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Abstract

Mobile visual computing is now a crucial facilitator for a range of applications

such as autonomous vehicles and augmented/virtual reality (AR/VR), and we are con-

tinuously witnessing the development of new algorithms and devices that allow us to

experience the world in novel ways. However, with the advent of the post-Moore’s

law era, the computing capabilities of current mobile devices are no longer sufficient to

meet the increasing demands of computation required by today’s applications. More-

over, high computation and data communication demands drain the device batteries

quickly. Therefore, optimizing the visual computing stack holistically, from algorithm

to hardware, is essential.

This dissertation makes a significant contribution by identifying bottlenecks in the

two primary stages of the visual pipeline: sensing and processing. Particularly, this

dissertation demonstrates how data communication is the major bottleneck in the sens-

ing stage, while overwhelming computation demands hinder the performance of the

processing stage. Based on such observations, this dissertation mitigates data com-

munication overhead via two techniques: in-sensor computing and application-specific

compression. Additionally, to address the computation bottlenecks, this dissertation

exploits two application properties to avoid redundant computations: temporal correla-

tion and algorithmic approximation. These techniques aim to optimize the entire visual

computing stack, including hardware and algorithms, to achieve better energy-efficient

and high-performance mobile vision systems.
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1 Introduction

Mobile visual system is now a crucial facilitator in many vision applications, such as

autonomous driving and AR/VR. Reports show that the market size of AR/VR is esti-

mated to be 37.0 billion dollars in 2023 with an annual growth rate of 25.3% (Report,

2022). These technologies are continuously reshaping the way people communicate

and interact with the world around them. Meanwhile, as we witness rapid innovations

in technology, new emerging applications are invented with ever-increasing computa-

tion demands. While embracing the new experiences that are brought by these emerg-

ing applications, we also are facing a crucial fact that, in this post-Moore’s law era, the

general hardware performance is no longer expected to be doubled every two years by

semiconductor technology developments. How to bridge the gap between the increas-

ing computation demands from vision applications and the stagnated semiconductor

technology is an urgent issue that needs to be addressed.

The challenge of rising demand and insufficient supply extends beyond just per-

formance metrics, including energy and bandwidth. Such demand-supply mismatches

impede the broader adoption of many vision applications. For instance, in applications

such as high frame-rate and high dynamic range (HDR) digital image sensors, data cap-

ture rates are now constrained by the chip-to-chip or internet bandwidth rather than the

analog-to-digital conversion, which is typically the bottleneck in conventional CMOS

image sensors.
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Fig. 1.1: Overview of my research scope.

The rest of this chapter is organized as follows. Sec. 1.1 outlines the research scope

and contributions of this dissertation followed by a summary of the thesis statement in

Sec. 1.2. Next, Sec. 1.3 highlights the long-term impacts of this dissertation. Sec. 1.4

overviews the organization of this dissertation and Sec. 1.5 lists the previous publica-

tions that this dissertation is based on.

1.1 Research Scope and Contributions

The general vision pipeline is illustrated in Fig. 1.1. At a high level, the vision pipeline

starts with the scene, which is captured by the sensing devices that convert signals (e.g.

lights) into electric signals. These converted signals then are processed in either the

analog domain or digital domain before being presented to the end users or displays.

This dissertation focuses on two key stages of the vision pipeline: sensing and pro-

cessing. More specifically, it targets two main modalities in many mobile applications:

image and point cloud. Based on the unique characteristics of these two modalities,

this dissertation proposes different optimization techniques to address the fundamental

inefficiencies in these two stages.

Under this research scope, my dissertation makes the following contributions.

In-Sensor Computing Algorithm and Framework The goal of in-sensor com-



3

puting is to resolve the data communication overhead in sensor readouts. However,

I realize there are two essential pieces missing to allow sensor designers to fully uti-

lize the power of in-sensor computing. The two missing pieces are a well-established

algorithm paradigm and a design exploration framework. To this end, I first propose

EDGAZE which set an example for an ideal in-sensor computing paradigm. Unlike ex-

isting vision algorithms which are infeasible to be deployed on today’s image sensors,

EDGAZE considers the computation limitations inside the image sensor and effectively

reduces the overall energy consumption and data communication. To the infrastructure

end, to better allow sensor designers or system architects to explore the sensor design

space, I propose CAMJ which is the first-of-its-kind design exploration framework that

allows quick system-level performance evaluation with a user-friendly interface.

Leverage Temporal Correlations in Computation Motions in videos encode

the temporal correlations across frames. By exploiting this characteristic, I propose

ASV which leverages the temporal correlations across image frames to avoid redun-

dant computations in vision applications, therefore, reducing the overall computation

cost. However, unlike many studies which simply use motions to approximate the next

frame results, ASV leverages geometric properties in the depth estimation and carefully

designs a domain-specific system to improve the overall performance.

Spatio-Temporal Point Cloud Compression Point clouds naturally encode spa-

tial geometric information of an object or a scene. Exploiting this characteristic allows

us to encode point clouds using geometric equations and effectively compress point

clouds. Additionally, point cloud streams often exhibit temporal correlations similar

to image-based videos. Using this feature, I propose a real-time point cloud compres-

sion algorithm. This algorithm leverages the characteristics of LiDAR-generated point

clouds and exploits the geometric features of the physical world and temporal similari-

ties across point clouds to encode point clouds.

Point Cloud Algorithm-Hardware Co-Designs Deep point cloud analytics gains

popularity due to its power in many vision tasks such as classification and detection.
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However, due to its unique computation operations, it is inefficient to execute deep point

cloud algorithms on today’s GPU or accelerators. This dissertation points out two fun-

damental inefficiencies in point cloud algorithms: inherently sequential execution and

irregular memory access. To address the first inefficiency, I propose MESORASI, an

algorithm-hardware co-design for deep point cloud analytics. MESORASI explores the

approximate nature of deep learning networks and meticulously interchanges the order

of the computation operands to achieve parallelism and reduce the overall computation.

To address the second inefficiency, I propose CRESCENT, which approximates two key

operations in point cloud analytics, kd-tree search and aggregation, and proposes cor-

responding hardware augmentation to further accelerate the point cloud algorithms.

Compared to standard point cloud algorithms, CRESCENT reduces the irregular mem-

ory accesses to a large extent and saves the data communication energy.

1.2 Thesis Statement

To enable next-generation visual computing systems, we must improve the efficiency

of both sensing and processing stages across different visual modalities. To this end,

this dissertation addresses fundamental inefficiencies in both sensing and processing.

To optimize sensing efficiency, this dissertation proposes novel in-sensor computing

techniques and modality-tailored data compression methods to minimize the data com-

munication overhead in vision pipelines. To optimize processing efficiency, an impor-

tant observation made in this dissertation is that vision algorithms inherently involve

approximation during the computation. This dissertation leverages such an observa-

tion to avoid exact computations through algorithm-hardware co-design, reducing the

overall computations in vision pipelines.
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1.3 Long-term Impact

The goal of this dissertation is to build real-time and energy-efficient mobile vision

systems. This goal will be continuously influential as people are seeking more engaging

visual experiences. The long-term impact of my work encompasses three aspects.

First, mobile vision systems remain critical components in many existing and

emerging applications, including AR/VR, autonomous vehicles, robotics, etc. Many

of those are considered the next-generation platforms and human-machine interfaces.

More importantly, image and point cloud will continue to serve as two major visual

modalities in many mobile vision systems. The techniques proposed in this dissertation

will continue to benefit many future applications, particularly as data communication

and computation remain the primary bottlenecks.

Second, as users require better user experience such as higher resolutions, higher

frame rates, and smaller form factors, the resolution for mobile visual computing

will inevitably increase with more constrained power/energy budgets. However, with

Moore’s law no longer holding, system architects must design more efficient mobile

systems. The visions in this dissertation will continuously guide system designers to

build vision platforms for future applications.

Lastly, in the post-Moore’s law era, the hardware design inevitably shifts towards

domain-specific design. However, the debate between general-purpose vs. domain-

specific designs remains ongoing. The important message of this dissertation is that

achieving the best system performance does not always mean designing a brand-new

architecture. Instead, by co-designing hardware with algorithms, many mobile applica-

tions can largely avoid proposing unnecessary architectures and just exploit the existing

architectures with minimum but principal hardware augmentation.
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1.4 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 introduces the back-

ground of image sensors and image-based vision tasks. Chapter 3 presents CAMJ

framework and shows how CAMJ can perform rapid system-level performance and

power evaluation. Next, Chapter 4 explores the capability of CAMJ and quantitatively

demonstrates how EDGAZE can leverage in-sensor computation power to reduce the

overall data communication. Chapter 5 shifts the focus on the processing stage of the

vision pipeline and describes how the systematic optimization in ASV is tailored for

the fundamental inefficiencies in depth-estimation and avoids redundant computations

in depth-estimation algorithms. Chapter 6 introduces the basic mechanism in point

cloud acquisition and the basic operands in deep point cloud analytics. After that,

Chapter 6 highlights some challenges in the sensing and processing stages in the point

cloud domain. Based on the aforementioned challenges, Chapter 7 introduces a real-

time point cloud algorithm to address the data communication challenge in point cloud

sensing, and Chapter 8 and Chapter 9 address the compute and memory challenges in

point cloud processing, respectively.

1.5 Published Materials

This dissertation contains materials that are previously published in peer-reviewed con-

ferences and journals:

Chapter 3. The design and validation of in-sensor framework, CAMJ, are based on

the following paper: CamJ: Enabling System-Level Energy Modeling and Architectural

Exploration for In-Sensor Visual Computing. Ma, Tianrui, Yu Feng, Xuan Zhang, and

Yuhao Zhu. In International Symposium on Computer Architecture (ISCA), 2023 (Ma

et al., 2023).

Chapter 4. The algorithm design of EDGAZE is based on the following pa-
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per: Real-time gaze tracking with event-driven eye segmentation. Feng, Yu, Nathan

Goulding-Hotta, Asif Khan, Hans Reyserhove, and Yuhao Zhu. In 2022 IEEE Confer-

ence on Virtual Reality and 3D User Interfaces (VR), 2022 (Feng et al., 2022a). The

in-sensor architecture design is based on the following paper: CamJ: Enabling System-

Level Energy Modeling and Architectural Exploration for In-Sensor Visual Computing.

Ma, Tianrui, Yu Feng, Xuan Zhang, and Yuhao Zhu. In International Symposium on

Computer Architecture (ISCA), 2023 (Ma et al., 2023).

Chapter 5. The real-time depth estimation system, ASV, is based on the fol-

lowing paper: Asv: Accelerated stereo vision system. Feng, Yu, Paul Whatmough, and

Yuhao Zhu. In Proceedings of the 52nd Annual IEEE/ACM International Symposium

on Microarchitecture, 2019 (Feng et al., 2019).

Chapter 7. The real-time point cloud compression method is based on the fol-

lowing paper: Real-time spatio-temporal lidar point cloud compression. Feng, Yu,

Shaoshan Liu, and Yuhao Zhu. In 2020 IEEE/RSJ international conference on intelli-

gent robots and systems (IROS), 2020 (Feng et al., 2020a).

Chapter 8. The delayed-aggregation method and hardware augmentation are

based on the following paper: Mesorasi: Architecture support for point cloud analytics

via delayed-aggregation. Feng, Yu, Boyuan Tian, Tiancheng Xu, Paul Whatmough,

and Yuhao Zhu. In 2020 53rd Annual IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO), 2020 (Feng et al., 2020b).

Chapter 9. The algorithm-hardware co-design system, CRESCENT, is based on

the following paper: Crescent: taming memory irregularities for accelerating deep

point cloud analytics. Feng, Yu, Gunnar Hammonds, Yiming Gan, and Yuhao Zhu. In

Proceedings of the 49th Annual International Symposium on Computer Architecture,

2022 (Feng et al., 2022b).
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2 Image-based Vision System

This chapter provides basic backgrounds about image-based vision systems. Specifi-

cally, Sec. 2.1 gives an overview of the CMOS image sensor and explains the role of

an image sensor in today’s vision pipelines. Next, Sec. 2.2 discusses the recent design

trend in image sensors and showcases several sensor designs. Finally, Sec. 2.3 reviews

common trade-offs when choosing different vision algorithms in today’s mobile vision

systems.

2.1 CMOS Image Sensor

This section provides the basic fundamentals of modern image sensors. This sec-

tion starts with the role of an image sensor in general imaging or vision pipelines

(Sec. 2.1.1). Then, the conventional architecture of an image sensor is used as an exam-

ple to introduce the key components inside the image sensor (Sec. 2.1.2) and peripheral

readout circuitry (Sec. 2.1.3) followed by a brief summary (Sec. 2.1.4). This section fo-

cuses more on the mechanism of each individual component (from a computer science

perspective) instead of its actual circuit-level implementation.
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Fig. 2.1: An overview of the camera imaging and vision pipeline.

2.1.1 Overview

Fig. 2.1 shows an illustration of a general image-based vision pipeline. The vision

pipeline starts with the sensor exposure, during which lights pass through optic com-

ponents and hit pixels inside the image sensor. Photons received by pixels are then

converted into currents via quantum effects. The converted currents are stored in the

pixel well in the form of electrons. Once each pixel has accumulated enough electrons

in one exposure, the accumulated electrons go through a series of analog signal pro-

cessing and are eventually converted into voltage signals. Analog-to-digital converters

(ADCs) receive voltage signals and digitize voltage signals so that the output signals

can be processed by general digital processors, such as image signal processors (ISPs),

or other domain-specific accelerators. Eventually, the processed digital signals are con-

sumed by local mobile devices or remote clouds. In this section, we focus on one of

the essential components in this pipeline, the image sensor.

2.1.2 Architecture of Computational Image Sensor

Although the designs of image sensors are continuously evolving in the literature, the

fundamental principles of image sensors remain the same. To understand the funda-

mental architectural design of a computational image sensor (CIS), this section uses a

2D CIS design as an example. In principle, a CIS needs to fulfill two key requirements,

image capturing and image processing. Fig. 2.2 shows a 2D CIS design consisting of

a 2D pixel array that converts photons to analog signals, a 1D array of ADCs that con-
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Fig. 2.2: An example of a 2D image sensor, which consists of a pixel array, a column

ADC, and an ISP. Here, we highlight two different pixel designs, 3T-APS and 4T-APS.

verts the analog signals to digital values, and an ISP for image pre-processing, all in

one single chip. This section focuses solely on the image-capturing aspect of CIS: pixel

array and ADC. More details of ISP can be found in reference (Ramanath et al., 2005).

An example of a 2D pixel array is shown in Fig. 2.2. Each pixel array consists of a

2D array of pixels, along with some control circuitry and readout circuitry. Each pixel

consists of a photodiode and some transistors to amplify, control, and transfer signals.

Further details regarding these components are given in the following paragraphs. After

being processed by these components, signals are read out by the readout circuitry in a

row-by-row fashion. The order of readout is controlled by the vertical control circuitry.

Only one row can be accessed at a time. The horizontal readout circuitry reads a row of

pixel signals in parallel and performs some analog processing before sending the signals

to the column ADC. The column ADC then converts a row of analog signals into digital

signals (also in a parallel fashion) and outputs them to some digital registers or buffers

for subsequent digital processing. The following paragraphs explain the functionality

of each component inside the pixel in depth.

Photodiode The main functionality of a pixel is to sense light and convert its
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intensity into a measurable form, namely an analog signal. During pixel capturing,

lights initially hit the photodiode (PD), which converts photons to electrons via the

quantum effect,

E(L) = PQE × PPD, where PQE ∼ N(µ = GQE, σ = σQE)(2.1)

and PPD ∼ Poisson(µ = L̄, σ =
√

L̄)

where PQE is the quantum efficiency coefficient, which follows a normal dis-

tribution. GQE is the expectation (the ideal quantum efficiency of the pixel), and

σQE is the standard deviation across pixels. The actual number of photons that

can hit the photodiode (PPD) can be modeled as a Poisson distribution, denoted by

Poisson(µ = L̄, σ =
√
L̄), where L̄ is the average number of electrons that hit the

photodiode. The expectation of this Poisson distribution is L̄ and the standard devia-

tion of it is
√
L̄). Such deviation from the expected value due to the uncertainty of the

incident photons is known as shot noise. The converted electrons are then accumulated

in the pixel well inside PD (Fig. 2.2).

The common pixel design includes 3T active pixel sensor (3T-APS) and 4T-APS in

modern image sensors. Here, “T” stands for transistors, and the number in front of “T”

stands for the number of transistors inside each pixel. Fig. 2.2 shows these two pixel

designs. The operation procedures of these two pixels are described as follows.

3T-APS At the beginning of the 3T-APS exposure period, the reset transistor (RS)

is turned on so that photodiode (PD) is reset to a reset voltage (VRST ) corresponding

to zero pixel value. Next, the RS is switched off and PD starts to accumulate electrons

during the exposure period. The accumulated electrons are stored in the PD junction

capacitor, also known as the pixel well. As the electrons are accumulated in the PD

junction capacitor, the potential of PD decreases. The difference between the reset

voltage (VRST ) and decreased potential value (VPD) eventually corresponds to the out-

put pixel value. After pixel exposure, the selection transistor (SEL) is switched on to

output the pixel potential (VPD) for subsequent processing. During this readout pe-
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riod, the source follower (SF) amplifies the signal and suppresses subsequent noises to

achieve a better SNR. After VPD is read out, SEL is then switched off.

4T-APS One significant issue with 3T-APS is the presence of kBTC noise, which

is generated from the voltage fluctuation across the PD junction capacitor. This voltage

fluctuation causes the connected RS transistor to generate heat which introduces noises.

Therefore, the kBTC noise from the RS transistor is known as reset noise. To address

reset noise, 4T-APS introduces additional elements inside the pixel: one transfer gate

(TG) and an additional capacitor (FD). During the sensing process of 4T-APS, RS first

resets the FD potential to Vdd. SEL is then switched on to output the reset potential

(VRS) along with reset noise. Next, SEL is switched off and 4T-APS starts its exposure.

During its exposure, PD starts to accumulate photons. After exposure, TG is switched

on to transfer electrons from PD to FD. Then, TG is switched off and SEL is switched

on again to output the actually potential VPD. Different from 3T-APS, 4T-APS outputs

two voltage values in one exposure: reset voltage, VRS , and the actual potential, VPD.

By subtracting VRS from VPD, reset noise can be effectively suppressed. To process two

output signals in one exposure, a technique called correlated double sampling (CDS)

which can perform two-value subtraction is used and will be introduced in Sec. 2.1.3.

Other noises In addition to shot noise and reset noise, the signal-to-noise ratio

(SNR) of pixels is also affected by two other noises: dark current noise and read noises

from varying sources. Dark current noise is the result of randomly generated electrons

during the pixel exposure. Dark current noise increases along with sensor exposure

time and sensor operation temperature. Although dark current noise is often low (less

than the order of 10 electrons per second) at room temperature, dark current noise

can become significant due to long exposure or low light conditions. Read noise is

generated by reading out from components, such as FD, SF, etc. It can be modeled as a

zero-mean normal distribution, N(µ = 0, σ = σFD/SF ), where σFD/SF is the standard

deviation of FD/SF noise.
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2.1.3 CIS Readout Circuitry

This section introduces the readout circuitry around the pixel array. Before being con-

verted into digital values by ADC, pixel signals need to go through several analog

components. Using 4T-APS in Fig. 2.2 as an example, the output signal from a pixel

needs to go through column amplification, CDS, and ADC. These three components

are introduced in the following paragraphs.

Column Amplification The main functionality of the column amplifier is to am-

plify signals. Amplifying signals instead of directly processing signals can effectively

suppress the noises introduced from subsequent stages, namely, CDS and ADC. Al-

though the column amplifier suppresses noises in subsequent stages, the column ampli-

fier itself also introduces some noises. There are two noises introduced by the column

amplifier: read noise and fixed pattern noise due to spatial non-uniformity. Mathemati-

cally, these two noises can be modeled as:

Vout = Gcol × Vin +Ncol, where Gcol ∼ N(µ = Gcol, σ = σcol)(2.2)

and Ncol ∼ N(µ = 0, σ = σcol read)

where Gcol is column amplifier gain and modeled as a normal distribution, where

Gcol is the expectation of column amplifier gain, and σcol is the standard deviation. Vin

is the input signal and Ncol is the read noise from the column amplifier and the read

noise follows a zero-mean normal distribution, N(µ = 0, σ = σcol read).

Correlated Double Sampling (CDS) As mentioned in Sec. 2.1.2, CDS can effec-

tively remove the reset noise. Although there are a few different designs for CDS, the

fundamental mechanism of CDS is the same. The way that CDS suppresses reset noise

is to first take two voltage outputs from the pixel array, one is the reset voltage (VRST )

and the other is the potential voltage (VPD). CDS then calculates the difference between

these two values. Because both measurements are affected by reset noise, CDS can ef-
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Fig. 2.3: An Example of 3-bit ADC quantization.

fectively suppress the reset noise. Although CDS itself also introduces some noises,

CDS noise is quite small and can be ignored during the noise modeling.

Analog-to-Digital Converter (ADC) ADC is the interface between the continu-

ous analog signal captured by pixel and the discrete digital signal consumed by digital

processors. Various ADC designs exist in the literature, such as single-slope ADC,

dual-slope ADC, successive-approximation ADC, sigma-delta ADC, etc. Each has its

own performance-precision trade-off. For instance, successive-approximation ADC has

a good balance between performance-precision and is one of the commonly used ADCs

inside image sensors, while sigma-delta ADC can achieve much higher precision and is

typically used for scientific measurements. (Jose and Del Rio, 2013; Tang et al., 2022)

Rather than discussing the different types of ADCs, this dissertation focuses on the

mechanism of ADC and discusses how to model an ADC inside the image sensor.

One of the key differences between analog signals and digital signals is that analog

signals are continuous while digital signals are discrete. In order to use one digital value

to represent a range of analog values, ADC design has to follow a quantization function.
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Fig. 2.4: Overall noise model. Here, we summarize all potential noise sources starting

from the photon collection to the ADC readout.

Fig. 2.3 shows an example of such a 3-bit ADC quantization function compared against

an ideal linear mapping. In Fig. 2.3, the input voltage is evenly split into 8 intervals,

ranging from 0 to 2V. Any input values that fall into one particular interval, e.g. [0,

0.25), will be mapped to one single digital value, 000. As the input value is increased

by 0.25V, the output value is increased by one least significant bit (LSB), which is 001,

in this case. In this example, the output digital signal of the ADC is proportional to the

input signal, so it is also called linear ADC. Other non-linear ADCs are proposed for

varying purposes (Jonsson, 2010). However, since a range of input signals is mapped to

a single output signal, inherently, ADC introduces quantization noise. The quantization

noise is LSB2/12, where LSB is:

(2.3) LSB =
Vmax

2#bit − 1

where #bit, in this case, is 3, and Vmax is the full scale input voltage 2V.

In reality, ADC usually deviates from the ideal ADC conversion function. There

are linear and non-linear errors from actual ADC. Many ADC noises can be calibrated

during the manufacture. For those noises that cannot be calibrated, a zero-mean normal

distribution is used to model the overall ADC noise, PADC ∼ N(µ = 0, σ = σADC).

2.1.4 Summary

Fig. 2.4 summarizes the key stages in the image sensing pipeline with their associ-

ated noises. Starting with the photons incident the photodiode (PD), the noises include
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(a) Traditional 2D imaging CIS with pho-

todiode array and ADCs.

(b) Computational CIS with analog pro-

cessing capabilities.

(c) Computational CIS with digital acceler-

ator (ISP here).

(d) Stacked computational CIS with digital

accelerators in a separate layer.

Fig. 2.5: CIS architecture evolution. CIS is moving away from a purely imaging device

(a) to integrate computation capabilities (b)(c), sometimes in a 3D stacking fashion (d).

shot noise (NShot), quantum efficiency non-uniformity (GQE), and dark current noise

(NDC). Then, the floating diffusion (FD) converts electrons into voltages, and the as-

sociated noises with FD are non-uniformity of conversion gain (GCG) and reset noise

(NkTC). Next, the source follower (SF) amplifies the signal with its own non-uniformity

(GSF ) and its read noise (NSF ). During readout, the column amplifier amplifies signals

again. The column amplifier also has its own gain non-uniformity (GCA) and read noise

(NCA). Finally, the analog-to-digital converter (ADC) converts analog signals to digital

signals with its own quantization error and ADC noise (NADC).

2.2 Design Trend of CMOS Image Sensor

Throughout the decades, image sensor design has undergone several major break-

throughs. In the early 1960s, the first concept of CMOS image has been proposed (Mor-
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tional CIS designs from surveying all ISSCC and IEDM papers published between

Year 2000 and 2022.

rison, 1963; Horton et al., 1964). However, it was not until 1990 that CMOS im-

age sensors were widely adopted by major sensor manufacturers due to the advance-

ment of CMOS technology and started to replace the conventional charge-coupled de-

vice (CCD) technology. This major technology shift made image sensors more cost-

effective and energy-efficient. In the late 1980s, the concept of the computational im-

age sensor (CIS) was introduced (Bernard et al., 1993; Koch and Li, 1994). Image

sensors were no longer passive-capturing devices and were given some basic process-

ing capabilities to improve image quality. With the continuous development of silicon

technology and 3D stacking, there is a growing trend to integrate more computational

capabilities inside image sensors. To date, there is a variety of sensor designs in the

literature. The following paragraphs introduce a few typical examples of image sensor

designs.

Fundamentally, a CIS consists of two basic components as illustrated in Fig. 2.5a: a

light-sensitive photodiode array that converts photons to charges and a read-out circuit

that converts charges to digital values (i.e., raw pixels) through the analog-to-digital

converters (ADC). Traditionally, raw pixels are transferred to the host, e.g., a Systems-

on-a-Chip (SoC) on a smartphone, through the MIPI CSI-2 interface (Group, 2021).

The Image Signal Processor (ISP) in the SoC removes sensing artifacts (e.g., denoising)
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and prepares pixels for computer vision tasks and/or for visual display.

CIS Design Trend. A clear trend in CIS design is to move into the sensor com-

putations that are traditionally carried out outside the sensor, which gives rise to the

notion of Computational CIS. Fig. 2.6 shows the percentage of computational CIS pa-

pers in ISSCC and IEDM from Year 2000 and Year 2022 with respect to all the CIS

papers during the same time range. Increasingly more CIS designs integrate compute

capabilities.

The computations inside a CIS could take place in both the analog and the digital

domain. Fig. 2.5b illustrates one example where analog computing is integrated into a

CIS chip. Analog operations usually implement primitives for feature extraction (Bong

et al., 2017b,a), object detection (Young et al., 2019), and DNN inference (Hsu et al.,

2020; Xu et al., 2021). Fig. 2.5c illustrates another example that integrates digital

processing, such as ISP (Murakami et al., 2022), image filtering (Kim et al., 2005) and

DNN (Bong et al., 2017a).

As the processing capabilities become more complex, CIS design has embraced

3D stacking technologies, as is evident by the increasing number of stacked CIS in

Fig. 2.6. Fig. 2.5d illustrates a typical stacked design, where the processing logic is

separated from, and stacked with, the pixel array layer. The different layers communi-

cate through hybrid bond or micro Through-Silicon Via (µTSV) (Tsugawa et al., 2017;

Liu et al., 2022). The processing layer typically integrates digital processors; such as

ISP (Kwon et al., 2020), image processing (Kumagai et al., 2018; Hirata et al., 2021),

and DNN accelerator (LiKamWa et al., 2016; Eki et al., 2021). Three-layer stacked de-

signs have been proposed. Sony IMX 400 (Haruta et al., 2017) integrates a pixel array

layer, a DRAM layer, and a digital layer with an ISP. Meta conceptualizes a three-layer

design (Liu et al., 2022) with a pixel array layer, a per-pixel ADC layer, and a digital

processing layer that integrates a DNN accelerator.

Recent trends also show that the research focus has shifted from conventional 2D

image sensors toward more complex 3D CIS designs. Fig. 2.6 shows the percentage
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of different CIS designs from surveying all papers from ISSCC and IEDM between

2000 and 2022. In early 2000, the major research focus is still conventional 2D CMOS

sensors. After 2010, more research groups start to look into CIS and put more focus on

integrating 3D stacking technology in sensor designs.

It is no surprise that computational CISs emerge when energy efficiency is critical.

From an architectural perspective, computational CIS offers two main energy benefits.

First, moving computation inside the sensor allows the pixel data to be consumed

closer to where they are generated. Doing so reduces the data transmission energy,

which could dominate the overall energy consumption. Specifically, data communica-

tion inside a CIS using a µTSV consumes about 1 pJ/B, whereas the energy cost of

transmitting one Byte out of the CIS through the MIPI CSI-2 interface consumes about

100 pJ of energy (Liu et al., 2022). As an example, if a CIS is capable of executing

an object detection DNN directly, the data volume that has to be transmitted out of the

sensor is simply a few Bytes, as opposed to, say, 6 MB, for a 1080p image.

Second, computational CIS also provides a natural platform for analog accelera-

tion, since the pixel data originate from the analog domain to begin with, obviating the

need for energy-intensive digital-to-analog converters that often dominate the hardware

overheads in conventional analog accelerators. Compared to digital processing, ana-

log processing minimizes energy-intensive data conversion (Cao et al., 2021; Ma et al.,

2022) and can reduce both computation and memory energy consumption.

2.3 Trade-offs in Image-based Vision Algorithms

The demand for intelligent applications running on a diverse range of mobile and em-

bedded platforms, such as micro-robots, augmented reality headsets, and smart-city

sensor nodes, shows no sign of slowing down. Image, being the primary modality in

vision tasks, has played a crucial role in many of these intelligent applications.
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stereo vision.

Over the years, image-based vision algorithms have evolved rapidly. Prior to 2015,

the majority of vision algorithms still reply on “hand-crafted” feature descriptors such

as SIFT (Ng and Henikoff, 2003), HOG (Dalal and Triggs, 2005), etc. However, as

deep learning has completely taken off in 2015 (LeCun et al., 2015), learned feature

descriptors have been proposed to replace “hand-crafted” features with much higher ac-

curacy and robustness. Nevertheless, both classic algorithms and deep neural network

(DNN) algorithms presented to date broadly define a frontier in the accuracy-efficiency

design space. Fig. 2.7 present such an accuracy-efficiency tradeoff in one of the key

vision tasks, stereo depth estimation. Fig. 2.7 compares the frame rate and accuracy

for four well-known classic stereo algorithms that use “hand-crafted” features, includ-

ing GCSF (Cech et al., 2011), SGBN (Hirschmuller, 2005), HH (Hirschmuller, 2005),

and ELAS (Geiger et al., 2010), as well as four state-of-the-art DNNs solutions (Mayer

et al., 2016; Kendall et al., 2017; Chang and Chen, 2018; Smolyanskiy et al., 2018).

The DNN data is characterized on both a Pascal mobile GPU (Nvidia, 2017c) (“-GPU”

suffix), as well as on a DNN accelerator (Samajdar et al., 2018) (“-Acc” suffix). In us-

ing low-dimensional “hand-crafted” features, classic algorithms lead to high error rates

(x-axis), but are computationally efficient, mostly operating at close to real-time (e.g.,

30 FPS, y-axis). In contrast, DNNs models achieve very low error rates, but require 2–5

orders of magnitude more arithmetic operations, resulting in much lower frame rates.
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The accuracy-performance trade-offs observed in stereo depth estimation are not

unique, as similar trade-offs can be found in other computer vision tasks, such as object

detection (Zhu et al., 2018b). Such accuracy-performance trade-offs impose interesting

research questions when it comes to designing and integrating vision system stacks.

How to balance accuracy and performance for a particular computing platform will

become an ongoing research question to explore. It also requires collaborative work

from both the computer vision community and the computer architecture community.
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3 CamJ: In-Sensor Computing

Exploration Framework

Studies show that the energy consumption of data transmission per byte is often orders

of magnitude higher than that of computation. (Liu et al., 2022) Significant energy con-

sumption on data communication poses an important challenge to battery life. Mean-

while, with the continuous development of CMOS technology, today’s image sensor is

no longer a passive capturing device. Sensors nowadays offer it-situ processing capa-

bilities, ranging from light-weighted signal processing (Bong et al., 2017b,a) to mod-

erate DNN inference (Hsu et al., 2020; Xu et al., 2021). This technology trend poses a

question to mobile architects and system designers: how to leverage this limited com-

putation capacity inside sensors to improve the overall system energy efficiency? The

seemingly obvious solution is to use the in-sensor compute capability to preprocess the

captured images so that less data need to be transmitted back to the SoC. While the idea

is simple, there are many challenges to making in-sensor computing a reality.

To address these challenges, this chapter proposes an in-sensor design exploration

framework called CAMJ which allows users to freely explore different CIS design

choices. Specifically, this chapter begins by addressing the key challenges associated

with in-sensor computing in Sec. 3.1. Sec. 3.2 introduces CAMJ framework. Sec. 3.3

discusses how CAMJ models the performance of different image sensors and provides

detailed validation in Sec. 3.4. Finally, Sec. 3.5 discussed the related work.
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Fig. 3.1: CIS process node always lags behind conventional CMOS process node. This

is because CIS node scaling tracks the pixel size scaling, which does not shrink aggres-

sively due to the fundamental need for maintaining photon sensitivity.

3.1 Challenges in In-Sensor Computing

Moving computation inside a CIS, however, is not without challenges. Most impor-

tantly, processing inside the sensor is far less efficient than that outside the sensor,

fundamentally because the CIS process node significantly lags behind that of the con-

ventional CMOS. Fig. 3.1 illustrates this difference, where square markers show the

process nodes used in CIS designs from all ISSCC papers appearing during 2000 to

2022, which include leading industry CIS designs at different times. We overlay a trend

line regressed from these CIS designs to better illustrate the scaling trend. As a compar-

ison, the blue line at the bottom represents the conventional CMOS technology node

scaling laid out by International Roadmap for Devices and Systems (IRDS) (IRDS,

2022).

Around the year 2000, the CIS process node started lagging behind that of the con-

ventional CMOS node, and the gap is increasing. CIS design today commonly use

65nm and older process nodes. This gap is not an artifact of the CIS designs we pick;

it is fundamental: there is simply no need to aggressively scale down the process node

because the pixel size does not shrink much. The triangles in Fig. 3.1 represent the

pixel sizes of all the CIS designs we surveyed. The slope of CIS process node scaling
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almost follows exactly that of the pixel size scaling. The reason that pixel size does

not shrink is to ensure light sensitivity: a small pixel reduces the number of photons

it can collect, which directly reduces the dynamic range and the Signal-to-Noise ratio

(SNR) (Bigas et al., 2006).

