We analyze the results of the fault injection campaign to understand how differ-

ent forms of faults in different nodes are propagated to the output of the AV software.

In particular, we have three goals. First, we aim to identify, for each injected error,

whether it is propagated to the end of the ROS graph and, thus, corrupts the actua-

tor commands. Second, in case an error is masked, i.e., invisible to the actuator, we

aim to locate where the error is masked. Finally, we aim to identify the fault masking

mechanism used to mask that error.

Note that corruption in the actuator commands might not actually cause a safety

issue, mainly because the closed-loop control in the software stack would very likely
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mitigate a transient command error in the current frame and re-align the vehicle back

to the correct trajectory. In this sense, what is reported here is a conservative analysis

of AV safety.

Establishing ground truth. To analyze whether and how errors are propagated,

we must first obtain the ground-truth, i.e., fault-free results. To that end, we use the

same input scenario used in fault injection to drive Autoware and record the output of

each ROS node under analysis. To accommodate natural run-time variance, the same

run is repeated 5,000 times to capture a distribution for each node’s output.

Analyzing results. For each fault injection run, if the AV software stack provides

no error masking mechanism, the output of the ROS graph, i.e., the actuator commands,

will necessarily be corrupted. In contrast, if the actuator commands are uncorrupted

(according to some metric), some form of error masking must have taken place between

the node where the fault is injected and the output node. Our goal in this section is to

identify the masking node. Next section describes the actual masking mechanisms we

identified.

We first define that an ROS node is deemed to be corrupted by the fault, i.e., the

error is propagated to this node, if the node output is “out of distribution”, which is

empirically defined as lying outside the bounds of the fault-free range by over three
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Fig. 5.4: Error propagation rate when inject error into node twist filter which use low-

pass filter to attenuate errors.

times of the mean value. This criterion is similar to what is used in prior work (Nitsch

et al., 2021).

We analyze each fault injection run in a backward fashion, starting from the output

node of the ROS graph and check if the fault propagates to this node. If not, the error

injected must have been masked somewhere before the node. We then check whether

the parent nodes are corrupted. We repeat this process until we reach the node where

the fault is injected. This process help us to precisely locate the node, if any, that masks

the injected fault.

Once we identify a fault-masking node, we then identify the actual masking mech-

anism in the node. This is done in a semi-automated way. We statically instrument the

code to monitor how each input variable is used in the code. We then re-run the fault

injection to capture the statement that masks the error. We then manually examine the

code to understand how the error is actually masked. We discuss our findings next.
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Fig. 5.5: Examples of signals with error attenuation mechanism such as low-pass filter

and integral computation.

5.2.3 Masking Mechanisms

We classify the masking pattern exist in Autoware into four different categories: No

Masking (NM), Attenuation (A), Unconditional Masking (UM), and Conditional Mask-

ing (CM). We characterize how often errors propagate to the actuator command using

Error Propagation Rate (EPR). Tbl. 5.1 shows the EPR of all the nodes we inject.

No masking. Some nodes have no inherent masking mechanisms. Fig. 5.2 shows

the EPR of the twist gate node, where the x-axis shows the amplitude of error injection.

For example, “10%” on the x-axis means the value after error injection is with in the

range of 90% to 110% of the original value. “0 base” means the original value is 0.

Almost all the injected errors are propagated to the output because of a lack of

inherent masking in twist gate. The overall EPR is 82.1%. Fig. 5.3 shows an example,

where an error injected into twist gate causes drastic changes to the actuator commands.

Attenuation by low-pass filter. Attenuation mechanisms exist commonly in the

source code of Autoware. Low-pass filter is a traditional way of filtering out high-

frequency signals. Autoware uses a low-pass filter at the end part of the entire compute

graph to smooth the output signals and avoid sudden changes. The carefully-designed

low-pass filter will degrade the signal with a sudden change in its output, which is

effective to errors with low amplitude. Fig. 5.4 shows the error propagation rate when
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for planning module.

the low-pass filter is applied. The EPR is significantly lower (59.7% in “10%” error

value range, 67.0% in “20%” error value range) when the error amplitude is low but

remains 100% when the error value range increase. Fig. 5.5a shows an example of the

use of the low-pass filter. The error amplitude is significantly reduced from 62.1% to

35.4%.

Attenuation by integral computation. Another typical way of attenuation in

Autoware is integral computation. For example, in the localization module, specifically

the ndt matching node, the new estimation of pose and localization is calculated by an

addition of the previous pose and the difference on distance and pose. The difference

is calculated using the velocity estimation and interval on time. An error occurs on the

velocity estimation node is largely attenuated as the time step is very small. Fig. 5.15

shows an example where the error is significant on the estimated velocity but attenuated

to a small value afterwards.

Unconditional masking in sensor input preprocessing. We find there exist un-

conditional masking inside AV software which complete mask the errors happen in

certain nodes. Unconditional masking technique exists in sensor input preprocessing

node. Sensor input preprocessing nodes edit sensor input and sometimes remove redun-
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Fig. 5.7: Detail procedure of two fusion processes.

dant parts. For example, raw point cloud data from LIDAR sensor will be first filtered

the points representing the ground and then used in point cloud object detection node.

Such preprocessing nodes will generate massive sensor data that is naturally robust to

errors. We inject errors into a LIDAR point cloud preprocessing node. The point cloud

filter will filter out the points that represent the ground. The errors we inject manipulate

the coordinates of the points after filtering. We change up to 80 points and monitor the

output of the node that consume the faulty point cloud data.

We find that with the increase of faulty points injected into the point could filter

node, all the outputs of the consumer node are not impacted with a relative standard

deviation (RSD) of 0.002, -0.018 and 0.09 respectively.

Tbl. 5.2 shows the effect of injecting errors into the LIDAR point cloud preprocess-

ing nodes. For each time, we inject an error that changes the coordinates of a certain

number of points with an upper bond of 80 (2.9% and 6.7% of total output point cloud

respectively). We find that all of these errors are masked and the final output to the

actuators are not influenced.

Unconditional masking through multi-sensor fusion. Another unconditional

masking technique utilized in AV software is multi-sensor fusion. AV software usually

uses more than one source of sensor input during perception tasks such as detection
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and tracking. Both LIDAR and camera will capture the objects’ information around

the vehicle and usually the multi-sensor information will be fused together for higher

accuracy and robustness (Gao et al., 2018a; Du et al., 2017).

We find such a process is utilized in Autoware and illustrated in Fig. 5.6. The

output object sequences from the vision branch and the LIDAR branch are first fused

through a fusion node and used in the prediction module. The results of the prediction

module will be fused again with the raw point cloud data in the costmap generation

node afterwards. The costmap generation node will use the results of the second fusion

to guide the vehicle to search for a path through the obstacle objects. Two continuous

fusion techniques ensure that errors in the related perception nodes can be tolerated.

Fig. 5.7a illustrate the first fusion — between vision detection and tracking with

LIDAR detection and tracking. The fusion algorithm first check whether the bounding

boxes captured by both branches agree on the object label, position, and area. If so,

as in the benign case, the fusion algorithm will keep the vision branch’s bounding box

and those LIDAR bounding boxes that do not have a match. When the vision branch

is faulty, the fusion algorithm can not find matching bounding boxes, and the vision

bounding box will be discarded. Thus, the faulty vision bounding box is masked.

Fig. 5.7b illustrates the second fusion case. The perception module will produce

a sequence of bounding boxes after detection, tracking and prediction. The bounding

boxes will be fused with the raw point cloud data to produce a map for the planning

module. In the second fusion, a union operation will be performed on the bounding

boxes and point cloud raw data to create the map. Thus, even if the faulty bounding

boxes are not masked by the first fusion process, the error will be masked in the second

process.

The EPR results verify the unconditional masking through multi-sensor fusion. We

inject three kinds of errors, which are label errors, bounding box location errors and size

errors, into all the nodes related to vision perception and LIDAR perception branch. All

of them are masked and will not influence the output signal to the actuators.
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Conditional masking in state machine. Error masking under conditions also

exists in Autoware. One of the most common examples is the conditional masking

in the state machine of Autoware. Autoware manages the vehicle status with three

complicated state machines: mission, motion and behavior state machine. Fig. 5.8

shows an illustration of the motion state machine. Eight different states with various

transformation conditions consist of the motion state machine and provide enormous

conditional masking patterns. For example, if in one frame the current state is Wait

Engage, all the errors happen on the signals related to the Go, Stop and Wait states are

masked as they are irrelevant to the Wait Engage state. Thus, all the nodes that produce

these signals will not influence the final outputs as well.

Conditional masking in If statements. If statements create conditional masking

patterns. Lst. 5.1 shows the snippet of the velocity set node, which has has eight input

signals and three output signals. With a driving scenario where both condition1

and condition2 are not satisfied, obstacle point and stopline point will

not be read — even if they are corrupted.

To confirm this, Fig. 5.9 shows the EPRs when faults are injected to three nodes

that generate inputs to the velocity set node. In our particular runs, condition1
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and condition2 are not satisfied; thus, faults in pose relay and velocity relay are

naturally masked by velocity set. However, condition3 holds in certain runs; thus,

the EPR under astar avoid is not zero. Fig. 5.10 shows the execution traces. Fig. 5.10a

compares the values of obstacle point, an output of velocity set, when a fault is

injected to astar avoid. Fig. 5.10b shows the value of final point, another output

of velocity set, when a fault is injected into pose relay. One can see that faults in the

former are masked by velocity set but faults in the latter are not.