Inefficient in-sensor processing can be mitigated through 3D stacking technolo-

gies (Xie and Zhao, 2015), which allows for heterogeneous integration: the pixel layer

and the computing layer(s) can use their respective, optimal process node. In this way,

while the pixel layer still (necessarily) has to use older process nodes, the comput-

ing logic could use advanced CMOS nodes similar to those used outside the CIS,

minimizing the energy overhead of computing inside CIS. Stacking, however, could

increase power density especially when future CIS integrate more processing capabili-

ties. Therefore, harnessing the power of (stacked) CIS requires exploring a large design

space and addressing key challenges, some of which we list below.

• Whether and what to compute in vs. off CIS?

• What to compute in the analog vs. digital domains?

• How to architect each layer in stacked CIS to achieve energy reduction without

increasing power density?

3.2 CAMJ Framework

No framework to date allows designers to explore the complicated design space of

computational CIS at a system level. Our CAMJ framework is designed to fill this void

(Sec. 3.2.1). We first outline the design principles of CAMJ, followed by an overview

of the CAMJ design internals (Sec. 3.2.2). We use a concrete example to demonstrate

from a designer perspective how CAMJ is used (Sec. 3.2.3).
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3.2.1 When is CAMJ Used in the Design Cycle?

CAMJ is meant to be used for system-level exploration after each component design is

sketched out; an analogy would be Systems-on-a-Chip (SoC) vs. accelerator design.

Before system-level exploration, a team usually has at hand a range of component-level

designs, which could be licensed Intellectual Property (IP) blocks, reference designs

from the literature, or earlier designs from other teams in the organization (e.g., using a

synthesis flow or High-Level Synthesis tools); in all cases the component-level energy

behavior is known or can be modeled using external tools like Aladdin (Shao et al.,

2014) and OpenRAM (Guthaus et al., 2016).

CAMJ helps designers make design decisions when assembling the individual (dig-

ital and analog) components into an optimal system. Ideally, a designer uses CAMJ

to estimate the system energy given initial designs of individual components; using

the estimation, a designer can iteratively refine the components/system design. For in-

stance, CAMJ can identify energy bottlenecks and guide the re-design of corresponding

components. Orthogonally, a designer can use CAMJ to explore optimal mapping and

partitioning of the algorithms between analog vs. digital domains or in vs. off CIS to

minimize overall system energy under performance targets.

CAMJ is not a synthesis tool; it does not generate (nor estimate the energy of) an

accelerator. Rather, CAMJ can be used in conjunction with HLS: one could use HLS

to first generate an accelerator and then use CAMJ to explore, in the bigger system,

how/whether that accelerator would fit in a computational CIS to maximize end-to-end

application gains.

3.2.2 Design Principles and Overview

As with any energy modeling tool (Brooks et al., 2000; Leng et al., 2013; Kandiah

et al., 2021), the total CIS energy is sum of the product of 1) the access count to each

hardware unit and 2) the per-access energy consumption. Therefore, the central ob-
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def camj_mapping():
  mapping = {
    “Input” : “PixelArray”,
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Fig. 3.2: Overview of the CAMJ framework, which provides a component-level energy

estimation under a target frame rate (FPS). Users provide an algorithm and hardware

description and the mapping between the two. A , B , and C denote the per-access

energy of digital computation, digital memory, and analog units, respectively; the first

two are obtained from external tools while the last one is provided within CAMJ. See

Tbl. 3.1 for a list of digital compute/memory and analog components supported in

CAMJ. CAMJ then estimates the access count to each hardware component to obtain

the overall energy estimation.

jective of CAMJ is to develop a modeling methodology that accurately estimates those

two statistics using a programming interface that, critically, only requires user inputs

for information that cannot be automatically inferred. Fig. 3.2 shows an overview of the

CAMJ framework. Sec. 3.2.3 and Sec. 3.3 discuss the programming interface and mod-

eling details, respectively. Here, we provide an overview of the interface and modeling

methodology.

Interface. CAMJ observes that CIS deal with stencil-based image processing,

which has regular computation and memory access patterns (i.e., little to no control

flow) that are statically mapped to hardware units. The access count statistics can, thus,

be inferred with only the high-level algorithm description and hardware configuration

without knowing the implementation details. Therefore, CAMJ exposes a declarative

interface, in which an algorithm is described by a DAG and the input/output/stencil

dimensions at each node and the hardware is abstracted as a set of basic units, each
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performing a specific sensing, computation, or memory operation.

CAMJ’s interface also decouples the description of an algorithm, the underlying

hardware, and the mapping between the two. A decoupled interface facilitates an iter-

ative system design process, during which algorithm, hardware, and algorithm to hard-

ware mapping can change independently. For instance, one can evaluate algorithmic

changes by re-writing the algorithm description without touching the hardware design,

or explore different algorithm-to-hardware mappings (e.g., split between analog vs.

digital and between in vs. off sensor) by describing a new mapping.

Internal Modeling. CAMJ judiciously uses different methodologies to obtain

the per access energy in the digital vs. analog domains. For digital structures, CAMJ

directly asks users to provide the per-cycle energy of computation PEs ( A ) and the

per-access energy of memory units ( B ). These statistics are usually obtained by an

ASIC synthesis flow or from commonly used tools (e.g., CACTI (Balasubramonian

et al., 2017) and OpenRAM (Guthaus et al., 2016)), and are routinely used in today’s

digital accelerator simulators for energy estimation (Gao et al., 2017; Akhlaghi et al.,

2018; Kodukula et al., 2021b).

One might be surprised to find that CAMJ directly asks for the per-cycle/access

energy of the digital structures. This is because of the design philosophy of CAMJ

(Sec. 3.2.1): it is not used to generate digital accelerators; rather, it helps assess how

an accelerator fits in the entire computational CIS system. For that reason, CAMJ ex-

pects designers to have a preliminary design of the digital accelerators (whether it’s

a manual design, HLS generated, or a licensed IP), in which case one will have the

per-cycle/access energy statistics.

Unlike digital structures, few energy modeling tool exists for analog structures,

whose energy consumption ( C ) depend on many low-level circuit details (e.g., load

capacitance, gain, bias current) that are cumbersome and perhaps unreasonable to ask

system-level designers for. Our design decision is to expose a low-level interface to ac-

cept these parameters from expert users, but also provide default energy models based
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    pixel_array.add_component(
      pixel, [16, 16]
    )
    adc_array.add_component(
      adc, [1, 16]
    )

    line_buf = LineBuffer(
      name = "LineBuffer",
      layer = SENSOR_LAYER,
      size = [3, 16], # 3x16 pixels
      write_energy_per_word = 0.3, # pJ
      read_energy_per_word = 0.3, # pJ
      pixels_per_write_word = 1,
      pixels_per_read_word = 1
    )
    edge_unit = ComputeUnit(
      name = “EdgeUnit",
      layer = SENSOR_LAYER,
      input_pixel_per_cycle = [1, 3, 1],
      output_pixel_per_cycle = [1, 1, 1], 
      energy_per_cycle = 3.0,  # pJ
      num_stages = 2 # 2-stage pipeline
    )

    pixel_array.set_output(adc_array)
    adc_array.set_output(line_buf)
    edge_unit.set_input(line_buf)
    edge_unit.set_sink()

def camj_sw_config():
  input_data = PixelInput(
    (32, 32, 1), 
    name = "Input"
  )

  bin_stage = ProcessStage(
    name = “Binning”,
    input_size = [32, 32, 1],
    output_size = [16, 16, 1],
    kernel = [2, 2, 1],
    stride = [2, 2, 1],
  )

  edge_stage = ProcessStage(
    name = “EdgeDetection”,
    input_size = [16, 16, 1],
    output_size = [16, 16, 1],
    kernel = [3, 3, 1]
    stride = [1, 1, 1]
  )

  bin_stage.set_input_stage(
    input_data
  )
  edge_stage.set_input_stage(
    bin_stage
  )

  sw_stages.append(input_data)
  sw_stages.append(bin_stage)
  sw_stages.append(edge_stage)

def camj_hw_config():
  pixel_array = Array(
    name = “PixelArray”,
    layer = SENSOR_LAYER,
    num_input = [1, 32],
    num_output = [1, 16],
  )
  pixel = Component(
    name = “BinningPixel”,
    input_domain = “optical”,
    output_domain = “voltage”,
    # four 4T-APS
    impl = (APS(4, …), 4), 
    num_input = [2, 2, 1],
    num_output = [1, 1, 1]
  )
  adc_array = Array(
    name = “ADCArray”,
    layer = SENSOR_LAYER,
    num_input=[1, 16],
    num_output=[1, 16],
  )
  adc = Component(
    Name = “ADC”,
    input_domain = “voltage”,
    output_domain = “digit”,
    # 10-bit ADC
    impl = (ADC(10, …), 1),
    num_input = [1, 1],
    num_output = [1, 1]
  )

Binned Pixel to ADC

def camj_mapping():
  mapping = {
    “Input” : “PixelArray”,
    “Binning” : “PixelArray”,
    “EdgeDetection” : “EdgeUnit”,
  } 

Line Buffer

…

Fig. 3.3: An example of defining a simple CIS using the CAMJ programming interface

in Python. The hardware architecture of the simulated CIS is illustrated at the top.

on classic implementations of analog components and delay analyses of these compo-

nents (Sec. 3.3.1).

Finally, CAMJ performs a series of pre-simulation design checks to ensure that the

algorithm and hardware combination 1) is functionally viable (e.g., ADCs must ex-

ist between the analog and digital domain), 2) does not have pipeline stalls (to avoid

accumulating long frame latency), and 3) has well-formed dependencies in the algo-

rithm DAG. We provide feedback upon check failures and a detailed energy breakdown,

which helps designers iteratively refine the algorithm and/or hardware.
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3.2.3 Programming Interface

We use a running example in Fig. 3.3 to introduce the programming interface and illus-

trate the main design decisions.

An Example. The Python code in Fig. 3.3 shows a concrete example to use the

programming interface of CAMJ. In this conceptual CIS design with a 32 × 32 pixel

array, every 2 × 2 pixel tile is first averaged (i.e., “binned”) to produce a 16 × 16 im-

age. The sensor then performs a digital edge detection on the image before sending the

edge data through the MIPI CSI interface. The camj hw config function and the

camj sw config function describe the hardware components and the algorithm, re-

spectively. The camj mapping maps each algorithm stage to a hardware component.

We explain each part next.

Algorithm Description. The code in camj sw config describes the DAG of

the entire processing pipeline, starting from the raw pixels generated by the pixel array

(PixelInput), which go through two processing stages: bin stage for pixel bin-

ning and edge stage for edge detection. The set input stage method connects

the stages together to form a DAG.

Notice how the algorithm description does not require the actual arithmetic details;

we observe that image processing algorithms can be abstracted as stencil operations that

operate on a local window of pixels at a time (Qadeer et al., 2013; Hegarty et al., 2014)

— convolution (or image filtering in conventional image processing parlance) being a

prime example. This observation holds in all the ISSCC/IEDM papers since Year 2000

we surveyed. Irregular computations complicate hardware design and increase energy,

defeating the purpose of in-CIS computing.

Therefore, users express only the input/output image dimensions (input size,

output size) along with the stencil window (kernel) and stride size (stride).

Given the regular computation and data access pattern of stencil operations, CAMJ

could accurately estimate the access counts to different hardware structures for energy
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Table 3.1: A list of hardware units supported in CAMJ. APS: Active Pixel Sensor; DPS:

Digital Pixel Sensor; PWM: Pulse Width Modulation; MAC: Multiply-Accumulate.

Analog

(A-COMPONENT)
Digital

Memory
Passive/Active,

Sample-and-Hold

FIFO, Line Buffer,

Double-Buffered SRAM

Compute

Pixel (APS, DPS, PWM),

ADC, MAC, Max, Scaling,

Add, log, Abs, Comparator

Systolic Array, Generic

Pipelined Accelerator

estimations. Nonetheless, CAMJ does accept as input a memory trace offline collected

for an irregular algorithm, which can then be integrated with external tools such as

DRAMPower (Chandrasekar et al., 2012) to estimate the energy consumption for ir-

regular algorithms.

Hardware Description. camj hw config describes the hardware architecture,

which we illustrate at the top of Fig. 3.3. The hardware description consists of two

components: analog processing units and digital processing units.

1 Analog Units. CIS hardware necessarily starts from analog units, which, at a high

level, are described as a set of Analog Functional Arrays (AFA), which is in turn is com-

posed of a set of Analog Functional Components (A-COMPONENTs). The most impor-

tant AFA in a CIS is the pixel array (pixel array), in which each A-COMPONENT

is a pixel, which is added to the pixel array through the add component method. In

the example of Fig. 3.3, the pixel array is followed by another AFA, i.e., the ADC array

(adc array), where each A-COMPONENT is an ADC.

From users’ perspective, each A-COMPONENT performs a particular kind of (arith-

metic) operation. In addition to a pixel or an ADC, CAMJ provides other common

A-COMPONENTs used in CIS such as MAC or logarithmic operations. The complete
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list of analog A-COMPONENTs is in Tbl. 3.1. The energy consumption of each A-

COMPONENT, which is dictated by its circuit-level implementation, is abstracted away

from the users by the impl method. Sec. 3.3.2 will later describe how we model the

energy of each A-COMPONENT by mapping it to its analog circuit implementation.

What users do have to provide, however, is the signal dimension (num input

and num output) and signal domain (input domain and output domain) of

an AFA’s input and output data. These parameters allow CAMJ to check whether the

simulated CIS is functionally viable. Specifically, the input domain of a consumer

unit and the output domain of a producer unit must match. If, for instance, the pro-

ducer is in the charge domain and the consumer is in the voltage domain, CAMJ will

ask designers to insert a charge-to-voltage conversion component1, which has energy

implications. Similarly, if the num input of a consumer unit and the num output

of a producer unit do not match, the hardware must have an analog buffer in-between,

which, again, could have energy implications.

2 Digital Units. The digital part of the hardware is described by specifying a set

of compute units that communicate through memory structures. In this example, the

compute unit is the edge detection accelerator (instantiated through ComputeUnit),

which reads from the line buffer (LineBuffer), a pre-defined memory structure, that

stores data from the pixel array, an analog unit as described before.

Column 2 of Tbl. 3.1 lists the memory structures and compute units available in

CAMJ. We support three memory structures commonly found in image/vision pro-

cessing: FIFO (FIFO), line buffer (Hegarty et al., 2014; Whatmough et al., 2019b)

(LineBuffer), and double-buffered SRAM (DoubleBuffer). The compute units

are abstracted as pipelined accelerators through the ComputeUnit interface. We also

provide a SystolicArray class to describe a systolic array due to its importance in

executing DNNs.

1unless the output of the consumer is in the voltage domain, where the inherent capacitor of the

consumer naturally acts as an analog buffer.
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With the generic pipelined accelerator interface (ComputeUnit), users can

model a wide range of (image processing) accelerators. To describe a pipelined

accelerator, CamJ requires three main parameters: the shape of pixels read

per cycle (input pixel per cycle), the shape of pixels generated per cycle

(output pixel per cycle), and the pipeline depth (num stages). Using these

statistics, CAMJ performs cycle-level simulation for two purposes. First, CAMJ can

check whether the accelerator will stall the CIS pipeline and, if so, asks for a re-design

of the accelerator. Second, CAMJ can estimate the total latency of the digital domain,

which is critical for analog energy estimation. Stall checking and latency estimation

are critical for analog energy estimation as we will discuss in Sec. 3.3.1.

Mapping. The camj mapping function maps each algorithm stage to a hard-

ware unit. The code is self-evident. Users can simply remap the algorithm to hard-

ware to explore a different system design. The decoupling of algorithm and hardware

description through the mapping function also enables easy expression of hardware

reuse—by simply mapping different algorithm nodes to a hardware component.

3.3 Energy Modeling Methodology

The energy consumption per frame of a CIS sensor is the sum of that of the analog,

digital, and data communication:

Eframe = Eframe
a + Eframe

d + Eframe
c(3.1)

Before we describe how the analog component Eframe
a (Sec. 3.3.2), digital compo-

nent Eframe
d (Sec. 3.3.3), and communication component Eframe

c (Sec. 3.3.4) are mod-

eled separately, we first discuss a prerequisite of energy modeling: delay estimation

(Sec. 3.3.1).
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3.3.1 Delay Estimation

The energy consumption, both analog and digital, is correlated with the circuit speed.

For example, in the analog domain an operational amplifier (OpAmp) with higher re-

sponse speed requires larger bias current, which increase the energy consumption (as-

suming the OpAmp is active over a fixed duration, e.g., when used for an analog frame

buffer). The latency of digital units is estimated through cycle-level simulation as de-

scribed in the previous section. The delay of an analog unit, in contrast, depends on

many parameters specific to a fully-designed circuit. We find it cumbersome and error-

prone to ask users for input: users often find themselves tuning low-level parameters

only to end up with a design that misses the target frame rate. Instead, CAMJ’s insight

is that each analog unit’s delay can be automatically inferred from the prescribed frame

rate.

Specifically, the fundamental observation that CAMJ relies on is that the CIS

pipeline is designed to never stall. This is because the input data to the pipeline is

generated at a constant rate as the pixel array is exposed to light at the constant speed.

If the pipeline ever stalls in a later stage, the frame latency would gradually accumu-

late, leading to excessively long responsive latency or frame drops. Therefore, CIS

designers ensure that the hardware pipeline never stalls. In a fully-pipelined hardware,

each pipeline stage must have roughly the same delay; this is the basis of our delay

estimation.

Example. Fig. 3.4 shows the pipeline timing for the example in Fig. 3.3. The

frame time TFR is 1/FPS, where FPS is the target frame rate. In the diagram, the frame

time is the delay between when the pixels of the current frame can be read-out to when

the computation of the current frame finishes. The “Binned Pixel Readout” and “ADC”

are the two analog units, who share the same delay TA (i.e., balanced pipeline) to be

estimated. The “Edge Detection” is the digital unit, which starts once the second line

has been written to the line buffer.
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Legend
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Fig. 3.4: The (not-to-scale) pipeline diagram of the example in Fig. 3.3 when there is

no pipeline stall.

To estimate TA, we first simulate the digital domain to estimate the latency of the

entire digital domain (TD here). Given the frame time TFR, we can then estimate how

much time is left for the analog units. In this example, TA = TFR−TD

3
.

CAMJ will analyze the hardware description and, upon detecting potential stalls,

asks the user to re-design the hardware to avoid stall. Specifically, CAMJ checks to

avoid three scenarios: 1) pixel required is not generated by the producer yet, 2) the

memory in-between two stages is full, or 3) the number of access ports in the memory

structures is not enough.

3.3.2 Analog Energy Modeling

The analog energy per frame, Eframe
analog, is the sum of the energy consumption per access

of each A-COMPONENT weighted by the access count to that component. Refer to

Tbl. 3.1 for a list of A-COMPONENTs that CAMJ supports.

(3.2) Eframe
a =

∑
i

(Ecomponent[i]
a × Numcomponent[i]

access )
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Modeling A-COMPONENTs Access Count. The access count to a A-

COMPONENT is the number of times the A-COMPONENT is used per frame. Recall

from Sec. 3.2.3 that each A-COMPONENT is part of an Analog Functional Array (AFA).

CAMJ leverages the fundamental observation that stencil operations in image process-

ing have regular computation and memory access patterns and, thus, the access count

to each A-COMPONENT in the same AFA is the same.

As a result, the access count of a component i is simply the ratio between the total

number of operations mapped to the AFA j that contains the component (NumAFA[j]
ops )

and the number of components in that AFA (NumAFA[j]
component[i]):

(3.3) Numcomponent[i]
access =

NumAFA[j]
ops

NumAFA[j]
component[i]

The numerator is easily derived from the algorithm description of a stencil operation

(e.g., calculating the number of MAC operations in a convolution). The denominator is

the num component attribute of the AFA (see Fig. 3.3).

Modeling A-COMPONENTs Access Energy. Internally, each A-COMPONENT is

built from a set of analog cells, which we call A-CELLs. Modeling per-access energy of

an A-COMPONENT requires knowing its cell-level implementation. Expert users can

define new cell parameters and/or cell-level implementation of an A-COMPONENT.

Absent those, each A-COMPONENT has a default implementation, surveyed from clas-

sic and recent CIS designs (Yang et al., 2015; Young et al., 2019; Kaur et al., 2020;

Hsu et al., 2020; Park et al., 2021). For instance, a 4T-APS pixel A-COMPONENT

consists of a photodiode (PD) A-CELL, a floating diffusion node (FD) A-CELL, and a

source follower (SF) A-CELL; a multiplier implemented by switched-capacitor charge

re-distribution (Lee and Wong, 2017) consists of a capacitor array A-CELL and an

OpAmp A-CELL.

We now describe our energy modeling of A-COMPONENTs, but keep in mind that

these design details are abstracted away from typical users. Ecomponent
a is the weighted
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sum of the energy consumption of each constituting A-CELL in the component and the

access counts to the A-CELL:

(3.4) Ecomponent[i]
a =

∑
j

Ecell[j]
a × Numcell[j]

access

Despite large varieties of high-level analog circuits, the A-CELL used for analog

in-sensor computing can be categorized to three classes according to circuit character-

istics: dynamic A-CELL, static-biased A-CELL, and non-linear A-CELL. They each

consume energy in a different way.

1 Dynamic A-CELL. The energy of a dynamic circuit comes from the charging

and discharging of the total capacitance in the circuit:

(3.5) Ecell,d
a =

Nc∑
i

C[i]× VVS[i]
2

where Nc represents the total number of capacitance nodes in the dynamic circuit, and

C[i] and VVS[i] are the capacitance and the voltage swing at ith capacitance node, re-

spectively. Typical dynamic A-CELLs include capacitive digial-to-analog converter

(CDAC) and passive analog memory.

In Equ. 3.5, VVS is determined by the analog supply VDDA and the number of tran-

sistors placed between the analog supply and the ground. The nodal capacitance C is

determined by its thermal noise and the computation precision. To guarantee the accu-

racy of analog computing, the maximum thermal noise should be kept below 1
2
LSB of

the data resolution:

(3.6) σthermal =

√
kT

C
, 3σthermal <

1

2
LSB

where LSB = VVS/2
data resolution. Data resolution is algorithm dependent. For example,

if VVS = 1V and the required resolution is 8-bit, the thermal noise should be less than
1
3
1
2

1V
28-bit = 2.6mV, from which C is obtained.

2 Static-biased A-CELL. The energy of a static-biased circuit comes from the in-

tegration of the bias current over a specific time period under the analog supply VDDA:

(3.7) Ecell,s
a = VDDA × Ibias × tstatic
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where Ibias is the bias current and tstatic is the time during which the A-CELL is statically

biased.

We provide two ways to estimate Istatic based on circuit details. For A-CELLs where

Ibias directly drives the load capacitance (e.g. static-biased SF in a pixel), Ibias is deter-

mined by charging up the load within the given time:

(3.8) Ibias,1 =
Cload × VVS

tstatic

where Cload is the load capacitance. The energy is reduced to:

(3.9) Ecell,s
a = Cload × VVS × VDDA

For A-CELLs where Ibias does not directly drive the load capacitance (e.g. differ-

ential operational amplifier in analog memory or discrete-time integrator), Ibias can be

determined by the classic gm
Id

method (Jespers, 2010):

(3.10) Ibias,2 =
2π × Cload × GBW

gm/Id

where gm
Id

is a technology-insensitive factor ranging from 10 to 20 depending on the

inversion level of the transistors, and GBW is product between gain (G) and bandwidth

(BW).

To use Equ. 3.7 and Equ. 3.10, CAMJ must estimate BW and tstatic, both of which

depend on the A-CELL delay. Specifically, BW is the reciprocal of the A-CELL delay

and tstatic is:

(3.11) tstatic = TA −
K∑
i

tcell
i

where TA is the delay of the A-COMPONENT containing the A-CELL and is esti-

mated in Sec. 3.3.1; K is the number of cells before the current A-CELL on the A-

COMPONENT critical path, and tcell
i is the delay of an A-CELL. Absent timing condi-

tion from users, we evenly allocate the A-COMPONENT delay to each A-CELL, based
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on the fact that the analog signal uni-directionally flows through the A-COMPONENTs

we support so all A-CELLs are on the critical path.

3 Non-linear A-CELL. For those circuits with non-linear transfer functions, such

as ADCs and comparators (which are essentially 1-bit ADCs), they contain both

dynamic/static-biased circuit cells and digital logic so it is difficult to estimate the en-

ergy from analytical formulas. Instead, we use the ADC’s Walden Figure-of-Merit

(FoM) plot (Murmann, 2022) surveyed from recently published CIS papers, which

shows the ADC’s energy-per-conversion vs. its sampling rate. Specifically, given the

ADC sampling rate (the reciprocal of the A-CELL delay) we, absent detailed user in-

put, use the median energy-per-conversion at that sampling rate as the estimation. The

total energy of non-linear A-CELL is thus obtained by the product of its estimated FoM

and the number of required conversions:

(3.12) Ecell,nl
a = FoM [J/conversion]× Numconversion

The access counts to a specific A-CELL are the number of times the A-CELL is

used along both the spatial and temporal scale to generate one A-COMPONENT output:

(3.13) Numcell[j]
access = Numcell[j]

spatial × Numcell[j]
temporal

For example, if an A-CELL represents an static-biased SF in a pixel, Numstatic-SF
spatial would

be the number of SFs in the pixel and Numstatic-SF
temporal would be the number of times the pixel

charge is read out (e.g., 2 if correlated double sampling is used to reduce noise (Capoc-

cia et al., 2020)). The access counts information for A-CELLs is hard-coded for each

A-COMPONENT and is abstracted away from typical users, but can be updated for a

custom design.
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3.3.3 Digital Energy Modeling

The digital energy of a frame Eframe
d is the sum of the computation energy of each

compute unit Ecomp
d and the energy of each memory structure Emem

d :

(3.14) Eframe
d =

∑
i

E
comp[i]
d +

∑
j

E
mem[j]
d

The energy of each compute unit is the product of the energy per cycle Ecycle
d and

the number of cycles Numcycle:

(3.15) E
comp[i]
d = E

cycle[i]
d × Numcycle

We rely on users to provide Ecycle
d , which usually is obtained through HLS/ASIC

synthesis flows. The cycle counts, in contrast, are obtained through cycle-level simula-

tion by CAMJ.

The energy consumption for memory accesses is the sum of leakage energy and

the dynamic access energy; the latter is the product of the energy consumption for one

memory read Eread
d or write (Ewrite

d ) and the total number of memory reads (Numread) or

writes (Numwrite):

E
mem[j]
d = E

read[j]
d × Num[j]

read + E
write[j]
d × Num[j]

write

+ P
leakage[j]
d × 1

FR
× α(3.16)

The leakage energy is the product of the leakage power P leakage
d and the memory

active time (i.e., not power-gated), which is a fraction α of the frame time 1
FR . Users

supply the dynamic read/write energy and leakage power; the access counts and the

active time are from the CAMJ simulation.

3.3.4 Communication Energy Modeling

The communication power is dominated by the energy to transfer the data outside the

sensor using the energy-hungry MIPI CSI-2 interface and, in the case of 3D-stacking
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Table 3.2: Summery of CIS designs for validation, which cover a wide range of design

variations. ∗indicates data not reported in the original papers and are based on our

educated guess. Unit of analog memory size is “number of analog values”.

CIS Process Node Stacked
Analog Digital

Pixel Memory PE Operation PE Position Op Domain Memory PE Size

ISSCC’17 Bong et al. (2017a) 65nm No 3T APS 20× 80 Avg&Add Column&Chip Charge&Voltage 160KB 4× 4× 64

JSSC’19 Young et al. (2019) 130nm No 4T APS 4× 240 Logarithmic Sub. Column Voltage - -

Sensors’20 Choi et al. (2020) 110nm No 4T APS No MAC&MaxPool Column Voltage - -

ISSCC’21 Eki et al. (2021) 65nm/22nm Yes 4T APS∗ No - - - 8MB 1× 2304

JSSC’21-I Hsu et al. (2020) 180nm No PWM No MAC Column Time&Current - -

JSSC’21-II Park et al. (2021) 110nm No 4T APS No MAC Column Charge - -

VLSI’21 Seo et al. (2021) 65nm/28nm Yes DPS No - - - 6MB -

ISSCC’22 Hsu et al. (2022) 180nm No PWM No MAC Column Time&Current 256B∗ 1

TCAS-I’22 Xu et al. (2021) 180nm No 3T APS No Mul.&Add Pixel&Chip Current - -

CIS, the energy of µTSV. In literature the energy of the two interfaces is usually given

for energy per Byte. Therefore, the communication energy is given by:

Eframe
c = Emipi

c × Nummipi
Bytes + E tsv

c × Numtsv
Bytes(3.17)

Emipi
c and E tsv

c are user supplied with represented data reported in the literature (Liu

et al., 2019a). The data volume statistics in both interfaces are generated in CAMJ

simulation (based on the algorithm description and algorithm to hardware mapping).

3.4 CAMJ Validation

In this section, we validate CAMJ against real measurement data from nine recent CIS

chips (Bong et al., 2017a; Young et al., 2019; Choi et al., 2020; Eki et al., 2021; Hsu

et al., 2020; Park et al., 2021; Seo et al., 2021; Hsu et al., 2022; Xu et al., 2021) shown

in Table 3.2. These designs span a range of design dimensions including 2D and 3D

designs, different process nodes, pixel types, as well as PE designs and memory sizes

in the analog and digital domains.

Fig. 3.5 compares the estimated and actual energy per pixel reported in the original

papers. Our estimations closely match the measured results, which span several orders
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of magnitude, showing both the diversity of the CIS design styles and the wide system

power/energy scale that CAMJ can flexibly support and accurately model. Across all

designs, CAMJ achieves a Mean Absolute Percentage Error of 7.5% and a Pearson

Correlation Coefficient of 0.9999.

Fig. 3.5b – Fig. 3.5j compare the detailed energy breakdown across the nine designs.

Whenever possible, we use the circuit parameters reported in the papers. For SRAMs,

we use DESTINY (Poremba et al., 2015) to obtain per-access energy. The three papers

that perform digital computation all execute DNNs, where a PE is a MAC unit; we

use the synthesis result of a 65 nm MAC unit design for per-MAC energy (Bong et al.,

2017a), and scale it to other process nodes based on classic CMOS scaling (Stillmaker

and Baas, 2017; Sarangi and Baas, 2021).

While overall CAMJ provides an accurate component-level and full-system energy

estimation, we find two key reasons behind result mismatches. First, the results are less

accurate when CAMJ does not have access to detailed design parameters. For example,

the pixel estimation in Fig. 3.5f, Fig. 3.5g, and Fig. 3.5j shows an absolute error of

12.4%, 38.9%, and 33.3%, respectively, due to insufficient circuit parameters on pixel

ramp-generator (Fig. 3.5f), pixel parasitic capacitance (Fig. 3.5g), and photodiode volt-

age swing (Fig. 3.5j). Similarly, the analog PE in Fig. 3.5f and Fig. 3.5b shows an

absolute error of 9.3% and 23.7% due to insufficient circuit parameters on sampling ca-

pacitance (Fig. 3.5f) and sense amplifier conversion energy (Fig. 3.5b), respectively. In

contrast for Fig. 3.5c, where the detailed design parameters are provided for the analog

PE, the estimation error is only 0.4%.

The other source of inaccuracy comes from the mismatch between the actual circuit

design and CAMJ’s default circuit template. For example, the ADCs in Fig. 3.5g and

Fig. 3.5h show an absolute difference of 31.7% and 16%, respectively 2; the original

designs use low-power dynamic technique (Fig. 3.5g) whereas CAMJ estimates the

energy of ADC based on the FOM survey (Murmann, 2022). The memory in Fig. 3.5j

2Both papers consider ADC as a digital unit, which is what we use here.



42

shows an estimation error of 33.0% because the original design uses customized 8T

SRAMs while CAMJ uses standard 6T SRAMs from DESTINY (Poremba et al., 2015),

resulting in higher leakage power.

3.5 Related Work

Power Modeling. Power/energy modeling is a cornerstone of architectural explo-

ration. Prior power models of CPUs (Brooks et al., 2000; Li et al., 2009; Shao and

Brooks, 2013), GPUs (Hong and Kim, 2010; Leng et al., 2013; Kandiah et al., 2021),

and memory (Poremba et al., 2015; Guthaus et al., 2016; Balasubramonian et al., 2017;

Pentecost et al., 2022) have enabled a plethora of power/energy optimizations. Fun-

damentally, CAMJ shares the same, bottom-up modeling methodology, where energy

is estimated from access counts and per-access energy. Additionally, CAMJ provides

a clean programming interface to integrate other architectural simulators (Shao et al.,

2014; Samajdar et al., 2018; Feng et al., 2019; Gao et al., 2017) and memory modeling

tools (Poremba et al., 2015; Pentecost et al., 2022) to model bespoke accelerators and

memories.

Prior analog power modeling requires either detailed transistor-level parame-

ters (Svensson and Wikner, 2010) or is based on the statistic models of particular analog

circuits (Lauwers and Gielen, 2002). Lim et al. (Lim and Horowitz, 2019) decomposes

a mixed-signal circuit into basic cells and accelerate the mixed-signal simulation by

approximating the transfer function of each cell. CAMJ uses a similar decomposition

methodology but specifically targets CIS.

CIS Modeling. No comprehensive CIS modeling framework exists. Two recent

papers from Meta use first-order analytical model to estimate the energy of their custom

CIS design, i.e., 3D stacking with DPS (Liu et al., 2019a; Gomez et al., 2022). It does

not provide the level of flexibility to accommodate general CIS design and architecture

exploration as supported by CAMJ.
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LiKamWa et al. (2013) provide a coarse-grained CIS power model using the idle

and active period/power without considering the hardware implementation details.

CAMJ, instead, models the hardware with finer granularity to achieve finer-grained ar-

chitectural exploration. Kodukula et al. (2021a) cite coarse-grained component energy

of typical CIS designs and builds a thermal model. CAMJ, can provide more accurate

power/energy modeling that feeds into such thermal model.

Visual Computing Optimizations. Recent work discusses the possibility of pro-

cessing inside an CIS to reduce the data transmission cost, e.g., Ed-Gaze (Feng et al.,

2022a), Rhythmic Pixel Regions (Kodukula et al., 2021b), Pinkham et al. (2020a), and

SplitNets (Dong et al., 2022). All, however, rely on first-order energy models. Many

recent visual computing optimizations use motion vectors that can be naturally gen-

erated during imaging to simplify downstream vision processing (Zhu et al., 2018b;

Feng et al., 2019). It is interesting to explore how motion estimation can be integrated

into the CIS using CAMJ. CAMJ can also be integrated with visual computing bench-

marks (Huzaifa et al., 2021; Kwon et al., 2022) to study in-CIS computing for different

workloads.
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Fig. 3.5: Validation results. CAMJ achieves a Pearson correlation coefficient of 0.9999.