Listing 5.1: Error masked by conditional if-statements

1 Inputs: signal: current_pose, current_vel,

2 points_no_ground,

3 detection_range, cross_walk,

4 decelerate_obstacle_point,

5 obstacle_point, stopline_point, safety_point;

6 function: f,g, mp1, mp2, mp3

7 Outputs: obstacle_point, stopline_point, final_point

8

9 function velocity_set(){

10 Bool condition1, condition2, condition3;

11 condition1 = f(detection_range, cross_walk);

12 condition2 = f(detection_range, cross_walk);

13 condition3 = g(decelerate_obstacle_point);

14

15 if (condition1 || condition2)

16 {

17 obstacle_point = mp1(current_pose, current_vel,

points_no_ground);

18 stopline_point = mp2(current_pose, current_vel,

points_no_ground);

19 }
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Fig. 5.9: EPRs when faults are injected to three producers of velocity set.

20 else

21 {

22 if (condition3)

23 {

24 final_point = mp3(safety_point);

25 }

26 }

27 return obstacle_point, stopline_point, final_point

28 }

Summary. The understanding of different fault masking/attenuation mechanisms

allow us to classify the fault tolerance level of an Autoware node. This is shown in

Tbl. 5.3. Among them, only two nodes (twist gate and decision maker) have no mask-

ing patterns. Both of them are at the end part of the Autoware graph and directly

contributed to the output of the AV software. Two nodes have attenuation mechanisms.

All the nodes in the perception pipeline are with unconditional masking mechanisms

using two fusion operations. The rest nodes have conditional masking mechanisms.
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Fig. 5.11: A simple graph to illustrate how the dynamic FTL of a node is calculated.

We show the EPR in the last column. Not surprisingly, nodes without any masking

mechanisms have the highest propagation rate, both are above 80%. Attenuation with

a low pass filter can prevent a small number of errors from propagating and reduce the

EPR to 69.2%. Integration shows a much stronger masking effect, only 17.8% of the

errors finally propagate to the end and most of them are with large error values. Nodes

with unconditional masking inherently are robust and have 0% EPR for all seven nodes.

Nodes with conditional masking have various EPR, ranging from 0% to 36.3%.

5.2.4 Calculating Fault Tolerance Level

After each node is assigned with its inherent masking pattern, we can derive a node’s

fault tolerance level (FTL), which indicates whether/how a node’s output errors can be

masked/attenuated before reaching the actuator. Let us use a simple graph in Fig. 5.11,
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where we aim to calculate the FTL of node N0, to describe the intuition behind our

algorithm.

First notice that N0’s sub-graph has two separate paths: N1 → N2 → N4 and

N3 → N4. That is, there are two paths for N0’s output error, if any, to be propagated

to the output. Therefore, the FTL of N0 is the weaker of the two paths. Given a path,

say, N3 → N4, the error masking mechanisms of all nodes on the path are applied

sequentially; therefore, the FTL of a path is the strongest FTL of all the nodes on the

path. For instance, if N3 has inherent attenuation and N4 has inherent unconditional

masking, the FTL of the path N3→ N4 is unconditional masking, because the attenu-

ation effort is “overwritten” by the unconditional masking. The overwriting behavior of

unconditional masking, a stronger masking, takes place regardless of whether it occurs

before or after attenuation, a weaker masking.

Formally, we define a partial order “weaker than”, denoted ≺, between three mask-

ing mechanisms:

NM ≺ A ≺ UM

Note that a conditional masking node, by definition, will be dynamically resolved

to either no masking or unconditional masking depending on whether the node is trig-

gered.

Given the intuition above, the FTL of N0 in Fig. 5.11, F (N0), is calculated by the

following equation:

F (N0) = min(max(F (N1), F (N2), F (N4)),

max(F (N3), F (N4)))(5.1)

Notice how the equation is inherently iteratively defined: calculating F (N0) re-

quires first calculating F (N1), F (N2), F (N3), and F (N4). This suggests that to cal-

culate the FTL of a node one must start from the output node of the graph. In practices,
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we reverse all the directions in the ROS DAG, start from the output node to perform a

breath-first search, and calculate the FTL of all the nodes in a single traversal pass. The

FTL of the output node is NM.

Tbl. 5.3 shows the FTL of all the nodes. We make two observations from Tbl. 5.3.

First, a node’s FTL might be different from its inherent masking mechanism. This is

because the FTL of a node, say P, depends on all other nodes between P and output.

Second, the FTL of certain nodes vary at run time if there exists a CM node on the path

to the output.

5.3 The BRAUM Protection System

Based on the fault tolerance characterization, we propose a dynamic protection system

based on analyzing the node vulnerability in the Autoware software stack. We first

discuss a baseline protection mechanism (Chapter 5.3.1), followed by our protection

scheme that reduces the protection overhead with little accuracy impact (Chapter 5.3.2).

5.3.1 Baseline Protection Mechanism

We first describe a baseline protection strategy, which is representative of those com-

monly found in literature (Hsiao et al., 2021) and provides strong protections at the cost

of high overhead. Our work, however, does not fundamentally depend on this baseline

scheme. Fig. 5.12 illustrate the baseline protection system described here.

The protection strategy operates at a node granularity. The basic idea is to monitor

the output of a node and detect if the output is an outlier based on certain distribution.

If an outlier is detected, we then re-execute the node (i.e., temporal redundancy). We

call this “output outlier detection and re-execution” (OODR). In particular, we use a

Gaussian-based Anomaly Detector (GAD). We maintain a mean value and a standard

deviation σ in a fixed size window of 10 frames.
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When the value of the output is N standard deviations away from the mean value,

the recovery will be triggered. Critically, N is configurable based on the nature of the

nodes. For example, we could use a larger N if a node’s FTL is A, since slight fluctu-

ation in the output is likely attenuated by the subsequent nodes. N would be higher or

lower for nodes classified as NM and UM, respectively. The particular recovery scheme

we consider is to re-execute the current node.

In addition to detecting the output outliers (and re-executing an abnormal node), we

also detecting input outliers. In particular, we use the same GAD to detect any outlier

in the inputs. If an outlier is detected, we replace the input with the an input value

that is within the N sigma distance. We call this “input outlier detection and resetting”

(IODR).

Sharp readers might wonder why such an input outlier detection and resetting is

necessary: wouldn’t protecting every node’s output effectively protect every node’s

input? The reason is three-fold. First, it is possible that not all the nodes’ outputs are

protected, especially when a node’s implementation is provided by a third-party library

or when protecting a node is simply to costly (e.g., re-execution takes too much time).

Second, re-execution does not fundamentally mitigate faults introduce by software bugs

or adversarial attacks, for which input outlier detection and resetting is known to be

effective (Hsiao et al., 2021). Finally, a fault-free output could be corrupted during

data transmission.

5.3.2 Our Protection System

They key insight behind our protection system is that if errors/faults in node’s output

can be inherently masked or attenuated later, one can relax the protection strength of

the node and thus reduce the protection overhead. Algo. 2 shows the overall protection

system.

At run time once a node finishes its execution, we first calculate the dynamic FTL
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safety 
waypoints

IODR

Outlier?

void ChangeWp(const VelocitySetInfo& vs_info, float 
safety_wp):
{                  
    double deceleration = 0.0;
    double velocity_set =0.0;
    cond1 = detect(vs_info);
    if (cond1)
    {
         final_wp = change(safety_wp);
    }
    else
    {
         final_wp = change(safety_wp);
    }
}

final 
waypoints

OODR

Fig. 5.12: Baseline protection system in BRAUM.

of the node using the algorithm described in Chapter 5.2.4 (an example is shown in

Equ. 5.1). Recall that this step must be executed dynamically for each frame, since a

node’s fault tolerance mechanism depends on how a CM is resolved at run time.

Calculating the FTL of a node requires us to resolve all the yet-to-be executed CM

nodes in the sub-graph of the current node. Thus, we must predict how each down-

stream CM is resolved. For simplicity, we use a last-value predictor, i.e., using the res-

olution of CM in the last frame as the prediction of the current frame. This is inspired by

recent work that shows that autonomous machine states have temporal consistency (Li

et al., 2022b), where sudden state changes are rare.

If a node’s dynamic FTL is NM, the outlier detection and temporal re-execution is

triggered as usual. However, if a node’s FTL is stronger than NM, we could potentially

elide the re-execution. Specifically, if a node’s dynamic FTL is UM, we can skip outlier

detection and temporal re-execution altogether, since any output error is expected to be

masked down the line. If a node’s FTL is A, we relax the outlier detection threshold

(use a larger N in Chapter 5.3.1) in that slight change in output could be attenuated later

in the execution. Relaxing the outlier detection threshold could reduce the frequency

of node re-execution, improving performance.

Handling Mis-predictions. Just like a mis-prediction in a processor must be dealt

with to avoid incorrect pipeline execution, the mis-prediction of a CM node’s resolution
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Algorithm 2: BRAUM protection system.
Input: Current node T ; T (·) represents the execution of the node; fault

masking mechanism of each node in ROS graph; output outlier

detection threshold N ; slack in outlier detection k.

Resolve all the CM nodes in the graph;

FTLT ← Calculate the FTL of the current node T ;

if FTLT is UM then
T (·);

end

if FTLT is NM then
Run input outlier detection and resetting with threshold N ;

T (·);

Run output outlier detection and re-execution with threshold N ;

end

if FTLT is A then
Run input outlier detection and resetting with threshold N ;

T (·);

Run output outlier detection and re-execution with threshold N + k;

end

if fault masking mechanism of T is CM then

if T ’s resolution target is mis-predicted then
Re-evaluate the FTL for all the nodes that are before T in the ROS

graph;

Re-execute the current frame from the first nodes whose actual FTLs

are weaker than previous predicted;

end

end

must be taken care of as well. In particular, mis-predicting the resolution of a CM node

P could alter the FTL of a node that P depends on. For instance in Fig. 5.11, if N2 is a
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CM node that should have been resolved to NM but, instead, is predicted as UM, both

N0 and N1’s FTL should be re-calculated, resulting in different protection schemes for

both nodes.