Several papers lump different components into the coarse-grained “Analog”, “Digital”,

or “Others” categories. We show detailed breakdowns and indicate when the sum of

several fine-grained categories in our estimation corresponds to a coarse-grained cate-

gory in the original papers.
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4 EdGaze: In-Sensor Auto ROI for

Eye Tracking

While moving computation inside CIS would reduce data communication, processing

inside CIS is less efficient compared to off-sensor CMOS processors as illustrated in

Sec. 3.1. Therefore, the tradeoff between data communication benefits and compute

overheads needs to be addressed. In this chapter, a novel in-sensor algorithm for eye

tracking is proposed to show the potential benefits of leveraging in-sensor computing

without being compromised by computation overheads.

This chapter begins by proposing EDGAZE which sets an example of in-sensor

computing (Sec. 4.1). Sec. 4.2 discusses the mapping between software stages to

hardware components in order to achieve optimal energy efficiency and presents a co-

designed in-sensor architecture that is tailored for EDGAZE and unleashes the poten-

tial of in-sensor computing. Finally, Sec. 4.4 presents a comprehensive evaluation of

EDGAZE and its co-designed system.

4.1 EdGaze: In-Sensor Auto ROI for Eye Tracking

Gaze estimation models rely on the geometry of foreground eye parts such as the pupil,

iris, and sclera. Full-resolution eye images captured by near-eye cameras usually con-

tain a large chunk of eye muscle/skin that is irrelevant to gaze tracking. We introduce an
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Fig. 4.1: Overview of our event-driven eye segmentation. Time progresses from top

to bottom. The segmentation results are used by a common gaze estimation algo-

rithm (Świrski and Dodgson, 2013), which is omitted in the figure. We generate an

event map from every two consecutive eye frames; the current event map and previous

segmentation map are combined to predict the ROI. If the number of events is small

(e.g., shown at time (T + 2)), we can simply extrapolate the segmentation result rather

than performing a full-blown segmentation.

Auto ROI mode for eye tracking, where we predict and process only the region of inter-

est (ROI) that contains the foreground eye classes needed for gaze estimation. We first

provide an overview of the algorithm (Sec. 4.1.1), followed by our feedback-driven,

event-based ROI prediction algorithm (Sec. 4.1.2).

4.1.1 Overview

Fig. 4.1 shows a high-level flow diagram of our gaze tracking algorithm. We use a

model-based, two-stage algorithm for gaze tracking. This paper’s contributions lie in

the first stage, i.e., eye segmentation, while relying on a commonly-used gaze estima-

tion model for the second stage (Świrski and Dodgson, 2013). Gaze estimation is rel-

atively more mature and is much less compute intensive that the first stage (regression

vs. DNN). Fig. 4.1 thus omits the common gaze estimation part.

Initially at time T , the full-resolution eye frame is processed directly by the segmen-
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tation network to generate the segmentation map. The next frame at (T + 1), instead

of being processed directly, generates an event map, which is of the same dimension

as the original full-resolution image. Each event map pixel is a 0/1 bitmask, indicating

whether the corresponding pixel in the original image has a large change in intensity.

This process emulates an actual event camera with simplifications tailored to eye seg-

mentation.

The event map provides useful guidance to predict the ROI in the current frame.

We define the ROI as the minimal bounding box that encloses the three foreground

eye parts, i.e., the pupil, iris, and sclera. Our approach can also apply to other track-

ing algorithms that use fewer or more segments (e.g., (Yiu et al., 2019; Kothari et al.,

2021)).

Events alone, however, are not robust enough. When the background eye mus-

cles move significantly and/or when foreground eye parts move little between frames,

activated events do not accurately capture the segment boundaries. To improve the ro-

bustness, we propose a feedback mechanism, where two important cues from time T

(previous frame) are used to augment the ROI prediction.

For cases where the entire eye moves little between frames, e.g., at time (T + 2)

in Fig. 4.1, our ROI prediction algorithm would detect the inactivities and opt to ex-

trapolate from the previous segmentation map. Having this mode ensures “activity-

proportional” tracking, where little tracking work is done when little activity is ob-

served.

In most cases, only the first frame has to be processed in its full resolution. In rare

(∼0.02%) cases where the predicted ROI is physically infeasible (e.g., the top-right

corner is to the left of the bottom-left corner), we fall back to the full-resolution mode.
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Fig. 4.2: The process of predicting the ROI at time (T +1) consists of three steps. First,

we compute the absolute difference of frames at T and (T+1) to generate an event map.

Second, we use Canny edge detection on the segmentation map at time T to extract an

edge map. Finally, we concatenate the edge map and the event map to form the input

to the ROI prediction network. The first three layers are Conv layers with 3× 3 kernels

followed by a Maxpool layer to reduce each dimension to 1/2. The output of the last

Conv layer is vectorized and concatenated with the ROI from time T (a 1 × 4 vector).

The concatenated vector then goes through two FC layers to generate the predicted ROI

of time (T + 1). While our algorithm relies on events, the two additional cues of ROI

and edge map from the previous frame are critical to the accuracy.

4.1.2 Auto ROI with Event-Driven ROI Prediction

The ROI prediction algorithm has two roles: 1) predicting the ROI of the current eye

frame, and 2) deciding whether the current eye frame requires going through a full-

fledged segmentation algorithm or can be extrapolated from the previous segmentation

map. Fig. 4.2 shows the structure of our ROI prediction network.

The Prediction Algorithm

Intuition The goal of ROI prediction is to filter out background pixels (eye muscles,

skin, and eyelids) while leaving only the foreground eye parts, i.e., the pupil, iris, and

sclera. We use events to guide the ROI prediction. The intuition is that the background

parts do not move as significantly as the foreground eye parts. Thus, activated pixels

in the event map mostly correspond to the foreground eye parts and provide useful

guidance to the ROI prediction.
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Fig. 4.3: Example of ROI misprediction using only the event map. In the left image,

the solid ROI is ground truth, and the dashed ROI is the predicted ROI from using only

the event map.

We generate the event map by emulating the high-level process of an event cam-

era (Gallego et al., 2019). Unlike conventional image sensors, which output images

at fixed time intervals, event sensors asynchronously respond to local light intensity

changes. Each pixel outputs an event when its light intensity change surpasses a prede-

fined threshold. We first calculate the pixel-wise absolute difference, ∆Ft+1, between

two consecutive frames, Ft and Ft+1. Next, each difference value, ∆Ft(x, y), is nor-

malized by the corresponding pixel value in Ft. The normalized pixel values go through

an activation function, Φ, which generates an event when the normalized difference is

greater than a predefined threshold value. Mathematically, generating an event map can

be expressed as:

(4.1) Et+1(x, y) = Φ(|Ft(x, y)− Ft+1(x, y)|/Ft(x, y), σ)

where Et+1(x, y) is the value at coordinate (x, y) of the event map at time (T + 1),

and Φ is the activation function which outputs 1 if the difference is greater than the

threshold σ (and 0 otherwise). The threshold is a parameter that can be tuned for a

specific application or scenario. Normalizing pixel differences by the previous values

mimics the log-scale absolute difference operation done by an actual event camera (i.e.,

log(a)− log(b) = log(a/b)), where the pixel values are naturally in the log scale (Gal-

lego et al., 2019).
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Two Feedback Cues While events are largely effective, there are cases where us-

ing events alone fails. In particular, when eye muscles/eyelids move significantly and/or

foreground eye parts move little, events do not accurately capture the eye boundary any-

more, challenging the assumption of using events to predict ROIs.

Fig. 4.3 shows one such example, where the left panel shows the eye frame and

the right panel shows the event map (generated from the current and previous frame).

The dashed-line box is the predicted ROI using only the event map, whereas the solid-

line box is the ground truth ROI. In this example the upper eyelid (irrelevant to gaze

estimation) moves upward with the iris (used in gaze estimation); as a result, activated

events capture both the eyelids and the iris, leading to a predicted ROI significantly

above the actual eye.

To cope with the issue where events in the current event map do not accurately

represent the foreground eye parts, we feed the previous ROI back to the prediction al-

gorithm. The intuition is that the ROI of the previous frame provides useful information

to predict the ROI in the current frame due to the temporal correlation. Thus, we feed

the previous ROI into the ROI prediction algorithm (a DNN), which learns to correlate

the previous ROI with the current ROI.

Using the previous predicted ROI, however, has an inherent downside: the ROI pre-

diction errors will accumulate and the predicted ROI will drift over time. To mitigate

error accumulation, we use an additional cue that does not drift over time — the previ-

ous segmentation map. The segmentation map is predicted directly from an actual eye

image from the camera; thus, the segmentation map does not drift over time. To reduce

data size, we extract an edge map from the segmentation map. The edge is defined as

the boundary between two different classes in the segmentation map. We use Canny

edge detection (Canny, 1986) to obtain an edge map from a segmentation map. Each

pixel value in the edge map is a bitmask that indicates whether the corresponding pixel

in the eye frame is a boundary.

Prediction Network With the guidance of the event map and the two feedback
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cues, ROI prediction can be very lightweight. Fig. 4.2 shows the network architecture,

which contains three convolution (Conv) layers and two full-connected (FC) layers.

The event map and edge map are concatenated first and used as the input to the Conv

layers due to the 2D nature of the two maps. In contrast, the ROI is a 1×4 vector; thus,

it is concatenated with the flattened output of the Conv layers before entering the FC

layers.

To reduce the overhead of the ROI prediction, we downsample the dimensions

by 2 for both the event map and the edge map. We normalize the ROI to the image

width/height so that each of the four coordinates in the ROI is within the [0, 1] range.

We find that it is easier for the network to learn normalized values, as opposed to the

absolute coordinates, which vary by camera and scenarios.

Activity-Proportional Segmentation

In cases where the entire eyes do not move across frames, detecting the inactivities and

skipping segmentation all together improves the execution speed. This allows our eye

tracker to be activity-proportional: no work when no activity is detected. Two issues

remain: how to detect inactivities and how to compute an accurate segmentation map

extremely fast for inactive eye frames?

Building on top of our ROI prediction algorithm, we detect inactivity by calculating

the event density of the event map inside the predicted ROI. If the event density is

lower than a threshold γ, the current frame is deemed inactive, in which case the ROI

prediction algorithm sets the extrapolation bit, indicating that no segmentation is to be

executed for the current frame. While other inactivity detection schemes are possible,

we favor the simple thresholding scheme because the threshold γ provides a useful knob

to control the speed-vs-accuracy trade-off, allowing our system to potentially adapt to

different application requirements and hardware capability.

We experiment with a range of extrapolation schemes, ranging from simply scaling
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the segments from the previous frame to using a neural network to predict how to

morph the segmentation from the previous frame. We eventually settled for the simplest

scheme, where the previous segmentation result is reused. In retrospect, this scheme is

the most robust because it relies the least on the inactivity detection scheme, which is

simple thresholding.

4.2 Co-Designed In-Sensor System

So far we have focused on improving the compute efficiency of the eye tracking algo-

rithm. However, the data transmission overhead, both between the image sensor and the

processor and between the processor and memory, is non-trivial. A recent study shows

that the average energy of data transmission per byte is about 800 times higher than the

computation energy per byte (Liu et al., 2019a). Similar observations are made in other

recent studies (Kodukula et al., 2021b; Han et al., 2016a). To achieve better energy ef-

ficiency, this section first proposes a mapping between algorithm stages to hardware to

reduce the overall sensor data transmission (Sec. 4.2.1). Then, a co-designed in-sensor

architecture is described that carefully leverages analog computing to further improve

the overall system efficiency (Sec. 4.2.2).

4.2.1 Reducing Sensor Data Transmission

The Auto ROI capability of our eye tracking algorithm provides an opportunity to re-

duce the data transmission overhead. Our idea is to execute part of the algorithm inside

the image sensor to reduce the data transmission volume and thereby the transmis-

sion energy. In-sensor computing has become possible as image sensor vendors have

started integrating processing capabilities with the conventional pixel array in one sen-

sor, sometimes in one single chip (Chai, 2020; Kwon et al., 2020; Haruta et al., 2017).

A recent example is Sony’s IMX 500 image sensor that provides dedicated memories
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and a digital signal processor for executing DNNs (Sony, 2020).

Table 4.1: Total number of Floating Point Operations (FLOPs) and the output data size

of the four major components in our algorithm for a 640 × 400 pixel grayscale input.

For this estimate we assume the ROI image is one-third the size of the full resolution,

and that half of the frames are extrapolated. We show the full-resolution image size for

reference. Recall that data transfer consumes 800 times more energy than computation

per byte (Liu et al., 2019a).

Stages
Event Map

Generation

Edge Map

Generation

Prediction

Network

Seg.

Network

Full-res

Image

FLOPs (Million) 0.3 1.9 55.4 2641.6 NA

Output Data (KB) 7.8 7.8 41.7 62.5 250

While conceptually simple, reaping the reward of in-sensor computing is not triv-

ial. Computation inside image sensors consumes more energy than that on a backend

processor. This is because the semiconductor fabrication technology, quantified by

the process node, of the sensor usually lags at least one generation behind that of the

processor. Today, many commercial processors are fabricated using a 7 nm process

node or smaller, but even high-end image sensors still use a 14 nm or 28 nm pro-

cess node (Yu et al., 2019; Kwon et al., 2020). The computation power consumption

increases quadratically with respect to the process node (Dennard et al., 1974). There-

fore, one must carefully weigh the reduction of data transmission energy against the

overhead of computing inside an image sensor on an older process node.

Our goal is thus to map the different components of our eye tracking algorithm to

the sensor and processor in such a way that the total energy consumption is minimized.

Intuitively, the ideal mapping is one where a trivial amount of computation in the sensor

can drastically reduce the data communication.

To identify the optimal mapping, we first quantify the computation cost and the out-
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Fig. 4.4: Different hardware mapping schemes for the four algorithmic components:

event map generation (EvMapGen), edge map generation (EdMapGen), ROI prediction

network (PredNet), and eye segmentation network (SegNet). The optimal mapping (c)

minimizes the total data transmission and computation energy.

put data volume of the four main components in our algorithm: event map generation,

edge map generation, prediction network, and segmentation network; the first three

comprise the ROI prediction algorithm (Fig. 4.2). Tbl. 4.1 shows the results. Note that

each image pixel uses 1 byte; each pixel in the event map and the edge map uses 1 bit;

and each segmentation map pixel uses 2 bits (4 classes).

Compared to the segmentation network, the entirety of the ROI prediction algorithm

(columns 2–4 in Tbl. 4.1 combined) is much lighter weight, requiring less than 2%

of the Floating Point Operations (FLOPs). One straightforward solution would thus

be to map the entire ROI prediction algorithm to the sensor while leaving only the

segmentation network to execute on the processor chip. This mapping is shown in

Fig. 4.4b.

Compared to the mapping in today’s systems, where all the computation takes place

in the processor (illustrated in Fig. 4.4a), predicting ROI in the sensor reduces the data

transmission volume from the full-resolution image to only the ROI image (from sensor

to processor) and the segmentation map (from the processor back to the sensor). The

reduction in data transmission will outweigh the slight computation energy increase of

moving the ROI prediction to the sensor, given the small computation requirements of

the ROI prediction algorithm.
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Fig. 4.5: Mixed-signal CIS design for Ed-Gaze. EvMapGen in Fig. 4.4c is moved to

the analog domain and PredNet is still mapped to the digital domain.

Interestingly, mapping the ROI prediction network to the sensor is not the most

energy-efficient mapping. We propose a mapping, shown in Fig. 4.4c, where only the

event map generation and the prediction network execute in the sensor while the edge

map generation and the segmentation execute on the processor. Compared to Fig. 4.4b,

our mapping reduces both the data transmission volume (since the edge map, rather

than the segmentation map, is transmitted) and the computation energy (since the edge

map is generated in the processor).

4.2.2 Co-Designed In-Sensor Architecture

According to the optimal hardware mapping scheme in Sec. 4.2.1, we explore the bene-

fits of mixed-signal computing and co-design an in-sensor architecture. In our proposed

architecture, two stages, EvMapGen and PredNet, in Fig. 4.4 are computed in the ana-

log and digital domains, respectively to achieve best system efficiency.

Fig. 4.5 shows a mixed-signal CIS design for EDGAZE. Inside the pixel array, the

2× 2 downsampling is done through pixel binning. The analog frame buffer stores the

downsampled analog pixel values, which are read by an analog PE array for frame sub-

traction in a column-parallel manner. Each analog PE consists of a switched-capacitor
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subtractor/ multiplier for absolute subtraction and a comparator for frame delta digi-

tization. Effectively, the output of the comparator is events in EvMapGen stage. The

output of the Analog PE array enters the SRAM array, a dedicated PE array then reads

the event map from the SRAM array and computes the ROI prediction result in Pred-

Net stage. For a fair comparison and to ensure area overhead is well accounted for, we

conservatively set all the capacitors to 100fF. Despite the oversizing, the analog design

still yields at least 27% less area than the digital counterpart. In Sec. 4.4.2, we quan-

titatively evaluate the energy consumption of our proposed CIS design with its pure

digital-signal CIS counterpart.

4.3 Evaluation Methodology

4.3.1 Dataset and Ground Truth

OpenEDS 2020 We use the sequential data from the OpenEDS 2020 (Palmero et al.,

2020) dataset (Track-2)1, which contains 200 sequences of continuous frames (29,476

frames in total) gathered from 152 participants with various ethnicities and iris colors.

All sequences are captured by an infrared camera at 100 Hz with a 640×400 resolution.

The average duration of a sequence is 30 seconds with diverse eye movements such as

blinks and saccades (rapid eye movements). The average number of blinks per video is

4.5 (up to 18) and the average number of saccades per video is 7.8.

However, the sequential data in OpenEDS 2020 do not include the segmentation

ground truth. To generate the ground truth for our evaluation, we train RITnet (Chaud-

hary et al., 2019), a state-of-the-art eye segmentation network, on the non-sequential

OpenEDS 2019 (Garbin et al., 2019) dataset (100 Hz with a 400×640-pixel resolution),

which does have ground truth segmentation labels. We then use the trained RITnet to

generate the eye segmentation results for the sequential OpenEDS 2020 data.

1We do not use Track-1 data as the videos are only 1–2 seconds long.
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The generated eye segmentation results are not perfect; we perform a series of data

refinement steps to generate the final ground truth. We first apply the DBSCAN spatial

clustering algorithm (Ester et al., 1996) on each initial segmentation result and identify

the largest contiguous region as the correct eye region. We then fill the missing holes

inside the eye region as a prior study does (Kim et al., 2019). Finally, we manually

inspected all sequences of the refined data and removed 15 sequences (out of 200),

where the eye segmentations are visibly incorrect. In the end, our sequential dataset

contains 185 sequences and 27,431 total frames.

With the eye segmentation ground truth, we then apply a gaze estimation algo-

rithm (Świrski and Dodgson, 2013) commonly used in prior work (e.g., DeepVOG (Yiu

et al., 2019)) to generate the gaze ground truth. Our algorithm does not depend on a

particular gaze estimation method and, thus, can be integrated with other gaze estima-

tion models (Dierkes et al., 2019). We also use the eye segmentation ground truth to

generate the ROI ground truth, which is the bounding box of the foreground segment

(pupil, iris, and sclera). We manually verify that using so-defined ground-truth ROIs

gives the same gaze results as those from full-frame inference.

4.3.2 Training

We first train a standalone eye segmentation network and a standalone ROI prediction

network, and then refine eye segmentation using the ROI prediction results.

We follow prior studies and split the entire dataset into the training/validation/test

sets with a 80/20 training/validation split, identical to EllSeg (Kothari et al., 2021). The

eye segmentation network is trained using the Adam optimizer, a learning rate of 0.001,

and a batch size of 4 for 250 epochs. We use the a loss function that combines both the

standard cross-entropy loss and losses that are specialized to the eye structure (Chaud-

hary et al., 2019). To train the ROI prediction network, we use the Adam optimizer with

a learning rate of 0.001, a momentum of 0.9, and the mean squared error loss function.
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We train the ROI prediction network for 100 epochs with a batch size of 8.

We then fine-tune the eye segmentation network using ROI images. In this step,

the ROI prediction network first predicts an ROI given an eye image; we then crop

the input image based on the predicted ROI and fine-tune the segmentation network

with the cropped image. This training procedure is similar to networks based on region

proposals such as Faster R-CNN (Ren et al., 2015). We use a learning rate of 0.0001, a

momentum of 0.9, and 100 epochs.

4.3.3 Baseline and Evaluation Metrics

We primarily compare against eye segmentation methods that are based on DNNs,

which are shown to have superior accuracy compared to non-DNN-based segmenta-

tion methods (Fuhl et al., 2016a; Akinlar et al., 2021). The baselines are trained using

the same procedure as our algorithm.

• RITnet (Chaudhary et al., 2019): an encoder-decoder network using DenseNet

(Huang et al., 2017) as the backbone. It won first place in the 2019 OpenEDS

segmentation challenge (Meta, 2019). As discussed in Sec. 4.3.1, we use RITnet

to generate the ground truth for the sequential OpenEDS data. As a result, it is

expected that our algorithm will have lower accuracy than RITnet.

• DenseElNet (Kothari et al., 2021): an ellipse segmentation framework for gaze

tracking. DenseElNet is originally for ellipse segmentation (three segments).

We re-purpose DenseElNet to predict four segments by modifying the channel

size of the last layer.

• DeepVOG (Yiu et al., 2019): a popular encoder-decoder network for eye segmen-

tation. DeepVOG was originally designed to generate only two segments (pupil

and background). We modified the channel size of the last layer so that it predicts

four segments.
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We also compare the speed of our algorithms with the baselines. We measure

the speed on a state-of-the-art mobile computing platform, Nvidia’s Jetson Xavier

board (Nvidia, 2019). We use the mobile Volta GPU on the Xavier board for all the

networks. The GPU has 512 CUDA cores with a maximum frequency of 1,377 MHz.

4.3.4 Variants

We use two DNN variants of our eye segmentation network, Ours(S) and Ours(L).

Both are designed with the same architecture, but differ in the channel width and thus

provide a speed-vs-accuracy trade-off. In particular, Ours(S) has, on average, half

the channels of Ours(L). Tbl. 4.2 compares the amount of Floating Point Operations

(FLOPs) and parameters of the two networks against the baseline segmentation net-

works.

Table 4.2: FLOPs and number of parameters in different eye segmentation networks

for an input size of 640× 400 8-bit pixels.

Network DenseElNet DeepVOG RITnet Ours (L) Ours (S)

FLOPs (Billion) 53.1 36.5 23.1 2.6 1.2

Norm. FLOPs 45.2 31.1 19.7 2.3 1.0

# of Parameters (Thousand) 3047.3 2835.7 391.0 73.0 30.6

Norm. # of Parameters 99.6 92.6 12.8 2.4 1.0

The total computation requirement of Ours(L) is only about 1/9 of RITnet, 1/14

of DeepVOG, and 1/20 of DenseElNet. Ours(S) is even lighter weight, with about

45× fewer FLOPs and 100× fewer parameters compared to DenseElNet. Overall,

Ours(S) uses only about 30K parameters (∼120 KB).

To tease apart the contributions of the different components of our algorithm, we

evaluate two variants on top of eye segmentation:

• +ROI: this variant uses only the ROI prediction (Sec. 4.1.2)
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Fig. 4.6: The accuracy and speed comparison of different methods. All the subfigures

share the same legend. The speedup values are normalized to the speed of RITnet.

Ours(S) and Ours(L) are two eye segmentation networks. +ROI denotes ROI

prediction is enabled. +E denotes the extrapolation is enabled. +ROI(SIFT) denotes

using the SIFT-based ROI prediction.

• +ROI+E: this variant uses both ROI prediction (Sec. 4.1.2) and extrapolation

(Sec. 4.1.2)

4.4 Evaluation

This section first evaluates the performance of EDGAZE in Sec. 4.4.1. Next, Sec. 4.4.2

evaluates the performance efficiency of the proposed in-sensor architecture.

4.4.1 Evaluation on EDGAZE

Gaze Estimation Our algorithm achieves a 5.5× speedup over the baselines with a

sub-0.5◦ gaze error. Fig. 4.6a and Fig. 4.6b compare the vertical and horizontal gaze

errors and the speed of our algorithms with different baselines. The speedups are nor-

malized to the speed of RITnet, which runs at 5.4 Hz on a mobile Volta GPU. Note

that a 1◦ error is generally acceptable for gaze tracking (Kar and Corcoran, 2017).

RITnet, DenseElNet, Ours(L), and Ours(S) keep the absolute error rate
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Fig. 4.7: Gaze estimation results over one sequence of frames. Ours(L) robustly

tracks the ground truth. The bottom panel shows three representative cases: eye moves

right, just before a blink, and eye moves up-left, respectively.

below 0.1◦ in both the vertical and horizontal direction. They are all more accurate

than DeepVOG. In particular, Ours(S) only has 0.04 and 0.05 higher gaze error than

RITnet in each direction, but is 1.9× faster. Note that this little gaze error loss is

achieved with a network that is 12.8× smaller (Tbl. 4.2).

By operating on ROI images when possible, Ours(L)+ROI improves the speedup

over RITnet to 3.0×. Interestingly, Ours(L)+ROI achieves better accuracy than

Ours(L). Further inspection of the data shows that this is because by using only the

ROI image for eye segmentation, we remove potential noise in the non-ROI region in

the input eye image. Using activity-proportional segmentation, Ours(L)+ROI+E and

Ours(S)+ROI+E further improve the speedup to 4.2× and 5.5×, respectively, while

both retaining an angular error rate within 0.5◦. The event density threshold used for

extrapolation is set to 0.1%.

To further confirm the robustness of our system, Fig. 4.7 compares the frame-by-

frame gaze results of Ours(L), Ours(L)+ROI+E, and the ground truth. Ours(L)
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Fig. 4.8: Distributions of horizontal gaze error across as boxplots, which plot the me-

dian, 25th-percentile, 75th-percentile, the min, and max of the angular errors. RITNet

is the most accurate because it is used to obtain the ground truth (see Sec. 4.3.1). Even

the most inaccurate variant of our system, Ours(S)+ROI+E has a worst-case ac-

curacy below 0.5◦, which is generally regarded as an acceptable error bound for eye

tracking (Kar and Corcoran, 2017).

virtually matches the ground truth, and Ours(L)+ROI+E has slight deviations (e.g.,

around frame 10). We show three representative gazes in the bottom panel, where the

eye moves right, blinks, and moves up left.

Finally, for a comprehensive analysis, we show the gaze error distributions across

all the evaluated frames in Fig. 4.8. Not surprisingly, RITNet has the most compact

distribution, because it is used to obtain the ground truth (see Sec. 4.3.1). Ours(L)

has significantly better accuracy distribution compared to DeepVOG. Compared to

DenseElNet, Ours(L) has 0.02◦ lower average accuracy, but also has much better

worst-case accuracy, as indicated by the significantly shorter tail. As we use a smaller

network and exploit more speed-enhancing techniques, the error distribution generally

shifts toward the right, but even the most inaccurate variant, Ours(S)+ROI+E, has

a worst-case accuracy lower than 0.5◦, which is regarded as an acceptable error bound
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…

Fig. 4.9: Energy comparison between mixed-signal in-sensor computation and fully-

digital in-sensor computation on Ed-Gaze. COMP/MEM-D: digital compute and mem-

ory; COMP/MEM-A: analog compute and memory.

for eye tracking (Kar and Corcoran, 2017).

4.4.2 Evaluation on In-Sensor Architecture

Computing inside CIS reduces the data transmission cost by consuming pixel data in-

side the sensor. To explore the benefits, we evaluate the potential benefit of in-sensor

computing by moving the ROI generation inside the sensor.

We use CAMJ (Ma et al., 2023) to evaluate two hardware configurations:

• 2D-In (H): a 2D CIS fabricated in the H process node; the entire execution,

EvMapGen and PredNet, is performed inside the CIS in the digital domain

(Fig. 4.4c).

• 2D-In-Mixed (H): a 2D CIS in the H process node, where EvMapGen is imple-

mented in the analog domain while PredNet is implemented in the digital domain

(Fig. 4.4c).

Fig. 4.9 compares 2D-In-Mixed and 2D-In. Moving the first stages of the Ed-

Gaze algorithm to the analog domain reduces the energy by 38.8% and 77.1%. The

energy reduction comes from two sources: removing the ADCs (indicated by lower

SEN) and replacing SRAMs in the first two stages with analog buffers (indicated by
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lower MEM-D). The reduction in MEM-D is particularly significant for the 65nm node,

where the SRAM leakage power is high. To corroborate the results, Fig. 4.10 shows

the normalized energy breakdown among the three stages (S1, S2, and S3). S3 (DNN)

becomes the dominant stage after moving first two stages into analog domain, showing

the effectiveness of analog processing.

Interestingly, the energy reduction is obtained when the compute energy of the first

two stages slightly increase. Fig. 4.11 shows the energy breakdown of the first two

stages. While the memory energy reduces, the compute energy increases in the mixed-

signal mode. This is because to maintain an 8-bit precision the OpAmp consumes too

much energy (Ma et al., 2023). A caveat is that the analog design presented here, which

uses active switched-capacitor circuits, is based on our specific implementation choice.

It is conceivable that different designs would yield different efficiency results.

4.5 Related Work

Feature Extraction While historically hand-crafted, geometric features are popu-

lar (Hansen and Pece, 2005; Świrski et al., 2012; Fuhl et al., 2016b), DNN algorithms

have recently been shown to be more robust and accurate (Fuhl et al., 2016a; Chaud-

hary et al., 2019; Yiu et al., 2019; Kim et al., 2019; Kothari et al., 2021). In particular,

extracting features through eye segmentation (Chaudhary et al., 2019; Yiu et al., 2019;
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Kim et al., 2019; Kothari et al., 2021) is by far the most widely used method.

An eye segmentation algorithm usually classifies the pixels in an eye image into

different classes. The resulting segmentation map has the same dimensions as the eye

image, and each pixel value in the map represents the class ID of that pixel. Our al-

gorithm uses a similar approach as DeepVOG (Yiu et al., 2019), RITnet (Chaudhary

et al., 2019), OpenEDS (Meta, 2019), and Kim et al. (Kim et al., 2019), known as “part

segmentation,” which segments the eye image into four parts: pupil, iris, sclera, and

background. In contrast, Ellseg (Kothari et al., 2021) and Wang et al. (Wang et al.,

2021) use elliptical segmentation, which predicts the ellipses of the pupil and iris.

Prior studies focus primarily on accuracy. In contrast, we focus on compute effi-

ciency, and show that tracking can be five times faster with little sacrifice in accuracy.

We note that while we demonstrate our ROI prediction on part segmentation-based eye

tracking, the idea applies generally to tracking algorithms using other features.

Event Camera Event cameras operate each pixel independently and asyn-

chronously (Gallego et al., 2019). Each pixel gets activated when its intensity change

surpasses a predefined threshold. The response is called an “event”, which includes the

pixel coordinates, a timestamp, and a polarity value. Because of the increased hardware

complexity, the resolution of event cameras is typically lower than that of conventional

cameras (Gallego et al., 2019), but event cameras have a much higher frame rate (up-

ward of tens of thousands of Hz) since they produce only (sparse) events occasionally

rather than (dense) pixels regularly.

Event cameras appear in a range of vision and robotics tasks such as object track-

ing (Ramesh et al., 2018), localization (Weikersdorfer et al., 2013), and reconstruc-

tion (Kim et al., 2016). Recent work has also started using event cameras for eye track-

ing (Damian et al., 2007; Angelopoulos et al., 2020), and is able to achieve a 10K Hz

frequency. While extremely high tracking frequency is needed when capturing precise

eye movement (e.g., foveated rendering), a lower frame rate provided by conventional

cameras is sufficient for many eye tracking use cases, e.g., eye communication sys-



66

tem for disability (Caligari et al., 2013). Instead of using event camera hardware, we

emulate event camera output from our conventional sensor using software.

ROI Computation ROI is widely used to reduce the overall computation and data

transmission (Girshick et al., 2014; Ren et al., 2015; Girshick, 2015; Kong et al., 2016;

He et al., 2017a; Zhu et al., 2018b; Feng et al., 2019; Mudassar et al., 2019; Kodukula

et al., 2021b). Classic work such as fast R-CNN (Girshick, 2015) use dedicated re-

gion proposal networks that are computationally heavy. Other approaches use simple

extrapolation (Zhu et al., 2018b; Feng et al., 2019; Mudassar et al., 2019), which we

find insufficient for eye tracking, because the objects (eyes) move rapidly. Many image

sensors provide an ROI output mode (OnSemi, 2015; OmniVision, 2021), but rely on

users to provide the ROI coordinates. Sony built a sensor that automatically detects an

ROI to drive spatial resolution and exposure modulation (Kumagai et al., 2018).

Our contribution is a lean and accurate ROI prediction algorithm tailored to eye

tracking. We show that software-emulated events, combined with edge information

from previous segmentation results, can effectively predict eye movement and, by ex-

tension, the ROI.
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5 ASV: Leveraging Temporal

Correlations to Avoid Redundant

Computation

While in-sensor computing can effectively reduce the energy from data communica-

tion in vision system pipelines, computation in processing is inevitable. In particular,

today’s state-of-the-art algorithms have increasingly high computation costs, and re-

ducing such computation costs in vision processing has become a pressing issue for

many mobile vision applications. Failing to process an image frame in time will in-

evitably result in a frame dropping which leads to an unsatisfied user experience. This

chapter proposes to exploit the inter-frame correlations across the temporal domain and

effectively reduce the redundant computation. Specifically, this chapter demonstrates

leveraging temporal correlation can be applied to depth estimation, achieving signifi-

cant speedup without any accuracy sacrificing.

In this chapter, necessary backgrounds are first introduced in Sec. 5.1. Then,

Sec. 5.2 and Sec. 5.3 present our proposed algorithm that speedups the depth esti-

mation with its companion hardware design in Sec. 5.4. Next, Sec. 5.5 and Sec. 5.6

quantitatively evaluate the proposed system. Lastly, Sec. 5.7 discusses related work.
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5.1 Background

We first describe the scope of our work: vision-based systems that extract 3D informa-

tion from 2D stereo images (Sec. 5.1.1). We then introduce the necessary background

of stereo vision algorithms, including both classic hand-crafted algorithms and contem-

porary stereo DNNs (Sec. 5.1.2).

5.1.1 Depth Sensing

There are two essential methods to extract depth information: passive sensing and ac-

tive sensing. Passive sensing techniques observe the environment, primarily through

cameras, and infer depth using computer vision algorithms. In contrast, active sens-

ing techniques transmit signals and analyze the response to calculate depth; examples

include structured light (Wang et al., 2012) and LiDAR (Weitkamp, 2006).

This paper focuses on camera-based passive sensing. Compared to alternatives such

as LiDAR, cameras are much cheaper and less bulky (Lee, 2017). As a result, camera-

based depth sensing is widely adopted in systems such as autonomous vehicles and

AR headsets. According to Allied Market Research, the adoption of stereo cameras is

expected to grow 60.4% by 2020 (Patil, 2020). The recent industry trend of integrating

dedicated stereo vision accelerators into mobile SoCs (e.g., Movidius (Intel, 2017) and

Nvidia (Nvidia, 2018)) further underlines the significance of stereo vision for depth

sensing.

5.1.2 Depth From Stereo

Triangulation The key idea behind stereo depth estimation is that a single phys-

ical scene point projects to a unique pair of pixels, via two observing cameras; the

horizontal displacement between the two pixels captured on the left and right image

planes is inversely proportional to the distance of the point from the observer (i.e., the
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Fig. 5.1: “Depth from stereo” illustration: given an image pair, stereo matching algo-

rithms first generate the disparity map (b), from which depth is then calculated through

triangulation (a). Triangulation is computationally trivial; this paper focuses on opti-

mizing stereo matching algorithms.

depth). Fig. 5.1a illustrates this process, where the scene point is captured at position

xl and xr on the left and right image planes, respectively. Using similar triangles, the

depth D is calculated by:

(5.1) D = Bf/Z,

where f is the focal length of the cameras, B is the distance between the two camera

lenses, and Z is the disparity xr − xl, i.e., the horizontal displacement between the

two corresponding pixels in the left and right images. This process is widely known as

triangulation (Hartley and Zisserman, 2003; Szeliski, 2010).

Stereo Matching and Disparity Map Since both B and f are camera intrinsic

parameters, the key to triangulation is to calculate the disparity Z. Given the left (refer-

ence) image and the right (matching) image, we must find the pixels in each image that

are the projections of the same physical point, a process also known as stereo match-

ing. In the end, stereo matching generates a “disparity map”, whose ¡x, y¿ coordinates

are taken to be coincident with the pixel coordinates of the reference image. Fig. 5.1b
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shows one such example, in which the correspondence between a pixel ⟨xl, yl⟩ in the

left image and a pixel ⟨xr, yr⟩ in the right image is given by:

(5.2) xr = xl +D⟨xl,yl⟩, yr = yl,

where D⟨xl,yl⟩ denotes the pixel value at ⟨xl, yl⟩ in the disparity map. Note that the

compute cost of triangulation is trivial (Equ. 5.1), and thus we focus on stereo match-

ing.

5.2 Invariant-based Stereo Matching

This section introduces our new invariant-based stereo matching algorithm (ISM). The

key idea of ISM is to exploit the correspondence invariant between the stereo im-

ages over time. After introducing the high-level concept (Sec. 5.2.1), we then describe

the detailed algorithm (Sec. 5.2.2), and discuss important algorithmic design decisions

(Sec. 5.2.3).

5.2.1 Overview

Stereo matching produces a disparity map (Fig. 5.1b), from which depth information

is easily obtained through triangulation (Fig. 5.1a). Classic stereo matching algorithms

generate the disparity map by matching pixels/features in the left (reference) frame

with pixels/features in the right (matching) frame, typically by searching in a finite

window. However, the accuracy of search-based algorithms is sensitive to the heuristics

used in the search, such as feature selection, search window size, matching criterion,

etc. In contrast, DNN approaches largely avoid heuristics and instead directly learn

the matching pairs. Unfortunately, DNNs come at the cost of a massive increase in

compute requirement.

Instead of the binary choice between DNNs and conventional search-based algo-

rithms, we use DNNs to guide the search process of classic methods. The key ob-
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Fig. 5.2: The ISM algorithm obtains correspondences in key frames using DNNs, and

propagates the correspondences to non-key frames to guide the cheap correspondence

search. Time progresses from top to bottom in the figure.

servation is that two matched pixels, one from the left image and the other from the

right image, correspond to the same point in the physical world. While the locations

of the two pixels move from frame to frame, they are always projections of the same

scene point, and therefore are always a matched pair in any frame. In other words, the

geometric correspondence relationship between two matched pixels is invariant.

Our new stereo matching algorithm, ISM, exploits this correspondence invariant

by operating in two modes. It obtains stereo correspondences on “key frames” through

accurate but compute-intensive DNNs. The correspondences are then propagated to

subsequent non-key frames as good initial guesses to guide the cheaper search-based

methods. By combining learnt correspondences with search-based methods that ex-

plicitly model the physical world, ISM reduces the total compute cost while retaining

DNN-like accuracy.



72

5.2.2 Algorithm

We illustrate ISM in Fig. 5.2. ISM consists of four main components. ISM runs DNN

inferences ( 1 ) on key frames to obtain pixel correspondences, which are used to guide

feature matching on non-key frames ( 2 , 3 , and 4 ).

1 DNN Inference Assuming the left and right frames at timestep t are regarded

as key frames, ISM performs DNN inference to generate a disparity map for the left

image, in which each pixel value represents the disparity (i.e., Z in Fig. 5.1a) of each

pixel in the left frame. In conventional DNN approaches, this disparity map is used

only for triangulation (not shown in the figure) to estimate depth information and is

discarded after the depth map is generated.

2 Reconstruct Correspondences Instead of discarding the disparity map, ISM

uses it to identify the correspondences in the left and right frames. As per the definition

of disparity (Equ. 5.2), every ⟨xt, yt⟩ pixel in the disparity map with the value D
⟨xt,yt⟩
t

indicates that the ⟨xt, yt⟩ pixel in the left frame (PL
t ) and the ⟨xt + D

⟨x,y⟩
t , yt⟩ pixel in

the right frame (PR
t ) form a correspondence pair. By iterating through all the pixels

in the disparity map, ISM identifies all the correspondence pairs in the left and right

frames at timestep t.

3 Propagate Correspondences A new pair of frames arrives at the next timestep

(t+1). ISM exploits a well-known observation that pixels in consecutive video frames

are highly-correlated in time. For instance, PL
t has moved to PL

t+1, and PR
t has moved

to PR
t+1. Critically, since PL

t and PR
t are a correspondence pair projected from a scene

point, PL
t+1 and PR

t+1 must correspond to the same point, and hence highly likely to also

be a correspondence pair at timestep (t+ 1).

The exact coordinates of PL
t+1 and PR

t+1 can be obtained through a motion estimation

(ME) algorithm. For each pixel in the left (right) frame, the ME algorithm generates a

motion vector ∆PL
(t+1,t) (∆PR

(t+1,t)), representing the displacement between the pixel in
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frame t and frame (t+ 1). Thus:

PL
t+1 = PL

t + ∆PL
(t+1,t)

PR
t+1 = PR

t+1 + ∆PR
(t+1,t)

4 Refine Correspondences Given the correspondence pairs (e.g., PL
t+1 and PR

t+1)

at timestep (t + 1), ISM then calculates the disparity map at (t + 1). If the motion

estimation from t to (t+1) is precise, the propagated correspondence pairs at (t+1) are

also precise. Accordingly, the disparity map could be simply obtained by calculating

the horizontal offsets between all the correspondence pairs. For instance, given the

correspondence pair PL
t+1 and PR

t+1, the disparity at ⟨xl
t+1, y

l
t+1⟩ in the disparity map

would be xr
t+1 − xl

t+1.

In reality, motion estimation is imperfect due to various visual artifacts such as

occlusion and fast motion (Liu et al., 1998). Thus, the correspondences propagated

from t are a noisy estimate of the true correspondences at (t + 1). To further refine

the estimate of (t + 1) in ISM, we use classic correspondence search, and initializes

the search window with the propagated correspondences. This allows ISM to avoid

compute-intensive DNNs on non-key frames without sacrificing accuracy.

5.2.3 Algorithmic Design Decisions

Computing non-key frames requires reconstructing, propagating, and refining corre-

spondences. Reconstructing correspondences has little overhead. The cost of prop-

agating correspondences is dominated by motion estimation, and the cost of refining

correspondences is dominated by the correspondence search. Thus, we must carefully

choose the motion estimation and correspondence search algorithms such that the com-

pute cost is much lower than DNNs with little accuracy loss. We discuss algorithmic

choices below.

Motion Estimation The literature is rich with motion estimation algorithms,

which differ in the coverage and densities of estimated motion. The disparity map
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in stereo matching should ideally be calculated on a per-pixel basis across the frame, so

as to enable fine-grained depth estimation. This requirement rules out many classic mo-

tion estimation algorithms such as block matching (BM) (Jakubowski and Pastuszak,

2013), and sparse optical flow (Lucas and Kanade, 1981; Horn and Schunck, 1981).

BM estimates motion at the granularity of a block of pixels, and thus does not provide

the pixel-level motion that stereo vision requires. Sparse optical flow algorithms such

as Lucas-Kanade (Lucas and Kanade, 1981) and Horn-Schunck (Horn and Schunck,

1981) only provide pixel-level motion for feature points such as corners, and do not

cover all the frame pixels.

Instead, we use a dense optical flow algorithm, specifically the Farneback algo-

rithm (Farnebäck, 2002, 2003), for motion estimation. Farneback generates per-pixel

motion for all the pixels, and is computationally efficient. 99% of the compute in

Farneback is due to three operations: Gaussian blur, “Compute Flow”, and “Matrix

Update”. Gaussian blur is inherently a convolution operation that convolves a Guassian

kernel (2D matrix) with the image. The latter two are point-wise operations that resem-

ble the activation function in DNNs. Thus, motion estimation in the ISM algorithm can

be computed using a DNN accelerator to simplify the hardware design.

Correspondence Search ISM performs correspondence search to refine the ini-

tial correspondence estimation propagated through motion. Correspondence search al-

gorithms have been well-studied in the classic computer vision literature (Scharstein

et al., 2001; Brown et al., 2003), and generally fall into two categories: local methods

and global methods. At the cost of higher compute demand, global methods provide

higher accuracy by minimizing the pixel motion inconsistencies across the entire im-

age. However, with the initial correspondences propagated through key-frames, we find

that local methods suffice.

In particular, we leverage the block matching algorithm (Jakubowski and Pastuszak,

2013) for local correspondence search. For each pixel in the left image (e.g., PL
t+1 in

Fig. 5.2), ISM uses the block of pixels surrounding it to search in a 1D window in the
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right image in order to find the closest match. The search window is centered around the

initial correspondence estimation (e.g., PR
t+1 in Fig. 5.2). We use the sum of absolute

differences (SAD) cost function. The horizontal offset between the two matched blocks

is the disparity for PL
t+1.

Similar to optical flow, the block matching algorithm has a “convolution-like” struc-

ture (Qadeer et al., 2013); the block in the left image is equivalent to a kernel, and the

search window in the right image is equivalent to the input image. The only difference

is that block matching computes the SAD between the input feature map and the kernel

(
∑N

i=1 |ai − bi|) as opposed to the dot product in canonical convolution (
∑N

i=1 aibi).

Thus, the correspondence search can share the same architecture as DNNs and optical

flow.

Compute Cost Due to our algorithmic choices, computation on non-key frames

is much cheaper than key-frames. For instance, for a typical qHD frame (960 × 540),

computating a non-key frame requires about 87 million operations while stereo DNN

inference (key frame) requires about 102×–104× more arithmetic operations. Thus,

ISM leads to significant performance and energy improvements by avoiding DNN in-

ference altogether in non-key frames.

5.3 Deconvolution Optimizations

While the ISM algorithm removes DNN inference in non-key frames, DNNs remain

critical for generating initial key frame correspondences. This section describes opti-

mizations for stereo DNNs, in particular the dominant deconvolution layers. We pro-

pose novel software-only optimizations that mitigate the compute overheads in decon-

volution (Sec. 5.3.1), while capturing unique data reuse opportunities (Sec. 5.3.2).
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first upsamples the ifmap before convolving with the kernel. Note that this example

assumes the upsampled ifmap is not further padded before the convolution, i.e., a 7× 7

ifmap results in a 5× 5 ofmap. Our translation algorithm holds regardless of padding.

5.3.1 Deconvolution Transformation

Deconvolution layers on average contribute to 38.2% (50% max) of the total MACs

in stereo DNNs (Feng et al., 2019). Due to the inherent sparsity of deconvolution,

a naive mapping to hardware results in over 75% of redundant computations due to

one or more zero operands. Deconvolution is also used in Generative Adversarial Net-

works (GANs), and recent studies have proposed specialized hardware specifically for

deconvolution (Song et al., 2018; Yazdanbakhsh et al., 2018). In contrast to previous

studies, we propose a purely algorithmic transformation that eliminates inefficiencies

due to sparsity. We show that an inherently sparse deconvolution layer can be trans-

lated to a series of dense convolutions, which then effectively map on to existing DNN

accelerators. We next explain the inefficiencies in deconvolution, and then describe our

algorithmic transformations.

Standard Deconvolution The standard process (Fig. 5.3) deconvolves a 3x3 input

feature map (ifmap) with a 3x3 kernel. The ifmap is first upsampled with zero padding,
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before being convolved with the 3x3 kernel to generate an output feature map (ofmap).

Note that the upsampling step essentially performs disparity refinement, which is fun-

damental to general stereo DNNs, rather than being specific to a particular network.

The zeros in the upsampled ifmap leads to redundant computation and memory traffic.

A key characteristic of deconvolution is that different elements in the ofmap are

calculated in different “patterns.” Consider the first 2 × 2 outputs in the ofmap: (1,

1), (1, 2), (2, 1), and (2, 2). Each of the four outputs is generated using a different set

of elements from the kernel. For instance, (1, 1) requires only e while (1, 2) requires

d and f . Critically, there are only four different patterns, which are repeated across

the ofmap. Pixels (4, 4) and (2, 2) are calculated using the same elements from the

kernel, as are (1, 1) and (5, 5), (1, 2) and (5, 4), as well as (2, 1) and (4, 5). Due

to the various patterns needed to generate different output elements, deconvolution is

clearly an “irregular” operation. Prior work (Yazdanbakhsh et al., 2018) exploits the

four unique computation patterns by augmenting a conventional DNN accelerator with

custom hardware units.

Deconvolution Transformation In contrast, we find that existing DNN accelera-

tors already provide the necessary architectural substrate to efficiently execute the four

different patterns. The key is to recognize that the four computation patterns are es-

sentially four different convolutions, each convolving the original ifmap with a distinct

kernel that is part of the original kernel. For instance, (2, 2), (2, 4), (4, 2), and (4, 4) are

generated by convolving [ a c
g i ] with ifmap. More generally, the deconvolution in Fig. 5.3

is calculated as:
a b c

d e f

g h i

 ⊛̂ I = G(
[
e
]
⊛ I,

[
d f

]
⊛ I,

b
h

⊛ I,

a c

g i

⊛ I)

where ⊛̂ denotes the deconvolution operation, ⊛ denotes the standard convolution op-

eration, I is the ifmap, and G is a gather operation to assemble the ofmap from the

results of the four convolutions. G is simply implemented as a set of load operations to
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the on-chip buffer. Essentially, our algorithm decomposes the original 3× 3 kernel into

four sub-kernels, each requiring a smaller dense convolution with the original ifmap,

which can be executed efficiently on a conventional DNN accelerator.

This transformation generalizes to kernel shapes other than 3× 3. Formally, a

2D kernel K with a dimension KH × KW will be decomposed into four sub-kernels

(S0, S1, S2, S3):

S
(i,j)
0 = K(2i,2j) i ∈ [0, ⌈KH/2⌉), j ∈ [0, ⌈KW/2⌉)

S
(i,j)
1 = K(2i+1,2j) i ∈ [0, ⌊KH/2⌋), j ∈ [0, ⌈KW/2⌉)

S
(i,j)
2 = K(2i,2j+1) i ∈ [0, ⌈KH/2⌉), j ∈ [0, ⌊KW/2⌋)

S
(i,j)
3 = K(2i+1,2j+1) i ∈ [0, ⌊KH/2⌋), j ∈ [0, ⌊KW/2⌋)

where S
(i,j)
∗ is the element (i, j) in a particular sub-kernel, and K(∗,∗) is an element

in the original kernel K. For instance, S(i,j)
0 = K(2i,2j) means that element (i, j) in

the first sub-kernel comes from element (2i, 2j) in the original kernel. The boundary

condition of each case denotes the dimension of the corresponding sub-kernel (notice

the different floor and ceiling functions in each). Hence, decomposing a 3 × 3 kernel

results in four sub-kernels of shapes 2 × 2, 1 × 2, 2 × 1, and 1 × 1, confirming the

specific example above.

5.3.2 Exploiting Inter-Layer Activation Reuse

A beneficial trait of our transformation is that each sub-convolution reads the same

ifmap, which in modern DNNs does not fit in on-chip buffers and must spill to main

memory. In contrast, our transformation can uniquely exploit inter-layer activation

reuse because each sub-convolution layer shares the same ifmap. The challenge is to

systematically maximize the reuse exploited across the entire network while minimiz-

ing the inference latency.
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We primarily consider loop tiling, which is known to be critical to exploiting data

reuse in DNNs (Mullapudi et al., 2016; Yang et al., 2018). Prior work in DNN tiling

predominately searches for the tiling strategy in a brute-force manner (Ma et al., 2017;

Hegde et al., 2018). However, brute-force search does not scale to stereo DNNs for two

reasons. First, our translation scheme significantly increases the number of layers, each

of which must be individually searched. For instance in the example of Fig. 5.3, the

number of layers quadruples; a 3D kernel could increase layers by 8×. Second, exploit-

ing the inter-layer ifmap reuse adds another scheduling dimension, further increasing

the search space.

Instead of a search, we formulate the reuse optimization as a constrained optimiza-

tion problem, minimizing layer latency while satisfying hardware resource constraints.

Our optimization can be efficiently solved using a greedy algorithm.

Architectural Assumptions We first describe the underlying architecture that the

optimization formulation assumes. Overall, we make standard assumptions that gener-

ally hold across the vast majority of current DNN accelerators. Sec. 5.4.2 describes the

hardware architecture in detail.

We assume a systolic array accelerator. Each Processing Element (PE) performs one

MAC operation per cycle (Jouppi et al., 2017b; Samajdar et al., 2018). Systolic arrays

use a very efficient neighbor-to-neighbor communication mechanism, particularly well

suited to convolution. Alternatively, our formulation could also be extended to support

spatial arrays (Chen et al., 2016), which offer more flexible control at higher hardware

cost.

We assume that the accelerator has a unified on-chip buffer (scratchpad) for the

ifmap, kernels, and ofmap. This buffer is generally too small to hold all the data for

a whole layer. Therefore, the ofmap is computed in multiple rounds. Only part of the

ifmap and the kernels are stored in the buffer each round. The optimal scheduling of

partial ifmap and kernels in the buffer for each round is critical to maximizing reuse.

The buffer is evenly split into working and filling sections for double-buffering.
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Fig. 5.4: Tiling in a translated deconvolution with a 3 × 3 kernel split into four sub-

kernels. With a tiling strategy W = 2, H = 2, C1 = 1, C2 = 2, C3 = 1, C4 = 1, only

the shaded elements are loaded into the buffer. The ofmap elements generated in this

round (shaded) are also stored in the buffer.

While the PE array is computing the current round using data in the working buffer, the

data for the next round is pre-fetched to the filling buffer. The next round starts only

when the filling buffer is full. This design choice guarantees that any data access by the

PEs will hit in the buffer without stalling the PE array.

Optimization Formulation We follow a layer-wise execution model, in which

a layer only starts after the previous layer finishes. Therefore, minimizing the total

latency is equivalent to minimizing the latency of each individual layer. We describe

how the latency of a deconvolution layer is formulated and optimized. Our formulation

can be easily extended to support a convolution layer, which can be regarded as a special

case of deconvolution without ILAR.

The optimization objective is to minimize the deconvolution layer’s latency given

hardware resource constraints. Note that since a deconvolution is translated to a set of

convolutions, it is the cumulative latency of these sub-convolutions that is of interest.

The optimization problem is formulated as follows:

min L(Θ, ϕ)(5.3)

s.t. R(Θ) ≤ R∗(5.4)

where Θ denotes a particular hardware configuration, and R(·) is the configuration’s
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hardware resources, which must not exceed the specified resource budget R∗. We con-

sider three main types of hardware resources: 1) PE array size, 2) on-chip buffer size,

and 3) off-chip memory bandwidth.

Latency L(·) is affected by both the hardware configuration (Θ) and the tiling sched-

ule (ϕ). The optimal tiling is determined by the following variables: 1) the dimension

of the ifmap tile to be loaded into the buffer (W and H), and 2) the number of filters

in each sub-kernel k to be loaded into the buffer (Ck). Critically, Ck can be different

for each sub-kernel. Fig. 5.4 illustrates these optimization variables, with an exam-

ple where part of the ifmap is convolved with certain filters of the four sub-kernels to

generate a partial ofmap. The vector
−→
C denotes the collection of all Ck.

With double buffering, a layer L’s latency is the cumulative latency across all N

rounds. The latency of each round (li) is determined by the maximum value between

the memory access time (lim) and the compute time (lic) of the round:

L(Θ, ϕ) =
N∑
i=1

li(Θ, ϕ), li(Θ, ϕ) = max(lic, l
i
m)(5.5)

With double-buffering, lic is determined by two sets of parameters: 1) W i, H i, and
−→
Ci, which decide the total compute demand, and 2) the PE array size, A∗, which decides

the compute capability. lic is the cumulative latency of processing each individual sub-

kernel:

lic =

|
−→
Ci|∑
k=1

⌈
W i

k ×H i
k × I × Ci

k ×H i ×W i

A∗

⌉
(5.6)

where |
−→
Ci| denotes the total number of sub-kernels in round i, W i and H i are the dimen-

sions of the ifmap tile loaded into the buffer in round i, W i
k and H i

k are the dimensions

of sub-kernel k in round i1, Ci
k denotes the number of filters in sub-kernel k loaded into

the buffer in round i, and I is the number of input channels. The ceil operator indicates

1The sub-kernels’ dimensions do not change across rounds. Given a k, W i
k and Hi

k are constants for

any i. For the consistency of the notations, we still use W i
k and Hi

k.
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that the next sub-kernel can not start until the previous sub-kernel is finished even if the

PE array is under-utilized. This is because only one sub-kernel can be calculated on the

systolic array at a time as sub-kernels vary in their shapes.

The memory access time, lim, is determined by the available memory bandwidth,

B∗, and the amount of data that needs to be transferred to/from DRAM each round,

which in turn depends on the reuse order: whether the ifmap tile or the sub-kernels

remain in the buffer across consecutive rounds. A binary variable β denotes this reuse

order, and lim becomes:

lim = β × lim:W + (1− β)× lim:In, β ∈ {0, 1}(5.7)

where lim:In is the memory access latency if the ifmap remains in the buffer, and lim:W

denotes the memory latency if the sub-kernels remain in the buffer. Specifically:

lim:W = (∆IF i +

|
−→
Ci|∑
k=1

∆OF i
k)×

1

B∗(5.8)

lim:In =

|
−→
Ci|∑
k=1

(∆W i
k +∆OF i

k)×
1

B∗(5.9)

where the terms with prefix ∆ denote the amount of data that needs to be loaded from

DRAM. Depending on the reuse order, either the ifmap elements (∆IF i), or the sub-

kernels (∆W i
k) are loaded. The newly computed ofmap elements (∆OF i

k) are always

stored back to DRAM. Note that ∆W i
k, ∆IF i, and ∆OF i

k are all deterministic func-

tions of W i
k, H i

k, W i, H i, and |
−→
Ci|. The expression of ∆W i

k, ∆IF i, and ∆OF i
k are

determined by W i
k, H i

k, and |
−→
Ci|. Their exact expressions are shown below:

∆W i
k = W i

k ×H i
k × Ci

k

where Ci
k denotes the total number of sub-kernel k in round i; W i

k and H i
k are the

dimensions of sub-kernel k in round i.

∆IF i = W i ×H i × I



83

where W i and H i are the weight and height of an ifmap tile to be loaded in round i, and

I is the number of input channels.

∆OF i
k =

W i ×H i × Ci
k

s2

where s denotes the stride of this layer. The on-chip buffer capacity (Buf ∗) imposes

the constraint:

(5.10) ∆IF i +

|
−→
Ci|∑
k=0

(∆OF i
k +∆W i

k) ≤ Buf ∗

Finally, Ci
k and N must satisfy:

(5.11) ∀k ∈ {1, 2, ..., |
−→
C |},C =

N∑
i=1

Ci
k

where C denotes the number of output channels of a layer, which is a constant invariant

to k and i.

Overall, this formulation minimizes the latency L with respect to W i, H i, and Ci
k

(i ∈ {1, 2, ..., N}, k ∈ {1, 2, ..., |
−→
C |}), under the hardware resource constraints A∗, B∗,

and Buf ∗.

Efficient Solver The above constrained-optimization problem has a non-convex

objective and constraints, and thus has no closed-form solutions. To derive a solution

efficiently, we convert this problem to a Knapsack-like structure, where each filter in

each sub-kernel is an item, the size of each filter is the weight, and the number of MAC

operations associated with each filter is the value.

To solve the Knapsack problem, we use a simple greedy heuristic that prioritizes

filters from large sub-kernels with standard dynamic programming. In contrast to the

classic 0/1 Knapsack problem, our problem formulation requires us to consume all the

items, since all the filters in each sub-kernel are required to finish a convolution. We

therefore iteratively apply the greedy solver until all the items are used. The solver is

executed offline and finishes within one second on an Intel Core i5-7500 CPU.
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Fig. 5.5: The ASV overview with augmentations shaded.

5.4 The ASV System

Building on top of the ISM algorithm and the deconvolution optimizations, this section

presents the software and hardware system of ASV. Fig. 5.5 gives a high-level system

overview of ASV. We first present the software system (Sec. 5.4.1), and then discuss

the architecture design decisions (Sec. 5.4.2).

5.4.1 Software System

The goal of the software system in ASV is to map the ISM algorithm to the underlying

hardware. The static mapping is done offline. There are three components in the ISM

algorithm to map: stereo matching DNN, motion estimation, and local correspondence

search. We rely on the user to supply a particular stereo DNN depending on their

accuracy needs. Motion estimation and correspondence search are implemented using

optical flow (OF) and block matching (BM), respectively, as described in Sec. 5.2.3.
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We now describe how each component is processed by the software.

Mapping Stereo Matching DNN For the deconvolution layer, the ASV software

performs the deconvolution transformation, as well as the data reuse optimization. For

convolution layers, while the deconvolution transformation does not apply, we apply

the data reuse optimization without ILAR. In the end, we obtain a transformed stereo

DNN along with an execution schedule, which are both consumed by the hardware at

runtime. The schedule includes the tiling strategy and buffer partitioning strategy for

each layer.

Mapping OF/BM The software maps the OF and BM algorithms in ISM to a set of

convolution and/or activation operations that are directly interfaced with conventional

DNN accelerators. The software translates the BM operation to a convolution layer

(Sec. 5.2.3), but calculates SAD instead of dot product at each window.

The OF computations include Gaussian blur, “Compute Flow” and “Matrix Update”

operations (Sec. 5.2.3), shown in the top-right box in Fig. 5.5. Gaussian blur is natu-

rally expressed as a convolution layer with one output channel. “Compute Flow” and

”Matrix Update” are point-wise operations expressed as special activation functions.

5.4.2 Hardware Architecture

Leveraging the software pass, the hardware requires only minimal, structured augmen-

tations on top of a conventional DNN accelerator. We start from a baseline DNN ac-

celerator and describe how the compute, memory, and control logic is augmented with

ASV-specific architectural extensions.

Compute Our baseline DNN accelerator consists of a TPU-like systolic PE array

for convolution and a scalar unit for non-convolution operations, e.g., activation (Jouppi

et al., 2017b). Each PE consists of two 16-bit input registers, a 16-bit fixed-point MAC

unit with a 32-bit accumulator register, and simple trivial control logic. This is identical

to the PE in the TPU (Jouppi et al., 2017b).
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We use the systolic array as the baseline due to its efficiency in handling convo-

lutions. However, our software optimizations do not depend on a particular baseline

DNN architecture. Alternatives such as more flexible spatial architectures (Chen et al.,

2014a, 2016) are also suitable, albeit requiring different constrained-optimization for-

mulations to those presented in Sec. 5.3.2. We will later demonstrate the effectiveness

of our deconvolution optimizations on Eyeriss (Chen et al., 2016).

ASV augments both the systolic array and the scalar unit in the baseline architec-

ture to support the ISM algorithm. First, each PE is extended with the capability to

accumulate absolute differences (i.e., a ← a + |b − c|) in addition to MAC in order to

support BM. Second, we extend the scalar unit to support two additional point-wise op-

erations: “Compute Flow” and “Matrix Update”; both are required by OF (as illustrated

in the bottom-right box in Fig. 5.5).

Finally, the hardware includes a very small amount of additional logic to support

the remaining operations in the ISM algorithm that are inefficient to map to either the

systolic array or the point-wise scalar unit. These operations are comparisons and

control-flow, and are orders of magnitude less costly in area and power compared to

the systolic array and the scalar unit. For instance, BM requires comparing the SAD

values across different matched blocks, and OF requires checking the value boundaries

during ”Matrix Update”.

Memory ASV uses the familiar three-level memory hierarchy (Li et al., 2019).

Each PE has a small register file to exploit intra/inter-PE data reuse. A DMA engine

coordinates data transfer between the on-chip global buffer and off-chip memory. The

global buffer is temporally shared between key frames and non-key frames. When

processing key frames, the global buffer holds the ifmap, kernels, and ofmaps. The

exact buffer partitioning is dictated by the ASV software.

When processing non-key frames, the global buffer holds four pieces of data: the

pixels of the current and key frames, the Gaussian kernel, the motion vectors, and

the disparity maps. The frame pixels dominate the storage requirement but could be
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tiled because they are used in Gaussian blur and BM, both of which are convolution

operations. The rest of the data cannot be tiled, and thus imposes a minimum buffer

size. Assuming qHD resolution (960 × 540), we enforce a minimum buffer size of

about 512 KB.

Control A micro-sequencer is used to coordinate the computation and memory

accesses. In ASV, the sequencer also chooses key frames. Although complex adaptive

schemes are feasible (Zhu et al., 2018b; Buckler et al., 2018), we found that a simple

strategy to statically set the key-frame window suffices (Sec. 5.6.2).

5.5 Evaluation Methodology

This section introduces the basic hardware and software setup (Sec. 5.5.1), and outlines

the evaluation plan (Sec. 5.5.2).

5.5.1 Basic Setup

Hardware Implementation We develop validated RTL implementations for ASV

hardware. The hardware is based on a systolic array architecture, consisting of 24× 24

PEs clocked at 1 GHz. Each PE is capable of performing both the MAC and absolute

difference operations. The hardware also has a scalar unit clocked at 250 MHz, which

consists of 8 parallel lanes, each capable of performing the ReLU activation function as

well as the point-wise matrix update and compute flow operations required by OF. The

on-chip buffer (SRAM) is 1.5 MB in size and is banked at a 128 KB granularity. While

we primarily evaluate ASV using this configuration, we will later show the sensitivity

of ASV performance to different hardware resource configurations.

The RTL is implemented using Synposys synthesis and Cadence layout tools in

TSMC 16nm FinFET technology, with SRAMs generated by an ARM compiler. Power

is simulated using Synopsys PrimeTimePX, with full annotated switching activity. The
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off-chip DRAM is modeled after four Micron 16 Gb LPDDR3-1600 channels (Micron,

2014). Overall, the accelerator layout has a total area of 3.0mm2, and produces a raw

throughput of 1.152 Tera operations per second.

Stereo DNNs The ISM algorithm can use an arbitrary stereo DNN. We evaluate

four state-of-the-art DNNs: FLOWNETC (Fischer et al., 2015), DISPNET (Mayer et al.,

2016), GC-NET (Smolyanskiy et al., 2018), and PSMNET (Chang and Chen, 2018).

Dataset We evaluate ASV on two widely-used datasets: SceneFlow (Mayer et al.,

2016) and KITTI (Menze and Geiger, 2015). SceneFlow contains 26 pairs of synthetic

stereo videos to mimic various scenarios with different depth ranges. KITTI contains

200 pairs of stereo frames captured from real street views that cover varying driving

scenarios and conditions.

We use the standard “three-pixel-error” accuracy metric (Geiger, 2012; Menze and

Geiger, 2015), which considers a pixel’s depth to be correct if its disparity error is

less than 3 pixels compared to ground truth. We then report the percentage of correct

pixels, following the convention in the vision and robotics literature (Mayer et al., 2016;

Kendall et al., 2017; Chang and Chen, 2018; Smolyanskiy et al., 2018).

5.5.2 Evaluation Plan

Our goal is to demonstrate the effectiveness of ASV over generic CNN accelerators

that are not optimized for stereo vision workloads. We separate the efficiency gains of

the new ISM algorithm from that of the deconvolution optimizations.

Baselines Our baseline is a generic systolic array CNN accelerator, which executes

stereo DNNs without any ASV optimizations. Today’s CNN accelerators mostly stati-

cally partition the on-chip buffer across ifmap, weights, and ofmap. To obtain a strong

baseline, we determine the partitioning strategy by exhaustively searching all the parti-

tions offline and use the one that achieves the lowest latency for the entire DNN. Note
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that the same partition is used for all the layers whereas our data reuse optimization

generates different partitions for different layers.

We also compare against Eyeriss (Chen et al., 2016), a DNN accelerator based on a

more flexible spatial architecture. Eyeriss performance and energy are obtained using

the public simulator (Gao et al., 2017). For a fair comparison, we configure Eyeriss to

have the same PE counts, on-chip memory capacity, and memory bandwidth as ASV.

Finally, to establish a baseline, we also show the results of the Pascal mobile GPU found

in the 16 nm Nvidia Parker SoC hosted on the Jetson TX2 development board (Nvidia,

2017c). We use the built-in power sensing circuitry to obtain energy consumption.

ASV Variants We present an ablation study on ASV to separate the gains from

different optimizations:

• ISM: ISM algorithm without deconvolution optimizations.

• DCO: Deconvolution optimizations without ISM algorithm.

• ISM+DCO: Both ISM and deconvolution optimizations.

5.6 Evaluation

We first show that ASV adds negligible overhead to the baseline DNN accelerator

(Sec. 5.6.1) and introduces negligible accuracy loss (Sec. 5.6.2). We then show the

performance and energy improvements of ASV (Sec. 5.6.3), which are robust against

the underlying hardware configuration (Sec. 5.6.4).