Our observation is that before entering a CM node we know exactly whether it

would be resolved as UM and NM, from which we know whether we have mis-predicted

the resolution target of this CM node. Upon a mis-prediction, we will recalculate the

FTLs of all the nodes whose FTLs depend on ths CM node. If the actual FTL of a node,

say P , is weaker than the predicted FTL, that means the protection strategy applied to

P should have been stronger.

To deal with mis-predictions, we identify the first node in the entire ROS graph

whose actual FTLs are weaker than what were previously predicted and re-execute

the current frame from there. Note that while mis-prediction does increase the frame

latency, it does not affect a vehicle’s behavior because the output of mis-predicted ex-

ecution would not have reached the vehicle actuator yet when the mis-prediction is

detected.

5.4 Evaluation

We first describe the evaluation setup (Chapter 5.4.1) and demonstrate the effectiveness

and overhead (Chapter 5.4.2).

5.4.1 Evaluation Setup

Nodes with protection. As a proof of concept, we pick four representative ROS nodes

to implement our protection system, assuming that faults take place in only those nodes.

• twist gate, whose FTL is NM.

• twist filter, whose FTL is A.
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• detection lidar detector, whose FTL is UM.

• velocity set, whose FTL is either NM or UM, since one of its subsequent nodes

has conditional masking.

Baselines. We compare with four different baselines.

• Base: the vanilla AV software without any fault protection.

• IODR+OODR: a system that performs both input outlier detection and resetting

(IODR) and output outlier detection and re-execution (OODR).

• IODR: a system with only IODR.

• OODR: a system with only OODR.

Implementation. Our protection system is implemented at the software level by

modifying the Autoware source code after the analysis is performed. The source code

of the four vulnerable nodes is enhanced with our protection mechanism and Auto-

ware is then re-built from source. For evaluation, we inject the exact same errors as in

Chapter 5.2 to test the effectiveness of BRAUM protector.

5.4.2 Protection Results and Overhead

Faults in twist gate. Fig. 5.13 compares the EPR before and after the protection

scheme is applied. BRAUM reduces the error propagation rate from 80.6% down to

8.3%. Fig. 5.15a shows a concrete example of how the protection scheme masks the

error in twist gate. We inject a significant error at frame 220 and BRAUM successfully

detects the error and recovers the correct value. Both IODR and OODR are unable to

achieve similar protection result. They reduce the EPR to 35.7% and 40%, respectively.

IODR+OODR achieves same protection effectiveness compared to BRAUM.
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Fig. 5.15: Concrete examples of how the BRAUM protection works.

The reason EPR is not further reduced is that in certain cases, the input signal does

have a sudden change, yet the protector treats it as an outlier and replaces it with the

average value in the previous window. An error created by the protector thus will

propagate and result in a non-perfect protector. For example, in twist gate, 97.3% of the

protection failure cases are caused by false positives. The data is 94.5% for twist filter.

Faults in twist filter. The FTL of twist filter is A (Tbl. 5.3), for which we empir-

ically loose the output outlier detection threshold to 6 sigma. Loosening the detection

threshold can help reduce the frequency of re-execute the code, thus saving protection

overhead. BRAUM protection reduces the EPR of twist filter by 87.6%, IODR is able

to reduce the EPR by 56.6% and the result for OODR is 50.1%. Fig. 5.15a shows an

example of how the protection scheme works. IODR+OODR achieves slight better



106

EPR (8.1%) compared to BRAUM.

Faults in velocity set. Fig. 5.13 shows the error propagation rate after the protec-

tion is applied on velocity set. The EPR reduce from 36.3% to 7.6%. We also find that

the simple predictor we implemented has a very high accuracy. The mis-prediction rate

is only 2.7%. Fig. 5.15c shows a concrete example of error mitigated in velocity set.

Faults in detection lidar detector. Although we do not perform any protection on

detection lidar detector, the EPRs are all 0 due to unconditional masking patterns.

Protection on unseen errors. We evaluate our protection method on a set of un-

seen errors with the same scenarios. The unseen errors has the same amount compared

to the original evaluation and within the same range of error amplitude.

For the new error set, the EPR (lower the better) in the 4 nodes are 8.2%, 7.2%,

8.3%, and 0%, similar to the current results reported in the paper (8.3%, 8.8%, 7.6% and

0%), indicating our method is still effective in unseen errors. We also perform another

evaluation on the protection method by using a different scenario with a different error

set compared to the analysis phase. As an example, if faults take places in the node

twist gate, our protection method reduces the EPR to 9.1%, similar to the 8.3% results

we currently have.

Protection overhead. BRAUM protector is lightweight and brings minimum over-

head to the AV systems. We show the average runtime comparison between the base-

line and after applying BRAUM protector in Fig. 5.14. For twist gate and twist filter,

the overhead is relatively higher (50.1% in twist gate and 43.3% in twist filter). This is

because those two nodes are extremely lightweight that do not perform any complicated

computation, both have an average runtime of less than 0.6ms. The overhead reduce to

11.2% in velocity set. 0% overhead is introduced on detection lidar detector.

As compared to IODR, BRAUM has an average 2.5% higher runtime overhead as

the use of output protection. However, the runtime is saved by 47.2% compared to

OODR, as the always re-execution adds enormous overhead. IODR+OODR has the
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highest protection protection overhead, BRAUM saves runtime by 55% compared to

IODR+OODR.

As a comparison with existing protection methods, we com-

pare with DeepFense (Rouhani et al., 2018) and Dual-core Lock Step

(DCLS) (Peña-Fernández et al., 2019). DeepFense utilizes redundancy to protect

perception modules. BRAUM achieves the same protection accuracy with 93.75%

less run-time overhead. DCLS is a hardware mechanism to detect and recover from

hardware transient faults. BRAUM reduces the error protection rate from 35.2% to

7.9%. DCLS requires two times hardware area overhead, whereas BRAUM requires

none.

5.5 Related Work

Error injection into software. Simulating the errors that can possibly happen in soft-

ware has been studied by prior works. Such errors include soft errors (Hsiao et al., 2021;

Porpodas, 2019), adversarial attacks (Madry et al., 2017; Yuan et al., 2019) and soft-

ware bugs (Garcia et al., 2020). Most of these works try to relate errors they simulate

with a metric such as mission success rate and quality of service (QoS) to demonstrate

the errors injected do create reliability issues. We, however, instead of only caring about

how many errors finally propagate to the end with EPR metric, also try to understand

what types of fault tolerance mechanisms successfully mask the errors at the software

level.

Masking of the errors. Error masking has been studied by various previous works.

For example, the masking of soft errors can happen at circuit level (Baze et al., 2000;

Lin et al., 2010), architectural level (Mukherjee et al., 2003; Borodin and Juurlink,

2010) and single program level (Fang et al., 2016; Sridharan and Kaeli, 2008). We try to

go one step further, understanding the inherent fault tolerance of the entire AV software

stack, which is consisted of tens of different programs. We assume that the errors
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have already passed all the masking mechanisms in the bottom level of the computing

stack such as the circuit and architectural level and result in a wrong output of the

program. Under such a basis, we further study if specific operations (i.e., integration) or

interactions from multiple programs (i.e., fusion) can stop the errors from propagating.

Protecting AV software. To counter errors happen in AV software, two cate-

gories of protection methods have been proposed. The first one is utilizing modular

redundancy, both temporal (Kim, 1999; Rivers, 1998; Oplinger and Lam, 2002) and

spatial (Lyons and Vanderkulk, 1962; Kastensmidt et al., 2005). The second category

is to detect anomaly outputs and recover (Hsiao et al., 2021). Most methods are ag-

nostic to all the nodes in AV software and bring heavy overhead. We propose selective

protection, which spends limited resource on the most vulnerable nodes such as the

ones with no fault tolerance mechanisms inherently.
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Table 5.1: List of ROS nodes this paper analyzes.

Module ROS node EPR

Sensor Preprocessing
ray ground filter 0%

voxel grid filter 0%

Localization

can odometry 0%

ndt matching 23.4%

pose relay 8.7%

vel relay 2.4%

Perception

vision darknet detect 0%

vision beyond track 0%

detection lidar detector 0%

detection lidar tracker 0%

range vision fusion 0%

naive motion predict 0%

costmap generator 0%

Planning and Control

astar avoid 0%

velocity set 36.3%

decision maker 100%

pure pursuit 17.8%

lane stop 0%

lane rule 26.9%

twist filter 69.2%

twist gate 80.6%

lane select 0%

waypoint planner 0.68%
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Table 5.2: All the errors injected into the nodes that preprocess LIDAR point cloud data

are masked.

ROS node # of input points
# of faulty

points injected
EPR

Ray ground filter [1682,4019] [0,80] 0%

Voxel grid filter [915,1349] [0,80] 0%
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Table 5.3: Fault tolerance level (FTL) of all the Autoware ROS nodes under evaluation.

Node Masking mechanism FTL

twist gate NM NM

decision maker NM NM

twist filter A A

pure pursuit A A

vision darknet detect NM UM

vision beyond track NM UM

detection lidar detector NM UM

detection lidar tracker NM UM

range vision fusion NM UM

naive motion predict NM UM

costmap generator NM NM/UM/A

ray ground filter UM UM

voxel grid filter UM UM

astar avoid CM NM/UM

velocity set CM NM/UM

lane stop CM NM/UM

lane rule CM NM/UM

waypoint planner CM NM/UM

ndt matching CM NM/UM/A

can odometry CM NM/UM/A

pose relay CM NM/UM/A

vel relay CM NM/UM/A

lane select CM NM/UM/A
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6 Heterogeneous Split-Lock

Architecture for Safe Autonomous

Machine Software

As the number of transistors per chip continues to grow and operating voltages de-

crease, the likelihood of soft errors is increasing (Chatterjee; Bhuva, 2018). Soft errors

can lead to silent data corruption (SDC), which poses a significant reliability threat in

autonomous machine systems (Lotfi et al., 2019). Additionally, autonomous machines

are synonymous with safety-critical applications such as self-driving vehicles, making

reliability a first-class concern.