5.6.1 Hardware Overhead

Owing to the software transformations, ASV only minimally augments existing DNN

accelerators. Relative to the baseline accelerator, ASV extends each PE to support
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Fig. 5.6: Error rate comparison between the ISM algorithm in ASV and the DNN

baselines.

accumulating absolute difference. This adds 6.3% area (15.3 µm2) and 2.3% power

(0.02mW) overhead per PE. ASV also extends the scalar unit to support new point-

wise operations, with an area and power overhead of 2mm2 and 2.2mW, respectively.

The overall area and power overhead introduced by ASV are both below 0.5%.

5.6.2 Accuracy Results

ASV matches or even outperforms DNN accuracy. Fig. 5.6 shows the accuracy of ap-

plying the ISM algorithm to stereo matching DNNs. We use Propagation Window (PW)

to denote how far in time the correspondence invariant is propagated, which in turn de-

cides how often key frames are selected. With PW-2, every other frame is selected as

a key frame, and for PW-4, every fourth frame is a key frame. Note that the KITTI

dataset contains at most two consecutive frames, and thus we evaluate only PW-2.

On both datasets, PW-2 retains the same accuracy as the stereo DNNs. On Scene-

Flow, PW-4 results in only 0.02% accuracy loss. In some cases, ISM combined with

the DNNs can outperform the DNNs alone. For instance, applying the ISM algorithm

with FLOWNETC reduces error by 0.11% at PW-4. Overall, our experiments shows

that by leveraging the correspondence invariant over time, ISM is able to preserve the

DNN-like accuracy with cheap, classic stereo matching algorithms. We will now show
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Fig. 5.7: The speedup and energy reduction of the three ASV variants over the baseline.

that ASV achieves high accuracy while greatly improving the performance and energy-

efficiency of stereo vision.

5.6.3 Speedup and Energy Reduction

ASV significantly improves the performance and energy consumption of stereo vi-

sion. To understand the contributions of the ISM algorithm and the deconvolution

optimizations, Fig. 5.7 shows the speedup and energy reduction of the three ASV vari-

ants (Sec. 5.5.2) over the baseline when applied to different stereo DNNs. We choose

PW-4 for the ISM algorithm. On average, combining ISM and deconvolution opti-

mizations (DCO) ASV achieves 4.9× speedup and 85% energy reduction. Specifi-

cally, ISM achieves, on average, 3.3× speedup and 75% energy reduction, while DCO

achieves 57% performance improvement and 38% energy reduction. ISM contributes

more than DCO because ISM avoids DNNs in non-key frames altogether by using the

much cheaper BM and OF algorithms (Sec. 5.2.3).

Next, we dissect different optimization components within DCO to further under-

stand the effect of each optimization.

Deconvolution Optimizations Deconvolution optimizations consist of two com-

ponents: the deconvolution to convolution transformation (DCT - Sec. 5.3.1) and the

data-reuse optimization (Sec. 5.3.2). In particular, our data-reuse formulation unifies
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(b) Speedup and energy reduction on the entire network.

Fig. 5.8: The speedup and energy reduction of various deconvolution optimizations.

Higher is better.

the exploitation of two kinds of reuse: the conventional data reuse in convolution lay-

ers and the inter-layer activation reuse in deconvolutions that is uniquely exposed by

DCT. To clearly tease apart our contributions, we show the results of both the conven-

tional reuse optimization (ConvR), which is obtained by applying our reuse optimizer

(Sec. 5.3.2) without exploiting inter-layer activation reuse, and the additional effect of

exploiting inter-layer activation reuse (ILAR).

Fig. 5.8 shows the speedup and energy reduction of DCT, ConvR, and

ILAR. Fig. 5.8a shows the improvements of deconvolution layers only, and Fig. 5.8b

shows the improvements of the entire network. The majority of speedup is from de-

convolution transformation, which yields an average 3.9× speedup on deconvolution

layers alone and 1.4× speedup on the entire network. On top of DCT, ConvR and



93

ILAR further increase speedup to 5.6× and 1.6× on deconvolution layers alone and

the entire networks, respectively.

Across different stereo DNNs, we find that 3D DNNs (GC-NET and PSMNET)

have a speedup of 7.7× on deconvolution layers, higher than the 3.9× speedup of 2D

DNNs (DISPNET and FLOWNETC). The reason is twofold. First, 3D DNNs have

the higher percentage of zero-padding than 2D DNNs (8× vs. 4×), which are effec-

tively eliminated by our deconvolution transformation. Second, after the deconvolution

transformation the 3D DNNs have many small kernels (e.g., 1×1×1), which leads to

low data-reuse. Thus, reuse optimizations become more critical to these networks. In

contrast, most 2D stereo DNNs inherently have better data reuse with larger kernels

(e.g., 5×5). We also observe that ConvR and ILAR have similar performance. This

is because both optimize the data reuse to the extent that the layer processing becomes

limited by the PE size.

While ILAR is similar in speedup compared to ConvR, ILAR is much more effec-

tive in reducing energy than ConvR. To demonstrate this, Fig. 5.8 overlays the energy

reductions of different DCO variants on the right y-axis. DCO achieves 83% energy

reduction on deconvolution alone and 38% on the entire network. Specifically, DCT re-

duces the deconvolution energy by 62%; ConvR and ILAR further improve the energy

reduction to 73% and 83%, respectively.

The energy saving of DCT comes from eliminating redundant movement of padded

zeros in the upsampled ifmap. ILAR achieves additional energy reduction over ConvR

by exploiting inter-layer activation reuse, a unique reuse behavior in our transformed

deconvolution layers. 3D DNNs benefit much more from ILAR than 2D DNNs, as is

evident by examining the additional energy reductions of ILAR over ConvR across

networks. This is because 3D stereo DNNs have low ifmap data-reuse; ILAR uniquely

exploits inter-layer ifmap reuse, and thus reduces more memory traffics.
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Fig. 5.9: Sensitivity analysis of DCO speedup and energy reduction with buffer size

and PE array size on FLOWNETC. Speedup is normalized to the corresponding config-

urations, not to a single, common baseline.

5.6.4 Sensitivity Analysis

While the speedup and energy reduction studied so far are based on one representative

baseline accelerator configuration (Sec. 5.5.1), we find that our deconvolution optimiza-

tion generally achieves similar improvements on other hardware configurations with re-

source provisions. In particular, we focus on two key types of hardware resources: PE

size and on-chip buffer size. For brevity, we only report results on FLOWNETC (Fischer

et al., 2015), but the trends generally hold.

Fig. 5.9a and Fig. 5.9b show how DCO’s average speedup and energy reduction of

the entire network vary with different PE size and buffer size combinations, respec-

tively. Note that the results are normalized to their corresponding hardware configura-

tions rather than to the baseline described in Sec. 5.5.1. For instance, on the hardware

with an 8×8 PE array and a 0.5 MB on-chip buffer, DCO achieves an 1.44× speedup.

DCO achieves speedups of 1.2× – 1.5× and energy reductions of 25% – 35% across

different hardware capabilities, demonstrating broad applicability. In general, the per-

formance improvement of DCO is more pronounced with small PE arrays, where the
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performance is compute-bound. As the PE size increases, the performance becomes

memory bound, such that memory bandwidth limitations mask the benefit of data reuse.

In addition, as the buffer size increases, the reuse opportunities inherently exposed by

the buffer is higher, and thus data reuse optimizations become less critical, hence the

lower energy savings.

5.7 Related Work

Stereo Vision Accelerators Recently, commercial mobile vision systems (Zhu et al.,

2018a) have started integrating dedicated stereo accelerators, such as the Stereo Depth

Block in the Movidius Enhanced Vision Accelerator Suite (Intel, 2017), and the Stereo

& Optical Flow Engine (SOFE) in the Nvidia Xavier mobile SoC (Nvidia, 2018).

From publicly available details, these are fixed-functioned accelerators targeting clas-

sic stereo algorithms, similar to previous stereo vision accelerators (Gudis et al., 2013;

Ttofis and Theocharides, 2014; Yang, 2014; Wang et al., 2015; Mazumdar et al., 2017).

In contrast, ASV combines the efficiency of classic stereo algorithms with the accuracy

of stereo DNNs.

Motion-based Algorithms Our ISM algorithm shares a similar key observation

as some recent motion-based vision algorithms such as EVA2 (Buckler et al., 2018) and

Euphrates (Zhu et al., 2018b), in that correlation across frames in a video stream can

be used to simplify continuous vision tasks. Euphrates (Zhu et al., 2018b) focuses on

computing regions-of-interest (ROIs) in object detection and tracking tasks. In contrast,

stereo vision is concerned with the depth of the whole frame rather than discrete ROIs.

EVA2 (Buckler et al., 2018) is not limited to ROIs. However, it relies on estimating the

motion of an intermediate activation’s receptive field. In the stereo task, the receptive

field of an intermediate activation necessarily spans both the left and right images.

Thus, the motion of the receptive field would be difficult, if not impossible, to calculate.

Fundamentally, motion-based relaxations fall within the realm of incremental com-
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puting, a general technique used in program analysis and optimization (Michie, 1968;

Pugh and Teitelbaum, 1989) and applies beyond the temporal and/or vision domain.

Diffy (Mahmoud et al., 2018) exploits the spatial similarity across pixels in the same

frame to improve DNN efficiency. Riera et al. (Riera et al., 2018) exploit repeated ifmap

elements in speech recognition.

Deconvolution Sparsity Many prior studies optimize hardware to exploit sparsity

in DNNs (Wen et al., 2016; Albericio et al., 2016; Han et al., 2016b; He et al., 2017b;

Kung et al., 2019; Wu et al., 2018b; Whatmough et al., 2018; Lee et al., 2019). Stereo

vision DNNs make use of deconvolution layers, which expose structured sparsity pat-

terns. Recent work has prosed specialized hardware specifically for exploiting sparsity

in deconvolution layers (Yazdanbakhsh et al., 2018; Song et al., 2018). Our obser-

vation, however, is that mitigating sparsity-induced efficiencies in deconvolution does

not necessarily require hardware support. We propose novel software optimizations to

eliminate the compute inefficiencies without hardware changes.

Data-Reuse Optimization Exploiting data-reuse (through tiling) is critical to

DNN efficiency (Chen et al., 2014b, 2016; Alwani et al., 2016; Mullapudi et al., 2016;

Yang et al., 2016; Gao et al., 2017; Ma et al., 2017; Hegde et al., 2018; Whatmough

et al., 2019; Kwon et al., 2018; Gao et al., 2019; Whatmough et al., 2019a). Orthogonal

to generic data-reuse, we identify a new reuse dimension, inter-layer activation reuse

(ILAR), that is uniquely enabled by our deconvolution transformation.

Previous DNN mapping frameworks mostly rely on exhaustive search (Yang et al.,

2016, 2018; Hegde et al., 2018), which does not scale to exploiting ILAR (Sec. 5.3.2).

TETRIS (Gao et al., 2017) also uses a constrained optimization for DNN scheduling,

albeit with certain problem-specific simplifications. However, it does not exploit ILAR.

ASV directly optimizes for latency rather than memory traffic (Yang et al., 2016; Gao

et al., 2017) or resource utilization (Ma et al., 2017).
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6 Point Cloud Vision System

Similar to images, point clouds are also widely used in many vision computing sys-

tems, such as drone/robotic navigation, and AR/VR. This chapter introduces the basic

concepts of point cloud and its vision applications in Sec. 6.1. Then, the general com-

putation flow of today’s point cloud algorithms with the common computation ineffi-

ciencies is discussed in Sec. 6.2. Lastly, Sec. 6.3 highlights the memory inefficiencies

that currently exist in point cloud analytics.

6.1 Introduction

Point Cloud A point cloud is an unordered set of points in the 3D Cartesian space.

Each point is uniquely identified by its ⟨x, y, z⟩ coordinates. While point cloud

has long been used as a fundamental visual data representation in fields such as 3D

modeling (Alliez et al., 2017) and graphics rendering (Levoy and Whitted, 1985;

Rusinkiewicz and Levoy, 2000; Pfister et al., 2000; Gross and Pfister, 2011), it has

recently received lots of attention in a range of emerging intelligent systems such as

autonomous vehicles (Geiger et al., 2012a), robotics (Whitty et al., 2010), and AR/VR

devices (Stets et al., 2017).

Point Cloud Acquisitions There are numerous ways to obtain point clouds. The
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two major methods are laser scanning and photogrammetry (Lehtola et al., 2017). In

laser scanning, a technology called LiDAR which stands for Light Detection and Rang-

ing is commonly used to harvest point clouds by scanning over a scene or an object.

On the other hand, photogrammetry relies on photos and performs 3D reconstruction

software to create point cloud representations. Although point clouds generated from

photogrammetry are often more accurate due to a large number of individual points

created from a 3D reconstruction, LiDAR is able to capture a large space in a real-time

manner. Therefore, LiDAR is often preferred for many real-time vision applications,

e.g. autonomous driving and drone navigation. For these applications, LiDAR becomes

an essential sensor in a part of their perception systems.

For their perception systems, LiDARs generate massive amounts of point cloud

data. For instance, the Velodyne HDL64E LiDAR generates hundreds of thousands of

points in each frame, amounting to up to 26 MB of raw data per second. Effectively

compressing point clouds in real-time enables autonomous machines to be closely con-

nected with each other and with the cloud, ushering in a new era in distributed and

cloud robotics. For instance, efficient point cloud compression would enable offload-

ing compute-intensive perception tasks (e.g., object detection) to the cloud to reduce

the perception latency; similarly, collaborative decision-making across robots relies on

efficient point cloud compression to exchange information.

Point Cloud Analytics Similar to conventional visual analytics that analyzes

images and videos, point cloud analytics distill semantics information from point

clouds. Examples include object detection (Geiger et al., 2012a), semantics segmenta-

tion (Behley et al., 2019), and classification (Wu et al., 2015). While image and video

analytics have been well-optimized, point cloud analytics require different algorithms

and are much less optimized.

Point cloud algorithms operate by iteratively extracting features of each point. Con-

ventional point cloud algorithms use “hand-crafted” features such as FPFH (Rusu et al.,

2009) and SHOT (Tombari et al., 2010). Recent deep learning-based algorithms use
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(a) Network architecture of PointNet++ (Qi et al., 2017b).

Output 

Input Module 1

FCs

Module 2

Module 3 Module 4 Module 5 Module 6

MatMul

+
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Fig. 6.1: Point cloud networks consist of a set of modules, which extract local features

from the input point cloud iteratively and hierarchically to calculate the final output.

learned features and have generally out-performed conventional algorithms (Chen et al.,

2016). This paper thus focuses on deep learning-based algorithms.

This dissertation focuses on deep learning-based algorithms that directly manipulate

raw point clouds. Other data representations such as 2D projections of 3D points and

voxelization suffer from low accuracy and/or consume excessively high memory (Liu

et al., 2019c).

6.2 Computation in Point Cloud Analytics

In this section, Sec. 6.2.1 first introduces the general flow of point cloud algorithms

and identifies key operators. Sec. 6.2.2 then characterizes point cloud algorithms on

today’s hardware systems to understand the algorithmic and compute inefficiencies in

point cloud analytics.

6.2.1 Point Cloud Network Architecture

Module The key component in point cloud algorithms is a module. Each module

transforms an input point cloud to an output point cloud, similar to how a convolu-



100

tion layer transforms an input feature map to an output feature map in conventional

CNNs. A point cloud network assembles different modules along with other common

primitives such as fully-connected (FC) layers. Fig. 6.1a and Fig. 6.1b illustrate the

architecture of two representative point cloud networks, PointNet++ (Qi et al., 2017b)

and DGCNN (Wang et al., 2019a), respectively.

Module Internals Each point p in a point cloud is represented by a feature vector,

which in the original point cloud is simply the 3D coordinates of the point. The input

point cloud to a module is represented by an Nin × Min matrix, where Nin denotes

the number of input points and Min denotes the input feature dimension. Similarly, the

output point cloud is represented by an Nout ×Mout matrix, where Nout denotes the

number of output points and Mout denotes the output feature dimension. Note that Nin

and Nout need not be the same; neither do Min and Mout.

Internally, each module extracts local features from the input point cloud. This is

achieved by iteratively operating on a small neighborhood of input points, similar to

how a convolution layer extracts local features of the input image through a sliding

window. Fig. 6.2 illustrates this analogy.

Specifically, each output point po is computed from an input point pi in three steps

— neighbor search (N ), aggregation (A), and feature computation (F):

po = F(A(N (pi), pi))(6.1)

whereN returns K neighbors of pi, A aggregates the K neighbors, and F operates on

the aggregation (pi and its K neighbors) to generate the output po.

The same formulation applies to the convolution operation in conventional CNNs

as well, as illustrated in Fig. 6.2. However, the specifics of the three operations differ

in point cloud networks and CNNs. Understanding the differences is key to identifying

optimization opportunities.

Neighbor Search N in convolution returns K adjacent pixels in a regular 3D

tensor by simply indexing the input feature map (K dictated by the convolution kernel
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search (N ) by directly indexing adjacent pixels and 2) feature computation (F) by a

dot product.
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(b) Point cloud networks consist of three main steps: neighbor search (N ), aggrega-

tion (A), and feature computation (F). N requires an explicit neighbor search; A

normalizes neighbors to their centroid; F is an MLP with batched inputs (i.e., shared

MLP weights).

Fig. 6.2: Comparing a convolution layer in conventional CNNs and a module in point

cloud networks.

volume). In contrast, N in point cloud networks requires explicit neighbor search to

return the K nearest neighbors of pi, because the points are irregularly scattered in the

space. Similar to the notion of a “stride” in convolution, the neighbor search might be

applied to only a subset of the input points, in which case Nout would be smaller than

Nin, as is the case in Fig. 6.2b.

Aggregation Given the K pixels, convolution in CNNs directly operates on the

raw pixel values. Thus, conventional convolution skips the aggregation step.

In contrast, point cloud modules operate on the relative value of each point in order

to correlate a neighbor with its centroid. For instance, a point p3 could be a neighbor
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Fig. 6.3: The first module in PointNet++ (Qi et al., 2017b). The same MLP is shared

across all the row vectors in a Neighbor Feature Matrix (NFM) and also across differ-

ent NFMs. Thus, MLPs in point cloud networks process batched inputs, effectively

performing matrix-matrix multiplications. The (shared) MLP weights are small in size,

but the MLP activations are much larger. This is because the same input point is nor-

malized to different values in different neighborhoods before entering the MLP. For

instance, P3 is normalized to different offsets with respect to P1 and P2 as P3 is a

neighbor of both P1 and P2. In point cloud algorithms, most points are normalized to

20 to 100 centroids, proportionally increasing the MLP activation size.

of two centroids p1 and p2 (as is the case in Fig. 6.2b). To differentiate the different

contributions of p3 to p1 and p2, p3 is normalized to the two centroids by calculating

the offsets p3 − p1 and p3 − p2 for subsequent computations.

Generally, for each neighbor pk ∈ N (pi), the aggregation operation calculates the

offset pk − pi (a 1 ×Min vector). All K neighbors’ offsets form a Neighbor Feature

Matrix (NFM) of size K ×Min, effectively aggregating the neighbors of pi.

Feature Computation F in convolution is a dot product between the pixel values

in a window and the kernel weights. In contrast, F in point cloud applies a multilayer

perceptron (MLP) to each row vector in the NFM. Critically, all K row vectors share the

same MLP; thus, the K input vectors are batched into a matrix and the MLP becomes

a matrix-matrix product, transforming a K ×Min matrix to a K ×Mout matrix.

In the end, a reduction operation then reduces the K ×Mout matrix to a 1 ×Mout

vector, which becomes the feature vector of an output point. A common choice for
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reduction is to, for each column independently, take the max of the K rows.

Example Fig. 6.3 shows the first module in PointNet++ (Qi et al., 2017b), a classic

point cloud network that many other networks build upon. This module transforms a

point cloud with 1024 (Nin) points, each with a 3-D (Min) feature vector, to a point

cloud with 512 (Nout) points, each with a 128-D (Mout) feature vector, indicating that

the neighbor search is applied to only 512 input points. Each neighbor search returns

32 (K) neighbors and forms a 32× 3 NFM, which is processed by a MLP with 3 layers

to generate a 32× 128 matrix, which in turn is reduced to a 1× 128 feature vector for
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an output point. In this particular network, all the NFMs also share the same MLP.

Note that while feature computation is not always MLP and normalization

is not always different from centroids, they are the most widely used, both

in classic networks (e.g., PointNet++ (Qi et al., 2017b)) and recent ones (e.g.,

DGCNN (Wang et al., 2019a)).

6.2.2 Performance Characterizations

We characterize point cloud networks on today’s systems to understand the bottlenecks

and optimization opportunities. To that end, we profile the performance of five pop-

ular point cloud networks on the mobile Pascal GPU on the Jetson TX2 development

board (Nvidia, 2017c), which is representative of state-of-the-art mobile computing

platforms.

Time Distribution Fig. 6.4 shows the execution times of the five networks, which

range from 71 ms to 5,200 ms, clearly infeasible for real-time deployment. The time

would scale proportionally as the input size grows.

Fig. 6.5 further decomposes the execution time into the three components, i.e.,

Neighbor Search (N ), Aggregation (A), and Feature Computation (F). N and F are

the major performance bottlenecks. While F consists of MLP operations that are well-

optimized,N (andA) is uniquely introduced in point cloud networks. Even if F could

be further accelerated on a DNN accelerator, N has compute and data access patterns

different from matrix multiplications (Xu et al., 2019), and thus does not fit on a DNN

accelerator.

Critically, N , A, and F are serialized. Thus, they all contribute to the critical path

latency; optimizing one alone would not lead to universal speedups. The serialization

is inherent to today’s point cloud algorithms: in order to extract local features of a

point (F), the point must be aggregated with its neighbors (A), which in turn requires

neighbor search (N ).
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Memory Analysis Point cloud networks have large memory footprints. While the

MLP weights are small and are shared across input NFMs (Fig. 6.3), the intermediate

(inter-layer) activations in the MLP are excessive in size.

The “Original” category in Fig. 8.3 shows the distribution of each MLP layer’s

output size across the five networks. The data is shown as a violin plot, where the high

and low ticks represent the largest and smallest layer output size, respectively, and the

width of the violin represents the density at a particular size value (y-axis). The layer

output usually exceeds 2 MB, and could be as large as 32 MB, much greater than a

typical on-chip memory size in today’s mobile GPUs or DNN accelerators. The large

activation sizes would lead to frequent DRAM accesses and high energy consumption.

The large activation size is fundamental to point cloud algorithms. This is because

an input point usually belongs to many overlapped neighborhoods, and thus must be

normalized to different values, one for each neighborhood. Fig. 6.2b shows a concrete

example, where P3 is a neighbor of both P1 and P2; the aggregation operation normal-

izes P3 to P1 and P2, leading to two different relative values (P3 - P1 and P3 - P2)

that participate in feature computation, increasing the activation size. This is in con-

trast to convolutions, where pixels in overlapped neighborhoods (windows) are directly

reused in feature computation (e.g., P4 in Fig. 6.2a).

We use two networks, DGCNN (Qi et al., 2017b) and PointNet++ (Wang et al.,

2019a), to explain the large activation sizes. Fig. 6.6 shows the distribution of the

number of neighborhoods each point is in. Each curve corresponds to an input point

cloud, and each (x, y) point on a curve denotes the number of points (y) that occur in

a certain number of neighborhoods (x). In PointNet++, over half occur in more than

30 neighborhoods; in DGCNN, over half occurs in 20 neighborhoods. Since the same

point is normalized to different values in different neighborhoods, this bloats the MLP’s

intermediate activations.

Compute Cost The large activations lead to high multiply-and-accumulate

(MACs) operations. Fig. 6.7 compares the number of MAC operations in three classic
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CNNs with that in the feature computation of point cloud networks. To use the same

“resolution” for a fair comparison, the input point cloud has 130,000 points (e.g., from

the widely-used KITTI Odometry dataset (Geiger et al., 2012a)) and the CNN input has

a similar amount of pixels. In feature computation alone, point cloud networks have an

order of magnitude higher MAC counts than conventional CNNs.

Summary Today’s point cloud algorithms extract local features of a point by

aggregating the point with its neighbors. The aggregation happens before feature com-

putation, which leads to two fundamental inefficiencies in compute:

• The two major performance bottlenecks, neighbor search and feature computa-

tion, are serialized.

• Feature computation operates on aggregated neighbor points, leading to high

memory and compute costs.

6.3 Memory Inefficiencies in Point Cloud Analytics

This section quantifies the memory inefficiencies in two main operations of point cloud

analytics, neighbor search (Sec. 6.3.1) and feature computation (Sec. 6.3.2).

6.3.1 Memory Inefficiencies in Neighbor Search

Neighbor search in low-dimensional space (e.g., 3D) commonly uses the K-d

tree (Bentley, 1975), which recursively subdivides the search space into two half-spaces

using axis-aligned planes. The sub-spaces are organized as a tree, and the neighbor

search becomes a tree traversal problem. Compared to exhaustive search, the space

subdivision strategy is more efficient as it prunes the search space: if the distance of

a query Q and the boundary of a subspace S is greater than the search radius, all the

points in S can be skipped.
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rate in neighbor search.

While K-d tree search is inherently parallel (as different search queries are indepen-

dent), tree traversals are hardware unfriendly. In particular, the memory access patterns

are known only at run time, leading to massive inefficiencies in both DRAM and SRAM

accesses, which we quantify below.

DRAM DRAM access inefficiency in neighbor search is manifested in two

ways: non-streaming accesses and redundant accesses. The DRAM accesses are non-

streaming because the inputs (points) are arbitrarily distributed in the search space. If

two queries being processed in parallel are spatially far-apart, they will likely exercise

different parts of the K-d tree that are non-contiguous in memory. Even within the same

query, tree nodes consecutively accessed during traversals are likely non-continuous in

memory due to the control-flow heavy nature of tree traversal. Fig. 6.8 shows the per-

centage of non-continuous DRAM accesses across four popular point cloud DNNs.

Almost all DRAM accesses are non-continuous.

The non-streaming nature coupled with large point cloud data size leads to redun-

dant DRAM accesses. For instance, in the popular KITTI dataset (Geiger et al., 2012a),

the total points and queries in a typical scene alone can be over tens of MBs (not con-

sidering the network weights, activations, etc.), larger than what a mobile SoC can

accommodate. Thus, points are loaded on-chip in chunks (analogous to tiling in con-

ventional DNNs). Since not all data in each chunk will be used when they are loaded
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Fig. 6.11: SRAM bank conflict rate in ag-

gregation, assuming 16 banks and 16 con-

current memory requests.

due to the non-streaming access pattern, a great amount of DRAM accesses are wasted.

Fig. 6.9 quantifies the excessive DRAM accesses and cache miss rate in neighbor

search. The left y-axis shows the ratio of the amount of DRAM requests (in bytes) to the

actual data theoretically needed by the algorithm (i.e., reading each query and search

point once). The data are obtained by simulating an unrealistic 10 MB fully-associated

cache running a neighbor search on a typical KITTI-constructed scene with about 1.2

million points. Even with this unrealistic SRAM structure, searches in many models

have about 10× more DRAM traffic than what is strictly required. Realistic mobile

accelerators would allocate an even smaller buffer for neighbor search to accommodate

other data structures such as DNN weights and activations. The right y-axis quantifies

the corresponding cache miss rates, which are over 85%.

SRAM The on-chip memory accesses in K-d tree search are also inefficient be-

cause of the frequent bank conflicts. In regular kernels such as stencil pipelines (Qadeer

et al., 2013; Whatmough et al., 2019a) where the memory access pattern is statically

known, one could carefully interleave data in the SRAM banks to avoid bank con-

flicts (Kirk and Wen-Mei, 2016; Zhou et al., 2021). In contrast, on-chip memory ac-

cesses in neighbor search are input-dependent, thus, bank conflicts are inevitable.

Fig. 6.10 quantifies the bank conflicts by showing the percentage of SRAM accesses

that are bank-conflicted and how the percentage varies with the number of banks. We
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assume an unrealistically large 10 MB buffer and 8 concurrent SRAM requests. With

4 banks the bank conflict rate is 26.9%. The bank conflict rate is reduced to 2.1% only

when the number of banks quadruples the number of simultaneous requests.

Using a heavily-banked SRAM design is highly undesirable. A large number of

banks requires a more costly crossbar design (Agarwal et al., 2009; Grot et al., 2011), as

the crossbar area grows quadratically with the number of banks. Using an Arm memory

compiler (Arm, 2016), we find that the crossbar area is twice as much as the memory

arrays under a 32-bank configuration. In addition, a higher bank count also reduces the

memory array size, which increases the per-bank overhead (peripheral circuits, BIST,

redundancy) (Weste and Harris, 2015).

6.3.2 Memory Inefficiencies in Feature Computation

Unlike neighbor search, the DRAM accesses in the feature computation stage are com-

pletely streaming. The on-chip memory accesses, however, are met with frequent bank

conflicts.

Feature computation is broken down into two steps: 1) aggregate the neighbors for

each input point pi using the neighbor indices generated in the neighbor search stage,

and 2) compute an output point po from each pi by applying a function, usually a MLP,

to the neighbors of pi. Step 2 is accelerated on today’s DNN accelerators.

Step 1 is analogous to fetching data from the input feature map in a conventional

DNN. However, conventional DNNs access consecutive feature map elements with

statically-known patterns. Therefore, a compiler lays out data in the SRAM such that a

simple single-bank, single-port memory array (using wide words) could serve memory

requests from tens or hundreds of PEs in one cycle without stalling the PEs (Jouppi

et al., 2017b; Arm, 2018; Zhou et al., 2021).

However, point cloud networks access non-consecutive memory in this step, be-

cause the neighbors of a point can be arbitrary. Therefore, the SRAM serving points
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are usually banked. Worse, the access pattern is statically-unknown, as it depends on

the neighbor search results, which, in turn, depend on the inputs. Therefore, bank con-

flicts are inevitable.

Fig. 6.11 quantifies the severity of bank conflicts in point aggregation by showing

the percentage of SRAM accesses that are bank-conflicted in aggregating the points.

We assume a 16-bank SRAM design with a total size of 64 KB. Across the four models,

the bank conflict rate is at least 38.43% and can be as high as 57.27%. Increasing the

number of banks is undesirable as it requires a more costly crossbar and/or a higher

per-bank overhead due to the smaller memory arrays (Weste and Harris, 2015).

6.4 Summary

Despite point cloud being extensively used in many mobile applications, there are still

many issues that prevent point cloud from being fully adopted in many potential use

cases. Here, I summarize several remaining challenges in point cloud applications:

• Data Communication: Unlike images, point clouds do not have well-established

compression schemes from software interfaces to hardware supports. While var-

ious compression schemes have been proposed (Huang et al., 2006; Kammerl

et al., 2012; Hornung et al., 2013; Thanou et al., 2016; Lasserre et al., 2019;

Jang et al., 2019; Krivokuća et al., 2020), no single compression standard has

been widely adopted as the industry standard. This lack of consensus poses a

significant challenge in designing hardware to achieve better energy efficiency.

• Hardware Support for Computation: Although point-based DNN computation

can achieve great accuracy with lower memory utilization (Liu et al., 2019c; Feng

et al., 2020b), direct point manipulation also poses a great challenge to today’s

hardware accelerators. How to compensate for neighbor search remains an active

research question for the architecture community.
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• Irregular Memory Access: Although key operations in point-based DNN com-

putation are computationally effective, their memory accesses are irregular. This

causes memory inefficiencies in both SRAM and DRAM accesses, thus, posing

a challenge for hardware acceleration.

The following chapters propose different techniques to address the aforementioned

inefficiencies.
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7 Reducing Data Communication via

Spatio-Temporal Compression

As mentioned in Sec. 6.1, massive amounts of point cloud data are generated for many

real-time LiDAR-involved vision applications. To alleviate this data communication

pressure, this chapter introduces a real-time point cloud compression algorithm. The

main idea of this compression method is explained in Sec. 7.1. Sec. 7.2 and Sec. 7.3

quantitatively evaluates the effectiveness of this method compared against state-of-the-

art methods. Lastly, Sec. 7.4 highlights related work in this area.

7.1 Spatio-Temporal Compression

This section introduces our spatial-temporal LiDAR point cloud compression algo-

rithm. We first present an overview of our compression system (Sec. 7.1.1), followed by

the detailed designs of the three key components: range image conversion (Sec. 7.1.2),

spatial encoding (Sec. 7.1.3), and temporal encoding (Sec. 7.1.4). Finally, we discuss

our parallel implementation that further improves the compression speed (Sec. 7.1.5).

7.1.1 Main Idea

The idea of our compression system is to exploit redundancies both within a point cloud

(spatial) and across point clouds (temporal). Spatially, many surfaces in the real-world
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Fig. 7.1: Overview of our compression system, which compresses a sequence of con-

secutive point clouds. All the points clouds are converted to range images to accelerate

the compression speed. We first spatially encode the key point cloud (K-frame) in the

sequence, typically the middle one. The spatial encoding results of the K-frame are

then used to temporally encode the rest of the point clouds, which we call predicted

point clouds (P-frames).

are planes (e.g., walls and ground); even non-plane surfaces could be approximated by

a set of planes. Temporally, consecutive point clouds share a great chunk of overlapped

areas of the scene; thus, the same set of planes could be used to encode points across

point clouds. While intuitive, exploiting spatial and temporal redundancies in real-time

is challenging due to the irregular/unstructured point cloud and the compute-intensive

plane fitting process.

We propose a compression system that simultaneously achieves the state-of-the-art

compression rate and compression speed while maintaining high application accura-

cies. Fig. 7.1 provides a high-level overview of our system, which consists of three

main blocks: range image conversion, spatial encoding, and temporal encoding. Fig. 7.2

shows the relevant data structures during the encoding process.

Given a sequence of consecutive point clouds, we differentiate between two point

cloud types: key point cloud (K-frame) and predicted point cloud (P-frame). A se-

quence has only one K-frame and the rest is P-frames. P-frames are first transformed

(both translation and rotation) to K-frame’s coordinate system using the IMU measure-

ments. After transformation, each point cloud is converted to a range image (Tu et al.,

2016) for subsequent computations. The range image not only provides an initial com-

pression to the original point cloud, but also provides a structured representation of the
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Fig. 7.2: Different data structures used in our compression. The raw point clouds are

converted to range images. After spatial and temporal encoding, most of the tiles in the

range images are plane-encoded; the unfit tiles are left in the residual maps.

(unstructured) point cloud that is hardware-friendly.

We then spatially encode K-frame by fitting planes; the fitted planes in the K-frame

are then (re-)used to temporally encode P-frames, greatly improving the overall com-

pression rate and speed. In order to be robust against transformation errors, which

might be introduced due to noisy IMU observations, we propose a set of techniques

that compensate the sensor noise and preserve the encoding quality.