Spatial redundancy is an effective method for addressing SDC caused by soft er-

rors. Previous research demonstrates that incorporating additional hardware redun-

dancy is beneficial for improving system reliability (Iturbe et al., 2016b, 2019; LaFrieda

et al., 2007). However, implementing spatial redundancy at the architectural level is ex-

tremely inefficient. Lock-step CPU designs, which involve executing identical software

on two cores and comparing their results to ensure functional correctness, serve as an

effective method for mitigating soft errors in space applications. Yet, applying this lock-

step CPU design in autonomous machines presents two challenges. First, such designs

significantly reduce the available computational resources in autonomous machine sys-

tems, potentially affecting their functionality, especially when there is a tight silicon
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budget for most autonomous machine systems and keep increasing the number of cores

is impossible. Second, traditional lock-step systems employ inefficient error correction

methods. Typical approaches involve re-executing the entire software or performing

a system-wide restart. Both methods are unsuitable for autonomous machines since

several seconds of system downtime could compromise the safety of these devices.

In the previous chapter, BRAUM indicates that different algorithms in a typical au-

tonomous machine software stack have different inherent fault tolerance and thus the

protection on them could be selectively. BRAUM validates the idea with a simple pro-

tection mechanism.

In this chapter, following the findings in BRAUM, I propose a practical system that

can mitigate resource contention encountered in lock-step CPU implementations and

enable efficient error correction. Our core insight is that tasks within autonomous ma-

chine software exhibit varying degrees of fault tolerance against errors. In traditional

system designs, reliable tasks and vulnerable tasks share the same hardware resources.

Consequently, I introduce a multi-domain system design comprising a lock domain and

a split domain. This configuration allows more reliable tasks to run in the split domain

to enhance performance, while vulnerable nodes operate in the lock domain to ensure

reliability.

I offer flexible macros that users can utilize to annotate their code, indicating the

inherent fault tolerance of each task. By implementing instances of these macros, I

ensure that the operating system scheduler assigns different tasks to their desirable

hardware domains, optimizing both performance and reliability.

When an error occurs in the lock domain, I provide a specific routine for error cor-

rection. I find that due to the nature of almost every autonomous machine software,

different tasks are connected through a producer-consumer message passing mecha-

nism, and each task is inherently idempotent. This means that an error occurring within

a task will only impact the entire system when it publishes messages to its consumers.

This insight enables us to save the register values at the beginning of each task and only
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re-execute the corresponding task to correct the error when detected by the hardware.

Our proposed method, KINDRED, does not require a system-wide reboot, which would

otherwise result in intolerable overhead.

I emulate our approach in a real autonomous machine system to assess the perfor-

mance degradation. I implement KINDRED in an open-source full-stack autonomous

vehicle software called Autoware. Our approach successfully improves the system per-

formance by an average of 11.0% compared to a system with only lock-step CPUs.

These performance improvements translate to a 3.1% higher success rate across vari-

ous driving scenarios.

In summary, KINDRED presents a practical system for reliability issues caused by

soft errors in autonomous machine systems while maintaining performance. In sum-

mary, I have three contributions in this work. First, I describe a novel multi-domain

system designed to mitigate soft errors in lock-step CPUs while maintaining perfor-

mance. Second, my approach offers flexible APIs that enable users to strategically al-

locate vulnerable tasks to the lock domain and performance-critical tasks to the split do-

main. Third, by harnessing the idempotent nature of programs, I facilitate lightweight

error recovery through context saving and re-execution. Notably, our error correction

methodology can be seamlessly integrated into real systems without necessitating hard-

ware modifications.

6.1 Background

We describe the fault model first and relevant background on Lock-step CPU design in

this section.

Silent data corruption caused by random bit flips. Random bit flips are a

common type of hardware error that exist in current computing systems (Nicolaidis,

2010). A range of factors can cause random bit flips in a computing system, including

electrical noise, cosmic rays, and abnormal temperature fluctuations (Baumann, 2005a;
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Lantz, 1996; Li et al., 2016). In CPU design, random bit flips can occur at any position,

such as cache, registers, Arithmetic Logic Unit (ALU), and control path. The soft error

rate (SER) can easily exceed 50,000 failures in time (FIT) (Baumann, 2005a).

Our fault model focuses on single bit flips in hardware, which represent the major-

ity of cases in random bit flips (Ayatolahi et al., 2013; Nicolescu et al., 2004; Elliott

et al., 2013). When a random bit flip occurs in the hardware, various consequences can

arise in the software. Many random bit flips can be masked at the micro-architecture

level (Sridharan and Kaeli, 2010), architecture level (Mukherjee et al., 2003), and soft-

ware level (Sridharan and Kaeli, 2008; Fang et al., 2016). When errors propagate to

the process, three different outcomes may occur: the process can crash, hang, or have a

silent data corruption (SDC) in the output (Hsiao et al., 2021). Crashing or hanging can

be easily detected and resolved by restarting the process. However, an SDC in the out-

put can cause severe consequences for the system behavior, such as converting a brake

command into acceleration in autonomous driving applications (Gan et al., 2022).

Lock-step redundant CPU systems. To combat random bit flips, researchers have

proposed introducing redundancy in system design. Lock-step system design involves

executing the same software on multiple hardware components to ensure the correct-

ness of the software. The concept of lock-step can be applied to CPUs, GPUs, NPUs,

and other components in a system-on-a-chip. This paper primarily focuses on lock-step

CPU design for two reasons. First, although GPUs have been utilized in the perception

modules for self-driving vehicles, the majority of autonomous machine software, such

as those running on mobile robots and drones, use CPUs as their hardware. Second,

autonomous machine software contains a large portion of code responsible for control

and planning, which are tasks that are naturally not suitable for running on accelerators.

Lock-step CPU design detects and recovers from random bit flips by pairing multi-

ple CPU cores and comparing the results among them (Iturbe et al., 2019; de Oliveira

et al., 2018; LaFrieda et al., 2007; Aggarwal et al., 2007). Each CPU core within the

pair runs the exact same software, and their results are compared at every cycle for
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CPU 0 CPU 1

CMP>

mov eax, [addr] mov eax, [addr]

addr addr

Cache Cache

addr addr

Comparison Match
Comparison Misatch

Raise Error 
Signal

Fig. 6.1: Dual-core lock-step CPU design.

correctness.

We illustrate a typical lock-step CPU design in Fig. 6.1. Both cores in the lock-step

CPU are running the same process. Thus, the same instructions will be executed in the

CPU pipeline. In order to avoid introducing extra stages of comparison into the CPU

pipeline, which will result in significantly high overhead, we compare the output ports

of the CPU cores.

In the example shown in Fig. 6.1, a mov instruction is in the pipeline waiting for

data to be loaded from memory. If there are no errors, both CPU cores will fetch data

from the same address. Thus, we compare the addresses of the data loading. If the

two cores request data from different addresses, we can infer that an error has occurred

in one of the CPU cores. If an error is detected, we raise an error signal and attempt

to recover from the error. On the other hand, if the addresses match in both cores, the

execution is not influenced by any soft errors, and it can proceed. Comparing the output

ports of CPU cores introduces the least overhead to the current CPU design.

Unlike error correction in a dual-core lock-step system, error detection and correc-
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Fig. 6.2: Success rate comparison between lock mode and split mode.

tion in a triple-core lock-step system are addressed in hardware. This is because an

odd number of cores can help determine which core is faulty, enabling direct recovery

from the other two benign cores without the need for a checkpoint. The extra hardware

includes a majority voter, a checker and a resynchronization logic (Iturbe et al., 2019).

6.2 Motivation

To motivate the roadblocks preventing the practical use of lock-step CPU design, we

first show in this section how the mission success rate of an autonomous machine sys-

tem is significantly impacted by using a lock-step CPU design (Chapter 6.2.1), and the

root cause is higher average latency caused by resource contention. We then describe

they key motivation of our work, i.e., the different levels of inherent robustness in an

autonomous machine software stack (Chapter 6.2.2).

6.2.1 Lock-step CPUs Degrade Mission Success Rate

We run the open-source self-driving software Autoware (Kato et al., 2018) and use the

Intel CARLA simulator (Dosovitskiy et al., 2017) to provide environment simulations.
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The setup runs on a server with an eight-core Intel Xeon W-2123 CPU and an Nvidia

Quadro RTX 4000 GPU. We instrument the source code to profile the performance.

Workload. We create various workloads in CARLA and run an ego vehicle with

Autoware as its self-driving software inside the environments. Different workloads

include cruising, following other vehicles, emergency stops, and more.

Settings. We employ a simple yet effective method to faithfully mimic the lock-

step CPU design. There are two reasons why we do not characterize performance in

real systems. First, most desktop-level and server CPUs do not support lock-step mode,

as they do not have exceptionally high reliability constraints. Second, at the time of

this work’s submission, the only commercialized development board—the Nvidia Orin,

which features lock-step ARM A78AE CPUs—does not provide well-documented in-

formation on lock-step mode, and it also does not adequately support the autonomous

machine software and corresponding simulator.

For the lock-step mode, we run Autoware on two cores. We bind all the processes

of Autoware to core 0 and core 1. For the split mode, we run Autoware on four cores,

with all the processes bound from core 0 to core 3. We try our best to eliminate the

influence of other processes by binding processes like the simulation environment to
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other specific cores.