In the end, after spatial and temporal encoding, most of the tiles in the range images

are plane-encoded; the unfit tiles are left in what we call residual maps (Fig. 7.2). The

planes and the residual maps are then further compressed by a lossless compression

scheme (e.g., Huffman encoding) to generate the final encoded data.

Overall, in addition to providing high compression rate and speed, our compression

system also preserves application accuracy. This is because plane fitting inherently

removes noises and outliers in the point clouds without requiring explicitly removing



115

outliers that prior work employs (Sun et al., 2019).

7.1.2 Range Image Conversion

We first convert the raw point cloud data to a range image, which essentially converts

every point (x, y, z) in the 3D Cartesian space to a pixel at coordinates (θ, ϕ) in the

range image with a pixel value r:

r =
√
x2 + y2 + z2;(7.1)

θ = arctan(
x

y
)/θr; ϕ = arccos(

z

r
)/ϕr(7.2)

where θr and ϕr are the horizontal and vertical resolutions of the LiDAR, respectively.

A range image naturally compresses the original point cloud, because each point

(x, y, z) can be encoded with just a range value r of the corresponding pixel in the range

image; θ and ϕ are the pixel’s coordinates and do not have to be explicitly encoded. If

θr and ϕr are the same as the resolutions of the LiDAR, range image is a lossless

compression of the corresponding point cloud. Mathematically, however, θr and ϕr

could be any arbitrary positive values; larger θr and ϕr would lead to a lower range

image resolution, providing a lossy compression of the original point cloud.

In addition to providing an inherent compression scheme, range image brings two

key advantages. First, operating on range images is computationally more efficient

than directly accessing the point cloud, which requires tree traversals that lead to high

cache misses and branch mis-predictions on today’s hardware architecture (Xu et al.,

2019; Liu et al., 2019c). Second, adjacent pixels in the range map are likely to lie on

the same plane, because they correspond to consecutive scans from the LiDAR. This

characteristic allows us to encode the entire range image more efficiently.
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7.1.3 Spatial Encoding

The goal of spatial encoding is to encode all the points that lie on the same plane

using that plane. Intuitively, many surfaces in the real world are planes (e.g., walls and

ground); non-plane surfaces could be approximated by a set of planes.

In the 3D Cartesian space, a plane can be expressed as:

(7.3) x+ ay + bz − c = 0

where (1, a, b) is the normal vector of the plane and |c|√
1+a2+b2

is the distance from the

origin (LiDAR center) to the plane. Thus, all the points on the same plane could be

encoded with just the three coefficients of the plane. Note that the exact position of

each point on the plane is not explicitly encoded. The decoding process would simply

have to simulate a ray casting process to find the intersection of a ray and the plane to

reconstruct the position of a point.

To encode the entire point cloud, which contains points that lie in many different

planes, we use a “divide and conquer” strategy. Specifically, we first uniformly divide

the range image into unit tiles (e.g. 4 × 4). We start by fitting a plane for points in the

first tile, and gradually grow to include adjacent tiles, essentially forming a bigger tile.

Each time we grow, we test whether the plane fit so far can be used to encode all the

points in the new (bigger) tile under a predefined threshold. If so, all the points in the

new tile are encoded with the plane. Otherwise, we start from the current tile and repeat

the process until all the tiles in the range image are processed.

Our spatial encoding process grows tiles horizontally, which we find coalesces

many more adjacent tiles than growing vertically. This is inherently because today’s

LiDARs have a much more fine-grained horizontal resolution than vertical resolution.

For instance, Velydone’s HDL-64E has a 0.08◦ horizontal resolution, and a 0.4◦ vertical

resolution. As a result, points in horizontally adjacent tiles are closer to each other and,

thus, more likely to fit in the same plane than points from vertically adjacent tiles.
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1: [0, 6, P2]

2: [1, 6, P3]

3: [0, 4, P4], [5, 3, P5]

row: [start, len, plane], […]Range Image

Fig. 7.3: A spatial encoding example. The range image on the left is first tiled, and then

iteratively planed-fitted. Horizontally adjacent tiles fit by the same plane are shaded by

the same stripe pattern. Tiles that are plane-fitted are encoded using the format shown

on the right. Points in unfit tiles are encoded individually using their range values (not

shown).

Fitting a plane given points can be naturally formulated as a linear least squares

problem (Nievergelt, 1994). While classic iterative methods such as RANSAC (Fis-

chler and Bolles, 1981) are widely used, we find that directly calculating the closed-

form solution is generally faster, because deriving the closed-form solution requires

less computation and also the computations could be parallelized.

Note that we intentionally do not encode the deltas of plane fitting (i.e., the differ-

ence between a true point and a predicted point on the plane). Instead, we find that

when a reasonably small threshold is used, discarding deltas effectively denoises the

point cloud, leading to higher application accuracy than even the original point cloud

(Sec. 7.3.1).

In order to reconstruct/decode the range image later, each row in the range image is

encoded with a row ID followed by a set of three-tuples [s, len,P]. Fig. 7.3 provides

an example. Each three-tuple corresponds to a sequence of adjacent tiles in that row,

starting from s to s + len, that are fit by the same plane P, which is parameterized

by the three coefficients (Equ. 7.3). Inevitably, there are tiles that contain points that

can not be fit on planes, because, for instance, those points are sparse samples of an

irregular surface. These “unfit” points are left in what we call a residual map (Fig. 7.2)
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and are directly encoded using their raw range values.

7.1.4 Temporal Encoding

Spatial encoding provides a building block to encode point clouds individually. Li-

DARs in autonomous machines, however, generate a sequence of point clouds. While

it is possible to individually apply spatial encoding to each point cloud, doing so loses

opportunities exposed by the temporal correlations across consecutive point clouds.

Consecutive point clouds have large chunks of overlaps, because they are just dif-

ferent samples of the same physical scene. Using the KITTI dataset, we find that on

average 99% of each point cloud is geometrically overlapped with the previous point

cloud. Motivated by this observation, temporal encoding encodes a set of consecutive

point clouds together. The idea is to use one plane to encode the overlapped scene

across multiple consecutive point clouds. Doing so improves both the compression rate

and the compression speed by avoiding plane fitting in each point cloud.

Transformation Each point cloud has its own coordinate system when generated

by the LiDAR. In order to fit planes across a sequence of point clouds, we convert

all the point clouds to the same coordinate system—by performing a 6 DoF (translation

and rotation) transformation. Fig. 7.4 compares the effect of overlaying five consecutive

point clouds together in the same coordinate system before and after the transformation.

Without motion transformation point clouds at different timestamps are misaligned,

making temporal encoding challenging.

To unify point clouds in the same coordinate system, we must 1) decide a key point

cloud K, whose coordinate system is used as the transformation target, and 2) calculate

the corresponding transformation matrix Mi between K and every other point cloud

Pi.

In our system, we calculate the transformation matrix using the IMU measurements,

which provides the translational acceleration (â) and rotational rate (ω̂). Using the IMU
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After
Transformation

Before
Transformation

Fig. 7.4: Stacking five consecutive point clouds before (top) and after (bottom) motion

transformation. Colors indicate different point clouds. Motion transformation better

aligns different point clouds in one coordinate system.

measurements, we estimate the translation vector T3×1 as:

T3×1 =
[
∆x ∆y ∆z

]
(7.4)

where ∆x, ∆y, and ∆z are translational displacements integrated from â using the first-

order Runge-Kutta numerical method. Similarly, the rotation matrix R3×3 is estimated



120

as:

R3×3 =


cos(∆α) sin(∆α) 0

−sin(∆α) cos(∆α) 0

0 0 1



×


cos(∆β) 0 −sin(∆β)

0 1 0

sin(∆β) 0 cos(∆β)



×


1 0 0

0 cos(∆γ) sin(∆γ)

0 −sin(∆γ) cos(∆γ)

(7.5)

where ∆α, ∆β, and ∆γ are rotational displacements integrated from ω̂ using the first-

order Runge-Kutta method.

We use the middle point cloud in a consecutive point cloud sequence as the key

point cloud (K-frame). This minimizes the impact of cumulative IMU sample errors

when calculating the transformation matrix. Every other point cloud, which we call

predicted cloud (P-frame), is transformed to K-frame’s coordinate system by:

(7.6) p
′

4×1 = Mp4×1 =

R3×3 T3×1

01×3 1


4×4

p4×1

where p4×1 and p
′
4×1 denote a point in a predicted cloud before and after transformation,

respectively.

All the N point clouds in a sequence, after transformation, are converted to range

images with the same dimension. For ease of manipulation, we stack the N range

images together to form a N -channel image.

Note that it is possible that points in a P-frame after transformation could collide,

i.e., mapped to the same range image pixel, in which case we preserve the nearest point.
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On the KITTI dataset, about 4.6% of the points collide when transforming between two

adjacent point clouds, and this percentage increases as the gap between two point clouds

increases. This suggests that the number of consecutive point clouds that are encoded

together (N ) affects the encoding results. We show the sensitivity to N in Sec. 7.3.3.

Encoding We use the same “divide-and-conquer” strategy used in spatial encoding

to encode across channels (point clouds). A naive implementation would be to fit all

the points in a tile across all N channels (e.g., 4 × 4 × N ) and then grow to adjacent

tiles. However, this approach is susceptible to IMU measurement errors. Inaccurate

IMU observations lead to inaccurate point cloud transformations. As a result, points

in the same tile across different channels might not end up lying on the same plane,

leading to poor plane fitting results.

We propose an effective method to temporally encode across channels while com-

pensating for the transformation errors. Our idea is to first fit a tile in the K-frame’s

channel, and use the fitted plane Q to test against the same tile in each of the other

channels. Critically, we hold Q’s normal vector constant while varying its distance to

the origin (i.e., varying c in Equ. 7.3). This effectively compensates for the translation

error in the IMU measurements. If the relaxed plane Q′ (parameterized by a, b, c′) fits

all the points in a channel under a certain threshold, only c′ needs to be encoded for that

channel rather than all three plane coefficients.

We apply the same horizontal growing strategy until all the tiles of all the channels

in the range image are processed, at which point we remove all the encoded tiles from

the range image. The remaining range image I ′ contains tiles that could not be fitted

across channels even after compensating translation errors. We then spatially encode

I ′ channel by channel using the same process described in Sec. 7.1.3. Effectively, this

channel-wise spatial encoding compensates for the rotation errors in transformation. In

the end, the unfit tiles are left in the residual map (Fig. 7.2), which is further compressed

in a lossless fashion along with the fit planes.

Not only does Temporal encoding provide a high compression rate, but it also im-



122

proves the compression speed compared to spatially compressing each point cloud in-

dividually. This is because the planes that fit in the K-frame are reused in P-frames,

reducing the plane fitting overhead.

7.1.5 Parallel Optimizations

The speed of the sequential implementation of our algorithm scales linearly with respect

to the number of channels and angular resolution of the LiDAR. To further improve the

compression speed, we exploit the parallelisms exposed by our encoding system and

leverage parallel hardware available in modern processors.

At the high level, we exploit both thread-level parallelism (TLP) and data-level par-

allelism (DLP). During the range image conversion, we exploit the TLP where each

thread is responsible for converting one point cloud into the corresponding range im-

age. During spatial encoding, we leverage TLP where each thread is responsible for

encoding a row in the K-frame. During temporal encoding, each thread is responsible

for testing planes in a P-frame.

The actual computation in each thread also exposes data-level parallelism such as

computing the immediate results (radius, indexes) and the various matrix operations

in the plane-fitting and plane-testing processes. Our implementation uses the OpenMP

programming model in C++ to exploit both TLP and DLP.

7.2 Evaluation Methodology

Applications and Evaluation Metrics We evaluate our compression method on three

common point cloud applications: registration, object detection, and scene segmenta-

tion:

• Registration: we use a recent ICP-based registration pipeline (Xu et al., 2019)

developed using the widely-used PCL (Rusu and Cousins, 2011).
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• Object Detection: we use VoxelNet (Zhou and Tuzel, 2018), a Deep Convolution

Neural (DNN)-based approach.

• Scene Segmentation: we use SqueezeSeg (Wu et al., 2018a), a DNN-based ap-

proach.

We use three evaluation metrics: compression rate over the uncompressed point

clouds, compression speed in FPS, and application-level accuracy. We evaluate the

application-level accuracy instead of common quality metrics such as PSNR or RMSE

because we want to assess how compression affects point cloud applications, which is

what ultimately matters.

Dataset We use the widely-used KITTI dataset (Geiger et al., 2012b) for evaluating

registration and object detection. We evaluate on all the sequences and frames for

comprehensiveness. To evaluate segmentation, we use SemanticKITTI (Behley et al.,

2019), which augments KITTI dataset for segmentation tasks. We report geometric

mean results unless otherwise noted.

Baseline We compare against four baselines:

• G-PCC: It is a point cloud compression standard proposed by the

MPEG (Lasserre et al., 2019) specifically designed to compress LiDAR point

cloud data. It constructs an Octree for a point cloud and encodes the Octree.

• V-PCC: It is a point cloud compression standard proposed by the MPEG (Jang

et al., 2019; Krivokuća et al., 2020) designed to compress dense point clouds used

in volumetric rendering. It maps point clouds to images and uses existing video

compression to compress the images.

• JPEG: It compresses each point cloud’s range image individually using the

(lossy) JPEG codec (ITU, 2020).
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• H.264: It compresses a sequence of point clouds by compressing the correspond-

ing range image sequence using the H.264 video codec (Wiegand et al., 2003).

We shows results of both the lossy and lossless versions.

Variants Our method can be configured in two modes: the single-frame mode that

applies only spatial encoding to individual frames and the streaming mode that applies

both spatial and temporal encoding to a sequence of frames. For both versions, we vary

the threshold of plane fitting to form different design points.

Hardware Platform We implement our compression method in C++ and evaluate

the compression speed on both a PC, Intel i5-7500 with 4 cores, and a mobile platform,

Nvidia Jetson TX2 (Nvidia, 2017c), which represents the compute capability of mobile

robots or drones.

7.3 Evaluation

We first show the end-to-end accuracy and compression rate of our compression method

on three general robotic applications: localization, object detection, and 3D scene seg-

mentation, compared against a range of existing methods (Sec. 7.3.1). We then demon-

strate that our compression speed matches the point cloud generation speed and sur-

passes other methods (Sec. 7.3.2). Last, we evaluate the sensitivity of our compression

method (Sec. 7.3.3).

7.3.1 Compression Rate vs. Accuracy

This section assumes that we compress five consecutive point clouds together unless

otherwise noted. We will later study the sensitivity of different frame configurations.

Localization Our compression method outperforms other methods in both appli-

cation accuracy and compression rate. Fig. 7.5 compares the translation error (y-axis)

against the compression rate (x-axis) of different compression methods.
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Fig. 7.5: Registration translation error and compression rate comparison of various

compression methods.

Our method in the streaming mode can achieve an 88.9× compression rate with

only 0.91% translation error, and the single-frame mode achieves 59.7× compression

rate with 0.96% translation error. In comparison, the best G-PCC compression has a

1.38% translation error with only 8.5× compression rate. Interestingly, our compres-

sion methods have lower errors than using the original point clouds (1.25%). This is

because our plane fitting process inherently reduces the noise from the point cloud.

Other baselines including JPEG compression on range images, lossy H.264 video

compression, and V-PCC have much higher localization errors (> 16%) as Fig. 7.5

shows. Although the lossless video compression has better localization accuracy, its

compression rate (5.4×) is much lower.

Object Detection On KITTI dataset object detection uses only individual point

clouds instead of point cloud sequences. Thus, we present only the single-frame vari-

ant of our compression system. For the same reason, V-PCC and H.264 compression

methods are not applicable. Fig. 7.6 compares the object detection accuracy against

compression rate across different compression methods. Our method Pareto-dominates

the prior methods.

Comparing against the 74.4% accuracy using the original point clouds, our com-



126

0 20 40 60 80 100 120
Compression Rate

0
20
40
60
80

100

De
t. 

Ac
cu

ra
cy

 (%
)

Orginal Ours (single-frame) GPCC JPEGOrginal Ours (single-frame) GPCC JPEG

Fig. 7.6: The object detection accuracy and compression rate comparison of various

compression methods.

0 20 40 60 80 100 120
Compression Rate

0
25
50
75

100

Se
g.

 A
cc

ur
ac

y 
(%

)

Orginal
Ours (single-frame)
Ours (streaming)

Video (lossy)
Video (lossless)
JPEG

GPCC
VPCC

Orginal
Ours (single-frame)
Ours (streaming)

Video (lossy)
Video (lossless)
JPEG

GPCC
VPCC

Fig. 7.7: The segmentation error and compression rate comparison of various compres-

sion methods.

pression method achieves a comparable accuracy of 72.2% with an 11.5× compression

rate. In addition, our compression method achieves more than 42.3× compression rate

while still keeping the accuracy over 70%. In contrast, the best accuracy that G-PCC

and JPEG achieve is 42.1% and 57.6% with compression rates of 15.3 and 20.6, re-

spectively.

Segmentation Fig. 7.7 shows the compression rate vs. segmentation accuracy

trade-offs across the different compression schemes. Our method Pareto-dominates

other methods except for lossless video compression. In particular, our method achieves

a better compression rate (21.8×) than G-PCC (8.5×) and JPEG (20.6×) with a similar
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Fig. 7.8: Compression speed vs. compression rate of various methods on Intel i5-7500

CPU.

accuracy at 75.5%. The accuracies of G-PCC and JPEG drop quickly as the com-

pression rates increase while our method maintains a high accuracy (72.4%) even at a

compression rate of 50.3×.

Lossless video compression achieves little accuracy drop with only a 5.4× compres-

sion rate; lossy video compression, in contrast, has the highest compression rate—at the

expense of over 30% accuracy drop.

7.3.2 Compression Speed

Fig. 7.8 and Fig. 7.9 show the compression speeds on both a PC and the Nvidia TX2

mobile platform, respectively. Our compression method outperforms G-PCC by about

one order of magnitude on both platforms. The compression speed on a PC could be as

high as 52.1 FPS, and even on the mobile TX2 the compression speed could be as high

as 20.5 FPS. As today’s LiDARs generally operate at between 5 Hz to 20 Hz (Velodyne,

2017, 2020), our compression method could be executed in real-time as the point clouds

are being generated. Lossy and lossless video compressions have a similar compression

speed. However, as shown before, they either have a much lower compression rate or
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Fig. 7.9: Compression speed vs. compression rate of various methods on Nvidia mobile

TX2 platform.

lead to much lower application accuracies. V-PCC is much slower than other methods.

7.3.3 Sensitivity Study

All results shown so far assume that five consecutive point clouds are encoded together.

Fig. 7.10 shows how compression rate, application accuracy, and compression rate vary

with the number of consecutively encoded frames. All results are normalized to the

results where the number of consecutive frames is five. Object detection uses individual

frames, so its accuracy numbers are not shown.

We find that the compression speed is most sensitive to the number of encoded

frames. This is because our implementation parallelizes many operations across frames

such as the range image conversion and plane testing. More frames provide more op-

portunities for parallelization, leading to higher speeds. The application accuracies are

mostly insensitive to the number of frames, because our compression method is able to

preserve the vast majority of points during motion transformation and encoding.

It is worth noting that the compression rate is relatively insensitive to the number of

frames. To understand why, Fig. 7.11 shows the distribution of how different points are
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Fig. 7.10: Sensitivity study on application accuracy, compression rate, and compression

speed by varying the number of consecutive frames that are encoded together.

encoded in a sequence. As the number of frames increases, the percentage of tempo-

rally encoded points decreases because the overlapped region becomes smaller, while

the percentage of spatially encoded points increases. The overall percentage of points

that are encoded by either method stays roughly the same, leading to a roughly sta-

ble compression rate. Note that as the number of frames increases the decoding speed

is faster with similar accuracy as shown in Fig. 7.10, indicating longer sequences are

preferred in encoding point clouds.

Fig. 7.12 shows the speedup of our parallel compression system over a sequential

baseline. Recall from Sec. 7.1.5 that our implementation exploits various forms of par-

allelism to improve the speed. With five frames available for compression, we achieve a

3.8× speedup over a sequential implementation. With 19 frames available, the speedup

is 5.4×. As the number of consecutive frames increases, the speedup saturates because

of the hardware resource limitation.

7.4 Related Work

Unstructured Point Cloud Encoding Perhaps the most common way to encode point

cloud data is to use space-partitioning trees, among which Octree is the most widely
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a four-core Intel i5-7500 CPU as the number of consecutive frames increases.

used (Huang et al., 2006; Kammerl et al., 2012; Smith et al., 2012; Hornung et al.,

2013; Golla and Klein, 2015; Thanou et al., 2016; Lasserre et al., 2019). The G-PCC

method in MPEG’s point cloud compression standard falls into this category (Lasserre

et al., 2019). Each Octree leaf node could be encoded by either a single occupancy

bit, which could be lossless if each leaf node contains exactly one point, or by plane

extraction, which preserves more details if each leaf node contains multiple points. G-

PCC provides both options. Based on the space-partitioning tree representation, prior

work has explored various methods to reduce redundant information, such as 2D pro-
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jection (Hornung et al., 2013) or surface fitting (Smith et al., 2012).

Prior work also exploited temporal redundancies in space-partitioning trees such as

XORing the two consecutive Octrees (Kammerl et al., 2012), using motion compensa-

tion in 3D space (Thanou et al., 2016), or applying video compression directly (Golla

and Klein, 2015).

Other unstructured point cloud representations include shape adaptive

wavelet (Ochotta and Saupe, 2004; Daribo et al., 2011) and hierarchical height

map (Hornung et al., 2013; Morell et al., 2014). While effective in certain use cases,

the downside of unstructured representations is that they do not exploit the unique

characteristics exposed by LiDAR point clouds, leading to a low compression rate.

Structured Point Cloud Compression Instead of encoding point clouds using

space-partitioning trees, another category of compression methods convert point clouds

into 2D images using spherical projection (Tu et al., 2016, 2019; Sun et al., 2019) or

orthogonal projection such as the V-PCC method in the MPEG’s standard (Jang et al.,

2019; Krivokuća et al., 2020). Existing image/video compression methods are then

used to further compress the projected images (Jang et al., 2019; Tu et al., 2016; Sun

et al., 2019). However, directly applying image/video compression algorithms does not

preserve the spatial information inherit in the point cloud, and thus generally results in

low application accuracy.
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8 Mesorasi: Addressing Compute

Inefficiencies via

Delayed-Aggregation

Sec. 6.2 presents the irregular computation characteristics in deep point cloud analytics.

Such computation characteristics also pose a tremendous challenge to hardware accel-

eration. This chapter proposes a technique called delayed-aggregation which can ef-

fectively compensate for irregular computations. Sec. 8.1 explains the insight of delay-

aggregation technique. Sec. 8.2 proposes corresponding hardware supports for delay-

aggregation. Next, Sec. 8.3 and Sec. 8.4 quantify the performance of delay-aggregation

against its corresponding baseline. Finally, Sec. 8.5 highlights related work.

8.1 Delayed-Aggregation Algorithm

We introduce delayed-aggregation, a primitive for building efficient point cloud net-

works (Sec. 8.1.1). Delayed-aggregation improves the compute and memory efficien-

cies of point cloud networks without degrading accuracy (Sec. 8.1.2). We show that

aggregation emerges as a new bottleneck in new networks, motivating dedicated hard-

ware support (Sec. 8.1.3).
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8.1.1 Algorithm

We propose a new framework for building efficient point cloud algorithms. The central

idea is to delay aggregation until after feature computation so that features are extracted

on individual input points rather than on aggregated neighbors. Delayed-aggregation

has two benefits. First, it allows neighbor search and feature computation, the two

time-consuming components, to be executed in parallel. Second, feature computation

operates on input points rather than aggregated neighbors, reducing the compute and

memory costs.

Delayed-Aggregation The key insight is that feature extraction (F) is approxi-

mately distributive over aggregation (A). For an input point pi and its corresponding

output po:

po = F(A(N (pi), pi)) ≈ A(F(N (pi)), F(pi))(8.1)

Fundamentally, Equ. 8.1 holds because the multi-layer perception (MLP) in F is

approximately distributive over subtraction in A. Specifically, applying an MLP to the

difference between two matrices is approximately equivalent to applying an MLP to

both matrices and then subtracting the two resulting matrices. The approximation is

introduced by the non-linearity in the MLP (e.g., ReLU):

ϕ(ϕ(


p1 − pi

...

pk − pi

×W1)×W2) ≈

ϕ(ϕ(


p1

...

pk

×W1 ×W2))− ϕ(ϕ(


pi

...

pi

×W1 ×W2))(8.2)
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Fig. 8.1: The delayed-aggregation algorithm applied to the first module in PointNet++.

The MLP and neighbor search are executed in parallel, effectively delaying aggregation

after feature computation. The input size of the MLP is much smaller (input point cloud

as opposed to the aggregated NFMs), which significantly reduces the MAC operations

and the intermediate activation sizes. Aggregation now operates on the output feature

space (128-D in this case), whereas it previously operates on the input feature space (3-

D in this case). Thus, the aggregation time increases and emerges as a new performance

bottleneck.

where p1, ...,pk are neighbors of pi, W1 and W2 are the two weight matrices in the

MLP (assuming one hidden layer), and ϕ is the non-linear activation function. Without

ϕ, the distribution of MLP over subtraction is precise. In actual implementation, the

computation on [pi ... pi]
⊺ is simplified to operating on pi once and scattering the

result K times.

Critically, applying this distribution allows us to decouple N with F . As shown in

Equ. 8.1 and Equ. 8.2, F now operates on original input points, i.e., pi and N (pi) (a

subset of the input points, too) rather than the normalized point values (pk−pi), which

requires neighbor search results. As a result, we could first apply feature computation

on all input points. The computed features are then aggregated later.

Walk-Through We use the first module in PointNet++ as an example to walk

through the new algorithm. This module consumes 1024 (Nin) input points, among

which 512 undergo neighbor search. Thus, the module produces 512 (Nout) output

points. The input feature dimension is 3 (Min) and the output feature dimension is 128
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(Mout). Fig. 8.1 shows this module implemented with delayed-aggregation.

We first compute features (F) from all 1024 points in the input point cloud and

store the results in the Point Feature Table (PFT), a 1024 × 128 matrix. Every PFT

entry contains the feature vector of an input point. Meanwhile, neighbor searches (N )

are executed in parallel on the input point cloud, each returning 32 neighbors of a

centroid. The results of neighbor search are stored in a Neighbor Index Table (NIT), a

512× 32 matrix. Each NIT entry contains the neighbor indices of an input point. In the

end, the aggregation operation (A) aggregates features in the PFT using the neighbor

information in the NIT. Note that it is the features that are being aggregated, not the

original points.

Each aggregated matrix (32 × 128) is reduced to the final feature vector (1 × 128)

of an output point. If the reduction is implemented by a max operation as is the com-

mon case, aggregation could further be delayed after reduction because subtraction is

distributive over max: max(p1 − pi,p2 − pi) = max(p1,p2)− pi. This optimization

avoids scattering pi, reduces the subtraction cost, and is mathematically precise.

8.1.2 First-Order Efficiency Analysis

Compared with the original implementation of the same module in Fig. 6.3, the

delayed-aggregation algorithm provides three benefits. First, neighbor search and the

MLP are now executed in parallel, hiding the latencies of the slower path.

Second, we significantly reduce the MAC operations in the MLP. In this module,

the original algorithm executes MLP on 512 32 × 3 matrices while the new algorithm

executes MLP only on one 1024 × 3 matrix. Fig. 8.2 shows the MAC operation re-

ductions across all five networks. On average, delayed-aggregation reduces the MAC

counts by 68%.

Third, delayed-aggregation also reduces the memory traffic because the MLP input

is much smaller. While the actual memory traffic reduction is tied to the hardware
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architecture, as a first-order estimation Fig. 8.3 compares the distribution of per-layer

output size with and without delayed-aggregation. The data is shown as a violin plot.

Delayed-aggregation reduces the layer output sizes from 8 MB˜32 MB to 512 KB˜1

MB, amenable to be buffered completely on-chip.

By directly extracting features from the input points, our algorithm unlocks the in-

herent data reuse opportunities in point cloud. Specifically in this example, P3 is a

neighbor of both P1 and P2, but could not be reused in feature computation by the

original algorithm because P3’s normalized values with respect to P1 and P2 are dif-

ferent. In contrast, the MLP in our algorithm directly operates on P1, whose feature is

then reused in aggregation, implicitly reusing P1.

8.1.3 Bottleneck Analysis

While delayed-aggregation reduces the compute costs and memory accesses, it also

significantly increases the aggregation time. Using PointNet++ as an example, Fig. 8.4
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Fig. 8.5: Both absolute (left y-axis) and relative (right y-axis) aggregation times in-

crease with delayed-aggregation.

compares the execution time distribution across the three operations (N , A, and F)

with and without delayed-aggregation. The error bars denote one standard deviation in

the measurement. The feature extraction time significantly decreases, and the neigh-

bor search time roughly stays the same — both are expected. The aggregation time,

however, significantly increases.

Fig. 8.5 generalizes the conclusion across the five networks. The figure compares

the absolute (left y-axis) and relative (right y-axis) aggregation time in the original

and new algorithms. The aggregation time consistently increases in all five networks.

Since neighbor search and feature computation are now executed in parallel, aggrega-

tion overhead contributes even more significantly to the overall execution time. On

average, the aggregation time increases from 3% to 24%.

Aggregation time increases mainly because aggregation involves irregular gather

operations (Kirk and Wen-Mei, 2016), which now operate on a much larger working

set with delayed-aggregation. For instance, in PointNet++’s first module (Fig. 8.1),

aggregation originally gathers from a 12 KB matrix but now gathers from a 512 KB

matrix, which is much larger than the L1 cache size (48 KB – 96 KB1) in the mobile

1To our best knowledge, Nvidia does not publish the L1 cache size for the mobile Pascal GPU in TX2

(GP10B (Nvidia, 2017a)). We estimate the size based on the L1 cache size per SM in other Pascal GPU

chips (Wikipedia, 2016) and the number of SMs in the mobile Pascal GPU (Nvidia, 2017b)
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Pascal GPU on TX2.

The working set size increases significantly because aggregation in new algorithms

gathers data from the PFT, whose dimension is Nin ×Mout, whereas the original algo-

rithms gather data from the input point matrix, whose dimension is Nin×Min. Mout is

usually several times greater than Min in order to extract higher-dimensional features.

In the example above, Mout is 128-D whereas Min is 3-D.

8.2 Architectural Support

This section describes MESORASI, our hardware design that efficiently executes point

cloud algorithms developed using delayed-aggregation. MESORASI extends existing

DNN accelerators with minor augmentations while leaving the rest of the SoC un-

touched. We start from an overview of MESORASI and its workflow (Sec. 8.2.1), fol-

lowed by a detailed description of the architecture support (Sec. 8.2.2).

8.2.1 Overall Design

We assume a baseline SoC that incorporates a GPU and an NPU, as with emerging mo-

bile SoCs such as Nvidia Xavier (Nvidia, 2018), Apple A13 (Eadicicco, 2022), and Mi-

crosoft HPU (Microsoft, 2017). Point cloud algorithms are a few times faster when an

NPU is available to accelerate MLP compared to running only on the GPU (Sec. 8.4.4).

Thus, an NPU-enabled SoC represents the trend of the industry and is a more optimized

baseline.

Design Fig. 8.6 shows how MESORASI augments the NPU in a generic SoC.

In MESORASI, the GPU executes neighbor search (N ) and the NPU executes feature

extraction (F), i.e., the MLP. In addition, MESORASI augments the NPU with an Ag-

gregation Unit (AU) to efficiently execute the aggregation operation (A). As shown in

Sec. 8.1.3, aggregation becomes a bottleneck in our new algorithms and is inefficient
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Fig. 8.6: The MESORASI SoC builds on top of today’s SoCs consisting of a GPU and a

DNN accelerator (NPU). Neighbor search executes on the GPU and feature extraction

executes on the NPU. MESORASI augments the NPU with an aggregation unit (AU) to

efficiently execute the aggregation operation. The AU structures are shaded (colored).

on the GPU. AU minimally extends a generic NPU architecture with a set of principled

memory structures and datapaths.

MESORASI maps N to the GPU because neighbor search is highly parallel, but

does not map to the specialized datapath of an NPU. Alternatively, an SoC could use a

dedicated neighbor search engine (NSE) (Kuhara et al., 2013; Xu et al., 2019). We use

the GPU because it is prevalent in today’s SoCs and thus provides a concrete context to

describe our design. We later show that delayed-aggregation could achieve even higher

speedups in a futurist SoC where an NSE is available to accelerate neighbor search

(Sec. 8.4.5). In either case, MESORASI does not modify the internals of the GPU or the

NSE.

Work Flow Point cloud algorithms with delayed-aggregation work on MESORASI

as follows. The input point cloud is initially stored in the DRAM. The CPU configures

and triggers the GPU and the NPU simultaneously, both of which read the input point

cloud. The GPU executes the KNN search and generates the Neighbor Index Table



140

(NIT), which gets stored back to the DRAM. Meanwhile, the NPU computes features

for input points and generates the Point Feature Table (PFT). The AU in NPU combines

the PFT with the NIT from the memory for aggregation and reduction, and eventually

generates the output of the current module.

In some algorithms (e.g., PointNet++), neighbor searches in all modules search

in the original 3-D coordinate space, while in other algorithms (e.g., DGCNN) the

neighbor search in module i searches in the output feature space of module (i − 1). In

the latter case, the current module’s output is written back to the memory for the GPU

to read in the next module.

Our design modifies only the NPU while leaving other SoC components untouched.

This design maintains the modularity of existing SoCs, broadening the applicability.

We now describe the AU augmentation in NPU in detail.

8.2.2 Aggregation Unit in NPU

Aggregation requires irregular gathering operations that are inefficient on GPUs. The

key to our architectural support is the specialized memory structures co-designed with

customized data structure partitioning, which provide efficient data accesses for aggre-

gation with a little area overhead.

Algorithmically, aggregation iterates over the NIT’s Nout entries until NIT is ex-

hausted. Each NIT entry contains the K neighbor indices of a centroid p. The aggrega-

tion operation first gathers the K corresponding entries (feature vectors) from the PFT

(Nin ×Mout). The K feature vectors are then reduced to one (1×Mout) vector, which

subtracts p’s feature vector to generate the output feature for p.

Fig. 8.7 shows the detailed design of the aggregation unit. The NIT is stored in

an SRAM, which is doubled-buffered in order to limit the on-chip memory size. The

PFT is stored in a separate on-chip SRAM connected to the NPU’s global buffer (which

stores the MLP weights and input/output). This allows the output of feature extraction
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Address 
Generation

Reduction 
(Max)

Point Feature Table
(B ports, B banks; connected 

to NPU global buffer)

Bank 1 1 Wr

B …

..

2:
3,
4,
6,
…

9:
4,
7,
8,
…

900:
989,
990,
999,
…

1:
2,
3,
4,
…

15:
12,
27,
48,
…

Shift Registers
(Mout Wr each)

to NPU
Global Buffer

B x 1 Wr

1 Wr
1 Wr

…

M
U

X

Sub (-)…
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Fig. 8.7: Aggregation unit. The NIT buffer is double-buffered from the DRAM. The

Address Generation logic simply fetches addresses already buffered in the NIT and

sends them to the PFT buffer controller. The PFT buffer is organized as B independently

addressed single-ported SRAMs. It could be thought of as an optimized version of

a traditional B-banked, B-ported SRAM, because it does not need the crossbar that

routes data from banks to ports (but does need the crossbar to route an address to the

corresponding bank). The PFT buffer is connected to the NPU’s global buffer. Each

bank produces one word (Wr) per cycle. The shift registers hold up to Mout words,

where Mout is the output feature vector size. The top shift register holds the result of

the reduction, and the bottom shift register holds the feature vector of a centroid.

to be directly transferred to the PFT buffer without going through the DRAM. Simi-

larly, the aggregation output is directly written back to the NPU’s global buffer, as the

aggregation output of the current module is the input to the feature extraction in the

next module.

To process each NIT entry, the Address Generation Unit (AGU) uses the K indices

to generate K addresses to index into the PFT buffer. Due to the large read bandwidth

requirement, the PFT buffer is divided into B independently addressable banks, each

of which produces 1 word per cycle.

Each cycle, the PFT buffer produces B words, which enters the reduction unit. In

our current design, the reduction unit implements the max logic as is the case in today’s

point cloud algorithms. The output of the max unit, i.e., the max of the B words, enters

a shift register (the top one in Fig. 8.7). Ideally, the number of banks B is the same

as the number of neighbors K and the K addresses fall into different banks. If so, the
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shift register is populated with the 1 ×Mout vector after Mout cycles. The AGU then

reads p’s feature vector from the PFT buffer and stores it in another shift register (the

bottom one in Fig. 8.7). The two shift registers perform an element-wise subtraction as

required by aggregation. The same process continues until the entire NIT is exhausted.

Multi-Round Grouping In reality, reading the neighbor feature vectors takes

more than Mout cycles because of two reasons. First, K could be greater than B. The

number of banks B is limited by the peripheral circuits overhead, which increases as

B increases. Second, some of the K addresses could fall into the same bank, causing

bank conflicts. We empirically find that an LSB-interleaving reduces bank conflicts,

but it is impossible to completely avoid bank conflict at runtime, because the data ac-

cess patterns in point cloud are irregular and could not be statically calculated – unlike

conventional DNNs and other regular kernels.

We use a simple multi-round design to handle both non-ideal scenarios. Each round

the AGU would attempt to identify as many unconflicted addresses as possible, which

is achieved by the AGU logic examining each address modulo B. The unconflicted

addresses are issued to the PFT buffer, whose output enters the max unit to generate

a temporary output stored in the shift register. The data in the shift register would be

combined with the PFT output in the next round for reduction. This process continues

until all the addresses in an NIT buffer entry are processed.

An alternative way to resolve bank-conflict would be to simply ignore conflicted

banks, essentially approximating the aggregation operation. We leave it to future work

to explore this optimization and its impact on the overall accuracy.

PFT Buffer Design One could think of the PFT buffer as a B-banked, B-ported

SRAM. Traditionally, heavily ported and banked SRAMs are area inefficient due to the

crossbar that routes each bank’s output to the corresponding issuing port (Weste and

Harris, 2015). However, our PFT buffer is much simplified without the crossbar. This

is by leveraging a key observation that the outputs of all the PFT banks are consumed

by the max unit, which executes a commutative operation, i.e., max(a, b) = max(b, a).
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Fig. 8.8: Column-major partitioning of PFT to reduce PFT buffer size (4 partitions in

this example). Each time the PFT buffer is filled with only one partition. Since re-

duction (max) is applied to each column independently, the column-major partitioning

ensures that all the neighbors of a centroid are present in the PFT buffer for aggrega-

tion.

Thus, the output of each bank need not be routed to the issuing port so long as the

requested data is correctly produced. This design optimization greatly reduces the area

overhead (Sec. 8.4.1).

One might be tempted to reuse the NPU’s global buffer for the PFT buffer to save

chip area. After all, the PFT is MLP’s output, which is stored in the global buffer.

However, physically sharing the two SRAM structures is difficult, mainly because of

their different design requirements. Global buffer contains MLP weights and layer

inputs, accesses to which have regular patterns. As a result, NPU global buffers are

usually designed with very few ports (e.g., one) (Jouppi et al., 2017b; Arm, 2018) while

using a wide word. In contrast, accesses to the PFT are irregular as the neighbors of

a centroid could be arbitrary spread in the PFT. Thus, the PFT buffer must be heavily-

ported in order to sustain a high bandwidth requirement.

PFT Partitioning To hold the entire PFT, the buffer must hold Nout ×Mout fea-

tures, which could be as large as 0.75 MB in some networks (e.g., DGCNN). Since the

PFT buffer adds area overhead, we would like to minimize its size.
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We partition the PFT to reduce the PFT buffer size. Each time, the PFT buffer is

filled with only one partition. One straightforward strategy is the row-major partition-

ing, where the PFT buffer holds only a few rows of the PFT. However, since a centroid’s

neighbors could be arbitrarily spread across different PFT rows, row-major partitioning

does not guarantee that all the neighbors of a centroid are present in the PFT buffer

(i.e., in the same partition) for aggregation.

Instead, our design partitions the PFT column-wise, where each partition contains

several columns of the PFT. Fig. 8.8 illustrates the idea with 4 partitions. In this way,

the aggregation of a centroid is divided into four steps, each step aggregating only

one partition. The column-major partitioning ensures that, within each partition, the

neighbors of a centroid are available in the PFT buffer. Since reductions (max) of

different columns are independent, the four intermediate reduction results can simply

be concatenated in the end.

With column-wise partitioning, each NIT entry is accessed multiple times—once

per aggregation step. Thus, a smaller PFT buffer, while reducing the area overhead,

would also increase the energy overhead. We later quantify this resource vs. energy

trade-off (Sec. 8.4.6).

8.3 Experimental Setup

Hardware Implementation We develop RTL implementations for the NPU and its

augmentations for the aggregation unit (AU). The NPU is based on the systolic array

architecture, and consists of a 16×16 PE array. Each PE consists of two input registers,

a MAC unit with an accumulator register, and simple trivial control logic. This is

identical to the PE in the TPU (Jouppi et al., 2017b). Recall that MLPs in point cloud

networks process batched inputs (Fig. 6.3), so the MLPs perform matrix-matrix product

that can be efficiently implemented on a systolic array. The NPU’s global buffer is sized

at 1.5 MB and is banked at a 128 KB granularity.
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The PFT buffer in the AU is sized at 64 KB with 32 banks. The NIT buffer is

doubled-buffered; each buffer is implemented as one SRAM bank sized at 12 KB and

holds 128 entries. The NIT buffer produces one entry per cycle. Each entry is 98 Bytes,

accommodating 64 neighbor indices (12 bits each). Each of the two shift registers is

implemented as 256 flip-flops (4-byte each). The datapath mainly consists of 1) one

33-input max unit and 256 subtraction units in the reduction unit, and 2) 32 32-input

MUXes in the AGU.

The design is clocked at 1 GHz. The RTL is implemented using Synposys synthesis

and Cadence layout tools in TSMC 16nm FinFET technology, with SRAMs generated

by an Arm memory compiler. Power is simulated using Synopsys PrimeTimePX, with

fully annotated switching activity.

Experimental Methodology The latency and energy of the NPU (and its augmen-

tation) are obtained from the post-synthesis results of the RTL design. We model the

GPU after the Pascal mobile GPU in the Nvidia Parker SoC hosted on the Jetson TX2

development board (Nvidia, 2017b). The SoC is fabricated in a 16 nm technology node,

same as our NPU. We directly measure the GPU execution time as well as the kernel

launch time. The GPU energy is directly measured using the built-in power sensing

circuity on TX2.

The DRAM parameters are modeled after Micron 16 Gb LPDDR3-1600 (4 chan-

nels) according to its datasheet (Micron, 2014). DRAM energy is calculated using

Micron’s System Power Calculators (Micron, 2020) using the memory traffic, which

includes: 1) GPU reading input point cloud, 2) NPU accessing MLP kernels and acti-

vations each layer, and 3) GPU writing NIT and NPU reading NIT. Overall, the DRAM

energy per bit is about 70× of that of SRAM, matching prior work (Yazdanbakhsh

et al., 2018; Gao et al., 2017).

The system energy is the aggregation of GPU, NPU, and DRAM. The overall la-

tency is the sum of GPU, NPU, and DRAM minus: 1) double buffering in the NPU,

and 2) parallel execution between neighbor search on GPU and feature computation on
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Table 8.1: Evaluation benchmarks.

Application Domains Algorithm Dataset Year

Classification
PointNet++ (c), DGCNN (c),

LDGCNN, DensePoint
ModelNet40

2017, 2019,

2019, 2019

Segmentation PointNet++ (s), DGCNN (s) ShapeNet 2017, 2019

Detection F-PointNet KITTI 2018

NPU. Due to double-buffering, the overall latency is dominated by the compute latency,

not memory.

Software Setup Tbl. 8.1 lists the point cloud networks we use, which cover dif-

ferent domains for point cloud analytics including object classification, segmentation,

and detection. The networks cover both classic and recent ones (2019).

For classification, we use four networks: PointNet++ (Qi et al., 2017b),

DGCNN (Wang et al., 2019a), LDGCNN (Zhang et al., 2019a), and DensePoint (Liu

et al., 2019b); we use the ModelNet40 (Wu et al., 2015) dataset. We report the standard

overall accuracy metric. To evaluate segmentation, we use the variants of PointNet++

and DGCNN specifically built for segmentation, and use the ShapeNet dataset (Chang

et al., 2015). We report the standard mean Intersection-over-Unit (mIoU) accuracy met-

ric. Finally, we use F-PointNet (Qi et al., 2018) as the object detection network. We

use the KITTI dataset (Geiger et al., 2012a) and report the geometric mean of the IoU

metric (BEV) across its classes.

We optimize the author-released open-source version of these networks to obtain

stronger software baselines. We: 1) removed redundant data duplications introduced

by tf.tile; 2) accelerated the CPU implementation of an important kernel, 3D In-

terpretation (three interpolate), with a GPU implementation; 3) replaced the

Farthest Point Sampling with random sampling in PointNet++ with little accuracy loss;

4) replaced the Grouping operation (group point) with an optimized implementa-

tion (tf.gather) to improve the efficiency of grouping/aggregation. On TX2, our
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baseline networks are 2.2× faster than the open-source versions.

Baseline We mainly compare with a generic NPU+GPU SoC without any MESO-

RASI-related optimizations. Compared to the baseline, our proposal improves both the

software, i.e., the delayed-aggregation algorithm as well as hardware, i.e., the aggrega-

tion unit (AU) augmentations to the NPU.

Variants To decouple the contributions of our algorithm and hardware, we present

two different MESORASI variants:

• MESORASI-SW: delayed-aggregation without AU support. Neighbor search and

aggregation execute on the GPU; feature computation executes on the NPU.

• MESORASI-HW: delayed-aggregation with AU support. Neighbor search exe-

cutes on the GPU; aggregation and feature computation execute on the NPU.

8.4 Evaluation

We first show MESORASI adds little hardware overhead (Sec. 8.4.1) while achiev-

ing comparable accuracy against original point cloud networks (Sec. 8.4.2). We

then demonstrate the efficiency gains of MESORASI on different hardware platforms

(Sec. 8.4.3 – Sec. 8.4.5), followed by sensitivity studies (Sec. 8.4.6).

8.4.1 Area Overhead

MESORASI introduces only minimal area overhead with the minor AU augmentations.

The main overhead comes from the 88 KB additional SRAM required for the PFT

buffer and the NIT buffer. Compared to the baseline NPU, the additional hardware

introduces less than 3.8% area overhead (0.059mm2), which is even more negligible

compared to the entire SoC area (e.g., 350mm2 for Nvidia Xavier (Schor, 2018) and

99mm2 for Apple A13 (Eadicicco, 2022)).
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Our custom-designed PFT buffer avoids the crossbar connecting the banks to the

read ports by exploiting the algorithmic characteristics (Sec. 8.2.2). Since our PFT

buffer is heavily banked (32) and ported (32) and each bank is small in size (2 KB), the

additional area overhead introduced by the crossbar would have been high. Specifically,

the area of the PFT buffer now is 0.031mm2, but the crossbar area would be 0.064mm2,

which is now avoided.

8.4.2 Accuracy

Overall, MESORASI matches or out-performs the original algorithms. We train all seven

networks with delayed-aggregation from scratch until the accuracy converges. Fig. 8.9

compares our accuracy with that of the baseline models, which we choose the bet-

ter of the reported accuracies in the original papers or accuracies from training their

released code. Overall, MESORASI leads to at most 0.9% accuracy loss in the case

of PointNet++ (c) and up to 1.2% accuracy gain in the case of F-PointNet. This shows

that, while delayed-aggregation approximates the original algorithms, the accuracy loss

could be recovered from training. Delayed-aggregation could be used as a primitive to

build accurate point cloud algorithms.

We find that fine-tuning the model weights trained on the original networks has sim-

ilar accuracies as retraining from scratch. However, directly using the original weights

without retraining leads to a few percentages of accuracy loss, which is more signifi-

cant when the non-linear layers use batch normalization, which perturbs the distributive

property of matrix multiplication over subtraction more than ReLU.

8.4.3 Results on GPU

We first show that our delayed-aggregation algorithm readily achieves significant

speedups on today’s GPU without hardware support. Fig. 8.10 shows the speedup and

energy reduction of MESORASI on the Pascal GPU on TX2.
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Fig. 8.10: Speedup and energy reduction of the delayed-aggregation algorithm and the

limited version of the algorithm on the mobile Pascal GPU on TX2.

As a comparison, we also show the results of a limited version of delayed-

aggregation, where only the matrix-vector multiplication (MVM) part of an MLP is

hoisted before aggregation (Ltd-MESORASI). The limited delayed-aggregation algo-

rithm is inspired by certain Graph Neural Network (GNN) implementations such as

GCN (Fey and Lenssen, 2019; Wang et al., 2019b) and GraphSage (Hamilton, 2017).

Note that by hoisting only the MVM rather than the entire MLP, Ltd-MESORASI is

precise since MVM is linear.

On average, MESORASI achieves 1.6× speedup and 51.1% energy reduction com-

pared to the original algorithms. In comparison, the limited delayed-aggregation algo-

rithm achieves only 1.3× speedup and 28.3% energy reduction. Directly comparing

with Ltd-MESORASI, MESORASI has 1.3× speedup and 25.9% energy reduction. This
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is because the limited delay-aggregation, in order to be precise, could be applied to only

the first MLP layer. By being approximate, MESORASI does not have this constraint

and thus enables larger benefits; the accuracy loss could be recovered through fine-

tuning (Fig. 8.9). MESORASI has similar performance as Ltd-MESORASI on DGCNN

(c), LDGCNN, and DensePoint, because these three networks have only one MLP layer

per module.

Although delayed-aggregation allows neighbor search and feature extraction to be

executed in parallel, and our implementation does exploit the concurrent kernel execu-

tion in CUDA, we find that neighbor search and feature extraction in actual executions

are rarely overlapped. Further investigation shows that this is because the available re-

sources on the Pascal GPU on TX2 are not sufficient to allow both kernels to execute

concurrently. We expect the speedup to be even higher on more powerful mobile GPUs

in the future.

Overall, networks in which feature computation contributes more heavily to the

overall time, such as PointNet++ (c) and F-PointNet (Fig. 6.5), have higher MAC oper-

ation reductions (Fig. 8.2), and thus have higher speedups and energy reductions. This

confirms that the improvements are mainly attributed to optimizing the MLPs in feature

computation.

8.4.4 Speedup and Energy Reduction

MESORASI also improves the performance and energy consumption of emerging mo-

bile SoCs with a dedicated NPU. Fig. 8.11a and Fig. 8.11b show the speedup and the

normalized energy consumption of the two MESORASI variants over the NPU+GPU

baseline, respectively.

Software The delayed-aggregation algorithm alone without AU support, i.e.,

MESORASI-SW, has a 1.3× speedup and 22% energy saving over the baseline. The

main contributor of the improvements is optimizing the MLPs in feature computation.
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Fig. 8.11: Speedup and energy reduction of MESORASI-SW and MESORASI-HW over

the baseline (GPU+NPU), which is twice as fast and consumes one-third of the energy

compared to the GPU, indicating an optimized baseline to begin with.

Fig. 8.12a shows the speedups and energy savings of the delayed-aggregation algorithm

on feature computation. On average, the feature computation time is reduced by 5.1×

and the energy consumption is reduced by 76.3%.

The large speedup on feature computation does not translate to similar overall

speedup, because feature computation time has already been significantly reduced by

the NPU, leaving less room for improvement. In fact, our GPU+NPU baseline is

about 1.8× faster (Fig. 8.11a) and consumes 70% less energy compared to the GPU

(Fig. 8.11b). The increased workload of aggregation also adds to the overhead, leading

to overall lower speedup and energy reduction than on GPU.

Hardware With the AU hardware, MESORASI-HW boosts the speedup to 1.9×

(up to 3.6×) and reduces the energy consumption by 37.6% (up to 92.9%). DGCNN (s)
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Fig. 8.12: Speedup and energy savings on feature computation and aggregation.

has the least speedup because it has the least aggregation time (Fig. 8.5), thus benefiting

the least from the AU hardware.

Fig. 8.12 shows the speedup and energy reduction of aggregation over the baseline

(which executes aggregation on the GPU). Overall, MESORASI-HW reduces the aggre-

gation time by 7.5× and reduces the energy by 99.4%. The huge improvements mainly

come from using a small memory structure customized to the data access patterns in

aggregation.

On average, 27% (max 29%) of PFT buffer accesses are to serve previous bank

conflicts. The total time spent on PFT buffer accesses is 1.5× of the ideal case without

bank conflicts. Empirically we do not observe pathological cases.

The AU’s speedup varies across networks. For instance, the speedup on PointNet++

(c) is over 3× higher than that of F-PointNet. This is because the speedup decreases as

bank conflict increases; bank conflicts occur more often when neighbor search returns

more neighbors. The neighbor searches in PointNet++ (c) mostly return 32 neighbors,

whereas neighbor searches in F-PointNet return mostly 128 neighbors, significantly

increasing the chances of bank conflicts. This also explains why PointNet++ (c) has

overall higher speedup than F-PointNet (Fig. 8.11a).
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Fig. 8.13: MESORASI-SW and MESORASI-HW speedup over an NSE-enabled SoC

(GPU+NPU+NSE), which is 4.0× faster than the GPU by accelerating both MLP and

neighbor search.

8.4.5 Results with Neighbor Search Engine (NSE)

From the evaluations above, it is clear that the improvements of MESORASI will ulti-

mately be limited by the neighbor search overhead, which MESORASI does not opti-

mize and becomes the “Amdahl’s law bottleneck.”

To assess the full potential of MESORASI, we evaluate it in a futuristic SoC

that incorporates a dedicated neighbor search engine (NSE) that accelerates neighbor

searches. We implement a recently published NSE built specifically for accelerating

neighbor searches in point cloud algorithms (Xu et al., 2019), and incorporate it into

our SoC model. On average, the NSE provides over 60× speedup over the GPU. Note

that the NSE is not our contribution. Instead, we evaluate the potential speedup of

MESORASI if an NSE is available.

The speedup of MESORASI greatly improves when neighbor search is no longer

a bottleneck. Fig. 8.13 shows the speedups of MESORASI-SW and MESORASI-HW

on the NSE-enabled SoC. On average, MESORASI-SW achieves 2.1× speedup and

MESORASI-HW achieves 6.7× speedup. The two DGCNN networks have particularly

high speedups because neighbor search contributes heavily to their execution times

(Fig. 6.5).
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energy to the systolic array size.
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8.4.6 Sensitivity Study

The evaluations so far are based on one hardware configuration. We now study how the

improvements vary with different hardware resource provisions. In particular, we focus

on two types of hardware resources: the baseline NPU and the AU augmentation. Due

to the page limit, we show only the results of PointNet++ (s). The general trend holds.

NPU We find that MESORASI has higher speedups when the NPU is smaller.

Fig. 8.14 shows how the speedup and normalized energy of MESORASI-HW over the

baseline vary as the systolic array (SA) size increases from 8 × 8 to 48 × 48. As the

SA size increases, the feature extraction time decreases, and thus leaving less room for

performance improvement. As a result, the speedup decreases from 2.8× to 1.2×.

Meanwhile, the energy reduction increases from 17.7% to 23.4%. This is because

a large SA is more likely throttled by memory bandwidth, leading to overall higher

energy.

AU We find that the AU energy consumption is sensitive to the NIT and PFT buffer

sizes. Fig. 8.15 shows the AU energy under different NIT and PFT buffer sizes. The

results are normalized to the nominal design point described in Sec. 8.3 (i.e., a 64 KB

of PFT and a 12 KB NIT).
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The energy consumption increases as the PFT and NIT buffer sizes decrease. In an

extremely small setting with an 8 KB PFT buffer and a 3 KB NIT buffer, the AU en-

ergy increases by 32×, which leads to a 5.6% overall energy increase. This is because

a smaller PFT buffer leads to more PFT partitions, which increases NIT buffer energy

since each NIT entry must be read once per partition. Meanwhile, a smaller NIT re-

quires more DRAM accesses, whose energy dominates as the PFT buffer becomes very

small. On the other extreme, using a 256 KB PFT buffer and a 96 KB NIT buffer re-

duces the overall energy by 2.0% while increasing the area overhead by 4×. Our design

point balances energy saving and area overhead.

8.5 Related Work

Point Cloud Analytics Point cloud has only recently received extensive interests.

Unlike conventional image/video analytics, point cloud analytics requires considerably

different algorithms due to the unique characteristics of point cloud data. Most of the

recent work focuses on the accuracy, exploring not only different data representation

(e.g., 2D projection (Qi et al., 2016), voxelization (Wu et al., 2015; Riegler et al., 2017),

and raw points (Qi et al., 2017b; Wang et al., 2019a)), but also different ways to extract

features from points (Simonovsky and Komodakis, 2017; Qi et al., 2017b; Wu et al.,

2019; Wang et al., 2019a). Our delayed-aggregation primitive can be thought of as a

new, and efficient, way of extracting features from raw points.

MESORASI focuses on improving the efficiency of point cloud algorithms while

retaining the high accuracy. In the same vein, PVCNN (Liu et al., 2019c) combines

point-based and voxel-based data representations in order to boost compute and mem-

ory efficiency. Different but complementary, MESORASI focuses on point-based neural

networks. While PVCNN is demonstrated on GPUs, MESORASI not only directly bene-

fits commodity GPUs, but also incorporates systematic hardware support that improves

DNN accelerators.
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Prior work has also extensively studied systems and architectures for accelerating

neighbor search on GPU (Qiu et al., 2009; Gieseke et al., 2014), FPGA (Heinzle et al.,

2008; Winterstein et al., 2013; Kuhara et al., 2013), and ASIC (Xu et al., 2019). Neigh-

bor search contributes non-trivial execution time to point cloud networks. MESORASI

hides, rather than reduces, the neighbor search latency, and directly benefits from faster

neighbor search.

GNNs Point cloud applications bear some resemblance to GNNs. After all, both

deal with spatial/geometric data. In fact, some point cloud applications are imple-

mented using GNNs, e.g., DGCNN (Wang et al., 2019a).

However, existing GNN accelerators, e.g., HyGCN (Yan et al., 2020), are insuffi-

cient in accelerating point cloud applications. Fundamentally, GNN does not require

explicit neighbor search (as a vertex’s neighbors are explicitly encoded), but neighbor

search is a critical bottleneck of all point cloud applications, as points are arbitrarily

spread in 3D space. Our design hides the neighbor search latency, which existing GNN

accelerators simply do not optimize for. In addition, MESORASI minimally extends

conventional DNN accelerators instead of being a new accelerator design, broadening

its applicability in practice.

From Fig. 6.5, one might notice that A in point cloud networks is much faster than

F , which is the opposite in many GNNs (Yan et al., 2020). This is because F in point

cloud applications does much more work than A, opposite to GNNs. In point cloud

application, A simply gathers neighbor feature vectors, and F operates on neighbor

feature vectors (MLP on each vector). In contrast, A in GNNs gathers and reduces

neighbor feature vectors to one vector, and F operates on the reduced vector (MLP on

one vector).

Domain-Specific Accelerator Complementary to improving generic DNN ac-

celerators, much of recent work has focused on improving the DNN accelerators for

specific application domains such as real-time computer vision (Buckler et al., 2018;

Zhu et al., 2018b; Feng et al., 2019), computational imaging (Mahmoud et al., 2018;
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Huang et al., 2019), and language processing (Riera et al., 2018). The NPU in the

MESORASI architecture is a DNN accelerator specialized to point cloud processing.

MESORASI also extends beyond prior visual accelerators that deal with 2D data (im-

ages and videos) (Mahmoud et al., 2017; Zhang et al., 2017; Mazumdar et al., 2017;

Zhang et al., 2019b; Leng et al., 2019; Zhao et al., 2020) to 3D point clouds.

To keep the modularity of existing SoCs, MESORASI relies on the DRAM for inter-

accelerator communication. That said, MESORASI could benefit from more direct ac-

celerator communication schemes such as VIP (Nachiappan et al., 2016) and Short-

circuiting (Yedlapalli et al., 2014). For instance, the NIT could be directly commu-

nicated to the NIT buffer from the GPU through a dedicated on-chip link, pipelining

neighbor search with aggregation.
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9 Crescent: Addressing Memory

Inefficiencies via Compulsory

Approximation

Irregular memory accesses plague point cloud analytics and introduce massive memory

inefficiencies. To address irregular memory accesses, this chapter exploits the approx-

imate nature of deep learning and proposes an approximation technique to alleviate

memory irregularity. Sec. 9.1 and Sec. 9.2 propose techniques to address memory in-

efficiencies in DRAM and SRAM, respectively. Sec. 9.3 introduces a co-training strat-

egy to effectively train such an approximation algorithm. The quantitative evaluation is

shown in Sec. 9.4 and Sec. 9.5. Lastly, related work is highlighted in Sec. 9.6.

9.1 Fully-Streaming Neighbor Search Algorithm

We introduce our neighbor search algorithm and explain how it fundamentally im-

proves the DRAM access efficiency by allowing completely streaming memory ac-

cesses (Sec. 9.1.1). We then describe the co-designed neighbor search hardware

(Sec. 9.1.2). Finally, we discuss the key knob in our algorithm that dictates the

accuracy-vs-performance trade-off (Sec. 9.1.3).
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Fig. 9.1: The two-level tree data structure of our neighbor search algorithm. In the first

stage, queries traverse the top-tree and are assigned to a particular sub-tree in the end. In

the second stage, queries search neighbors in their assigned sub-tree, and backtracking

is limited to within the sub-tree.

9.1.1 Algorithm

Our algorithm splits the K-d tree into a top tree and a set of sub-trees. Each top-tree leaf

node is also the root node of a sub-tree. The search is then naturally divided into two

stages: a top-tree search stage and a sub-tree search stage. The two stages themselves

are massively parallel but are serialized with each other. Fig. 9.1 illustrates the idea.

In the first stage, all the queries search the top-tree (a binary search tree) until they

reach the leaf nodes of the top-tree, at which point the queries are assigned to the

corresponding sub-trees. Conceptually, each sub-tree has a queue that stores all the

incoming queries. At the end of the first stage, queries in the sub-tree queues are written

back to the memory in preparation for the second stage. In actual hardware, a queue

has a fixed size. Thus, the memory write-back is phased, as we will discuss later.

Once all the queries finish the first stage, the algorithm enters the second stage,
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Fig. 9.2: Neighbor search hardware engine, which enables fully-streaming access to

DRAM. The same hardware is used for both the top-tree search and the sub-tree

searches, simplifying the hardware design.

where queries in each sub-tree are searched against the corresponding tree. For each

sub-tree, the search process is exactly the same as that in the top-tree with a critical

difference: queries are allowed to backtrack when they reach a leaf node of the sub-

tree. This is necessary for a query to find all its neighbors.

However, we limit the backtracking to the sub-tree. The intuition is that nodes in

other sub-trees are naturally far away from the query and thus are less likely to be

neighbors. Architecturally, this ensures that each sub-tree and each query is loaded to

SRAM once — at a cost of accuracy loss. We will discuss the accuracy implication

of this design decision in Sec. 9.1.3 and how to mitigate the accuracy loss through

approximation-aware network training in Sec. 9.3.

9.1.2 Hardware Design

The hardware designed to exploit the algorithm is shown in Fig. 9.2. The search is

carried out by a set of PEs, each of which can execute a query independently. The PEs

access data from the on-chip SRAM that stores various data structures. The SRAM

interfaces with the DRAM through a DMA, as all DRAM accesses are streaming.

SRAM The SRAM is split into two global buffers and two local buffers. The

global tree buffer and query buffer are accessed by all the PEs. Each PE is also equipped

with a local result buffer and a local stack buffer private to each query.
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The global tree buffer is accessed by the PEs simultaneously. To sustain a high read

bandwidth, the tree buffer is heavily banked. Unlike in regular kernels, bank conflicts

here could not be avoided by optimizing the data layout in the banks, because the access

pattern of the PEs is known only at run time. We will show in Sec. 9.2 how to mitigate

the performance impact of bank conflicts.

PE Design The PE design follows the algorithm of how a query traverses the K-d

tree to search for its neighbors. As shown in the left blown-up panel in Fig. 9.2, a PE

is pipelined into five stages, starting from reading the top of the traversal stack (RS) to

fetch the next tree node to visit (FN), followed by calculating the distance between the

query and the tree node (CD), storing results (SR) when a neighbor is found, and ended

with updating the stack (US). The pipeline stalls only when the FN stage meets a bank

conflict when reading the global tree buffer.

Hardware Reuse Due to the uniform traversal-based search in both top- and sub-

tree searches, the hardware is reused in both phases. For instance, the PEs are designed

with the generic traversal logic that is agnostic to what the search tree is and what

the queries are. The US stage is skipped/bypassed in the top-tree search where no

backtracking takes place (i.e., no update to the query stack).

The SRAM is also reused between the two phases. Specifically, the PE-local result

buffer is re-purposed between storing the sub-tree queues in the top-tree search phase

and storing the neighbor results in the sub-tree search phase. The global tree buffer

is re-purposed between storing the top-tree and storing the sub-tree. During top-tree

search, whenever a result buffer is full all the queries assigned to that queue (thus far)

are streamed back to the DRAM.

9.1.3 Accuracy and Performance Trade-off

A key parameter that governs our algorithm is the top-tree height (TTH). TTH must be

set to ensure both the top-tree and the sub-trees can be held in the on-chip SRAM. At
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the same time, TTH also dictates the performance-vs-accuracy trade-off. We explore

the implication of TTH in this section.

First, the top-tree height is dictated by the tree buffer size. We require that the

entirety of the top-tree or a sub-tree, while is being searched, is completely stored in

the tree buffer. This ensures that the PE pipeline does not stall because the required data

are off-chip. Thus, the top-tree height ht must be within the range [H + 1 − log2(S +

1), log2(S +1)] to satisfy the following two inequalities, whereH is the total K-d tree

height and S is the total tree buffer size:

2ht − 1 ≤ S(9.1)

2H−ht+1 − 1 ≤ S(9.2)

Given that a TTH is within the permissible range, a shorter top-tree increases the

neighbor search accuracy at a cost of more computation, and vice versa. This can be

explained by a first-order analytical model, where the total number of nodes a query

accesses is proportional to the sum of:

i the number of tree nodes that are visited during the forward traversal, i.e., from the

root node of the top-tree to a leaf node of a sub-tree,

ii the number of nodes that are visited during the sub-tree backtracking.

The cost of (i) is constant, as it depends only on the total tree height. The cost of (ii)

inversely depends on the TTH: a taller top-tree translates to visiting fewer nodes in the

sub-tree backtracking, reducing the cost of (ii) and, by extension, the total cost. Fig. 9.3

quantifies how the total number of nodes accessed per query (y-axis) varies with the

TTH (x-axis) using the average statistics of PointNet++(c) on the KITTI dataset. As

the TTH increases to 10, only 2% of the tree nodes are accessed by a query. Visiting

fewer nodes improves the search speed but also degrades the accuracy.

An assumption we make, as with Tigris (Xu et al., 2019) and QuickNN (Pinkham

et al., 2020b), is that a sub-tree can be stored completely on-chip. This is a reasonable
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assumption: a typical 10 MB point cloud using a 5-level top-tree would result in a sub-

tree size of 640 KB, smaller than a typical on-chip buffer size found in mobile SoCs.

In case of excessively large point clouds, CRESCENT can in theory recursively split a

sub-tree; we do not observe this need in common datasets.

9.1.4 Efficiency Discussion

The split-tree algorithm enables completely streaming DRAM accesses. The panel on

the right of Fig. 9.2 shows how the different data structures are laid out in the DRAM

and how they are accessed in a streaming fashion. Converting random DRAM accesses

to streaming accesses reduces the DRAM energy (Micron, 2020; Gao et al., 2017), and

enables double-buffering, which improves performance because: 1) off-chip data ac-

cesses are overlapped with computation, and 2) data needed by the datapath are readily

available on-chip without stall.

Compared to prior neighbor search algorithms that also enable streaming accesses

such as Tigris (Xu et al., 2019) and QuickNN (Pinkham et al., 2020b), we reduce both

the search load and DRAM traffic. We qualitatively discuss it here, and quantify the

gains in Sec. 9.5.5.
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First, Tigris and QuickNN use exhaustive search within the sub-trees, whereas we

retain K-d tree search in the sub-trees, thereby reducing the total search load. Retaining

K-d tree search in the sub-trees is not an obvious design decision, because it introduces

irregular on-chip memory accesses in the form of bank conflicts, which prior work aims

to avoid at a cost of more search work.

Our strategy is different: we reduce the search work by retaining K-d tree search

and mitigate the resulting irregular on-chip memory accesses through inference-training

co-design. Specifically, we will show a selective bank conflict elision scheme to signif-

icantly reduce bank conflicts (Sec. 9.2), which, when coupled with an approximation-

aware training procedure (Sec. 9.3), retains the application accuracy.