Success Rate. One of the most critical metrics for autonomous machines is

whether they can successfully complete their tasks. To assess the impact of lock-step

mode on success rate, we create six different scenarios in the simulator and run an ego

vehicle equipped with Autoware inside it. We set up the starting point and end point

for the ego vehicle, as well as the trajectory of the participants, such as other vehicles

and pedestrians. The complexity of the different scenarios increases from scenario one

to scenario six. A higher complexity entails longer traveling distances and increased

interaction with other vehicles and pedestrians.

Fig. 6.2 shows the success rate of the ego vehicle when running in lock-step mode

and split mode. The results are averaged from thirty runs in every scenario. Running

in lock-step mode significantly reduces the success rate. In easier scenarios, such as

scenarios one to five, the difference is less obvious. However, in the most complicated
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scenario, running in lock-step mode has a 64.7% lower success rate compared to run-

ning in split mode. More failures, such as colliding with other vehicles and veering

onto the sidewalk, occur.

Root-cause Analysis. The performance degradation in lock-step mode is primarily

due to reduced computational resources in the system. Half of the CPU cores are used

as backup cores to guarantee reliability. This results in resource contention, leading to a

slowdown in Autoware. We observe the average CPU utilization increases from 71.8%

to 82.9%.

We further analyze the detailed latency data to demonstrate that resource contention

indeed leads to longer latency in autonomous machine software pipelines. By profil-

ing the latency at various stages of the pipeline, we can effectively identify bottlenecks

and understand how resource contention impacts the overall performance of the au-

tonomous machine software.

We monitor nodes in various pipelines, such as vision detection and LiDAR detec-

tion in the perception pipeline, and nodes like ndt matching and ray ground filter in

the localization pipeline. Additionally, we track the pipeline latency for both percep-

tion and localization in order to understand the impact of resource contention on these

critical components of the autonomous machine software.

We compare the performance of lock-step mode (referred to as lock mode later) and

split mode in Fig. 6.3. We first show the runtime latency of individual nodes and task

pipelines. As expected, running Autoware in lock mode significantly degrades runtime

latency. When operating in lock mode, all nodes experience longer runtime latency,

with an average slowdown of 9.9%. This slowdown accumulates, resulting in increased

latency in the task pipeline. The average latency for perception increases by 13.9%,

and for localization, by 12.9%.

In addition to average latency, another metric that reflects the reduced computation

resources is the average repetition time for each command issued by the vehicle. Auto-

ware, like many other autonomous driving software systems, operates under real-time
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constraints. Control algorithms that directly generate commands for the vehicle actua-

tor must operate at a minimum frequency of 30 Hz. This ensures that the autonomous

machine can effectively and safely respond to dynamic situations in its environment

and maintain stable operation.

When nodes preceding control algorithms cannot meet the 30 Hz frequency, the

controller node will simply repeat or duplicate its previous output, allowing a new

actuator command to be generated. Consequently, the frame repeat rate serves as a

valuable metric that offers insight into how the system’s latency is affected by resource

constraints.

We find that the average frames repeated per command does indeed increase. As

shown in Fig. 6.4, in split mode, every command is repeated on average 3.38 frames.

This number increases by 4.7% to 3.54 frames when Autoware is running in lock mode.

Overall, the motivational data shows that using lockstep considerably hurts the ve-

hicle’s mission success rate, which, in turn is caused by the longer pipeline execution

latency as a result of reduced computation resources. As a result, designers either have

to commit much more computation resources (chip area) to guarantee latency, or simply

opt out of lockstep execution; neigher is desirable.

6.2.2 Diversity of Inherent Fault Tolerance of Autonomous Ma-

chine Software

A key observation that KINDRED relies on is the inherent fault tolerance of the au-

tonomous machine software. The software stack of an autonomous machine consists of

tens of algorithms, which possess different abilities to tolerate faults, depending on their

inherent logic and the data flow of the entire software. Recent work performs a thor-

ough fault injection campaign and classifies autonomous machine algorithms into four

different levels depending on how robust they are against faults (Gan et al., 2022): un-

conditional masking (UM), conditional masking (CM), attenuation (A), and no masking
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(NM).

Unconditional Masking. A node with fault tolerance level UM means that when

an SDC happens on it, the error will not propagate through the entire software stack and

reflect on the final output. For example, if an autonomous machine software stack fuses

perception results from multiple sensors. Errors on one of the sensors can be mitigated.

Conditional Masking. A node with fault tolerance level CM means that when an

SDC happens on it, the error sometimes propagate to the output of the AV software. For

example, AV software manages multiple different state machines to manage its mission,

motion and behavior. If the vehicle is in “Go” state, errors happen on the conditions

related to “Go” state will be propagated. However, the errors happen on conditions

related to a “Wait” state will be masked.

Attenuation. A node with fault tolerance level A means that when an SDC hap-

pens on it, the error will not be masked but will be attenuated and propagate to the

output of the AV software. A low-pass filter is a typical way of reducing the amplitude

of an error.

No Masking. The nodes with lowest fault tolerance level is classified as NM.

SDCs happen on these nodes will directly influence the output of the AV software,

which are the control commands on steering wheel, gas and brake pedals.

6.3 KINDRED Overview

Main Idea. Our main intuition behind this work is to intelligently allocate the protec-

tion budget by considering the robustness/vulnerabilities of different algorithms in the

autonomous machine software stack. In particular, algorithms that are inherently robust

against soft errors (e.g., those that can naturally mask soft error-induced SDCs) can ex-

ecute in the split mode (i.e., without the protection of lockstep execution), whereas

algorithms that are vulnerable to soft errors (e.g., those that can only attenuate or have

no ability to mask SDCs) should be protected through lockstep execution.
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Architecture. To that end, KINDRED introduces a heterogeneous architecture that

consists of both a split domain and a lock domain. CPUs in the split domain execute

completely independently, and CPUs in the lock domain execute strictly in a lock-step

manner.

Fig. 6.5 shows the overview of KINDRED system. We divide the CPU cores in the

system into two different domains, the lock domain and the split domain. The lock-

step design can be either a dual-core lock-step where two cores are bound together or

a triple-core lock-step. Each core still has private level-1 instruction and data cache, as

well a private level-2 cache.

The split-lock architecture is reminiscent of the classic asymmetric multiprocessors

architectures that consist of power-hungry high-performance (big) cores and power-

efficienct, low-performance (little) cores (Kumar et al., 2003, 2004). Just like how a

big-little system can balance power and performance by intelligently scheduling tasks

onto different cores (Zhu and Reddi, 2013), the key of our split-lock heterogeneous ar-

chitecture is also to decide when and how to schedule an algorithm (in the autonomous

machine software stack) to which domain.

User Annotations. In order to decide how to schedule algorithms to the two

domains, we rely on software developers to annotate the vulnerability of different nodes

as shown in Fig. 6.5. This is because the software designer has the best understanding

of the vulnerability of each node. For example, in most autonomous machine software,

the control node that outputs commands to the vehicle actuators tends to implement a

low-pass filter to remove sudden changes in the front-end. While this might be difficult

for an offline compiler analysis to figure out, the developer can easily annotate the code

to indicate the level of robustness as attenuation (A) (Chapter 6.2.2).

The implementations of the annotation APIs, provided in a user-space library, de-

cide how to schedule an algorithm onto the different cores in the two domains. We

elaborate the annotation APIs and its run-time implementations in Chapter 6.4.

Hardware-Software Collaborative Detection and Recover. Traditional lock-
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step system either resort to fully hardware support for error detection or use software-

only solutions. For example, LaFrieda et al. propose leveraging a multi-stage hardware

compression circuits to compress register files every fixed interval and compare all

the register file contents (LaFrieda et al., 2007). Software-only solutions usually treat

an error as an interrupt and apply software restart inside the corresponding interrupt

service routine (ISR).

We provide a hardware-software collaborative mechanism as shown in Fig. 6.5,

where error detection is done in hardware and error recovery is done in software. In

particular, the lock-domain CPUs naturally have dedicated logic that compare the out-

put wires of each core in the domain every cycle and raises a signal to the OS when the

results of the cores mismatch. The OS, in the kernel space, runs a mis-match handler,

or error handler, which is triggered when the mis-match signal is received. The handler

is responsible for recovering the system from the mis-matches while minimizing the

performance overhead.

While the hardware error detection logic is readily available on commercial CPUs

with lockstep execution capabilities (Chapter 6.1), the design of the mis-match handler

and its interactions with applications and hardware is novel to this work, which we

describe in Chapter 6.5.

Listing 6.1: Example Autoware Code

1 #include "twist_filter/twist_filter_node.h"

2 #include "scheduling_hints.h"

3

4 int main(int argc, char** argv)

5 {

6 SCHED_HINT_ATTENUATION_PROCESS;

7 ros::init(argc, argv, "twist_filter");

8 twist_filter_node::TwistFilterNode node;

9 ros::spin();
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10 return 0;

11 }

6.4 Robustness Annotations

We rely on software designers to annotate their code for us to schedule. We provide

different macros for the software designers to identify the reliability of each nodes. To

be specific, software designers can use macros to indicate the vulneraebility level of the

process in their code. We show an example of twist filter in Code 6.1.

Listing 6.2: Macro Definition Header File

1 #ifndef SCHEDULING_HINTS_H

2 #define SCHEDULING_HINTS_H

3

4 // Function declarations

5 void scheduling_hint_attenuation_process();

6 void scheduling_nomask_process();

7 void scheduling_condmask_process();

8 void scheduling_uncondmask_process();

9

10 // Macro definitions

11 #define SCHED_HINT_NOMASK_PROCESS

scheduling_hint_attenuation_process()

12 #define SCHED_HINT_ATTENUATION_PROCESS

scheduling_nomask_process()

13 #define SCHED_HINT_CONDMASK_PROCESS

scheduling_condmask_process()

14 #define SCHED_HINT_UNCONDMASK_PROCESS

scheduling_uncondmask_process()



126

15 #endif

The SCHED HINT ATTENUATION PROCESS macro indicates that twist filter

node is with vulnerability level to be attenuation. We provide corresponding header

file contains the macro definitions in Code 6.2.

We then implement the corresponding schedule functions using

sched affinity system call to schedule the corresponding process on differ-

ent domains. Assuming the lock domain contains two logic cores, core zero and core

one and split domain contains cores between two to five. We will set the affinity for the

process to only core zero and core one if it should be scheduled on the lock domain.

Otherwise, we will set the affinity for the process to core zero to core five, as the tasks

can run on the split domain does not have to run on the split domain, and can also be

scheduled on the lock domain.

6.5 Error Detection and Correction

Error detection (in the lock domain) is done by hardware. We claim no novelty here. In

particular, when the results of the cores in the lock domain do not match, the hardware

logic will stall both cores and raise a signal to the Generic Interrupt Controller (GIC).

The GIC then relays the signal to the OS (Abdelrazek, 2006).

Our contribution lies in how we efficiently recover from the error, upon receiv-

ing the mis-match signal, by leveraging characteristics unique to autonomous machine

software. We elaborate on the unique task-level idempotency inside AV software in

Chapter 6.5.1. We then describe how exactly we recover from an error in Chapter 6.5.2.
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6.5.1 Exploiting Task Idempotency for

Lightweight Recovery

In existing lockstep systems, when a mis-match takes place, the fauty process/program

must be restarted and, if the entire system has no other spare cores (i.e., all the cores

participate in lockstep execution), the entire system must reboot (to reset the faulty

cores). Restarting the program or rebooting the system is clearly unacceptable in an au-

tonomous systems: it leads to significant latency increase or, in the worst case, discrupts

the functionality of the vehicle.

The goal of our error recovery mechanism is thus to introduce little latency over-

head to the software stack without any disruption, i.e., restarting the entire program or

rebooting the entire system is unacceptable. Our key idea is to leverage the idempo-

tency of tasks in autonomous machines. We will first describe the inherent idempotency

in the software stack and describe how to leverage this for lightweight recovery.

Task-level Idempotency. In most autonomous machine software, different tasks

operate in independent processes that communicate with each other through messages.

Fig. 6.6 shows a simple example illustrating this programming model, where “pub”

denotes publishing a message to subsequent nodes and “sub” denotes subscribing a

message from preceding nodes. In the example node 0 is the producer of node 1 and

node 2, and node 2 is the producer of node 3. Node 0 receives input from its pro-

ducer task (the sub block in Fig. 6.6), performs computations on them (the Code or

Idempotent Code block in Fig. 6.6), and then publishes the output to its consumer

task (the pub block in Fig. 6.6).

Crucially, nodes communicate with each other strictly through messages. No global

variables that live through function calls exist. A consumer node can not start its execu-

tion until it receives the message as its input from the producer node. Therefore, each

node is idempotent (De Kruijf and Sankaralingam, 2013), meaning that however many

times a node’s code is executed, the output messages will be the same as long as the
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Fig. 6.6: Message sharing through multiple nodes in autonomous machine systems.

input messages are the same.

Listing 6.3: Task-level Idempotency

1 #include <pcl/registration/ndt.h>

2

3

4 static void imu_callback(const sensor_msgs::Imu::Ptr&

input))

5 {

6 // Handle input data;

7 imu = *input;

8 // Code with idempotency;

9 save registers();

10 predict_pose_imu = imu_calc();

11 // Publish output data;

12 predict_pose_imu.publish(predict_pose_imu);

13 }

14

15 static void odom_callback(const

nav_msgs::Odometry::ConstPtr& input)

16 {

17 // Handle input data;
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18 odom = *input;

19 // Code with idempotency;

20 save registers();

21 odom_res = odom_calc(input->header.stamp);

22 // Publish output data;

23 odom_pub.publish(odom_res);

24 }

25

26

27 int main(int argc, char** argv)

28 {

29 SCHED_HINT_CONDMASK_PROCESS;

30 ...

31 ros::Subscriber imu_sub;

32 ros::Subscriber odom_sub;

33 ...

34 return 0;

35 }

Lightweight Recovery. The fact that each algorithm (node in Autoware) in

autonomous machine software stack is idempotent provides a unique opportunity for

lightweight error recovery without restarting the application: whenever a SDC is de-

tected by the lockstep hardware, we simply have to re-execute only the current node that

is being executed when the soft error occurs. Re-execution here means restoring the ar-

chitectural states when the node is first entered and executing the entire code in that

node using the restored states. Since the node is necessarily idempotent, re-execution

will generate the same output message and, thus, guaranteeing the same functionality

to the rest of the pipeline.

In order to restore the architectural states, we must first save them. KINDRED
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achieves so by instrumenting the original autonomous machine software code with a

save registers() function call at the beginning of each node, as shown in line 9

and line 20 of Code 6.3. The saved architectural states include both general-purpose

registers (RAX, RBX, RIP, R8 - R15, etc.) and floating point registers (XMM0 - XMM7,

etc.). Each process saves its states into a dedicated place in the data segment of kernel

space so architectural states from different processes will not pollute each other.

Our approach has two main benefits. Firstly, it ensures that none of the potential

errors will be written to the consumer nodes or propagate to the system as it has not

reachd the message publish phase. Secondly, if two tasks execute serially, we can avoid

extra overhead by not re-executing from the first task when an error occurs in the second

one.

Listing 6.4: Multi Consumer Example

1 static void points_callback(const sensor_msgs::Imu::Ptr&

input))

2 {

3 // Handle input data;

4 ......

5 // Code with idempotency;

6 save registers();

7 predict_pose_points = points_calc(filtered_scan_ptr);

8 // Publish output data;

9 predict_pose.publish(predict_pose_points);

10 // Another piece of code with idempotency;

11 ndt_pose = ndt_calc(filtered_scan_ptr);

12 // Publish output data to another consumer;

13 ndt_pose_pub.publish(ndt_pose);

14 }

15

16 static void points_callback_reimp(const
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sensor_msgs::Imu::Ptr& input))

17 {

18 // Handle input data;

19 ......

20 // Code with idempotency;

21 save registers();

22 predict_pose_points = points_calc(filtered_scan_ptr);

23

24 // Another piece of code with idempotency;

25 ndt_pose = ndt_calc(filtered_scan_ptr);

26 // Publish output data at the end;

27 predict_pose.publish(predict_pose_points);

28 ndt_pose_pub.publish(ndt_pose);

29 }

Multiple Consumers. For this scheme to work, the key requirement is that a

node commits its output message only at the very end. Otherwise, it is possible that an

message is already made visible to a node’s consumer when a soft error-induced SDC

takes place, in which case re-executing the entire node would generate a duplicate copy

of the message to the consumer node, changing the semantics of the application.

Committing a message in the middle of a node’s execution is most common when

a node has multiple consumers. As an example, consider Node 0 in Fig. 6.6. We show

a concrete example from Autoware in function points callback in Code 6.4.

To address this issue, our idea is to delay all the output message committments to

the end of the node. This is done by statically transfroming the code offline. As an

example, see points callback reimp in Code 6.4, which is transformed from

points callback by delaying all the message committments.

Hard Real-time Constraints. Re-executing a node necessarily introduces latency

overhead, which in the worst case could violate the real-time constraint of a node. For
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Fig. 6.7: Illustration of error handler in a dual-core lock-step system. The shadow part

represents the error handler.

instance, the node that connects to the vehicle and generates control commands need

to meet the hard real-time constraint of operating at, e.g., 30 Hz, which must not be

violated.

To prevent tasks from missing their deadlines, our approach is to install a timer

callback to signal when the deadline is approaching, in which case instead of finishing

the re-execution of the node we simply duplicate the most recent message that was pre-

viously generated. Re-publishing previous message is a common strategy commonly

seen in autonomous machine software to ensure that the system continues to operate

without interruption (Bezemer and Broenink, 2015; Kay and Tsouroukdissian, 2015)

6.5.2 Error Handler

We show the error handler in Fig. 6.7. We introduce minimum hardware support to the

cores and most recovery steps are done in the software. When the errors are detected,

we first stall the processor. We chose to stall the processor in hardware as doing it in
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software such as writing to a register, will take hundreds of cycles and the errors will

propagate into architectures that are in a clean state, such as Level-1 cache.

After the processor is stalled, a mismatch error signal is sent to the OS to trigger

the corresponding error handling code, or error handler. Our proposed error handling

mechanism must be executed promptly, in contrast to traditional interrupt handlers

which can tolerate delays.

The software portion of the error handler will do three things. First, it will dequeue

the processes from the faulty core. This step includes two operations. First, it will save

the values architectural registers of the running processes on the faulty core. We will

assume the running process is twist fillter in the following text. Notice that the

architectural states saved can be faulty as we compare the output ports of the locked

CPU cores instead of adding an extra pipeline to compare the architectural state table

of two cores. Second, the error handling code will dequeue all the processes in the

runqueue of the faulty core.

Next, before it enqueues the processes into the runqueue of other cores, we need to

resolve the hazardous values of architectural registers saved during the first step. Be-

cause of the dual-core setting, there is no way to determine which core has the correct

architectural states. Thus, the error handler needs to recover the architectural states of

the running processes to the correct states. It copies from the most recently saved cor-

rect values of architectural registers to the process control block of twist fillter.

In that case, although twist fillter needs to jump back to a previous location

compared to where it stops, the correctness of that process is ensured.

Finally, the error handler will enqueue the dequeued processes in the runqueue of

the faulty cores to runqueue of other benign cores. The last thing the error handler

does is to write to reset register of the faulty core to reset that core. After the reset, it

goes back to the benign state and joins the resource pool so that the OS can schedule

processes to it again.
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Fig. 6.8: Comparison with the state-of-the-art methods

6.6 Functional Validation

In this section, we demonstrate the error correction method applied for the dual-core

system is functionally validated. Since at the time of submission lockstep CPUs, while

physically available in hardware, are not accessible to the systems software, our val-

idation and evaluation will necessarily be based on emulating the domain from off-

the-shelf (split) CPU cores. We first introduce the experimental methodology in Chap-

ter 6.6.1 and show the validation results in Chapter 6.6.2.