Second, we reduce the amount of DRAM accesses compared to Tigris and

QuickNN, both of which load (and reload) a sub-tree from DRAM whenever the cor-

responding query buffer is full. We instead first stage all the queries to a sub-tree in

DRAM and then process them in a batch, thus loading each sub-tree exactly once.

9.2 Selective Bank Conflict Elision

This section addresses inefficiencies pertaining to on-chip memory accesses. We first

describe our main idea of selectively eliding bank conflicts (Sec. 9.2.1). We then discuss

how point cloud algorithms proceed when bank conflicts are elided (Sec. 9.2.2) and

the hardware support (Sec. 9.2.3). Finally, we identify the key knobs that dictate the

accuracy-vs-performance trade-off (Sec. 9.2.4).

9.2.1 Main Idea

A key requirement of the SRAM design is to feed data required by the PEs without

stalling them. Such a requirement is easy to meet in conventional DNNs or other regular

kernels, where data access patterns are statically known and thus SRAM data layout can
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be statically optimized accordingly (Zhou et al., 2021). The on-chip memory access

patterns in point cloud algorithms, however, are only dynamically known, introducing

SRAM bank conflicts that are detrimental to overall performance.

Motivated by the error-tolerance nature of neural networks, our idea is to dynami-

cally ignore bank conflicts when appropriate. That is, when multiple memory requests

fall in the same bank, instead of serializing the accesses we allow only one request to

access the SRAM; other requests return immediately without stalling. While conceptu-

ally simple, actually realizing this idea requires answering three questions:

1. What data should conflicted accesses return, and how should the algorithm pro-

ceed without the correct data?

2. How to support bank conflict elision in hardware?

3. When is it appropriate to elide bank conflicts without accuracy drop?

The answers to these questions depend on where a bank conflict takes place in the

algorithm, because different memory accesses request data of different significance.

Both neighbor search stage and feature computation introduce bank conflicts. In neigh-

bor search, bank conflicts are caused by accessing the tree buffer; all other accesses

are regular. In feature computation, aggregating neighbors of a point as inputs to the

MLP causes bank conflicts; SRAM accesses incurred during MLP are regular. We now

elaborate on how the three questions above are addressed in both stages.

9.2.2 How Algorithms Proceed with Bank Conflicts Elision

Feature Computation To aggregate neighbors, SRAM accesses are made to retrieve

neighbors of a point. Thus, ignoring a conflicted access essentially ignores a point’s

neighbor, in which case we must fill in the missing neighbors, as the subsequent MLP

anticipates an input matrix of a given size (decided at the training time).
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To meet the size requirement, we propose to simply reuse the point returned from

the request that is allowed to access the bank. The intuition is that concurrent accesses,

say A and B, are guaranteed to be requesting neighbors of the same point P (Feng et al.,

2020b). Reusing the returned data from A for B is equivalent to replicating one of P ’s

neighbors. This replication strategy is commonly done in point cloud network design

to meet the size requirement in case a neighbor search does not return enough neigh-

bors (Qi et al., 2017a,b). Our design essentially performs this replication in hardware,

implicitly.

Neighbor Search The situation is slightly different for neighbor search, where

bank conflicts happen when the PEs access the tree nodes during tree traversal. One

could use the same replication strategy used in the feature computation stage: if ac-

cesses A1 from PE 1 and A2 from PE 2 conflict on the same bank, reuse the data

returned from A1 for A2. However, this could lead to side effects such as program

crash, redundant computation, and infinite loop. For instance, when the node returned

from A1 is in the part of the tree that PE 2 has already visited, pushing A1 onto PE 2’s

stack leads to an infinite loop or, at least, redundant traversals.

Our design simply ignores the conflicted accesses. Upon a conflict, the FN stage

in a PE skips the remaining pipeline stages and reads the next item on the stack. This

is denoted by the “bypass” signal in the PE shown in Fig. 9.2. Algorithmically, this is

equivalent to skipping all the nodes beneath the lost node during tree traversal. This

strategy omits potential neighbors but guarantees that the traversal terminates.

An optimization that we leave for future work is to check whether the node returned

from A1, the request allowed to access the SRAM, is beneath the node (in the tree) that

would have been returned from A2 if the bank conflict were to be observed; if so, using

A1 to continue the search in P2 is guaranteed to terminate without side effects. Doing

so would skip fewer nodes and potentially increase the accuracy.
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9.2.3 Hardware Support

Eliding bank conflicts is virtually free to implement in hardware by using many existing

structures in banked SRAM design. As an example, Fig. 9.5 shows a simple banked

SRAM with 2 ports and 4 banks. The key to a banked SRAM is the arbitration and

crossbar logic, which detects bank conflicts and routes data from a bank to the right

port (a MUX here). For simplicity, we show only the relevant hardware and assume a

low-order interleaving, i.e., the two least significant bits in the address select a bank.

Assume both accesses from the two ports fall into Bank 0, and Port 0 is allowed

access. In the baseline SRAM, the MUX before Port 1 would select data returned from

Bank 0, but this data will be ignored because the bank conflict detection logic would

raise the Conflict signal, indicating to Port 1 that a bank conflict occurs and the memory

request is to be issued again. But, critically, the data returned from Bank 0 is exactly

what Port 1 needs in the feature computation stage under bank conflict elision. We
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simply lower the Conflict signal in this case, which is accomplished by ANDing the

output of bank conflict detection and the negation of the Elide signal, which indicates

whether bank conflict elision is enabled.

The Mode signal operates a MUX to select between the neighbor search vs. feature

computation mode. In neighbor search, the original bank conflict signal is used, except

the PE will not re-issue the memory request; instead, the PE simply continues the search

with the next item on the stack.

9.2.4 When to Elide Bank Conflicts?

Eliding bank conflicts returns incorrect data to the PEs and, thus, hurts accuracy. We

find that eliding bank conflicts in feature computation leads to little to no accuracy loss

whereas eliding bank conflicts during neighbor search, without care, has significant

accuracy implications (Sec. 9.5.3). This is because in feature computation the data

that would have been returned (if bank conflicts were observed) are replaced with the

data returned from the conflicting access; in neighbor search, however, eliding bank

conflicts directly skips all the computations associated with that node altogether. We

thus focus on the neighbor search stage here.

Intuitively, the accuracy loss is smaller when ignoring a memory access made to

a lower-level tree node, as fewer tree nodes would be skipped later in the traversal.

Fig. 9.4 shows how the percentage of skipped tree nodes (y-axis) varies with the tree

level below which bank conflicts are elided (x-axis). The data are averaged across all

the queries of PointNet++(c) on the ModelNet dataset, where the total tree height is

14. When bank-conflicted accesses below level 2 are ignored, almost 100% of the tree

nodes are skipped, which degrades the model accuracy to almost zero (not shown).

When the elision level is 12, only 10% of the tree nodes are skipped.

Skipping more nodes degrades accuracy but increases the search speed. Therefore, a

natural knob that controls the trade-off of accuracy-vs-performance is the elision height
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he, which is defined as the tree level beneath which all conflicted memory accesses are

ignored. Sec. 9.3 will show how incorporating he into model training can minimize the

accuracy loss while providing the accuracy-vs-performance trade-off without retrain-

ing.

9.3 Approximation-Aware Network Training

Our neighbor search algorithm and bank conflict elision, if applied directly on a trained

point cloud DNN at inference time, will decrease the accuracy sharply (Sec. 9.5.1).

This is because the original network is not trained with the various approximation tech-

niques in mind. To mitigate the accuracy drop, we propose a modified network training

procedure that mitigates the accuracy loss.

The goal here is to learn a DNN that retains a high accuracy under approxima-

tion compared to the baseline network. In particular, we consider two approximation

knobs: the top-tree height ht and the elision height he.A larger ht decreases accuracy

but increases the performance; conversely, a larger he increases the accuracy at a cost

of lower performance.
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A straightforward idea is to integrate h = ⟨ht, he⟩ as part of the inference such

that the DNN is trained for a particular h. In essence, this is similar to fine-tuning a

compressed model to regain the accuracy, where a network learns to adjust its weights

given the approximation introduced by a particular compression setting.

While one could train a dedicated model for each possible h and build an ensem-

ble, that would increase the training overhead and deployment complexity. Instead, we

propose to learn one model that adapts to different h. Mathematically, we aim to learn

a DNN distribution f(·,h; θ) ∼ F such that different DNNs sampled from the distribu-

tion F share the same model parameter θ and provide similar accuracy given an input

h (along with the input point cloud).

To that end, our training procedure augments the conventional training with one

simple extension: conventional training samples input data; our training also randomly

samples an h for each input. During the forward propagation, h is used to modulate

the neighbor search and bank conflict elision. In this way, the model parameter θ is

trained to accommodate the approximations introduced during the forward inference.

The training flow is shown in Fig. 9.6.

In order to replay the same inference-time approximation during training, we inte-

grate a hardware simulator for modeling the bank conflict. The bank conflict model is

called by both neighbor search and feature computation (the aggregation operation), as

Fig. 9.6 shows. The bank conflict simulator takes in two parameters: 1) he, which indi-

cates the tree level below which bank conflicts are elided, and 2) the hardware banking

configuration (e.g., number of banks, bank size). We find that training with the exact

banking configuration on the inference hardware yields higher accuracy, but absent an

exact hardware configuration training with a generic banking configuration provides

noticeable benefits, too (Sec. 9.5.3).

Finally, note that neighbor search and aggregation do not participate in gradient

descent; they simply construct inputs to the MLP layers. Thus, the model is end-to-end

differentiable even though neighbor search and aggregation are not.
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Fig. 9.7: Overall architecture of the point cloud DNN accelerator, which includes three

main components: a Neighbor Search Engine, an Aggregation Unit, and a systolic array

for executing the MLPs in feature computation. The Neighbor Search Buffers include

all the buffers shown in Fig. 9.2.

9.4 Experimental Setup

Architecture Design Fig. 9.7 shows the overall point cloud accelerator, which in-

cludes three main components: a neighbor search engine as described in Sec. 9.1.2,

a neighbor aggregation unit, which uses the design in Mesorasi (Feng et al., 2020b),

and a DNN accelerator for executing the MLPs. Without losing generality, we assume

a systolic-array-based DNN accelerator, which is configured to have a 16 × 16 MAC

array, where each MAC unit mimics the design of that in the TPU (Jouppi et al., 2017a).

The on-chip SRAM is partitioned to serve different purposes. The global buffer

serves the weight and activations for the systolic array. It is configured to be 1.5 MB in

size. The Point Buffer is a 64 KB 16-banked buffer serving points during aggregation.

The Neighbor Index Buffer is sized at 12 KB with a single bank. The Tree buffer and the

Query buffer are sized at 6 KB and 3 KB with 4 banks and 1 bank, respectively. These

two buffers support selective bank elision as described in Sec. 9.2.3. The neighbor

search engine has 4 PEs, each with a dedicated result buffer and a stack buffer, which

are sized at 1.5 KB and 256 B, respectively.

Experimental Methodology We synthesize, place, and route the datapath of the
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Table 9.1: Evaluation models.

Application

Domains
Algorithm Dataset

Classification
PointNet++ (c)

DensePoint
ModelNet40

Segmentation PointNet++ (s) ShapeNet

Detection F-PointNet KITTI

neighbor search engine, the systolic array, and the aggregation unit using an EDA flow

consisting of Synopsys and Cadence tools with the TSMC 16 nm FinFET technology.

The SRAMs are generated using the Arm Artisan memory compiler. Power is esti-

mated using Synopsys PrimeTimePX by annotating the switching activity. We then

build a cycle-accurate simulator of the architecture with the latency of each component

parameterized from the post-synthesis results of the RTL design.

The DRAM is modeled after Micron 16 Gb LPDDR3-1600 (4 channels) according

to its datasheet (Micron, 2014). The DRAM energy is obtained using Micron System

Power Calculators (Micron, 2020). On average, the energy ratio between a random

DRAM access and a streaming DRAM access is about 3:1, and the energy ratio be-

tween a random DRAM access and an SRAM access is about 25:1, both matching

prior work (Gao et al., 2017; Yazdanbakhsh et al., 2018).

Software Setup Tbl. 9.1 lists the four point cloud networks used in the evaluation,

which covers common point cloud tasks including classification, segmentation, and de-

tection. For classification, we evaluate the classic PointNet++(c) (Qi et al., 2017b) and

DensePoint (Liu et al., 2019b) on the ModelNet40 dataset (Wu et al., 2015). We use the

overall accuracy as accuracy metric. For segmentation, we evaluate PointNet++(s) (Qi

et al., 2017b) on the ShapeNet dataset (Chang et al., 2015). The metric used in seg-

mentation is the standard Intersection-over-Unit (mIoU) accuracy. For detection, we

evaluate F-PointNet (Qi et al., 2018) on the KITTI dataset (Geiger et al., 2012a) and
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report the geometric mean of the IoU metric on the car class.

To ensure that the improvements from CRESCENT are not due to the inefficiencies

of the network implementation, we use the versions of these models optimized by Feng

et al. (Feng et al., 2020b), which removes redundant MLP computations and on average

achieves 1.6× speedup over the corresponding author-released implementations.

Baseline We compare against three baselines:

• GPU: the mobile Pascal GPU on Nvidia’s Jetson TX2 development

board (Nvidia, 2017b).

• TIGRIS+GPU: this baseline executes the neighbor search on Tigris (Xu et al.,

2019), a recent neighbor search accelerator that does not perform approximate

neighbor search and selectively bank conflict elision, and executes the feature

computation on the mobile Pascal GPU.

• MESORASI, a prior point cloud network accelerator (Feng et al., 2020b) that uses

Tigris (Xu et al., 2019) for neighbor search and executes the feature computation

on a dedicated systolic-array without selectively bank conflict elision. The exact

same systolic array configuration is used in CRESCENT with the exception that

CRESCENT performs selective bank conflict elision.

Area Overhead Our accelerator has a total area of 1.55mm2, in which the CRES-

CENT-specific portion is almost negligible. The only hardware extension is one that

selectively elides the bank conflict (Fig. 9.5), which requires an additional MUX and

an AND gate for each port of the SRAM.

Traininig Overhead Our approximation-aware training increases the training time

by 38%. The main overhead is to simulate bank conflicts, which currently is a multi-

threaded CPU implementation. Using a random h does not further increase the training

overhead, since we still perform one search per inference. Note that the training over-

head is amortized across all subsequent inferences.
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Fig. 9.8: Accuracy comparison between the baseline models, ANS+BCE without re-

training, ANS with re-training under ht = 4, and ANS+BCE with re-training under

ht = 4 and he = 12.

Variants We evaluate two variants of CRESCENT to decouple the contribution of

the two optimizations:

• ANS performs approximate neighbor search but does not elide bank conflicts.

• ANS+BCE performs approximate neighbor search while also eliding bank con-

flicts in neighbor search and aggregation.

9.5 Evaluation

We first show that CRESCENT achieves similar accuracy as the baseline (Sec. 9.5.1)

but delivers significant speedups and energy reductions (Sec. 9.5.2). We then provide a

detailed analysis of our training procedure and understand how its effectiveness varies

with respect to different algorithmic and hardware configurations (Sec. 9.5.3). We per-

form a sensitivity study to understand CRESCENT’s performance and energy savings

vary under different settings (Sec. 9.5.4). Finally, we provide a quantitative compari-

son with prior neighbor search accelerators (Sec. 9.5.5).
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9.5.1 Accuracy

We find that directly applying CRESCENT optimizations without retraining significantly

degrades the model accuracy. Integrating approximation into the training process ele-

vates the accuracy to the baseline level. Fig. 9.8 compares the model accuracy be-

tween four schemes: 1) the baseline models, 2) ANS+BCE without re-training, 3)

ANS+BCE with re-training, and 4) ANS with re-training. In this specific case, each

re-trained model is trained specifically for the approximate setting where ht = 4 and/or

he = 12.

Directly applying the two optimizations at inference time degrades the accuracy

between 27.3% to 40.5%, making the models practically useless. Re-training regains

the accuracy with an accuracy drop of at most 0.9% (PointNet++(c)). In PointNet++(s),

re-training completely recovers the accuracy loss introduced in approximation. The fact

that we can almost completely recover the accuracy loss with ANS+BCE, the most

aggressive approximation setting, shows the effectiveness of our approximation-aware

training. The accuracy of ANS alone is slightly higher than that of ANS+BCE, as the

latter applies two approximations whereas the former applies only one.

9.5.2 Performance and Energy

Using the re-trained ANS and ANS+BCE model shown in Fig. 9.8, we compare

CRESCENT’s performance and energy consumption over the baseline accelerator,

shown in Fig. 9.9.

Speedup Fig. 9.9a shows the speedup of ANS and ANS+BCE against the

three baselines; all data are normalized to MESORASI. Among the three baselines,

TIGRIS+GPU and GPU are much slower than MESORASI, because the latter acceler-

ates feature computation on a systolic array.

Overall, ANS and ANS+BCE achieve a 1.7× and 1.9× speedup, respectively,

over MESORASI. Comparing the speed of ANS+BCE and ANS shows that approxi-
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Fig. 9.9: End-to-end speedup and normalized energy of ANS and ANS+BCE over the

baseline.

mation neighbor search contributes more to the speedup than bank conflict elision. The

speedups on DensePoint are the highest (2.8× and 3.1×, respectively) because Dense-

Point’s time is dominated by neighbor search (81%) whereas neighbor search takes

“only” about 55% of the time in other models.

To understand the sources of speedup, Fig. 9.10a and Fig. 9.10b show the speedup

of ANS+BCE on neighbor search and on the aggregation operation in feature com-

putation, respectively. On average, ANS+BCE achieves a 4.9× speedup on neighbor

search and a 2.1× speedup on aggregation.

Energy Savings Fig. 9.9b shows the energy consumption of ANS and ANS+BCE

normalized to MESORASI. On average, ANS and ANS+BCE save 33% and 36% of

the total energy, respectively. The energy saving is mainly contributed by approximate

neighbor search rather than bank conflict elision, because the former optimizes the
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Fig. 9.10: Speedup and energy savings of ANS+BCE on neighbor search and aggre-

gation alone.
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Fig. 9.11: Memory energy saving contribution.

DRAM traffic, which contributes more to the energy than the SRAM traffic, which

the latter optimizes for. DensePoint, again, has the highest energy saving because it

is dominated by neighbor search. As a comparison, TIGRIS+GPU and GPU consume

25× and 38× more energy, respectively, compared to MESORASI.

Fig. 9.10a and Fig. 9.10b on the right y-axes show the energy savings on neigh-

bor search and aggregation. DensePoint’s savings on these two operations in isolation

are on par with other networks, confirming that its significant end-to-end savings are

primarily attributed to the dominance of neighbor search in its execution time.

Tease Apart Contributions To understand the sources of energy savings, Fig. 9.11

decouples the memory energy savings into four components: converting random
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Fig. 9.12: Tree node access saving and bank conflict reduction of ANS+BCE.

DRAM accesses to streaming accesses, DRAM traffic reduction, SRAM traffic reduc-

tion in neighbor search, and SRAM traffic reduction from aggregation. The former two

are due to the new neighbor search algorithm, and the latter two are due to the selective

bank conflict elision optimization.

The main energy saving contributor is the SRAM traffic reduction in neighbor

search, which frequently accesses the Tree Buffer. While the DRAM savings are rela-

tively smaller, we expect the DRAM savings will become more significant in the future

as the point clouds grow in size.

We quantify the impact of selective bank conflict elision (BCE) in Fig. 9.12, where

we show the reduction in bank conflicts (left y-axis) and, as a result, the reduction in

the number of tree nodes visited (right y-axis). The results are obtained by comparing

ANS+BCE with ANS. Overall, BCE avoids over 45% of bank conflicts and reduces

50% of tree node accesses in neighbor search. This result explains the 1.9× speedup

over MESORASI by ANS+BCE.

9.5.3 Understanding the Training Procedure

We use PointNet++(c) as a representative model to drive the analyses in this section.

The conclusions generally hold.

Dedicated Models We first evaluate the accuracy of models trained with dedicated

approximation settings.
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heights (he).

Fig. 9.13 shows the accuracy of PointNet++(c) trained under different top-tree

heights (ht) and then inferenced under the same ht. The setting ht being 0 is the base-

line model with exact search. As the ht increases, the accuracy decreases. This is

because a larger ht reduces the search space and, thus, it is less likely to find the exact

neighbors for each query. The accuracy is acceptable initially, dropping from 89.6% to

88.8% as ht increases from 0 to 4. Beyond 4, the accuracy drop becomes more signif-

icant. As the top-tree height reaches 12, the accuracy is only 84.4%. As we will show

later, however, a higher ht leads to a higher speedup, providing a large trade-off space.

Fig. 9.14 performs a similar study while varying the elision height he. Each marker

in the figure represents a dedicated ANS+BCE model trained with different he ranging

from 4 to 14; ht in this example is fixed at 4. As he increases, the accuracy increases.

This is because a higher elision height skips fewer tree nodes during tree traversal,

leading to a better search result. At a he of 12, the accuracy loss is only 0.8%. The

accuracy loss is over 5% when he reduces to 4, essentially ignoring almost all nodes in

the sub-tree.

Mixed Training We now evaluate how a model trained by sampling approximation

settings adapts to different approximation levels at inference time. Fig. 9.15 compares

three schemes: 1) a model trained with ht = 1, 2) a model trained with he = 6, and 3)
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Fig. 9.16: Sensitivity of training accuracy

to bank conflict configuration.

a model trained by random sampling ht between 1 and 6 for each input (“Mixed” in the

figure). We show their accuracy under different inference-time ht.

When a dedicated model is trained with ht = 1, the accuracy significantly drops

when the inference-time ht is greater than 1. This is not surprising: a model trained with

little approximation in mind does not perform well when inference performs aggressive

approximation. When a dedicated model is trained with ht = 6, however, it performs

reasonably well across different ht at inference time, even for ht settings that are not

seen in the training time.

The mixed model consistently provides higher or similar accuracy compared to the

dedicated ht = 1 model. Compared to the dedicated ht = 6 model, the mixed model

is significantly better when higher accuracy is required (i.e., ht ≤ 3). The accuracy is

only noticeably worse than the dedicated ht = 6 model when the inference-time ht is

6, which is what the dedicated ht = 6 model is trained to do well on. The mixed model

is favorable when the accuracy requirement is high, which is arguably more important

than the low-accuracy regime.

Bank Conflict Simulation In order to integrate bank conflict elision into train-

ing, we simulate the bank conflicts in the forward propagation process during training.

However, at training time the exact banking configuration of the target hardware might

be unknown. Fig. 9.16 show the accuracy of training a model assuming 4 banks in the
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Fig. 9.17: Sensitivity of speedup and (normalized) energy to hardware configuration

(PE and bank counts) on PointNet++(c).

SRAM while inferencing under different numbers of banks. The accuracy beyond 8 is

largely stable; the accuracy has about 2% drop when inferencing on a 2-banked SRAM.

BCE in Aggregation vs. Neighbor Search We perform bank conflict elision

in both neighbor search and feature aggregation. We find that the overall accuracy is

insensitive to bank conflict elision in aggregation even without re-training. Across all

networks, applying bank conflict elision in aggregation alone (while turning off other

approximations) results in at most 0.3% accuracy loss. In contrast, accuracy typically

drops by double digits if bank conflict elision is applied in neighbor search without

re-training. As discussed in Sec. 9.2.4, this is because in the latter case eliding bank

conflicts completely skips subsequent search operations.

9.5.4 Sensitivity Study

Hardware Configuration Fig. 9.17a and Fig. 9.17b show how CRESCENT’s speedup

and energy vary, respectively, as the numbers of PEs and the number of Tree Buffer

banks vary. The energy is normalized to the corresponding baseline.

Naturally, the speedup is higher on less-capable baselines and diminishes on more
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Fig. 9.18: Accuracy vs. performance vs. energy trade-off on PointNet++(c) under

different ⟨ht, he⟩ combinations.

capable baselines (e.g. 32 PEs and 32 banks), because performance optimizations are

less important when the hardware is faster to begin with. Note, however, that a 16-

bank memory introduces a large cross-bar overhead and is generally impractical for

mobile-grade accelerators (Agarwal et al., 2009; Zhou et al., 2021).

The significant energy saving is consistent across hardware configurations. Even

with a 32 PE 32 bank configuration, CRESCENT still saves about 27% of energy on

PointNet++(c). This is because the energy is roughly proportional to the amount of

work done. Changing the hardware configuration does not affect the bulk of the work

needed to be done.

Approximation Degrees Fig. 9.18a and Fig. 9.18b show the accuracy-vs-speedup

and accuracy-vs-energy trade-offs, respectively, with different ht and he combinations,

which dictate different approximation strengths. The data are reported from Point-

Net++(c), but the trend generally holds. Overall, varying ht from 0 to 12 and he from 4

to 14 provide a trade-off space of about 5% accuracy range, 2.0 × performance range,

and 1.5 × energy range.
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Fig. 9.19: Comparison with prior neighbor search accelerators Tigris and QuickNN.

9.5.5 Comparison with Prior Neighbor Search Accelerators

QuickNN (Pinkham et al., 2020b) and Tigris (Xu et al., 2019) are two recent neighbor

search accelerators using a split-tree data structure. As discussed in Sec. 9.1.4, CRES-

CENT reduces both the search load and DRAM traffic. Fig. 9.19a shows that the K-d

tree-based search reduces the total number of tree nodes visited by 41% compared to ex-

haustive search. This explains the one-order-of-magnitude performance improvement

over the Tigris-based accelerator shown in Sec. 9.5.2.

QuickNN, similar to CRESCENT, also presents streaming DRAM accesses — at the

expense of redundant DRAM accesses, since each sub-tree is potentially loaded onto

the accelerator multiple times. Compared to a QuickNN implementation with the same

PE configuration, Fig. 9.19b shows that CRESCENT reduces the total DRAM accesses

by 48%.

Finally, we target DNN-based algorithms and, thus, can mitigate the potential accu-

racy loss through end-to-end network training, which is not available to QuickNN and

Tigris; both target a non-DNN algorithm (point cloud registration).
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9.6 Related Work

Deep Learning for Point Clouds Point cloud algorithms are increasingly mov-

ing toward DNNs, which has spurred recent interests in accelerating point cloud net-

works (Feng et al., 2020b; Lin et al., 2021; Hyun et al., 2021). Point cloud DNNs

mainly come in two forms: one that operates on raw points (Qi et al., 2017a,b; Wang

et al., 2019a; Zhang et al., 2019a; Liu et al., 2019b), and the other that first voxelizes

points and operates on voxels, which are grid-aligned points (Graham et al., 2018; Choy

et al., 2019). The former requires explicit neighbor search whereas the latter accesses

neighbors through simple indexing. It is unclear whether future point cloud algorithms

will definitively favor one form over the other. CRESCENT focuses on optimizing point-

based algorithms, whose flexibility and compact data representations are shown to be

critical in many application domains (Guo et al., 2020), such as object detection, local-

ization (SLAM), segmentation, and classification.

PointAcc (Lin et al., 2021), Point-X (Zhang and Zhang, 2021), and Mesorasi (Feng

et al., 2020b) are all recent point cloud accelerators. They are fundamentally orthog-

onal to our work in that they focus on accelerating the feature computation in point

cloud DNNs. For instance, Point-X and Mesorasi exploit the spatial locality and com-

putation redundancy, respectively. All three use brute-force neighbor search and, thus,

can directly benefit from the optimizations (approximate neighbor search and selective

bank conflict elision) proposed in this paper. We show 1.9 × speedup and 36% energy

reduction over Mesorasi in Sec. 9.5.2.

Neighbor Search This paper targets neighbor search in low-dimensional space

(2/3D), which is a fundamental building block in many computational science and en-

gineering fields, where physical objects naturally lie in 2/3D space, such as compu-

tational fluid dynamics (Ihmsen et al., 2011), computer graphics (Yifan et al., 2019),

and vision (Xu et al., 2019; Lu et al., 2021). Prior work has explored both algorithmic

and hardware solutions to accelerate neighbor search (Heinzle et al., 2008; Qiu et al.,
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2009; Aly et al., 2011; Kuhara et al., 2013; Winterstein et al., 2013; Gieseke et al.,

2014; Xu et al., 2019; Pinkham et al., 2020b), many of which are approximate in their

nature (Miclet and Dabouz, 1983; Arya et al., 1998; Ma and McCool, 2002; Greenspan

and Yurick, 2003; Purcell et al., 2005; Heinzle et al., 2008). We provide a quantitative

comparison with QuickNN (Pinkham et al., 2020b) and Tigris (Xu et al., 2019), two

most relevant accelerators in Sec. 9.5.5.

Optimizing Irregular Memory Accesses Recent work has made significant

strides in domain-agnostic prefetching for irregular applications (Ainsworth and Jones,

2018; Talati et al., 2021; Naithani et al., 2021). Our split-tree structure can be seen

as an application-specific prefetcher and achieves “perfect prefetching” in that 1) off-

chip data accesses are overlapped with computation, 2) data needed by the accelerator

are readily available on-chip without stalls, and 3) no redundant DRAM accesses are

needed.

Our split-tree structure also serves as an irregular tiling strategy, akin to propaga-

tion blocking for graph algorithms (Beamer et al., 2017), but the decision as to which

partition (sub-tree) a point is stored is based on the geometric position of a point.

Approximation Techniques Our approximation techniques exploit the inexact

nature of DNNs. Selective bank conflict elision can be seen as a form of value

approximation, bearing similarity to such approximation in general-purpose proces-

sors (San Miguel et al., 2014; Miguel et al., 2015; Rengasamy et al., 2015; San Miguel

et al., 2016; Wong et al., 2016). However, different from prior systems where the ac-

curacy control is empirical, we integrate approximation into the training process; this

allows us to provide statistical accuracy guarantees.



186

10 Retrospective and Prospective

Remarks

10.1 Retrospective

Mobile vision system plays an even more important role in many applications, includ-

ing autonomous devices, AR/VR, and IoT infrastructures. Meanwhile, these applica-

tions are also facing numerous challenges in terms of real-time performance and energy

efficiency due to the limited computing resources on these devices. My thesis provides

the first step to address these challenges, by exploiting compute redundancies in vision

systems and hardware-algorithm co-designs. These core ideas in my thesis open up

new possibilities for a wide range of mobile vision systems. The following paragraphs

summarize the new ideas that carry through my thesis.

Exploiting Computation Redundancies Real-time performance is crucial for

many mobile applications. However, today’s mobile devices often lack the computa-

tion resources to support these applications. My thesis demonstrates that there are sig-

nificant redundancies during the application execution that can be exploited to improve

the overall application performance. Specifically, EDGAZE and ASV both explore

the input redundancies across temporally-adjacent frames to effectively amortize the

computation cost. EDGAZE leverages the temporal input redundancy to narrow down

the ROI for subsequent processing for adjacent frames, while ASV exploits the sim-
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ilarities across multiple input frames to extrapolate the vision algorithm’s result with

lightweight computation. Additionally, MESORASI leverages the “seemingly” redun-

dant computations in point cloud algorithms themselves and approximates the original

algorithms to maximize the parallelism.

Aware Hardware Constraints and Capabilities For any use cases in mobile

applications, it is important for the vision algorithm designer to be aware of the impli-

cations of device constraints on their algorithm performance and to design algorithms

that can accommodate such hardware limitations accordingly. These constraints in-

clude memory bandwidth, computation budget, and other factors. On the other hand,

algorithm design should also exploit the hardware capabilities to achieve better perfor-

mance and energy efficiency. EDGAZE takes the advantages of in-sensor computing ca-

pabilities of today’s CIS and proposes an algorithm that utilizes the compute resources

inside CIS while being aware of the compute budgets and overheads. Meanwhile, ASV

considers hardware constraints such as memory bandwidth, on-chip buffer size, and

process units, and formulates its dataflow optimization as a constrained optimization to

better utilize the resources on a mobile SoC.

Architectural Generality vs. Domain Specialization As we move into the post-

Moore’s law era, hardware performance is no longer doubling every two years. How-

ever, the demand for improving performance in many emerging applications such as

AR/VR and IoT devices, continues to grow. To meet such a goal, hardware communi-

ties are turning to domain specialization. However, inventing new hardware is a lengthy

process with an even longer adoption period. An alternative to inventing brand-new ar-

chitectures is to propose hardware augmentations which require minimum overheads

and build upon existing hardware designs. Both MESORASI and CRESCENT take this

approach. MESORASI proposes minimum hardware supports on existing mobile SoC

with a gathering unit to support reduction operation in deep point cloud analytics. Sim-

ilarly, CRESCENT augments existing SRAM back design to eliminate bank conflicts.

The key to enabling emerging applications with such small hardware augmentations
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is hardware-algorithm co-design. By understanding the key bottlenecks of the appli-

cations, hardware and algorithm optimization are co-designed to achieve even better

application performance than can be achieved with brand-new hardware alone.

10.2 Prospective

The field of mobile visual computing is constantly evolving and has tremendous poten-

tial to unlock many impossibilities. As the demand for mobile vision systems continues

to grow, it is important to outline several key challenges and opportunities that lie ahead.

Towards Domain-Specific Sensor Architecture Undoubtedly, in-sensor comput-

ing is a promising direction toward real-time, energy-efficient mobile visual systems.

One of the major advantages of in-sensor computing is the reduction of the overall data

bandwidth and transmission overhead, leading to an improvement in the overall system

efficiency. As the number of sensors on mobile vision systems increases, it is more

likely that the sensors’ functionality becomes highly specialized. Therefore, designing

domain-specific sensor architecture can perform real-time analysis of visual data in-

situ without the need for external processing, allowing for faster and more responsive

systems.

Privacy-Preserved Mobile Vision Privacy preservation is an important consider-

ation in mobile vision systems, particularly as many applications become more ubiq-

uitous in our daily lives. With more emerging applications relying on various sensors

for visual perception, it is important to protect user privacy and prevent the leakage

of sensitive information. As such, privacy-preserved mobile vision becomes an active

research direction to improve the reliability and robustness of today’s vision systems.

Compulsory Approximation of Deep Learning Analytics Today’s mobile vi-

sion systems rely heavily on deep learning algorithms to perform various vision tasks

and make accurate predictions. However, these algorithms are often deep learning algo-

rithms which require intensive computation and exhibit irregular memory access. Thus,
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it is challenging to perform efficient training and inference using today’s hardware. One

promising solution is to approximate the original deep learning algorithms since ex-

act computation is often not necessary due to the approximate nature of deep learning

methods. By exploiting such characteristics of deep learning methods and modifying

deep learning computation to be hardware-friendly, it becomes easier to execute them

on today’s existing hardware. Meanwhile, exposing necessary hardware details during

approximate deep-learning training can further improve the algorithm’s accuracy and

energy efficiency. By pursuing this direction, we can unlock the full potential of deep

learning while achieving better system performance and efficiency.
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