6.6.1 Methodology

Error injection. We emulate the effect of SDCs caused by soft errors by inject errors

into randomly selected general-purpose registers or floating point registers by writing

arbitrary values into the selected registers. Note that while the microarchitectural be-

havior of a single soft error is that a single bit in a flop is changed, at the software level

multiple architectural registers might be affected and their “corrupted” values could

very well be different from simply flipping a bit. Our fault injection faithfully emulates

these effects.

Error Recovery. We implement the mis-match handler as a kernel module. After

the error is injected, the kernel module sends a SIGSTOP signal to the faulty running

process, which emulates the stalling of the fault process (which is normally done by the
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lockstep CPUs in hardware). The mis-match handler will then get a handler to the PCB

of the faulty process, and overwrite all the architectural registers with the most recently

saved values (by save registers() in the application code; see Chapter 6.5.1).

Finally, the handler sends a SIGCONT signal to the fault process to resume its exe-

cution, emulating the effect of a fault processor being reboot and becoming available

afterward.

Workloads and Environment. We implement the mis-matched kernel module is

implemented in a Linux kernel version 5.14. To verify the effectiveness of the error

correction, we created identical scenarios for both benign and faulty runs. We first set

up a scenario in CARLA and ran the Autoware software in benign mode. We recorded

two things: the output of the specific node or process that we later injected errors

into, and the CARLA simulator-related signals, so that we could recreate an identical

scenario. This allowed us to compare the output of the software under benign and faulty

conditions in the same environment.

We then use the recorded CARLA simulator signals to recreate the exact same sce-

nario. We modify Autoware and load the kernel module to simulate our KINDRED

system. During the faulty run, we also record the output of the same node or process.

We later compare both outputs to determine if the error we injected actually caused a

deviation in the behavior of the vehicle or it has been corrected.

6.6.2 Validation Results

Error correction results. We use the localization node ndt matching as an

example to illustrate the correctness of KINDRED. We show the results of the es-

timate twist signal, which is the output of ndt matching. We show three output

variables linear-x, linear-y and angular-z.

We compare the benign output and the output after error injection and correction in

Fig. 6.8. All three variables show the same results between benign experiment and error
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Fig. 6.9: Latency comparison between benign experiment and error inject and faulty

experiment. Corrected Latency is the latency of the experiment when we inject error

and recover from it.

injected and correction experiment. We demonstrate that although with error injected

to the architectural registers, our error correction mechanism is able to correct them.

Latency Overhead. We also show the latency overhead we introduce with the

error correction. We compare the latency of two nodes during the baseline experiment

and the error injection and correction experiment. We show the result in Fig. 6.9.

Our error correction methodology does not introduce much overhead. In

ndt matching node, KINDRED shows 6.6% higher latency compared to baseline

experiment. However, in voxel grid filter, KINDRED shows 1.8% lower la-

tency.

6.7 Evaluation Setup

We introduce the hardware setup (Chapter 6.7.1) and software infrastructure (Chap-

ter 6.7.2) in this section. We also describe different settings of the KINDRED (Chap-

ter 6.7.3).
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Fig. 6.10: Node latency comparison.

6.7.1 Hardware Setup

We emulate the entire system using existing hardware. The main reason we use emula-

tion instead of simulation is that we want to evaluate the performance of the entire au-

tonomous machine software stack. Running Autoware and CARLA on a cycle-accurate

simulator would take an excessively long time to complete due to the complexity and

computational overhead involved in accurately simulating every processor cycle.

We develop RTL implementation of the extra hardware required for our project,
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(a) Task pipeline latency comparison between

baselines and KINDRED with a dual-core setting.
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(b) Task pipeline latency comparison between

baselines and KINDRED with a triple-core set-

ting.

Fig. 6.11: Task pipeline latency comparison.

using Synopsys synthesis and Cadence layout tools with the Silvaco Open-Cell 15nm

technology (15n). We incorporate the latency of error detection and correction of both

dual-core setup and triple-core setup (Iturbe et al., 2019) into Autoware. All the nodes

in Autoware will have extra error detection latency. One node will also have extra error

correction latency.

We run the experiments on a machine with 12th Generation Intel Core i9-12900

CPU and NVIDIA RTX 3060 GPU. We bind the software only on the CPU performance

cores.

6.7.2 Software Setup

We run a real autonomous machine software stack Autoware and measure its perfor-

mance. We rely on CARLA to provide simulation of the environments. We monitor

the latency of 12 nodes in Autoware and the end-to-end latency of the localization and

perception pipelines. The twelve nodes contain two nodes in the sensor preprocessing

module, five nodes in the perception module, one node in the localization module and
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(a) Mission success rate comparison between baselines and KINDRED with a dual-core setting.
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(b) Mission success rate comparison between baselines and KINDRED with a triple-core setting.

Fig. 6.12: Mission success rate comparison.

four nodes in the planning and control module.

Error injection. We inject errors to mimic the SDC events inside the system.

Previous work (Gan et al., 2022; Hsiao et al., 2021) show that soft errors, while funda-

mentally a hardware-level phenomenon, reflect at the software level as corruptions in

the communication messages between different nodes. Therefore, one can emulate the

effects of soft errors but injecting faults to the inter-node messages, i.e., ROS topics in

Autoware. We follow the same methodology here. To ensure that our fault injections

are representative, we reuse the same fault values found by Bruam (Gan et al., 2022),

which obtained fault ROI topics values under soft errors through hardware-level fault
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injections.

Evaluation metric. We use three metrics to evaluate KINDRED. We first present

the latency comparison of individual nodes and end-to-end module pipelines. We also

create ten different scenarios and run the vehicle inside each scenario of each different

setting for sixteen times and report the success rate. To verify the reliability, we use the

metric Error Propagation Rate (EPR), which is similar to previous works (Gan et al.,

2022). The EPR represents the probability of errors propagate to the output of the

autonomous software stack when SDC happen at each individual node. Lower EPR

represents higher reliability of the system.

6.7.3 Evaluation Plan

In a typical autonomous machine software stack, a node’s fault tolerance can be clas-

sified into four different levels: unconditional masking (UM), conditional masking

(CM), attenuation (A) and no masking (NM). Our evaluation plan is based on different

scheduling strategy of different nodes. We resort to the fault tolerance classification

proposed by previous works (Gan et al., 2022).

• LOCK: This baseline represents only lock domain is provided and all the nodes

need to run on it.

• SPLIT: This baseline represents only split domain is provided and all the nodes

need to run on it. This is the common setting where most autonomous machines

are using where no cores are locked.

• KINDRED-UM: In this setting, nodes except UM classification will be running

in lock domain, other nodes can run anywhere.

• KINDRED-UMCM: In this setting, nodes with UM and CM classification will

can run anywhere, other nodes will be running in lock domain.
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• KINDRED-UMCMA: In this setting, only nodes with NM classification will be

running in lock domain and all other nodes can run anywhere.

6.8 Evaluation

We first show that KINDRED system brings negligible area overhead and memory

overhead (Chapter 6.8.1). We then compare the latency of individual nodes and task

pipelines in a typical autonomous machine software and show success rate (Chap-

ter 6.8.2). We evaluate the reliability at last (Chapter 6.8.3)

6.8.1 Overhead Analysis

Chip area overhead. We implement the extra hardware brought by KINDRED. For

triple-core lock-step system, where three extra components are included. The majority

voter, checker and resynchronization logic in total takes an area of 2167 um2. Com-

pared to a typical CPU used in an autonomous machine system, ARM A77, the extra

logic adds 0.85% area overhead. The area overhead of a dual-core lock-step system is

less than 0.2%, as it only needs an extra comparator.

Memory overhead. KINDRED brings extra memory overhead as all the nodes

need to save register values and communicate with the kernel module. For Autoware,

KINDRED brings 11.5 KB extra memory overhead.

6.8.2 Latency and Success Rate

Latency. We compare the latency of representative nodes of dual-core setting in

Fig. 6.10a and triple-core setting in Fig. 6.10b. We plot the y-axis on a logarithmic

scale with a base of 10 (log10) as the latency difference between different nodes are

high. We also show the variance using error bars.
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SPLIT has the lowest average latency and LOCK has the highest one. On every

node, running in LOCK results in significantly higher latency. The average latency

overhead brought by LOCK is 31.5% in the dual-core setting and 26.9% in the triple-

core setting. The reason is applying lock-step in the system reduces the available com-

putational resources as well as introduces extra overhead on error detection and correc-

tion.

The same conclusions exist in the task pipeline latency. Fig. 6.11a shows the latency

of the localization pipeline and perception pipeline. The average latency of localization

increases 10.6% and the average latency of perception increase 18.7% in LOCK.

KINDRED significantly reduces the introduced latency overhead. For the dual-core

setting, compared to LOCK, KINDRED-UM improves the average latency in individual

nodes by 13.5%. Compared to SPLIT, KINDRED-UM only introduces 6.8% average

overhead on different nodes. The overhead of KINDRED-UM compared to SPLIT is

0.6% on the localization pipeline and 8.1% on the perception pipeline. The reason is

that KINDRED provides two domains in the system. By scheduling nodes with UM clas-

sification on the split domain, KINDRED significantly reduces the resource contention

and error detection and correction overhead.

KINDRED-UMCM and KINDRED-UMCMA further reduces the overhead as

KINDRED schedules more nodes to split domain. Compared to LOCK,

KINDRED-UMCMA improves the average node latency by 18.5% and average task

pipeline latency by 11.0%. The average task pipeline overhead KINDRED-UMCMA

introduces compared to LOCK is only 2.8%.

Success rate. The latency comparison transfers to mission success rate. We show

the success rate comparison in Fig. 6.12. SPLIT has the highest success rate. It achieves

100% success rate in most scenarios. The average success rate of SPLIT is 97.5% in the

dual-core setting and 98.1% in the triple-core setting. LOCK fails more often. LOCK

has an average 93.8% success rate in the dual-core setting and 93.8% success rate in

the triple-core setting.
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Table 6.1: Error Propagation Rate (EPR) of KINDRED.

MODE LOCK SPLIT UM UMCM UMCMA

EPR 0% 16.2% 0% 4.5% 8.3%

KINDRED improves the mission success rate. KINDRED-UM has a mission success

rate of 96.3% in dual-core setting and 95.6% in triple-core setting. KINDRED-UMCM

has a mission success rate of 96.9% in dual-core setting and 95.6% in triple-core setting.

KINDRED-UMCMA has a similar success rate of 96.9% and 96.3%.

6.8.3 Error Propagation Rate

We compare the robustness of the five modes by comparing their EPR. Higher EPR

means more errors propagate to the output of the AV software, indicates lower robust-

ness. We show the results in Tbl. 6.1.

Although with the highest latency and lowest success rate, LOCK has the highest

robustness and achieve 0% EPR. This is because in LOCK mode, all the nodes run

in lock domain and all errors can be detected and corrected. SPLIT has the lowest

robustness with highest EPR as all the nodes run in split domain and thus the system

has no ability to detect errors. 16.2% of the errors will propagate to the output of the

AV software. For KINDRED, KINDRED-UM has the same EPR compared to LOCK.

This is because KINDRED-UM schedules only nodes with unconditional masking clas-

sification on split domain which are naturally fault tolerant. KINDRED-UMCM and

KINDRED-UMCMA both has higher EPR compared to KINDRED-UM. The reason is

that scheduling nodes with fault tolerance classification as conditional masking and at-

tenuation on split domain for higher performance is taking the risk that some errors are

not detected and recovered as they do not run on lock domain.
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6.9 Related Work

Multi-core lock-step CPU design has been employed in specific aerospace applica-

tions (Kasap et al., 2021; LaFrieda et al., 2007). Our work aims to enhance system

efficiency by implementing a hybrid domain CPU design and scheduling autonomous

machine software on it. Rather than using commonly adopted hardware-assisted check-

point and recovery techniques to improve the efficiency of lock-step systems (Mendon

et al., 2012; Doudalis and Prvulovic, 2011; Sorin et al., 2000), we leverage task-level

idempotency in autonomous machine software and apply hardware-software collabora-

tive error correction, thereby avoiding the introduction of additional hardware.

Several works, such as Hsiao et al. (Hsiao et al., 2021), Gan et al. (Gan et al., 2022),

Koopman (Koopman and Wagner, 2017), and Basargan et al. (Basargan et al., 2021),

have proposed identifying divergence in fault tolerance classification between different

nodes in autonomous machine software. This work is motivated by the same insights,

and we aim to harness the inherent fault tolerance of the software to schedule nodes with

high reliability in the split domain. By doing so, we can address resource contention

and enhance performance, ultimately improving the efficiency and reliability of the

autonomous machine software.

This work focuses on lock-step CPU design. We notice that currently multiple dif-

ferent accelerators such as GPU, DSP and NPU have been utilized in building hardware

for autonomous machines (Yu et al., 2020; Krishnan et al., 2022; Suleiman et al., 2019,

2018; Talpes et al., 2020; Yang et al., 2021). How to enable lock-step accelerator design

is also a challenging topic and has not been well studied yet.

6.10 Discussion and Future work

Lock-step CPU design methodology. In this work, we apply the comparator on

the output signals of the CPU logic cores. In our implementation, we do not need to



145

add extra pipeline states and our solution can be integrated into existing hardware eas-

ily. The downside of our design is that the architectural states and micro-architectural

states may have been polluted as we do not compare the architectural states table after

each instruction. We mitigate this effect by constantly saving correct register values to

the memory and restore from them to ensure error correction. A comparison between

checking the output signals of CPU cores and checking the internal architectural states

table could help us more in understanding different implementation methodologies of

lock-step CPU designs.

Static and dynamic multi-domain design. We propose a static multi-domain

design in this work. That is, the domain separation of lock and split is static and can not

be changed during runtime. This form of design does not allow runtime reconfiguration.

However, the workload of autonomous machines varies significantly as the scenario

changes. The distribution of workload scheduled on lock-domain and split-domain

may change when the vehicle gets out of the highway and start parking inside the

city. A dynamic multi-domain lock-step CPU design that allows reconfiguration is

an interesting line of future work. How to achieve low latency reconfiguration between

lock cores and split cores and the condition of reconfiguration are the key challenges.
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7 Retrospective and Future Work

This chapter provides retrospective and the potential future directions of my dissertation

work. I first introduces two principles developed from my work in Chapter 7.1. I further

propose future directions of my dissertation in Chapter 7.2.

7.1 Retrospective

My thesis represents the initial step in developing a reliable computing system for au-

tonomous machines. The objective of my research is to address the reliability concerns

within both the perception module and the overall software of autonomous machines.

In summary, this thesis elucidates two primary principles:

• Performance and Reliability are Equally Important: For autonomous machines,

performance and reliability are two equally significant metrics. Both measure-

ments play critical roles in ensuring the safety and usability of these machines.

A majority of the current research primarily concentrates on enhancing perfor-

mance while disregarding reliability or vice versa. In this thesis, I establish that

such approaches are inadequate. I illustrate, through empirical evidence, that im-

plementing a suboptimal method to guarantee reliability can negatively impact
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performance and subsequently affect the success rate of missions undertaken by

autonomous machines.

• Exploring and Utilizing Algorithmic Characteristics: Conventional techniques

for ensuring fault tolerance are predominantly general and applicable to vari-

ous types of algorithms. In my dissertation, a principal insight emphasizes the

need for system designers to investigate and capitalize on algorithmic character-

istics to provide customized protection for the computing stack. One of the key

tenets underlying my work is the close integration of protection with application-

specific characteristics. For instance, the BRAUM method initially analyzes the

software stack and generates a distinct inherent fault tolerance classification, al-

lowing KINDRED to subsequently propose a multi-domain architecture address-

ing both reliability and performance.

7.2 Future Work

The future of computing systems for autonomous machines is undoubtedly exhilarat-

ing. I posit that we are entering an era in which autonomous machines assume signifi-

cantly more prominent roles within human society. Informed by the principles outlined

in the preceding section, I propose several critical future directions for the computa-

tional aspects of autonomous machines that I believe warrant further exploration.

• Customized Split-Lock Architecture for Accelerators: Owing to the swift evolu-

tion of algorithms employed in autonomous machines, various accelerators, such

as graphic processing units (GPUs) and neuron processing units (NPUs), have

become integral components of these machines’ computing systems. Presently,

most fault tolerance techniques applied to accelerators involve allocating addi-

tional silicon resources to introduce redundancy. Inspired by the KINDRED ap-
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proach, I propose the development of a customized split-lock architecture specif-

ically tailored for accelerators.

For instance, considering the distinct computational flow of deep neural net-

works, a lock-step NPU need not conduct a cycle-by-cycle comparison of the

partial sum. A delayed comparison when results are committed to the off-chip

DRAM is feasible. Concurrently, various deep learning algorithms exhibit dif-

ferent levels of inherent fault tolerance. Developing a heterogeneous split-lock

hardware design and a corresponding scheduler for NPUs presents an intriguing

topic for further exploration.

• Autonomous Machine Software 2.0: The landscape of autonomous machine soft-

ware is constantly evolving. In my dissertation, I primarily examine traditional

autonomous machine software, characterized by well-defined modules. How-

ever, as large generative models experience significant advancements (Shen et al.,

2023; Zhang and Li, 2021), a trend has emerged wherein a single model supplants

the traditional complex computational graph (Liu et al., 2022; Li et al., 2022a;

Liang et al., 2023; Li et al., 2022c).

This emerging trend in autonomous machine software is revolutionizing the field.

Firstly, numerous algorithms within planning and control modules are evolving

from state machine-driven approaches to those driven by vast data and compu-

tation. Consequently, a new hardware architecture is required to accommodate

this shift in software design. Simultaneously, the landscape of reliability con-

cerns is also changing. Traditionally, planning and control modules were more

susceptible to soft errors and software bugs. However, the transformed software

architecture may exhibit increased robustness against soft errors while becoming

more vulnerable to adversarial attacks.
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8 Conclusion

In this dissertation, I endeavor to address the reliability concerns of computing sys-

tems within autonomous machines. My objective is to transcend the conventional

performance-reliability trade-off, safeguarding the system while minimizing overhead.

In pursuit of this goal, I strive to tackle two primary challenges. The first challenge

involves constructing a dependable perception module capable of withstanding adver-

sarial attacks. The second challenge seeks to establish a reliable computing system

specifically tailored for autonomous machines.

The first project encompasses an efficient adversarial example detector and a dy-

namic network topology capable of processing both standard and adversarial im-

ages. The adversarial example detector, PTOLEMY, attains high detection accuracy

(0.9 AUC) with minimal overhead (an additional 2.1% latency). In conjunction with

PTOLEMY, the dynamic network MORPHADNET achieves 0.92 accuracy for standard

images and 0.89 accuracy for adversarial images on the CIFAR-10 dataset.

The second project consists of an inherent fault tolerance classification of au-

tonomous machine software stack, BRAUM, and a heterogeneous split-lock CPU archi-

tecture design KINDRED that utilizes the classification of BRAUM. KINDRED is able to

correct all the errors it encounters while only introduce 13.5% latency overhead.
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